Quantum chaos in ultra-strongly coupled nonlinear resonators

Size: px
Start display at page:

Download "Quantum chaos in ultra-strongly coupled nonlinear resonators"

Transcription

1 Quantum chaos in ultra-strongly coupled nonlinear resonators Uta Naether MARTES CUANTICO Universidad de Zaragoza,

2 Colaborators Juan José García-Ripoll, CSIC, Madrid Juan José Mazo, UNIZAR & ICMA David Zueco, UNIZAR, ICMA & ARAID

3 Outline 1 Introduction The selftrapping transition Quantization Signatures of Chaos Two coupled linear oscillators Ultra-strong coupling 2 Model and results Nonlinear mean-field Dynamics Eigenvalues and -modes Poincaré sections Quantum simulations 3 The 1D chain of coupled nonlinear oscillators Equations Band structure Selftrapping 4 Conclusions

4 Nonlinear localized (solitary) modes Soliton in the laboratory wave channel, Hawaiian coast and in bronze beads (granular media). Image sources: Wikipedia/ Robert I. Odom,University of Washington/Scholarpedia

5 The selftrapping transition in a dimer nonlinearity and coupling compete in two coupled nonlinear oscillators nonlinear integrable Hamiltonians: analytic thresholds of self-trapping (spatial localization) symmetric or anti-symmetric mode become unstable due to nonlinearity, whereas local(ized) mode stabilizes

6

7 Quantization of the dimer Perturbation theory is used to compute the (nonlinear) quantum states with coupling as the perturbation. Only symmetric and anti-symmetric modes are eigenmodes (of the RWA Hamiltonian with conserved norm). No localized mode, but the tunneling time diverges for N 2 and τ (N 1)!γN 1 2JN γn > 2J. The divergence of τ with N shows the symmetry breaking.

8 Introduction Model and results The 1D chain of coupled nonlinear oscillators Conclusions Signatures of Chaos Sensibility to initial conditions. Topological mixing. Dense periodic orbits. Fractal attractors or period doubling indicate chaos weather, dynamics of satellites in the solar system, population growth in ecology, economic models,the dynamics of the action potentials in neurons, molecular vibrations, and synchronization Hamiltonian chaos: phase space conserving (no attractors), nonintegrable Hamiltonians Lorenz equations ( 63): hydrodynamic model to calculate long term behavior in the atmosphere, describing circulation in a shallow layer of fluid, heated uniformly from below and cooled uniformly from above

9 Quantum chaos First reports of irregular behavior in the 70 s, mostly in system, which are chaotic in the classical limit. Quantum chaos: How do quantum objects behave in a system, which exhibits chaos in the classical limit? Uncertainty vs. sensibility of initial conditions. Avoided crossing due to level repulsion lead to changes in the energy level distribution. Open topic of research: What are the conditions of quantum integrability? How does thermalization happen? Connections between chaos and decoherence? Our system is quite special, quantum fluctuations destroy one constant of motion and make our system become chaotic in the semi-classical limit.

10 Two coupled linear oscillators Starting from the Hamiltonian of two coupled oscillators of masses m 1 and m 2 with frequencies ω 0,1,ω 0,2 and coupling strength C, H 0 = = ˆp ˆp2 2 + m1ω2 0,1 ˆq m2ω2 0,2 ˆq 2 2 +C(ˆq 1 ˆq 2) 2 2m 1 2m ˆp 1 2 ( + ˆp2 2 m1ω 2 ) ( 0,1 m2ω 2Cˆq 1ˆq 2 + +C ˆq 2 2 ) 0, C ˆq 2 2 2m 1 2m 2 } 2 {{}} 2 {{} 1 2 ω2 1 m 1 we use second quantization ˆq k = 2m k ω k (â k +â + k ) and m ˆp k = i k ω k (â 2 k â + k ) for k = 1, ω2 2 m 2

11 The resulting Hamiltonian is J {}}{ H H 0 2 (ω1+ω2) = ω1â+ 1 â 1+ ω 2â + C 2 â 2 (â + m1m 1 +â 1)(â + 2 +â 2). 2ω 1ω 2 Since at least the initial frequencies should be real and masses positiv, m k,ω 2 0,k 0 is required. We conclude that 2C = 2J m 1m 2ω 1ω 2 ω 2 km k = J 1 2 Min { ω 1 ω1m 1 ω 2m 2,ω 2 For identical oscillators (symmetric dimer) with ω 1 = ω 2 = ω and m 1 = m 2 = m, we obtain the limit of physicality at J/ω 1/2. ω2m 2 ω 1m 1 }.

12 Ultra-strong coupling Ei 3 The Rotating wave approximation is used widely in atom and quantum optics, neglecting norm conservation violating terms as a + i a + j or a i a j. Recently, the first experiments in circuit QED showed behavior beyond the Jaynes-Cummings model (RWA). Price to pay for the new physics: Conservation of norm is lost (and integrability in some cases), stationary modes become quasistationary J Ω

13 Model equations Quantum Hamiltonian H = [ ωâ kâk + γ ] 2 (â k )2 âk 2 J(â 0â1 +λâ 0â 1 +H.c.), (1) k=0,1 â k and â k - (bosonic) annihilation and creation operators of both oscillators with frequency ω ˆn i = â iâi particle number operators γ - Kerr nonlinearity, J - coupling strength; J/ω 0.5, λ = 0 (1) for RWA (NRWA) Semiclassical Dynamics (DNLS / discrete Gross-Pitaevskii) i u k = ωu k J(u 1 k +λu 1 k)+ γ u k 2 u k, (2) â k â k := u k field amplitudes at site k = (1,2)

