Simultaneous zero inclusion property for spatial numerical ranges

Size: px
Start display at page:

Download "Simultaneous zero inclusion property for spatial numerical ranges"

Transcription

1 Simultaneous zero inclusion property for spatial numerical ranges Janko Bračič University of Ljubljana, Slovenia Joint work with Cristina Diogo WONRA, Munich, Germany, June 2018

2 X finite-dimensional complex normed space, usually: X = (C n, ); X the dual normed space,, : X X C unit spheres: the pairing; S X = {x X ; x = 1} S X = {ξ X ; ξ = 1} ; L(X ) linear operators on X, I usually: L(X ) = (M n, ); the identity operator.

3 By the Hahn-Banach theorem: x S X ξ S X : x, ξ = 1. Denote: D(x) = {ξ S X ; x, ξ = 1}. If X is strictly convex, then D(x) is a singleton. If X is a Hilbert space with inner product (, ), then D(x) = {(, x)}. If X = l 1 (n) and e j = (0,..., 1,... 0) T, then D(e j ) = {(γ 1,..., 1,..., γ n ) T ; γ 1 1,..., γ n 1} S l (n).

4 The spatial numerical range of A L(X ) is W X (A) = { Ax, ξ ; x S X, ξ D(x)}.

5 The spatial numerical range of A L(X ) is W X (A) = { Ax, ξ ; x S X, ξ D(x)}. Properties: σ(a) W X (A) D(0, A ); W X (A) is closed; W X (A + B) W X (A) + W X (B); W X (αa + βi) = αw X (A) + β; U a linear isometry on X : W X (U 1 AU) = W X (A).

6 The spatial numerical range of A L(X ) is W X (A) = { Ax, ξ ; x S X, ξ D(x)}. Properties: σ(a) W X (A) D(0, A ); W X (A) is closed; W X (A + B) W X (A) + W X (B); W X (αa + βi) = αw X (A) + β; U a linear isometry on X : W X (U 1 AU) = W X (A). If X = H (Hilbert space), then W H (A) is convex. This does not hold for every X.

7 Observation: X = H Hilbert space, A L(H ) invertible, then 0 W H (A) 0 W H (A 1 ). (1)

8 Observation: X = H Hilbert space, A L(H ) invertible, then 0 W H (A) 0 W H (A 1 ). (1) Proof. 0 W H (A) x S H : (Ax, x) = 0 y = 1 Ax Ax S H (Ax 0 because A is invertible) (A 1 y, y) = 1 Ax 2 (x, Ax) = 0.

9 Observation: X = H Hilbert space, A L(H ) invertible, then 0 W H (A) 0 W H (A 1 ). (1) Proof. 0 W H (A) x S H : (Ax, x) = 0 y = 1 Ax Ax S H (Ax 0 because A is invertible) (A 1 y, y) = 1 Ax 2 (x, Ax) = 0. Question: Does (1) hold in every normed space X?

10 Observation: X = H Hilbert space, A L(H ) invertible, then 0 W H (A) 0 W H (A 1 ). (1) Proof. 0 W H (A) x S H : (Ax, x) = 0 y = 1 Ax Ax S H (Ax 0 because A is invertible) (A 1 y, y) = 1 Ax 2 (x, Ax) = 0. Question: Does (1) hold in every normed space X? Answer: No.

11 Example: X = l 1 (2).

12 Example: X = l 1 (2). A = [ ] a b c d M2 ; W l1 (2)(A) D(a, c ), D(d, b ), is union of: [a + cε, d + bε] = {t(a + cε) + (1 t)(d + bε); 0 t 1}, line segment for each ε C, ε = 1.

13 d + bε d b d + b a a + cε c a + c

14 A = [ ] A 1 = [ W l1 (2)(A) = D(1, 1) and W l1 (2)(A 1 ) = D(1, 1 2 ); ] ; Im i Im i Re Re i i W l1 (2)(A) W l1 (2)(A 1 ) 0 W l1 (2)(A) and 0 W l1 (2)(A 1 ).

15 l 1 (n), n A 1 = W l1 (n)(a 1 ) and 0 W l1 (n)(a 1 1 ).

16 l 1 (n), n A 1 = W l1 (n)(a 1 ) and 0 W l1 (n)(a 1 1 ). l (n), n 2. W l (n)(s) = W l1 (n)(s T ) for every S M n ; 0 W l (n)(a T 1 ) and 0 W l (n)((a T 1 ) 1 )).

17 l p (n), n 2, 2 < p. There exists 0 < a p < 1 such that for a p a p 0 0 A p = W lp(n)(a p ) and 0 W lp(n)(a 1 p ).

