Numerical Ranges of Weighted Shift Matrices

Size: px
Start display at page:

Download "Numerical Ranges of Weighted Shift Matrices"

Transcription

1 Numerical Ranges of Weighted Shift Matrices Hwa-Long Gau {º( ³. Department of Mathematics, National Central University, Chung-Li 32, Taiwan (jointly with Ming-Cheng Tsaia, Han-Chun Wang) July 18, 211 Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 1/17

2 Numerical range A M n Definition (numerical range of A) W (A) = { Ax, x : x C n, x = 1} Note : (1) W (A) C is always compact and convex. (2) W (U AU) = W (A), where U is unitary. (3) σ(a) W (A) (4) N M n is normal W (N) = conv (σ(n)) a 1 (5) A = [ a b c ] W(A) = b c a W(N) = (6) A = A 1 A k W (A) = conv (W (A 1) W (A k )) a 2 Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 2/17

3 Numerical range A M n Definition (numerical range of A) W (A) = { Ax, x : x C n, x = 1} Note : (1) W (A) C is always compact and convex. (2) W (U AU) = W (A), where U is unitary. (3) σ(a) W (A) (4) N M n is normal W (N) = conv (σ(n)) a 1 (5) A = [ a b c ] W(A) = b c a W(N) = (6) A = A 1 A k W (A) = conv (W (A 1) W (A k )) a 2 Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 2/17

4 Numerical range A M n Definition (numerical range of A) W (A) = { Ax, x : x C n, x = 1} Note : (1) W (A) C is always compact and convex. (2) W (U AU) = W (A), where U is unitary. (3) σ(a) W (A) (4) N M n is normal W (N) = conv (σ(n)) a 1 (5) A = [ a b c ] W(A) = b c a W(N) = (6) A = A 1 A k W (A) = conv (W (A 1) W (A k )) a 2 Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 2/17

5 Numerical range A M n Definition (numerical range of A) W (A) = { Ax, x : x C n, x = 1} Note : (1) W (A) C is always compact and convex. (2) W (U AU) = W (A), where U is unitary. (3) σ(a) W (A) (4) N M n is normal W (N) = conv (σ(n)) a 1 (5) A = [ a b c ] W(A) = b c a W(N) = (6) A = A 1 A k W (A) = conv (W (A 1) W (A k )) a 2 Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 2/17

6 Numerical range A M n Definition (numerical range of A) W (A) = { Ax, x : x C n, x = 1} Note : (1) W (A) C is always compact and convex. (2) W (U AU) = W (A), where U is unitary. (3) σ(a) W (A) (4) N M n is normal W (N) = conv (σ(n)) a 1 (5) A = [ a b c ] W(A) = b c a W(N) = (6) A = A 1 A k W (A) = conv (W (A 1) W (A k )) a 2 Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 2/17

7 Numerical range A M n Definition (numerical range of A) W (A) = { Ax, x : x C n, x = 1} Note : (1) W (A) C is always compact and convex. (2) W (U AU) = W (A), where U is unitary. (3) σ(a) W (A) (4) N M n is normal W (N) = conv (σ(n)) a 1 (5) A = [ a b c ] W(A) = b c a W(N) = (6) A = A 1 A k W (A) = conv (W (A 1) W (A k )) a 2 Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 2/17

8 Weighted Shift Matrices A = a an 1 a n A is called a weighted shift matrix with weights a 1,..., a n. Note : 1 1 a 2. (1) A =..... an 1 1 a 1 a 1 a 1. (2).... =.... an 1... an 1 where a n a n e iθ θ = n j=1 arg(a j) Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 3/17

9 n-symmetry of W (A) Hence, we have A = ω na, ω n = e 2πi/n. That is, W (A) = ω nw (A) W (A).5 W (A) n = 6 Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 4/17

10 Special Cases If a 1 = a 2 = = a n r. Then In this case, A is normal. 1 A = re iθ W (A) n = 7 Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 5/17

11 Special Cases If a j =, for some j. Then In this case, a j+1. A =..... aj 1. W (A) = {z C : z r} where r is the maximal root of the equation n 2 S l ( a j+1 2,..., a j 1 2, )( 1 4 )l z n 2l =. l= 1. In particular, J n = W (Jn) = {z C : z cos π n+1 }. Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 6/17

12 (n 1) (n 1) principal submatrices a 2. A[1] =..... an 1 a j+1,..., A[j] = aj 2,... Now, if W (A) has a line segment on the line x = r, r >. Then r is the maximal eigenvalue of Re A with multiplicity at least two. By the interlacing property, r is also the maximal eigenvalue of Re A[j] for all j. That is, W (A[j]) = {z C : z r} for all j W (A[j]) Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 7/17

13 Results of Tsai and Wu, 211 Theorem (Tsai & Wu, 211) a 1. A =..... an 1, a j for all j. a n Then W (A) has a line segment if and only if W (A[1]) = = W (A[n]) W (A[j]) Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 8/17