14 Nonlinear mean-field Dynamics u 1, u 2, N u 1, u 2, N Λ 0,Γ t Λ 1,Γ t u 1, u 2, N u 1, u 2, N Λ 0,Γ t Λ 1,Γ t i u k = ωu k J(u 1 k +λu 1 k )+ γ u k 2 u k, J/ω = 1/2

15 Eigenvalues and -modes We search for the symmetric and antisymmetric mode and their nonlinear continuation, so we assume u 1 = u 2 = u and separate u i = a i +ib i. a (ω + γu 2 ) J(1 λ) a 1 β a 2 b 1 = 0 0 J(1 λ) (ω + γu 2 ) (ω + γu 2 a 2 ) J(1 + λ) 0 0 b 1 b 2 J(1 + λ) (ω + γu 2 ) 0 0 b 2 which yields for ν = iβ ν sym = ± [(ω +γu 2 ) J(1+λ)][(ω +γu 2 ) J(1 λ)] ν ants = ± [(ω +γu 2 )+J(1+λ)][(ω +γu 2 )+J(1 λ)]. ( ) ( ) NRWA: ω+2j u 2 < γ < 2J ω u 2 RWA: ν = ±[(ω +γu 2 )±J] J/ω = 2, u 2 = 1

16 Helpful quantities We will use the transformations u i = n i exp(iθ i ) to define the population imbalance ρ = n 1 n 2 and the phase difference φ = θ 1 θ 2. Only for RWA, the norm N = n 1 +n 2 is conserved, thus the system integrable. We use the discrete Fourier transform ũ i (ν), to obtain the normalized spectral density g(ν,γ) = ũ1(ν) 2 + ũ 2(ν) 2 ν ũ1(ν) 2 + ũ 2(ν) 2.

17 (a) (b) (c) ν (d) γ (a) ρ min vs. γ and J/ω, the analytic γ th,rwa = 4 is shown with dashed white lines (b),(c) spectral densities g(ν,γ) for J/ω = 0.5 for the RWA (b) and the CR-case (c). The analytic continuations for J/ω = 0.5 and u 2 = 1/2 are shown in (d), ν for the antisymmetric modes is plotted with a blue/green) line, the symmetric cases in black/gray.

18 Poincaré sections γ =3 γ = 3 (a) (b) (c) (d) Mean-field simulations, top(bottom): RWA (USC)for J/ω = 0.5, (a),(c): γ = 3 with ρ(0) ( 1,1), φ(0) = 0,π and (b),(d): γ = 3, ρ(0) ( 1,1), φ(0) = 0,π respectively.

19 γ =7 γ = 7 RWA (a) (b) NRWA (c) (d) Mean-field simulations, Poincaré sections at top(bottom): RWA (CR)for J/ω = 0.5, (a),(c): γ = 7 with ρ(0) ( 1,1), φ(0) = 0 and (b),(d): γ = 7, ρ(0) ( 1,1), φ(0) = π respectively.

20 Quantum simulations (a) Spectral density g(ν,γ) = ñ 1 (ν) + ñ 2 (ν) ν [ ñ 1(ν) + ñ 2 (ν) ] (b) for CR (a) and RWA(b). n 1 (t = 0) = 17, n 2 (t = 0) = 0, ω = 2 (c): first crossing time τ vs. γn, for N(t = 0) = n 1 (t = 0) = 17 (black) and N(t = 0) = n 1 (t = 0) = 2 green (gray), the full (dashed) lines correspond (c) to CR (RWA), respectively.

21 0.8 Ρ t N t (a) Jt n 1(0) = 0 n 1(0) = 1 n 1(0) = 3 n 1(0) = Ρ t N t (b) Jt Quantum dynamics for J/ω = 0.1, N 0 = 17, ρ(t)/n(t) vs. Jt is plotted for the USC model at γ = 20 (top figure) and γ = 20 (bottom). n 1 (0) = 0,1,3,5 (black, blue, red and green, respectively).

22 p Τ Θ 0 Θ Τ Probability p( τ) of the tunneling times τ for J/ω = 0.5, N 0 = 17, γ = 1. The case of θ = 0 is shown in orange, θ = 1 in blue.

23 The 1D chain of coupled nonlinear oscillators The Hamiltonian H = n [ωa na n J(a n +a n)(a n+1 +a n+1 )+ γ 4 a na na na n ] has the equations of motion ta n = i [H,an] = iωan +ij(an+1 +an 1 +a n+1 +a n 1 ) iγa na 2 n, which, in the mean field limit with a n = ψ n, yield tψ n H (iψ n) = iωψn +ij(ψn+1 +ψn 1 +ψ n+1 +ψ n 1) iγ ψ n 2 ψ n. To have a meaningful physical interpretation, ω > 4J. In the case of weak coupling, we can use RWA ( ω J), and get tψ n = iωψ n +ij(ψ n+1 +ψ n 1) iγ ψ n 2 ψ n.

24 Band structure We separate ψ n = a n +ib n and the equation set into real and imaginary part, and obtain the eigenvalue equations βa n = ωb n & βb n = ωa n +2J(a n+1 +a n 1) β 2 a n = ω 2 a n +2Jω(a n+1 +a n 1) (4) which, for an Ansatz of plane waves a n = exp(ikn), gives us the band spectrum λ = iβ = ± ω 2 4Jωcos(k). Thus, we have extended and propagating modes inside the bands λ ±[ ω 2 4Jω, ω 2 +4Jω]. The density of states of such band modes in an 1D chain is defined as g(λ) = d λ N = d λ k 2π λ 1 g(λ) = vs. f(λ) RWA = 2π 4J 2 ω 2 14 (ω2 λ 2 ) 2 2π 4J 2 (ω 2 λ 2 ) 2. (3)

25 7 0.4 Λnrwa,Λrwa 5 3 g Λ, f Λ Π 4 Π 2 k 3Π 4 Π Λ Eigenvalue spectrum λ(k) USC(black) and RWA (blue), densities of states g(λ) (black) and f(λ) (blue) for ω = 5 and J = 1.