18 l p (n), n 2, 2 < p. There exists 0 < a p < 1 such that for a p a p 0 0 A p = W lp(n)(a p ) and 0 W lp(n)(a 1 p ). l q (n), n 2, 1 < q < 2. p = q q 1 > 2; W lq(n)(s) = W lp(n)(s T ) for every S M n ; 0 W lq(n)(a T p) and 0 W lq(n)((a T p) 1 )).

19 Definition. Normed space X has the simultaneous zero inclusion property (S0I) if 0 W X (A) 0 W X (A 1 ) for every invertible A L(X ).

20 Definition. Normed space X has the simultaneous zero inclusion property (S0I) if 0 W X (A) 0 W X (A 1 ) for every invertible A L(X ). Hilbert space has S0I. l p (n), 1 p, p 2 does not have S0I.

21 X normed space, T L(X ) invertible; new norm: x T = Tx (x X ); X T = (X, T ). Theorem. The following are equivalent: X X X T has S0I; has S0I; has S0I.

22 Definition. S0I holds at invertible A L(X ) if 0 W X (A) 0 W X (A 1 ).

23 Definition. S0I holds at invertible A L(X ) if 0 W X (A) 0 W X (A 1 ). Zenger: conv ( σ(a)) W X (A).

24 Definition. S0I holds at invertible A L(X ) if 0 W X (A) 0 W X (A 1 ). Zenger: conv ( σ(a)) W X (A). Theorem. A L(X ) invertible. If 0 conv ( σ(a) ), then S0I holds at A.

25 Definition. S0I holds at invertible A L(X ) if 0 W X (A) 0 W X (A 1 ). Zenger: conv ( σ(a)) W X (A). Theorem. A L(X ) invertible. If 0 conv ( σ(a) ), then S0I holds at A. Proof. σ(a) = {λ 1,..., λ k } σ(a 1 ) = { 1 λ 1,..., 1 λ k }; t 1 λ t k λ k = 0, 0 t 1,..., t k 1, t t k = 1; for j = 1,..., k, s j = t j λ j 2 t 1 λ t k λ k 2 ; 0 s 1,..., s k 1 and s s k = 1; s 1 1 λ s k 1 λ k = 0.

26 Algebra numerical range of A L(X ) is V X (A) W L(X ) (L A ) where L A : T AT, T L(X ).

27 Algebra numerical range of A L(X ) is V X (A) W L(X ) (L A ) where L A : T AT, T L(X ). V X (A) = conv ( W X (A) ) ; Williams: λ V X (A) z λ zi A, z C.

28 Algebra numerical range of A L(X ) is V X (A) W L(X ) (L A ) where L A : T AT, T L(X ). V X (A) = conv ( W X (A) ) ; Williams: λ V X (A) z λ zi A, z C. Theorem. If A L(X ) is an invertible contraction and e iϕ I A 1 < 1, then S0I holds at A.

29 Algebra numerical range of A L(X ) is V X (A) W L(X ) (L A ) where L A : T AT, T L(X ). V X (A) = conv ( W X (A) ) ; Williams: λ V X (A) z λ zi A, z C. Theorem. If A L(X ) is an invertible contraction and e iϕ I A 1 < 1, then S0I holds at A. Proof. e iϕ I A 1 < 1 0 V X (A 1 ) W X (A 1 ); e iϕ I A e iϕ A e iϕ I A 1 < 1 0 V X (A) W X (A).

30 H(C) set of all non-empty compact subsets of C endowed with Hausdorff metric h.

31 H(C) set of all non-empty compact subsets of C endowed with Hausdorff metric h. Theorem. Mapping W X : L(X ) H(C), A W X (A) is continuous.

32 H(C) set of all non-empty compact subsets of C endowed with Hausdorff metric h. Theorem. Mapping W X : L(X ) H(C), A W X (A) is continuous. G out (X ) = {A L(X ); G in (X ) = {A L(X ); A invertible and 0 W X (A) W X (A 1 )}, A invertible and 0 W X (A) W X (A 1 )};

33 H(C) set of all non-empty compact subsets of C endowed with Hausdorff metric h. Theorem. Mapping W X : L(X ) H(C), A W X (A) is continuous. G out (X ) = {A L(X ); G in (X ) = {A L(X ); A invertible and 0 W X (A) W X (A 1 )}, A invertible and 0 W X (A) W X (A 1 )}; X has S0I G out (X ) G in (X ) all invertible;

34 H(C) set of all non-empty compact subsets of C endowed with Hausdorff metric h. Theorem. Mapping W X : L(X ) H(C), A W X (A) is continuous. G out (X ) = {A L(X ); G in (X ) = {A L(X ); A invertible and 0 W X (A) W X (A 1 )}, A invertible and 0 W X (A) W X (A 1 )}; X has S0I G out (X ) G in (X ) all invertible; Theorem. G out (X ) is open and G in (X ) is relatively closed subset in the set of all invertible operators.