14 Results of Tsai and Wu, 211 Lemma 1 If w(a[j 1]) = w(a[j]) = w(a[j + 1]) r, then r is either the largest or the second largest eigenvalue of Re (e iθ A) for some θ. Proof. May assume j = n, a n < and a j > for j = 1,..., n 1. Compute the determinant of (ri n Re A) and obtain det(ri n Re A) =. Lemma 2 If w(a[1]) = = w(a[n]) r, then r is a multiple eigenvalue of Re (e iθ A) for some θ. Proof. Let p(z) = det(zin Re A), then p (r) = n n=1 det(ri n 1 Re A[j]) =. Hence r is a multiple eigenvalue of Re A. Lemma 3 If the maximal eigenvalue r of Re A is multiple, then W (A) has a line segment on the line x = r Proof. Take a vector x ker(ri n Re A) such that Im Ax, x. Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 9/17

15 Refinements Lemma 1 If w(a[j]) = w(a[k]) = w(a[l]) r for some 1 j < k < l n, then r is either the largest or the second largest eigenvalue of Re (e iθ A) for some θ. Proof. May assume a n < and a j > for j = 1,..., n 1. Compute the determinant of (ri n Re A) and obtain det(ri n Re A) =. Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 1/17

16 Refinements Lemma 2 If w(a[j]) = w(a[k]) = w(a[l]) r for some 1 j < k < l n, then r is a multiple eigenvalue of Re (e iθ A) for some θ. Proof. Assume j = 1, l = n and Re A has eigenvalues λ 1 λ n. We want to show that r = λ 1 = λ 2. If r = λ 1. Take x, y [ C n 1 ] such that (Re [ A[1])x ] = rx and (Re A[n])y = ry. y Let x = C n and y = C n. x Then x, y ker(λ 1I n Re A). Since every entry of x and y is nonzero, hence dim ker(λ 1I n Re A) 2. Hence r is a multiple eigenvalue of Re A. Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 11/17

17 Refinements Next, if r = λ 2 λ 1. Let u and v are unit eigenvectors of Re A w.r.t. λ 1 and λ 2, resp., N = [ span ] {u, v}. We have x x (( C n 1 {} ) N ) [ ] and y (( {} C n 1) N ). y Say x = au + bv and y = cu + dv with a 2 + b 2 = 1 = c 2 + d 2. Then r = w(a[n]) (Re (A[n])) x, x = (Re A) x, x = λ 1 a 2 +λ 2 b 2 r a 2 +r b 2 = r, the inequality here are actually equalities. λ 1 = λ 2 = r. Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 12/17

18 Refinements Theorem A = a an 1 a n Then the following are equivalent: 1 W (A) has a line segment; 2 W (A[1]) = = W (A[n]);, a j for all j. 3 W (A[j]) = W (A[k]) = W (A[l]) for some 1 j < k < l n W (A[j]) Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 13/17

19 Results of Tsai, 211 Theorem 1 (Tsai, 211) If A is an n n weighted shift matrix with nonzero periodic weights a 1,..., a k, a 1,..., a k,..., a 1,..., a k, n = km. Then W (A) has a line segment. Moreover, C C... ω nc W (A) = W ( where C = a 1... C C ak 1 a k ) = W (.... ωn m 1 C ), Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 14/17

20 Questions Theorem 2 (Tsai, 211) W (A) contains a noncircular elliptic arc if and only if the aj s are nonzero, n is even, a 1 = a 3 = = a n 1, a 2 = a4 = = a n and a 1 = a 2. Question 1 If A is an n n weighted shift matrix and W (A) has a line segment. Are the weights periodic? Ans. No! We can find a 5 5 weighted shift matrix A such that W (A) has a line segment. Question 2 Let A and B are n n weighted shift matrices. If the weights of A are periodic and W (A) = W (B). Are the weights of B periodic? Ans. I don t know! Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 15/17

21 Recent result Theorem Let A and B are n n (n 3) weighted shift matrices with nonzero weights a 1,..., a n and b 1,..., b n. The following are equivalent : 1 W (A) = W (B); 2 p A (x, y, z) = p B (x, y, z); 3 S l ( a 1 2,..., a n 2 ) = S l ( b 1 2,..., b n 2 ), for all 1 l n 2 and n i=1 a i = n i=1 b i. Note. 1 p A (x, y, z) = det(xre A + yim A + zi n). 2 Our formulae involve the circularly symmetric function S r (a 1,... a n), where n and r are nonnegative integers. S is define to be 1, while for r 1, S r (a 1,... a n) = { r k=1 a π(k) π : (1,..., r) (1,..., n), where π(k) + 1 < π(k + 1) for 1 k < r, and if π(1) = 1 then π(r) n}. Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 16/17

22 Thank you for your attention! Hwa-Long Gau Numerical Ranges of Weighted Shift Matrices 17/17

PRODUCT OF OPERATORS AND NUMERICAL RANGE

PRODUCT OF OPERATORS AND NUMERICAL RANGE PRODUCT OF OPERATORS AND NUMERICAL RANGE MAO-TING CHIEN 1, HWA-LONG GAU 2, CHI-KWONG LI 3, MING-CHENG TSAI 4, KUO-ZHONG WANG 5 Abstract. We show that a bounded linear operator A B(H) is a multiple of a