26 DNLS: dynamical self-trapping transition of an initially localized wave-packet happens at γ/j 3.8 independent of the ratio of J/ω To observe the transition we use the participation number R ( n ψn 2 ) 2 n { ψn 4 N ext. modes 1 loc. modes. RWA: Participation number R for fixed integration time t = t max. Direct integration with ψ n(t = 0) = δ n,n0 in a chain of length N = 101, t max = N/5 and J = 1.

27 NRWA: R for positive γ; fixed integration time t = t max for growing nonlinearity γ > 0 and ω. Direct integration of (22) with ψ n(t = 0) = δ n,n0 in a chain of length N = 101, t max = N/5, J = 1.

28 NRWA: R for negative γ; fixed integration time t = t max for growing nonlinearity γ > 0 and ω. Direct integration of (22) with ψ n(t = 0) = δ n,n0 in a chain of length N = 101, t max = N/5, J = 1.

29 ω =4 RWA ω =7 RWA ω =4 NRWA ω = 10 NRWA output patterns for fixed integration times t max = N/5 and on the right the corresponding spectral density.

30 ω =4 RWA ω =4 NRWA ω =7 RWA ω =7 NRWA ω =4 NRWA NRWA ω = 10 NRWA output patterns for fixed integration times t max = N/5 and on the right the corresponding spectral density.

31 Conclusions We considered a system of nonlinear dimers with ultra-strong coupling, where quantum fluctuations destroy the integrability of the semi-classical system. For negative nonlinearities, we find chaotic regimes in the mean-field and quantum calculations. Chaos affects the self-trapping transition and makes tunnelling times unpredictable. The irregular behavior of the tunneling time should be verifiable in experiments, e.g in circuit QED. The results are extendible to chains of nonlinear oscillators. see Phys. Rev. Lett. 112,

32 Thank you!

Spreading mechanism of wave packets in one dimensional disordered Klein-Gordon chains

Spreading mechanism of wave packets in one dimensional disordered Klein-Gordon chains Spreading mechanism of wave packets in one dimensional disordered Klein-Gordon chains Haris Skokos Max Planck Institute for the Physics of Complex Systems Dresden, Germany E-mail: hskokos@pks.mpg.de URL:

More information

PHY 396 K. Problem set #5. Due October 9, 2008.

PHY 396 K. Problem set #5. Due October 9, 2008. PHY 396 K. Problem set #5. Due October 9, 2008.. First, an exercise in bosonic commutation relations [â α, â β = 0, [â α, â β = 0, [â α, â β = δ αβ. ( (a Calculate the commutators [â αâ β, â γ, [â αâ β,

More information

5. Gross-Pitaevskii theory

5. Gross-Pitaevskii theory 5. Gross-Pitaevskii theory Outline N noninteracting bosons N interacting bosons, many-body Hamiltonien Mean-field approximation, order parameter Gross-Pitaevskii equation Collapse for attractive interaction

More information

Bifurcations of Multi-Vortex Configurations in Rotating Bose Einstein Condensates

Bifurcations of Multi-Vortex Configurations in Rotating Bose Einstein Condensates Milan J. Math. Vol. 85 (2017) 331 367 DOI 10.1007/s00032-017-0275-8 Published online November 17, 2017 2017 Springer International Publishing AG, part of Springer Nature Milan Journal of Mathematics Bifurcations

More information

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Ceren Burçak Dağ Supervisors: Dr. Pol Forn-Díaz and Assoc. Prof. Christopher Wilson Institute

More information

Complex Behavior in Coupled Nonlinear Waveguides. Roy Goodman, New Jersey Institute of Technology

Complex Behavior in Coupled Nonlinear Waveguides. Roy Goodman, New Jersey Institute of Technology Complex Behavior in Coupled Nonlinear Waveguides Roy Goodman, New Jersey Institute of Technology Nonlinear Schrödinger/Gross-Pitaevskii Equation i t = r + V (r) ± Two contexts for today: Propagation of

More information

arxiv:quant-ph/ v1 14 Nov 1996

arxiv:quant-ph/ v1 14 Nov 1996 Quantum signatures of chaos in the dynamics of a trapped ion J.K. Breslin, C. A. Holmes and G.J. Milburn Department of Physics, Department of Mathematics arxiv:quant-ph/9611022v1 14 Nov 1996 The University

More information

Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization. Diego Porras

Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization. Diego Porras Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization Diego Porras Outline Spin-boson trapped ion quantum simulators o Rabi Lattice/Jahn-Teller models o Gauge symmetries

More information

Chapter 29. Quantum Chaos

Chapter 29. Quantum Chaos Chapter 29 Quantum Chaos What happens to a Hamiltonian system that for classical mechanics is chaotic when we include a nonzero h? There is no problem in principle to answering this question: given a classical

More information

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and :

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and : Wednesday, April 23, 2014 9:37 PM Excitations in a Bose condensate So far: basic understanding of the ground state wavefunction for a Bose-Einstein condensate; We need to know: elementary excitations in

More information

Spin-Boson Model. A simple Open Quantum System. M. Miller F. Tschirsich. Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012