35 What if in the definition of S0I W X is replaced by V X?

36 What if in the definition of S0I W X is replaced by V X? X = H : V H (A) = W H (A) for every A B(H ); X = l 1 (n): for A 1 = , W l1 (n)(a 1 ) and W l1 (n)(a 1 1 ) are convex W l1 (n)(a 1 ) = V l1 (n)(a 1 ) and W l1 (n)(a 1 1 ) = V l 1 (n)(a 1 1 ) 0 V l1 (n)(a 1 ) and 0 V l1 (n)(a 1 1 );

37 What if in the definition of S0I W X is replaced by V X? X = H : V H (A) = W H (A) for every A B(H ); X = l 1 (n): for A 1 = , W l1 (n)(a 1 ) and W l1 (n)(a 1 1 ) are convex W l1 (n)(a 1 ) = V l1 (n)(a 1 ) and W l1 (n)(a 1 1 ) = V l 1 (n)(a 1 1 ) 0 V l1 (n)(a 1 ) and 0 V l1 (n)(a 1 1 ); X = l p (n), 1 < p <, p 2: we do not know.

38 ϕ 0 [0, π 2 ): Σ(ϕ 0) = {re iϕ ; r 0, ϕ 0 ϕ ϕ 0 }. Im 0 Σ(ϕ 0 ) Re Definition. X has the simultaneous sector inclusion property (SSI) if, for every invertible A L(X ), V X (A) Σ(ϕ 0 ) for some ϕ 0 V X (A 1 ) Σ(ϕ 0 ).

39 ϕ 0 [0, π 2 ): Σ(ϕ 0) = {re iϕ ; r 0, ϕ 0 ϕ ϕ 0 }. Im 0 Σ(ϕ 0 ) Re Definition. X has the simultaneous sector inclusion property (SSI) if, for every invertible A L(X ), V X (A) Σ(ϕ 0 ) for some ϕ 0 V X (A 1 ) Σ(ϕ 0 ). Hilbert space has this property; l 1 (n) does not have: A 1 is a counter example. Is there any relation between SSI and S0I?

40 Thank you!

The essential numerical range and the Olsen problem

The essential numerical range and the Olsen problem The essential numerical range and the Olsen problem Lille, 2010 Definition Let H be a Hilbert space, T B(H). The numerical range of T is the set W (T ) = { Tx, x : x H, x = 1}. Definition Let H be a Hilbert

More information

REFLEXIVITY OF THE SPACE OF MODULE HOMOMORPHISMS

REFLEXIVITY OF THE SPACE OF MODULE HOMOMORPHISMS REFLEXIVITY OF THE SPACE OF MODULE HOMOMORPHISMS JANKO BRAČIČ Abstract. Let B be a unital Banach algebra and X, Y be left Banach B-modules. We give a sufficient condition for reflexivity of the space of

More information

A Brief Introduction to Functional Analysis

A Brief Introduction to Functional Analysis A Brief Introduction to Functional Analysis Sungwook Lee Department of Mathematics University of Southern Mississippi sunglee@usm.edu July 5, 2007 Definition 1. An algebra A is a vector space over C with

More information

The Gram matrix in inner product modules over C -algebras

The Gram matrix in inner product modules over C -algebras The Gram matrix in inner product modules over C -algebras Ljiljana Arambašić (joint work with D. Bakić and M.S. Moslehian) Department of Mathematics University of Zagreb Applied Linear Algebra May 24 28,

More information

Extreme points of compact convex sets

Extreme points of compact convex sets Extreme points of compact convex sets In this chapter, we are going to show that compact convex sets are determined by a proper subset, the set of its extreme points. Let us start with the main definition.