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

A Journey Through Numerical Ranges

A Journey Through Numerical Ranges Dept. of Applied Mathematics National Chiao Tung Univ. Hsinchu, Taiwan March 17, 2011 Gainsville, Florida In collaboration with Hwa-Long Gau ( 高華隆 ) Pei Yuan Wu (吳培元) May, 1980 Bloomington, Indiana May,

More information

Maximizing the numerical radii of matrices by permuting their entries

Maximizing the numerical radii of matrices by permuting their entries Maximizing the numerical radii of matrices by permuting their entries Wai-Shun Cheung and Chi-Kwong Li Dedicated to Professor Pei Yuan Wu. Abstract Let A be an n n complex matrix such that every row and

More information

Wavelets and Linear Algebra

Wavelets and Linear Algebra Wavelets and Linear Algebra 4(1) (2017) 43-51 Wavelets and Linear Algebra Vali-e-Asr University of Rafsanan http://walavruacir Some results on the block numerical range Mostafa Zangiabadi a,, Hamid Reza

More information

Line segments on the boundary of the numerical ranges of some tridiagonal matrices

Line segments on the boundary of the numerical ranges of some tridiagonal matrices Electronic Journal of Linear Algebra Volume 30 Volume 30 (2015) Article 46 2015 Line segments on the boundary of the numerical ranges of some tridiagonal matrices Ilya M. Spitkovsky NYUAD and College of

More information

Math 408 Advanced Linear Algebra

Math 408 Advanced Linear Algebra Math 408 Advanced Linear Algebra Chi-Kwong Li Chapter 4 Hermitian and symmetric matrices Basic properties Theorem Let A M n. The following are equivalent. Remark (a) A is Hermitian, i.e., A = A. (b) x

More information

b jσ(j), Keywords: Decomposable numerical range, principal character AMS Subject Classification: 15A60

b jσ(j), Keywords: Decomposable numerical range, principal character AMS Subject Classification: 15A60 On the Hu-Hurley-Tam Conjecture Concerning The Generalized Numerical Range Che-Man Cheng Faculty of Science and Technology, University of Macau, Macau. E-mail: fstcmc@umac.mo and Chi-Kwong Li Department

More information

HIGHER RANK NUMERICAL RANGES OF NORMAL MATRICES

HIGHER RANK NUMERICAL RANGES OF NORMAL MATRICES HIGHER RANK NUMERICAL RANGES OF NORMAL MATRICES HWA-LONG GAU, CHI-KWONG LI, YIU-TUNG POON, AND NUNG-SING SZE Abstract. The higher rank numerical range is closely connected to the construction of quantum

More information

Characterization of half-radial matrices

Characterization of half-radial matrices Characterization of half-radial matrices Iveta Hnětynková, Petr Tichý Faculty of Mathematics and Physics, Charles University, Sokolovská 83, Prague 8, Czech Republic Abstract Numerical radius r(a) is the

More information

The Jordan Normal Form and its Applications

The Jordan Normal Form and its Applications The and its Applications Jeremy IMPACT Brigham Young University A square matrix A is a linear operator on {R, C} n. A is diagonalizable if and only if it has n linearly independent eigenvectors. What happens

More information

Copositive matrices and periodic dynamical systems

Copositive matrices and periodic dynamical systems Extreme copositive matrices and periodic dynamical systems Weierstrass Institute (WIAS), Berlin Optimization without borders Dedicated to Yuri Nesterovs 60th birthday February 11, 2016 and periodic dynamical

More information

Compound matrices and some classical inequalities

Compound matrices and some classical inequalities Compound matrices and some classical inequalities Tin-Yau Tam Mathematics & Statistics Auburn University Dec. 3, 04 We discuss some elegant proofs of several classical inequalities of matrices by using

More information

Problem 1A. Calculus. Problem 3A. Real analysis. f(x) = 0 x = 0.

Problem 1A. Calculus. Problem 3A. Real analysis. f(x) = 0 x = 0. Problem A. Calculus Find the length of the spiral given in polar coordinates by r = e θ, < θ 0. Solution: The length is 0 θ= ds where by Pythagoras ds = dr 2 + (rdθ) 2 = dθ 2e θ, so the length is 0 2e

More information

Chapter 5. Eigenvalues and Eigenvectors

Chapter 5. Eigenvalues and Eigenvectors Chapter 5 Eigenvalues and Eigenvectors Section 5. Eigenvectors and Eigenvalues Motivation: Difference equations A Biology Question How to predict a population of rabbits with given dynamics:. half of the

More information

Lecture 5. Ch. 5, Norms for vectors and matrices. Norms for vectors and matrices Why?