Spin-Boson Model. A simple Open Quantum System. M. Miller F. Tschirsich. Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012 Spin-Boson Model A simple Open Quantum System M. Miller F. Tschirsich Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012 Outline 1 Bloch-Equations 2 Classical Dissipations 3 Spin-Boson

More information

Effects of Atomic Coherence and Injected Classical Field on Chaotic Dynamics of Non-degenerate Cascade Two-Photon Lasers

Effects of Atomic Coherence and Injected Classical Field on Chaotic Dynamics of Non-degenerate Cascade Two-Photon Lasers Commun. Theor. Phys. Beijing China) 48 2007) pp. 288 294 c International Academic Publishers Vol. 48 No. 2 August 15 2007 Effects of Atomic Coherence and Injected Classical Field on Chaotic Dynamics of

More information

Frequency spectra at large wavenumbers in two-dimensional Hasegawa-Wakatani turbulence

Frequency spectra at large wavenumbers in two-dimensional Hasegawa-Wakatani turbulence Frequency spectra at large wavenumbers in two-dimensional Hasegawa-Wakatani turbulence Juhyung Kim and P. W. Terry Department of Physics, University of Wisconsin-Madison October 30th, 2012 2012 APS-DPP

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs RHI seminar Pascal Büscher i ( t Φ (r, t) = 2 2 ) 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) 27 Nov 2008 RHI seminar Pascal Büscher 1 (Stamper-Kurn

More information

Chaotic behavior of disordered nonlinear systems

Chaotic behavior of disordered nonlinear systems Chaotic behavior of disordered nonlinear systems Haris Skokos Department of Mathematics and Applied Mathematics, University of Cape Town Cape Town, South Africa E-mail: haris.skokos@uct.ac.za URL: http://math_research.uct.ac.za/~hskokos/

More information

Thermalization in Quantum Systems

Thermalization in Quantum Systems Thermalization in Quantum Systems Jonas Larson Stockholm University and Universität zu Köln Dresden 18/4-2014 Motivation Long time evolution of closed quantum systems not fully understood. Cold atom system

More information

PAPER 84 QUANTUM FLUIDS

PAPER 84 QUANTUM FLUIDS MATHEMATICAL TRIPOS Part III Wednesday 6 June 2007 9.00 to 11.00 PAPER 84 QUANTUM FLUIDS Attempt TWO questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY REQUIREMENTS

More information

Quantum Mechanics I Physics 5701

Quantum Mechanics I Physics 5701 Quantum Mechanics I Physics 5701 Z. E. Meziani 02/24//2017 Physics 5701 Lecture Commutation of Observables and First Consequences of the Postulates Outline 1 Commutation Relations 2 Uncertainty Relations

More information

Chaos in disordered nonlinear lattices

Chaos in disordered nonlinear lattices Chaos in disordered nonlinear lattices Haris Skokos Physics Department, Aristotle University of Thessaloniki Thessaloniki, Greece E-mail: hskokos@auth.gr URL: http://users.auth.gr/hskokos/ Work in collaboration

More information

The Remarkable Bose-Hubbard Dimer

The Remarkable Bose-Hubbard Dimer The Remarkable Bose-Hubbard Dimer David K. Campbell, Boston University Winter School, August 2015 Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory International Institute

More information

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Stochastic nonlinear Schrödinger equations and modulation of solitary waves Stochastic nonlinear Schrödinger equations and modulation of solitary waves A. de Bouard CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan) Deterministic and stochastic front

More information

Is Quantum Mechanics Chaotic? Steven Anlage

Is Quantum Mechanics Chaotic? Steven Anlage Is Quantum Mechanics Chaotic? Steven Anlage Physics 40 0.5 Simple Chaos 1-Dimensional Iterated Maps The Logistic Map: x = 4 x (1 x ) n+ 1 μ n n Parameter: μ Initial condition: 0 = 0.5 μ 0.8 x 0 = 0.100

More information

Quantum Theory of Matter

Quantum Theory of Matter Quantum Theory of Matter Revision Lecture Derek Lee Imperial College London May 2006 Outline 1 Exam and Revision 2 Quantum Theory of Matter Microscopic theory 3 Summary Outline 1 Exam and Revision 2 Quantum

More information

Using controlling chaos technique to suppress self-modulation in a delayed feedback traveling wave tube oscillator

Using controlling chaos technique to suppress self-modulation in a delayed feedback traveling wave tube oscillator Using controlling chaos technique to suppress self-modulation in a delayed feedback traveling wave tube oscillator N.M. Ryskin, O.S. Khavroshin and V.V. Emelyanov Dept. of Nonlinear Physics Saratov State

More information

Quantum signatures of an oscillatory instability in the Bose-Hubbard trimer

Quantum signatures of an oscillatory instability in the Bose-Hubbard trimer Quantum signatures of an oscillatory instability in the Bose-Hubbard trimer Magnus Johansson Department of Physics, Chemistry and Biology, Linköping University, Sweden Sevilla, July 12, 2012 Collaborators

More information

8 Quantized Interaction of Light and Matter

8 Quantized Interaction of Light and Matter 8 Quantized Interaction of Light and Matter 8.1 Dressed States Before we start with a fully quantized description of matter and light we would like to discuss the evolution of a two-level atom interacting

More information

Quantum Mechanics C (130C) Winter 2014 Assignment 7

Quantum Mechanics C (130C) Winter 2014 Assignment 7 University of California at San Diego Department of Physics Prof. John McGreevy Quantum Mechanics C (130C) Winter 014 Assignment 7 Posted March 3, 014 Due 11am Thursday March 13, 014 This is the last problem