Lecture 5. Ch. 5, Norms for vectors and matrices. Norms for vectors and matrices Why? KTH ROYAL INSTITUTE OF TECHNOLOGY Norms for vectors and matrices Why? Lecture 5 Ch. 5, Norms for vectors and matrices Emil Björnson/Magnus Jansson/Mats Bengtsson April 27, 2016 Problem: Measure size of

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

Convexity of the Joint Numerical Range

Convexity of the Joint Numerical Range Convexity of the Joint Numerical Range Chi-Kwong Li and Yiu-Tung Poon October 26, 2004 Dedicated to Professor Yik-Hoi Au-Yeung on the occasion of his retirement. Abstract Let A = (A 1,..., A m ) be an

More information

CANONICAL FORMS, HIGHER RANK NUMERICAL RANGES, TOTALLY ISOTROPIC SUBSPACES, AND MATRIX EQUATIONS

CANONICAL FORMS, HIGHER RANK NUMERICAL RANGES, TOTALLY ISOTROPIC SUBSPACES, AND MATRIX EQUATIONS CANONICAL FORMS, HIGHER RANK NUMERICAL RANGES, TOTALLY ISOTROPIC SUBSPACES, AND MATRIX EQUATIONS CHI-KWONG LI AND NUNG-SING SZE Abstract. Results on matrix canonical forms are used to give a complete description

More information

Span and Linear Independence

Span and Linear Independence Span and Linear Independence It is common to confuse span and linear independence, because although they are different concepts, they are related. To see their relationship, let s revisit the previous

More information

The following definition is fundamental.

The following definition is fundamental. 1. Some Basics from Linear Algebra With these notes, I will try and clarify certain topics that I only quickly mention in class. First and foremost, I will assume that you are familiar with many basic

More information

MATH 5640: Functions of Diagonalizable Matrices

MATH 5640: Functions of Diagonalizable Matrices MATH 5640: Functions of Diagonalizable Matrices Hung Phan, UMass Lowell November 27, 208 Spectral theorem for diagonalizable matrices Definition Let V = X Y Every v V is uniquely decomposed as u = x +

More information

Extreme Values and Positive/ Negative Definite Matrix Conditions

Extreme Values and Positive/ Negative Definite Matrix Conditions Extreme Values and Positive/ Negative Definite Matrix Conditions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 8, 016 Outline 1

More information

MATH SOLUTIONS TO PRACTICE PROBLEMS - MIDTERM I. 1. We carry out row reduction. We begin with the row operations

MATH SOLUTIONS TO PRACTICE PROBLEMS - MIDTERM I. 1. We carry out row reduction. We begin with the row operations MATH 2 - SOLUTIONS TO PRACTICE PROBLEMS - MIDTERM I. We carry out row reduction. We begin with the row operations yielding the matrix This is already upper triangular hence The lower triangular matrix

More information

A Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators

A Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators A Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators Lei Ni And I cherish more than anything else the Analogies, my most trustworthy masters. They know all the secrets of

More information

Information About Ellipses

Information About Ellipses Information About Ellipses David Eberly, Geometric Tools, Redmond WA 9805 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view

More information

Symmetric and self-adjoint matrices

Symmetric and self-adjoint matrices Symmetric and self-adjoint matrices A matrix A in M n (F) is called symmetric if A T = A, ie A ij = A ji for each i, j; and self-adjoint if A = A, ie A ij = A ji or each i, j Note for A in M n (R) that

More information

Geometric Mapping Properties of Semipositive Matrices

Geometric Mapping Properties of Semipositive Matrices Geometric Mapping Properties of Semipositive Matrices M. J. Tsatsomeros Mathematics Department Washington State University Pullman, WA 99164 (tsat@wsu.edu) July 14, 2015 Abstract Semipositive matrices

More information

On the maximal numerical range of some matrices

On the maximal numerical range of some matrices Electronic Journal of Linear Algebra Volume 34 Volume 34 (218) Article 21 218 On the maximal numerical range of some matrices Ali N. Hamed New York University Abu Dhabi, alinosh@nyu.edu Ilya M. Spitkovsky

More information

The Ultimate Estimate of the Upper Norm Bound for the Summation of Operators

The Ultimate Estimate of the Upper Norm Bound for the Summation of Operators The Ultimate Estimate of the Upper Norm Bound for the Summation of Operators Man-Duen Choi 1 Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3 choi@math.toronto.edu and

More information

(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax =

(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax = . (5 points) (a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? dim N(A), since rank(a) 3. (b) If we also know that Ax = has no solution, what do we know about the rank of A? C(A)

More information

7. Symmetric Matrices and Quadratic Forms

7. Symmetric Matrices and Quadratic Forms Linear Algebra 7. Symmetric Matrices and Quadratic Forms CSIE NCU 1 7. Symmetric Matrices and Quadratic Forms 7.1 Diagonalization of symmetric matrices 2 7.2 Quadratic forms.. 9 7.4 The singular value

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Polar Form of a Complex Number (I)

Polar Form of a Complex Number (I) Polar Form of a Complex Number (I) The polar form of a complex number z = x + iy is given by z = r (cos θ + i sin θ) where θ is the angle from the real axes to the vector z and r is the modulus of z, i.e.

More information

BASIC ALGORITHMS IN LINEAR ALGEBRA. Matrices and Applications of Gaussian Elimination. A 2 x. A T m x. A 1 x A T 1. A m x

BASIC ALGORITHMS IN LINEAR ALGEBRA. Matrices and Applications of Gaussian Elimination. A 2 x. A T m x. A 1 x A T 1. A m x BASIC ALGORITHMS IN LINEAR ALGEBRA STEVEN DALE CUTKOSKY Matrices and Applications of Gaussian Elimination Systems of Equations Suppose that A is an n n matrix with coefficents in a field F, and x = (x,,

More information

Finite and infinite dimensional generalizations of Klyachko theorem. Shmuel Friedland. August 15, 1999

Finite and infinite dimensional generalizations of Klyachko theorem. Shmuel Friedland. August 15, 1999 Finite and infinite dimensional generalizations of Klyachko theorem Shmuel Friedland Department of Mathematics, Statistics, and Computer Science University of Illinois Chicago 322 SEO, 851 S. Morgan, Chicago,

More information

Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show

Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show MTH 0: Linear Algebra Department of Mathematics and Statistics Indian Institute of Technology - Kanpur Problem Set Problems marked (T) are for discussions in Tutorial sessions (T) If A is an m n matrix,

More information

Lecture 2 INF-MAT : , LU, symmetric LU, Positve (semi)definite, Cholesky, Semi-Cholesky

Lecture 2 INF-MAT : , LU, symmetric LU, Positve (semi)definite, Cholesky, Semi-Cholesky Lecture 2 INF-MAT 4350 2009: 7.1-7.6, LU, symmetric LU, Positve (semi)definite, Cholesky, Semi-Cholesky Tom Lyche and Michael Floater Centre of Mathematics for Applications, Department of Informatics,

More information

Z-Pencils. November 20, Abstract

Z-Pencils. November 20, Abstract Z-Pencils J. J. McDonald D. D. Olesky H. Schneider M. J. Tsatsomeros P. van den Driessche November 20, 2006 Abstract The matrix pencil (A, B) = {tb A t C} is considered under the assumptions that A is

More information

Matrix Theory, Math6304 Lecture Notes from October 25, 2012

Matrix Theory, Math6304 Lecture Notes from October 25, 2012 Matrix Theory, Math6304 Lecture Notes from October 25, 2012 taken by John Haas Last Time (10/23/12) Example of Low Rank Perturbation Relationship Between Eigenvalues and Principal Submatrices: We started

More information

Definition 2.3. We define addition and multiplication of matrices as follows.

Definition 2.3. We define addition and multiplication of matrices as follows. 14 Chapter 2 Matrices In this chapter, we review matrix algebra from Linear Algebra I, consider row and column operations on matrices, and define the rank of a matrix. Along the way prove that the row

More information

Computational math: Assignment 1

Computational math: Assignment 1 Computational math: Assignment 1 Thanks Ting Gao for her Latex file 11 Let B be a 4 4 matrix to which we apply the following operations: 1double column 1, halve row 3, 3add row 3 to row 1, 4interchange

More information

NORMS ON SPACE OF MATRICES

NORMS ON SPACE OF MATRICES NORMS ON SPACE OF MATRICES. Operator Norms on Space of linear maps Let A be an n n real matrix and x 0 be a vector in R n. We would like to use the Picard iteration method to solve for the following system

More information

Linear Algebra And Its Applications Chapter 6. Positive Definite Matrix

Linear Algebra And Its Applications Chapter 6. Positive Definite Matrix Linear Algebra And Its Applications Chapter 6. Positive Definite Matrix KAIST wit Lab 2012. 07. 10 남성호 Introduction The signs of the eigenvalues can be important. The signs can also be related to the minima,

More information

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A. E. Brouwer & W. H. Haemers 2008-02-28 Abstract We show that if µ j is the j-th largest Laplacian eigenvalue, and d

More information

Conceptual Questions for Review

Conceptual Questions for Review Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

More information

Math 18.6, Spring 213 Problem Set #6 April 5, 213 Problem 1 ( 5.2, 4). Identify all the nonzero terms in the big formula for the determinants of the following matrices: 1 1 1 2 A = 1 1 1 1 1 1, B = 3 4

More information

Eigenvalues of the sum of matrices. from unitary similarity orbits

Eigenvalues of the sum of matrices. from unitary similarity orbits Eigenvalues of the sum of matrices from unitary similarity orbits Department of Mathematics The College of William and Mary Based on some joint work with: Yiu-Tung Poon (Iowa State University), Nung-Sing

More information

1. Find the Taylor series expansion about 0 of the following functions:

1. Find the Taylor series expansion about 0 of the following functions: MAP 4305 Section 0642 3 Intermediate Differential Equations Assignment 1 Solutions 1. Find the Taylor series expansion about 0 of the following functions: (i) f(z) = ln 1 z 1+z (ii) g(z) = 1 cos z z 2

More information

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions A. LINEAR ALGEBRA. CONVEX SETS 1. Matrices and vectors 1.1 Matrix operations 1.2 The rank of a matrix 2. Systems of linear equations 2.1 Basic solutions 3. Vector spaces 3.1 Linear dependence and independence