More information

Diagonal Representation of Density Matrix Using q-coherent States

Diagonal Representation of Density Matrix Using q-coherent States Proceedings of Institute of Mathematics of NAS of Ukraine 24, Vol. 5, Part 2, 99 94 Diagonal Representation of Density Matrix Using -Coherent States R. PARTHASARATHY and R. SRIDHAR The Institute of Mathematical

More information

Seismology and wave chaos in rapidly rotating stars

Seismology and wave chaos in rapidly rotating stars Seismology and wave chaos in rapidly rotating stars F. Lignières Institut de Recherche en Astrophysique et Planétologie - Toulouse In collaboration with B. Georgeot - LPT, M. Pasek -LPT/IRAP, D. Reese

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

THE RABI HAMILTONIAN IN THE DISPERSIVE REGIME

THE RABI HAMILTONIAN IN THE DISPERSIVE REGIME THE RABI HAMILTONIAN IN THE DISPERSIVE REGIME TITUS SANDU National Institute for Research and Development in Microtechnologies-IMT 126A, Erou Iancu Nicolae Street, Bucharest, 077190, Romania E-mail: titus.sandu@imt.ro

More information

STIMULATED RAMAN ATOM-MOLECULE CONVERSION IN A BOSE-EINSTEIN CONDENSATE. Chisinau, Republic of Moldova. (Received 15 December 2006) 1.

STIMULATED RAMAN ATOM-MOLECULE CONVERSION IN A BOSE-EINSTEIN CONDENSATE. Chisinau, Republic of Moldova. (Received 15 December 2006) 1. STIMULATED RAMAN ATOM-MOLECULE CONVERSION IN A BOSE-EINSTEIN CONDENSATE P.I. Khadzhi D.V. Tkachenko Institute of Applied Physics Academy of Sciences of Moldova 5 Academiei str. MD-8 Chisinau Republic of

More information

Bose-Einstein Condensation

Bose-Einstein Condensation Bose-Einstein Condensation Kim-Louis Simmoteit June 2, 28 Contents Introduction 2 Condensation of Trapped Ideal Bose Gas 2 2. Trapped Bose Gas........................ 2 2.2 Phase Transition.........................

More information

Shock waves in the unitary Fermi gas

Shock waves in the unitary Fermi gas Shock waves in the unitary Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova Banff, May 205 Collaboration with: Francesco Ancilotto and Flavio Toigo Summary.

More information

Symmetries and Supersymmetries in Trapped Ion Hamiltonian Models

Symmetries and Supersymmetries in Trapped Ion Hamiltonian Models Proceedings of Institute of Mathematics of NAS of Ukraine 004, Vol. 50, Part, 569 57 Symmetries and Supersymmetries in Trapped Ion Hamiltonian Models Benedetto MILITELLO, Anatoly NIKITIN and Antonino MESSINA

More information

arxiv: v1 [quant-ph] 25 Feb 2014

arxiv: v1 [quant-ph] 25 Feb 2014 Atom-field entanglement in a bimodal cavity G.L. Deçordi and A. Vidiella-Barranco 1 Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas 13083-859 Campinas SP Brazil arxiv:1402.6172v1

More information

Harmonic Oscillator. Robert B. Griffiths Version of 5 December Notation 1. 3 Position and Momentum Representations of Number Eigenstates 2

Harmonic Oscillator. Robert B. Griffiths Version of 5 December Notation 1. 3 Position and Momentum Representations of Number Eigenstates 2 qmd5 Harmonic Oscillator Robert B. Griffiths Version of 5 December 0 Contents Notation Eigenstates of the Number Operator N 3 Position and Momentum Representations of Number Eigenstates 4 Coherent States

More information

Ergodicity of quantum eigenfunctions in classically chaotic systems

Ergodicity of quantum eigenfunctions in classically chaotic systems Ergodicity of quantum eigenfunctions in classically chaotic systems Mar 1, 24 Alex Barnett barnett@cims.nyu.edu Courant Institute work in collaboration with Peter Sarnak, Courant/Princeton p.1 Classical

More information

Quantum Many-Body Phenomena in Arrays of Coupled Cavities

Quantum Many-Body Phenomena in Arrays of Coupled Cavities Quantum Many-Body Phenomena in Arrays of Coupled Cavities Michael J. Hartmann Physik Department, Technische Universität München Cambridge-ITAP Workshop, Marmaris, September 2009 A Paradigm Many-Body Hamiltonian:

More information

PART 2 : BALANCED HOMODYNE DETECTION

PART 2 : BALANCED HOMODYNE DETECTION PART 2 : BALANCED HOMODYNE DETECTION Michael G. Raymer Oregon Center for Optics, University of Oregon raymer@uoregon.edu 1 of 31 OUTLINE PART 1 1. Noise Properties of Photodetectors 2. Quantization of

More information

Diagonalization of the Coupled-Mode System.

Diagonalization of the Coupled-Mode System. Diagonalization of the Coupled-Mode System. Marina Chugunova joint work with Dmitry Pelinovsky Department of Mathematics, McMaster University, Canada Collaborators: Mason A. Porter, California Institute

More information

Quantum Light-Matter Interactions

Quantum Light-Matter Interactions Quantum Light-Matter Interactions QIC 895: Theory of Quantum Optics David Layden June 8, 2015 Outline Background Review Jaynes-Cummings Model Vacuum Rabi Oscillations, Collapse & Revival Spontaneous Emission

More information

Advanced Quantum Mechanics, Notes based on online course given by Leonard Susskind - Lecture 8

Advanced Quantum Mechanics, Notes based on online course given by Leonard Susskind - Lecture 8 Advanced Quantum Mechanics, Notes based on online course given by Leonard Susskind - Lecture 8 If neutrinos have different masses how do you mix and conserve energy Mass is energy. The eigenstates of energy

More information

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part I: Theoretical Techniques Lecture 4: Discrete systems + Chaos Ilya Potapov Mathematics Department, TUT Room TD325 Discrete maps x n+1 = f(x n ) Discrete time steps. x 0

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs i ( ) t Φ (r, t) = 2 2 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) (Mewes et al., 1996) 26/11/2009 Stefano Carignano 1 Contents 1 Introduction

More information

Quasi-Particle Dynamics of Linearly Coupled Systems of Nonlinear Schrödinger Equations

Quasi-Particle Dynamics of Linearly Coupled Systems of Nonlinear Schrödinger Equations Quasi-Particle Dynamics of Linearly Coupled Systems of Nonlinear Schrödinger Equations Michail D. Todorov Faculty of Applied Mathematics and Computer Science Technical University of Sofia, Bulgaria SS25

More information

Solitons and vortices in Bose-Einstein condensates with finite-range interaction

Solitons and vortices in Bose-Einstein condensates with finite-range interaction Solitons and vortices in Bose-Einstein condensates with finite-range interaction Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei and CNISM, Università di Padova INO-CNR, Research Unit

More information

Chaos suppression of uncertain gyros in a given finite time

Chaos suppression of uncertain gyros in a given finite time Chin. Phys. B Vol. 1, No. 11 1 1155 Chaos suppression of uncertain gyros in a given finite time Mohammad Pourmahmood Aghababa a and Hasan Pourmahmood Aghababa bc a Electrical Engineering Department, Urmia

More information

Squeezing and superposing many-body states of Bose gases in confining potentials

Squeezing and superposing many-body states of Bose gases in confining potentials Squeezing and superposing many-body states of Bose gases in confining potentials K. B. Whaley Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley Quantum Information and

More information

Signatures of Superfluidity in Dilute Fermi Gases near a Feshbach Resonance

Signatures of Superfluidity in Dilute Fermi Gases near a Feshbach Resonance Signatures of Superfluidity in Dilute ermi Gases near a eshbach Resonance A. Bulgac (Seattle), Y. Yu (Seattle Lund) P.. Bedaque (Berkeley), G.. Bertsch (Seattle), R.A. Broglia (Milan), A.C. onseca (Lisbon)

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information

Open quantum systems

Open quantum systems Open quantum systems Wikipedia: An open quantum system is a quantum system which is found to be in interaction with an external quantum system, the environment. The open quantum system can be viewed as

More information

σ 2 + π = 0 while σ satisfies a cubic equation λf 2, σ 3 +f + β = 0 the second derivatives of the potential are = λ(σ 2 f 2 )δ ij, π i π j

σ 2 + π = 0 while σ satisfies a cubic equation λf 2, σ 3 +f + β = 0 the second derivatives of the potential are = λ(σ 2 f 2 )δ ij, π i π j PHY 396 K. Solutions for problem set #4. Problem 1a: The linear sigma model has scalar potential V σ, π = λ 8 σ + π f βσ. S.1 Any local minimum of this potential satisfies and V = λ π V σ = λ σ + π f =

More information

Stability and instability of solitons in inhomogeneous media

Stability and instability of solitons in inhomogeneous media Stability and instability of solitons in inhomogeneous media Yonatan Sivan, Tel Aviv University, Israel now at Purdue University, USA G. Fibich, Tel Aviv University, Israel M. Weinstein, Columbia University,

More information

Towards new states of matter with atoms and photons

Towards new states of matter with atoms and photons Towards new states of matter with atoms and photons Jonas Larson Stockholm University and Universität zu Köln Aarhus Cold atoms and beyond 26/6-2014 Motivation Optical lattices + control quantum simulators.

More information

Exploring Quantum Control with Quantum Information Processors

Exploring Quantum Control with Quantum Information Processors Exploring Quantum Control with Quantum Information Processors David Poulin Institute for Quantum Computing Perimeter Institute for Theoretical Physics Stanford University, April 2004 p.1 Outline Simulating

More information

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois BCS Pairing Dynamics 1 ShengQuan Zhou Dec.10, 2006, Physics Department, University of Illinois Abstract. Experimental control over inter-atomic interactions by adjusting external parameters is discussed.

More information

Interplay of micromotion and interactions

Interplay of micromotion and interactions Interplay of micromotion and interactions in fractional Floquet Chern insulators Egidijus Anisimovas and André Eckardt Vilnius University and Max-Planck Institut Dresden Quantum Technologies VI Warsaw

More information

Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential

Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential Dmitry Pelinovsky 1 and Panos Kevrekidis 2 1 Department of Mathematics, McMaster University, Hamilton, Ontario, Canada

More information

Applied Physics 150a: Homework #3

Applied Physics 150a: Homework #3 Applied Physics 150a: Homework #3 (Dated: November 13, 2014) Due: Thursday, November 20th, anytime before midnight. There will be an INBOX outside my office in Watson (Rm. 266/268). 1. (10 points) The

More information

Isotropic harmonic oscillator

Isotropic harmonic oscillator Isotropic harmonic oscillator 1 Isotropic harmonic oscillator The hamiltonian of the isotropic harmonic oscillator is H = h m + 1 mω r (1) = [ h d m dρ + 1 ] m ω ρ, () ρ=x,y,z a sum of three one-dimensional