More information

Some notes on Coxeter groups

Some notes on Coxeter groups Some notes on Coxeter groups Brooks Roberts November 28, 2017 CONTENTS 1 Contents 1 Sources 2 2 Reflections 3 3 The orthogonal group 7 4 Finite subgroups in two dimensions 9 5 Finite subgroups in three

More information

Chapter 0 Preliminaries

Chapter 0 Preliminaries Chapter 0 Preliminaries Objective of the course Introduce basic matrix results and techniques that are useful in theory and applications. It is important to know many results, but there is no way I can

More information

NOTES ON THE NUMERICAL RANGE

NOTES ON THE NUMERICAL RANGE NOTES ON THE NUMERICAL RANGE JOEL H. SHAPIRO Abstract. This is an introduction to the notion of numerical range for bounded linear operators on Hilbert space. The main results are: determination of the

More information

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018 MATH 57: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 18 1 Global and Local Optima Let a function f : S R be defined on a set S R n Definition 1 (minimizers and maximizers) (i) x S

More information

Family Feud Review. Linear Algebra. October 22, 2013

Family Feud Review. Linear Algebra. October 22, 2013 Review Linear Algebra October 22, 2013 Question 1 Let A and B be matrices. If AB is a 4 7 matrix, then determine the dimensions of A and B if A has 19 columns. Answer 1 Answer A is a 4 19 matrix, while

More information

Problem structure in semidefinite programs arising in control and signal processing

Problem structure in semidefinite programs arising in control and signal processing Problem structure in semidefinite programs arising in control and signal processing Lieven Vandenberghe Electrical Engineering Department, UCLA Joint work with: Mehrdad Nouralishahi, Tae Roh Semidefinite

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 4 Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 2 4.1. Subgradients definition subgradient calculus duality and optimality conditions Shiqian

More information

Compression, Matrix Range and Completely Positive Map

Compression, Matrix Range and Completely Positive Map Compression, Matrix Range and Completely Positive Map Iowa State University Iowa-Nebraska Functional Analysis Seminar November 5, 2016 Definitions and notations H, K : Hilbert space. If dim H = n

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

More information

Common-Knowledge / Cheat Sheet

Common-Knowledge / Cheat Sheet CSE 521: Design and Analysis of Algorithms I Fall 2018 Common-Knowledge / Cheat Sheet 1 Randomized Algorithm Expectation: For a random variable X with domain, the discrete set S, E [X] = s S P [X = s]

More information

Math 405: Numerical Methods for Differential Equations 2016 W1 Topics 10: Matrix Eigenvalues and the Symmetric QR Algorithm

Math 405: Numerical Methods for Differential Equations 2016 W1 Topics 10: Matrix Eigenvalues and the Symmetric QR Algorithm Math 405: Numerical Methods for Differential Equations 2016 W1 Topics 10: Matrix Eigenvalues and the Symmetric QR Algorithm References: Trefethen & Bau textbook Eigenvalue problem: given a matrix A, find

More information

Eigenvalues of 2-edge-coverings

Eigenvalues of 2-edge-coverings Eigenvalues of -edge-coverings Steve Butler October 3, 007 Abstract A -edge-covering between G and H is an onto homomorphism from the vertices of G to the vertices of H so that each edge is covered twice

More information

Crouzeix's Conjecture and the GMRES Algorithm

Crouzeix's Conjecture and the GMRES Algorithm Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2011-07-13 Crouzeix's Conjecture and the GMRES Algorithm Sarah McBride Luo Brigham Young University - Provo Follow this and additional

More information

Chapter 7: Symmetric Matrices and Quadratic Forms

Chapter 7: Symmetric Matrices and Quadratic Forms Chapter 7: Symmetric Matrices and Quadratic Forms (Last Updated: December, 06) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved

More information

Lecture 7: Positive Semidefinite Matrices

Lecture 7: Positive Semidefinite Matrices Lecture 7: Positive Semidefinite Matrices Rajat Mittal IIT Kanpur The main aim of this lecture note is to prepare your background for semidefinite programming. We have already seen some linear algebra.

More information

CDS in Plane Geometric Networks: Short, Small, And Sparse

CDS in Plane Geometric Networks: Short, Small, And Sparse CDS in Plane Geometric Networks: Short, Small, And Sparse Peng-Jun Wan Peng-Jun Wan () CDS in Plane Geometric Networks: Short, Small, And Sparse 1 / 38 Outline Three Parameters of CDS Dominators Basic

More information

Simultaneous zero inclusion property for spatial numerical ranges

Simultaneous zero inclusion property for spatial numerical ranges Simultaneous zero inclusion property for spatial numerical ranges Janko Bračič University of Ljubljana, Slovenia Joint work with Cristina Diogo WONRA, Munich, Germany, June 2018 X finite-dimensional complex

More information

Singular Value Decomposition (SVD) and Polar Form

Singular Value Decomposition (SVD) and Polar Form Chapter 2 Singular Value Decomposition (SVD) and Polar Form 2.1 Polar Form In this chapter, we assume that we are dealing with a real Euclidean space E. Let f: E E be any linear map. In general, it may

More information

Lecture 7. Econ August 18

Lecture 7. Econ August 18 Lecture 7 Econ 2001 2015 August 18 Lecture 7 Outline First, the theorem of the maximum, an amazing result about continuity in optimization problems. Then, we start linear algebra, mostly looking at familiar

More information

On John type ellipsoids

On John type ellipsoids On John type ellipsoids B. Klartag Tel Aviv University Abstract Given an arbitrary convex symmetric body K R n, we construct a natural and non-trivial continuous map u K which associates ellipsoids to

More information

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors.

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. Orthogonal sets Let V be a vector space with an inner product. Definition. Nonzero vectors v 1,v

More information

Estimating the support of a scaling vector

Estimating the support of a scaling vector Estimating the support of a scaling vector Wasin So Jianzhong Wang October, 00 Abstract An estimate is given for the support of each component function of a compactly supported scaling vector satisfying

More information

= ϕ r cos θ. 0 cos ξ sin ξ and sin ξ cos ξ. sin ξ 0 cos ξ

= ϕ r cos θ. 0 cos ξ sin ξ and sin ξ cos ξ. sin ξ 0 cos ξ 8. The Banach-Tarski paradox May, 2012 The Banach-Tarski paradox is that a unit ball in Euclidean -space can be decomposed into finitely many parts which can then be reassembled to form two unit balls

More information

FALL 2011, SOLUTION SET 10 LAST REVISION: NOV 27, 9:45 AM. (T c f)(x) = f(x c).

FALL 2011, SOLUTION SET 10 LAST REVISION: NOV 27, 9:45 AM. (T c f)(x) = f(x c). 18.700 FALL 2011, SOLUTION SET 10 LAST REVISION: NOV 27, 9:45 AM TRAVIS SCHEDLER (1) Let V be the vector space of all continuous functions R C. For all c R, let T c L(V ) be the shift operator, which sends

More information

Determinantal and Eigenvalue Inequalities for Matrices with Numerical Ranges in a Sector

Determinantal and Eigenvalue Inequalities for Matrices with Numerical Ranges in a Sector Determinantal and Eigenvalue Inequalities for Matrices with Numerical Ranges in a Sector Raymond Nung-Sing Sze The Hong Kong Polytechnic University July 29, 2014 Based on a joint work with Chi-Kwong Li

More information

Linear Algebra. Session 12

Linear Algebra. Session 12 Linear Algebra. Session 12 Dr. Marco A Roque Sol 08/01/2017 Example 12.1 Find the constant function that is the least squares fit to the following data x 0 1 2 3 f(x) 1 0 1 2 Solution c = 1 c = 0 f (x)

More information

E2 212: Matrix Theory (Fall 2010) Solutions to Test - 1

E2 212: Matrix Theory (Fall 2010) Solutions to Test - 1 E2 212: Matrix Theory (Fall 2010) s to Test - 1 1. Let X = [x 1, x 2,..., x n ] R m n be a tall matrix. Let S R(X), and let P be an orthogonal projector onto S. (a) If X is full rank, show that P can be

More information

Solutions to Complex Analysis Prelims Ben Strasser

Solutions to Complex Analysis Prelims Ben Strasser Solutions to Complex Analysis Prelims Ben Strasser In preparation for the complex analysis prelim, I typed up solutions to some old exams. This document includes complete solutions to both exams in 23,

More information

Numerical Ranges of the Powers of an Operator

Numerical Ranges of the Powers of an Operator Numerical Ranges of the Powers of an Operator Man-Duen Choi 1 Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 2E4 E-mail: choi@math.toronto.edu Chi-Kwong Li 2 Department

More information

Algebra C Numerical Linear Algebra Sample Exam Problems

Algebra C Numerical Linear Algebra Sample Exam Problems Algebra C Numerical Linear Algebra Sample Exam Problems Notation. Denote by V a finite-dimensional Hilbert space with inner product (, ) and corresponding norm. The abbreviation SPD is used for symmetric

More information

Detailed Proof of The PerronFrobenius Theorem

Detailed Proof of The PerronFrobenius Theorem Detailed Proof of The PerronFrobenius Theorem Arseny M Shur Ural Federal University October 30, 2016 1 Introduction This famous theorem has numerous applications, but to apply it you should understand

More information

3-by-3 matrices with elliptical numerical range revisited

3-by-3 matrices with elliptical numerical range revisited Electronic Journal of Linear Algebra Volume 26 Volume 26 (2013) Article 12 2013 3-by-3 matrices with elliptical numerical range revisited Patrick X. Rault Tsvetanka Sendova Ilya M. Spitkovsky ilya@math.wm.edu

More information

Complex Analysis Math 185A, Winter 2010 Final: Solutions

Complex Analysis Math 185A, Winter 2010 Final: Solutions Complex Analysis Math 85A, Winter 200 Final: Solutions. [25 pts] The Jacobian of two real-valued functions u(x, y), v(x, y) of (x, y) is defined by the determinant (u, v) J = (x, y) = u x u y v x v y.