More information

Dynamical Systems: Lecture 1 Naima Hammoud

Dynamical Systems: Lecture 1 Naima Hammoud Dynamical Systems: Lecture 1 Naima Hammoud Feb 21, 2017 What is dynamics? Dynamics is the study of systems that evolve in time What is dynamics? Dynamics is the study of systems that evolve in time a system

More information

The Euclidean Propagator in Quantum Models with Non-Equivalent Instantons

The Euclidean Propagator in Quantum Models with Non-Equivalent Instantons Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 2, 609 615 The Euclidean Propagator in Quantum Models with Non-Equivalent Instantons Javier CASAHORRAN Departamento de Física

More information

vii Contents 7.5 Mathematica Commands in Text Format 7.6 Exercises

vii Contents 7.5 Mathematica Commands in Text Format 7.6 Exercises Preface 0. A Tutorial Introduction to Mathematica 0.1 A Quick Tour of Mathematica 0.2 Tutorial 1: The Basics (One Hour) 0.3 Tutorial 2: Plots and Differential Equations (One Hour) 0.4 Mathematica Programs

More information

Theoretical physics. Deterministic chaos in classical physics. Martin Scholtz

Theoretical physics. Deterministic chaos in classical physics. Martin Scholtz Theoretical physics Deterministic chaos in classical physics Martin Scholtz scholtzzz@gmail.com Fundamental physical theories and role of classical mechanics. Intuitive characteristics of chaos. Newton

More information

LECTURES ON STATISTICAL MECHANICS E. MANOUSAKIS

LECTURES ON STATISTICAL MECHANICS E. MANOUSAKIS LECTURES ON STATISTICAL MECHANICS E. MANOUSAKIS February 18, 2011 2 Contents 1 Need for Statistical Mechanical Description 9 2 Classical Statistical Mechanics 13 2.1 Phase Space..............................

More information

Looking Through the Vortex Glass

Looking Through the Vortex Glass Looking Through the Vortex Glass Lorenz and the Complex Ginzburg-Landau Equation Igor Aronson It started in 1990 Project started in Lorenz Kramer s VW van on the way back from German Alps after unsuccessful

More information

Aditi Mitra New York University

Aditi Mitra New York University Superconductivity following a quantum quench Aditi Mitra New York University Supported by DOE-BES and NSF- DMR 1 Initially system of free electrons. Quench involves turning on attractive pairing interactions.

More information

The Hamiltonian operator and states

The Hamiltonian operator and states The Hamiltonian operator and states March 30, 06 Calculation of the Hamiltonian operator This is our first typical quantum field theory calculation. They re a bit to keep track of, but not really that

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

Spontaneous Symmetry Breaking in Bose-Einstein Condensates

Spontaneous Symmetry Breaking in Bose-Einstein Condensates The 10th US-Japan Joint Seminar Spontaneous Symmetry Breaking in Bose-Einstein Condensates Masahito UEDA Tokyo Institute of Technology, ERATO, JST collaborators Yuki Kawaguchi (Tokyo Institute of Technology)

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Week 13. PHY 402 Atomic and Molecular Physics Instructor: Sebastian Wüster, IISERBhopal, Frontiers of Modern AMO physics. 5.

Week 13. PHY 402 Atomic and Molecular Physics Instructor: Sebastian Wüster, IISERBhopal, Frontiers of Modern AMO physics. 5. Week 13 PHY 402 Atomic and Molecular Physics Instructor: Sebastian Wüster, IISERBhopal,2018 These notes are provided for the students of the class above only. There is no warranty for correctness, please

More information

Dynamical Tunneling Theory and Experiment. Srihari Keshavamurthy and Peter Schlagheck (eds)

Dynamical Tunneling Theory and Experiment. Srihari Keshavamurthy and Peter Schlagheck (eds) Dynamical Tunneling Theory and Experiment Srihari Keshavamurthy and Peter Schlagheck (eds) January 29, 21 ii Contents 1 Resonance-assisted tunneling 1 1.1 Introduction....................................

More information

arxiv:chao-dyn/ v1 25 Sep 1996

arxiv:chao-dyn/ v1 25 Sep 1996 Mixed Quantum-Classical versus Full Quantum Dynamics: Coupled Quasiparticle-Oscillator System Holger Schanz and Bernd Esser Institut für Physik, Humboldt-Universität, Invalidenstr., 5 Berlin, Germany arxiv:chao-dyn/9698v

More information

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 26 Jul 2007

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 26 Jul 2007 Quantum localized modes in capacitively coupled Josephson junctions R. A. Pinto and S. Flach Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 1187 Dresden, Germany (Dated: April 14,

More information

Inverse Problems in Quantum Optics

Inverse Problems in Quantum Optics Inverse Problems in Quantum Optics John C Schotland Department of Mathematics University of Michigan Ann Arbor, MI schotland@umich.edu Motivation Inverse problems of optical imaging are based on classical

More information

Chaotic motion. Phys 750 Lecture 9

Chaotic motion. Phys 750 Lecture 9 Chaotic motion Phys 750 Lecture 9 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t =0to

More information

Partial factorization of wave functions for a quantum dissipative system

Partial factorization of wave functions for a quantum dissipative system PHYSICAL REVIEW E VOLUME 57, NUMBER 4 APRIL 1998 Partial factorization of wave functions for a quantum dissipative system C. P. Sun Institute of Theoretical Physics, Academia Sinica, Beiing 100080, China

More information

Effective Potentials Generated by Field Interaction in the Quasi-Classical Limit. Michele Correggi

Effective Potentials Generated by Field Interaction in the Quasi-Classical Limit. Michele Correggi Effective Potentials Generated by Field Interaction in the Quasi-Classical Limit Michele Correggi Dipartimento di Matematica Quantum Mean Field and Related Problems LAGA Université Paris 13 joint work