More information

An Interlacing Property of Eigenvalues of Strictly Totally Positive Matrices

An Interlacing Property of Eigenvalues of Strictly Totally Positive Matrices An Interlacing Property of Eigenvalues of Strictly Totally Positive Matrices Allan Pinkus Abstract. We prove results concerning the interlacing of eigenvalues of principal submatrices of strictly totally

More information

Systems of Algebraic Equations and Systems of Differential Equations

Systems of Algebraic Equations and Systems of Differential Equations Systems of Algebraic Equations and Systems of Differential Equations Topics: 2 by 2 systems of linear equations Matrix expression; Ax = b Solving 2 by 2 homogeneous systems Functions defined on matrices

More information

arxiv: v1 [math.fa] 12 Mar 2019

arxiv: v1 [math.fa] 12 Mar 2019 SINGULARITIES OF BASE POLYNOMIALS AND GAU WU NUMBERS KRISTIN A. CAMENGA, LOUIS DEAETT, PATRICK X. RAULT, TSVETANKA SENDOVA, ILYA M. SPITKOVSKY, AND REBEKAH B. JOHNSON YATES arxiv:1903.05183v1 [math.fa]

More information

Final Review Written by Victoria Kala SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015

Final Review Written by Victoria Kala SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015 Final Review Written by Victoria Kala vtkala@mathucsbedu SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015 Summary This review contains notes on sections 44 47, 51 53, 61, 62, 65 For your final,

More information

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition 6 Vector Spaces with Inned Product Basis and Dimension Section Objective(s): Vector Spaces and Subspaces Linear (In)dependence Basis and Dimension Inner Product 6 Vector Spaces and Subspaces Definition

More information

Properties of Linear Transformations from R n to R m

Properties of Linear Transformations from R n to R m Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation

More information

Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then

Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then 1. x S is a global minimum point of f over S if f (x) f (x ) for any x S. 2. x S

More information

Tropical Optimization Framework for Analytical Hierarchy Process

Tropical Optimization Framework for Analytical Hierarchy Process Tropical Optimization Framework for Analytical Hierarchy Process Nikolai Krivulin 1 Sergeĭ Sergeev 2 1 Faculty of Mathematics and Mechanics Saint Petersburg State University, Russia 2 School of Mathematics

More information

BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS

BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS SHOO SETO Abstract. These are the notes to an expository talk I plan to give at MGSC on Kähler Geometry aimed for beginning graduate students in hopes to motivate

More information

Elementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th.

Elementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th. Elementary Linear Algebra Review for Exam Exam is Monday, November 6th. The exam will cover sections:.4,..4, 5. 5., 7., the class notes on Markov Models. You must be able to do each of the following. Section.4

More information

TOEPLITZ OPERATORS. Toeplitz studied infinite matrices with NW-SE diagonals constant. f e C :

TOEPLITZ OPERATORS. Toeplitz studied infinite matrices with NW-SE diagonals constant. f e C : TOEPLITZ OPERATORS EFTON PARK 1. Introduction to Toeplitz Operators Otto Toeplitz lived from 1881-1940 in Goettingen, and it was pretty rough there, so he eventually went to Palestine and eventually contracted

More information

Spectral inequalities and equalities involving products of matrices

Spectral inequalities and equalities involving products of matrices Spectral inequalities and equalities involving products of matrices Chi-Kwong Li 1 Department of Mathematics, College of William & Mary, Williamsburg, Virginia 23187 (ckli@math.wm.edu) Yiu-Tung Poon Department

More information

h Q h Ç h - In S.

h Q h Ç h - In S. ON THE JACOBIAN IDEAL OF THE MODULE OF DIFFERENTIALS1 JOSEPH LIPMAN Let A be a reduced algebra of finite type over a field k, and let J be the Jacobian ideal of A/k (i.e. J is the smallest nonzero Fitting

More information

Section 3.9. Matrix Norm

Section 3.9. Matrix Norm 3.9. Matrix Norm 1 Section 3.9. Matrix Norm Note. We define several matrix norms, some similar to vector norms and some reflecting how multiplication by a matrix affects the norm of a vector. We use matrix

More information

LP Relaxations of Mixed Integer Programs

LP Relaxations of Mixed Integer Programs LP Relaxations of Mixed Integer Programs John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA February 2015 Mitchell LP Relaxations 1 / 29 LP Relaxations LP relaxations We want

More information

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in 806 Problem Set 8 - Solutions Due Wednesday, 4 November 2007 at 4 pm in 2-06 08 03 Problem : 205+5+5+5 Consider the matrix A 02 07 a Check that A is a positive Markov matrix, and find its steady state

More information

MATH 5524 MATRIX THEORY Problem Set 5

MATH 5524 MATRIX THEORY Problem Set 5 MATH 554 MATRIX THEORY Problem Set 5 Posted Tuesday April 07. Due Tuesday 8 April 07. [Late work is due on Wednesday 9 April 07.] Complete any four problems, 5 points each. Recall the definitions of the

More information