More information

Physics 622: Quantum Mechanics -- Part II --

Physics 622: Quantum Mechanics -- Part II -- Physics 622: Quantum Mechanics -- Part II -- Prof. Seth Aubin Office: room 255, Small Hall, tel: 1-3545 Lab: room 069, Small Hall (new wing), tel: 1-3532 e-mail: saaubi@wm.edu web: http://www.physics.wm.edu/~saubin/index.html

More information

Exploring Quantum Control with Quantum Information Processors

Exploring Quantum Control with Quantum Information Processors Exploring Quantum Control with Quantum Information Processors David Poulin Institute for Quantum Computing Perimeter Institute for Theoretical Physics IBM, March 2004 p.1 Two aspects of quantum information

More information

COMPLEX QUANTUM SYSTEMS WORKSHOP IFISC, Palma de Mallorca, October 14-15, 2010

COMPLEX QUANTUM SYSTEMS WORKSHOP IFISC, Palma de Mallorca, October 14-15, 2010 COMPLEX QUANTUM SYSTEMS WORKSHOP IFISC, Palma de Mallorca, October 14-15, 2010 PROGRAM Thursday, October 14 09:30 Introduction 10:00 Sandro Wimberger Correlation measures for many-body bosonic systems

More information

Phase Synchronization

Phase Synchronization Phase Synchronization Lecture by: Zhibin Guo Notes by: Xiang Fan May 10, 2016 1 Introduction For any mode or fluctuation, we always have where S(x, t) is phase. If a mode amplitude satisfies ϕ k = ϕ k

More information

Homoclinic and Heteroclinic Motions in Quantum Dynamics

Homoclinic and Heteroclinic Motions in Quantum Dynamics Homoclinic and Heteroclinic Motions in Quantum Dynamics F. Borondo Dep. de Química; Universidad Autónoma de Madrid, Instituto Mixto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM Stability and Instability in

More information

Scenarios for the transition to chaos

Scenarios for the transition to chaos Scenarios for the transition to chaos Alessandro Torcini alessandro.torcini@cnr.it Istituto dei Sistemi Complessi - CNR - Firenze Istituto Nazionale di Fisica Nucleare - Sezione di Firenze Centro interdipartimentale

More information

Open Quantum Systems and Markov Processes II

Open Quantum Systems and Markov Processes II Open Quantum Systems and Markov Processes II Theory of Quantum Optics (QIC 895) Sascha Agne sascha.agne@uwaterloo.ca July 20, 2015 Outline 1 1. Introduction to open quantum systems and master equations

More information

Chaotic motion. Phys 420/580 Lecture 10

Chaotic motion. Phys 420/580 Lecture 10 Chaotic motion Phys 420/580 Lecture 10 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

1 Fluctuations of the number of particles in a Bose-Einstein condensate

1 Fluctuations of the number of particles in a Bose-Einstein condensate Exam of Quantum Fluids M1 ICFP 217-218 Alice Sinatra and Alexander Evrard The exam consists of two independant exercises. The duration is 3 hours. 1 Fluctuations of the number of particles in a Bose-Einstein

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part IB Thursday 7 June 2007 9 to 12 PAPER 3 Before you begin read these instructions carefully. Each question in Section II carries twice the number of marks of each question in Section

More information

arxiv: v1 [nlin.cd] 20 Mar 2017

arxiv: v1 [nlin.cd] 20 Mar 2017 Non-integrability of the semiclassical Jaynes Cummings models without the rotating-wave approximation Andrzej Maciejewski Janusz Gil Institute of Astronomy University of Zielona Góra Lubuska PL-65-65 Zielona

More information

arxiv: v2 [quant-ph] 18 May 2018

arxiv: v2 [quant-ph] 18 May 2018 Using mixed many-body particle states to generate exact PT -symmetry in a time-dependent four-well system arxiv:1802.01323v2 [quant-ph] 18 May 2018 1. Introduction Tina Mathea 1, Dennis Dast 1, Daniel

More information

Symmetry breaking bifurcation in Nonlinear Schrödinger /Gross-Pitaevskii Equations

Symmetry breaking bifurcation in Nonlinear Schrödinger /Gross-Pitaevskii Equations Symmetry breaking bifurcation in Nonlinear Schrödinger /Gross-Pitaevskii Equations E.W. Kirr, P.G. Kevrekidis, E. Shlizerman, and M.I. Weinstein December 23, 26 Abstract We consider a class of nonlinear

More information

Fourier mode dynamics for NLS Synchronization in fiber lasers arrays

Fourier mode dynamics for NLS Synchronization in fiber lasers arrays Fourier mode dynamics for NLS Synchronization in fiber lasers arrays Nonlinear Schrodinger workshop Heraklio, May 21 2013 Jean-guy Caputo Laboratoire de Mathématiques INSA de Rouen, France A. Aceves, N.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature10748 Contents 1 Quenches to U /J = 5.0 and 7.0 2 2 Quasiparticle model 3 3 Bose Hubbard parameters 6 4 Ramp of the lattice depth for the quench 7 WWW.NATURE.COM/NATURE

More information

Quantum Oscillations in underdoped cuprate superconductors

Quantum Oscillations in underdoped cuprate superconductors Quantum Oscillations in underdoped cuprate superconductors Aabhaas Vineet Mallik Journal Club Talk 4 April, 2013 Aabhaas Vineet Mallik (Journal Club Talk) Quantum Oscillations in underdoped cuprate superconductors

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information