More information

The C-Numerical Range in Infinite Dimensions

The C-Numerical Range in Infinite Dimensions The C-Numerical Range in Infinite Dimensions Frederik vom Ende Technical University of Munich June 17, 2018 WONRA 2018 Joint work with Gunther Dirr (University of Würzburg) Frederik vom Ende (TUM) C-Numerical

More information

Aliprantis, Border: Infinite-dimensional Analysis A Hitchhiker s Guide

Aliprantis, Border: Infinite-dimensional Analysis A Hitchhiker s Guide aliprantis.tex May 10, 2011 Aliprantis, Border: Infinite-dimensional Analysis A Hitchhiker s Guide Notes from [AB2]. 1 Odds and Ends 2 Topology 2.1 Topological spaces Example. (2.2) A semimetric = triangle

More information

Mathematical Analysis Outline. William G. Faris

Mathematical Analysis Outline. William G. Faris Mathematical Analysis Outline William G. Faris January 8, 2007 2 Chapter 1 Metric spaces and continuous maps 1.1 Metric spaces A metric space is a set X together with a real distance function (x, x ) d(x,

More information

INTRODUCTION TO TOPOLOGY, MATH 141, PRACTICE PROBLEMS

INTRODUCTION TO TOPOLOGY, MATH 141, PRACTICE PROBLEMS INTRODUCTION TO TOPOLOGY, MATH 141, PRACTICE PROBLEMS Problem 1. Give an example of a non-metrizable topological space. Explain. Problem 2. Introduce a topology on N by declaring that open sets are, N,

More information

Math Solutions to homework 5

Math Solutions to homework 5 Math 75 - Solutions to homework 5 Cédric De Groote November 9, 207 Problem (7. in the book): Let {e n } be a complete orthonormal sequence in a Hilbert space H and let λ n C for n N. Show that there is

More information

Minkowski Sums and Aumann s Integrals in Set Invariance Theory for Autonomous Linear Time Invariant Systems

Minkowski Sums and Aumann s Integrals in Set Invariance Theory for Autonomous Linear Time Invariant Systems Minkowski Sums and Aumann s Integrals in Set Invariance Theory for Autonomous Linear Time Invariant Systems Saša V. Raković (sasa.rakovic@imperial.ac.uk) Imperial College, London Imperial College, 2. February

More information

Introduction to Functional Analysis

Introduction to Functional Analysis Introduction to Functional Analysis Carnegie Mellon University, 21-640, Spring 2014 Acknowledgements These notes are based on the lecture course given by Irene Fonseca but may differ from the exact lecture

More information

On Fréchet algebras with the dominating norm property

On Fréchet algebras with the dominating norm property On Fréchet algebras with the dominating norm property Tomasz Ciaś Faculty of Mathematics and Computer Science Adam Mickiewicz University in Poznań Poland Banach Algebras and Applications Oulu, July 3 11,

More information

MAT 578 FUNCTIONAL ANALYSIS EXERCISES

MAT 578 FUNCTIONAL ANALYSIS EXERCISES MAT 578 FUNCTIONAL ANALYSIS EXERCISES JOHN QUIGG Exercise 1. Prove that if A is bounded in a topological vector space, then for every neighborhood V of 0 there exists c > 0 such that tv A for all t > c.

More information

EQUIVALENCE OF TOPOLOGIES AND BOREL FIELDS FOR COUNTABLY-HILBERT SPACES

EQUIVALENCE OF TOPOLOGIES AND BOREL FIELDS FOR COUNTABLY-HILBERT SPACES EQUIVALENCE OF TOPOLOGIES AND BOREL FIELDS FOR COUNTABLY-HILBERT SPACES JEREMY J. BECNEL Abstract. We examine the main topologies wea, strong, and inductive placed on the dual of a countably-normed space

More information

(c) For each α R \ {0}, the mapping x αx is a homeomorphism of X.

(c) For each α R \ {0}, the mapping x αx is a homeomorphism of X. A short account of topological vector spaces Normed spaces, and especially Banach spaces, are basic ambient spaces in Infinite- Dimensional Analysis. However, there are situations in which it is necessary

More information

MAS3706 Topology. Revision Lectures, May I do not answer enquiries as to what material will be in the exam.

MAS3706 Topology. Revision Lectures, May I do not answer  enquiries as to what material will be in the exam. MAS3706 Topology Revision Lectures, May 208 Z.A.Lykova It is essential that you read and try to understand the lecture notes from the beginning to the end. Many questions from the exam paper will be similar

More information

Convex Sets. Prof. Dan A. Simovici UMB

Convex Sets. Prof. Dan A. Simovici UMB Convex Sets Prof. Dan A. Simovici UMB 1 / 57 Outline 1 Closures, Interiors, Borders of Sets in R n 2 Segments and Convex Sets 3 Properties of the Class of Convex Sets 4 Closure and Interior Points of Convex

More information

2) Let X be a compact space. Prove that the space C(X) of continuous real-valued functions is a complete metric space.

2) Let X be a compact space. Prove that the space C(X) of continuous real-valued functions is a complete metric space. University of Bergen General Functional Analysis Problems with solutions 6 ) Prove that is unique in any normed space. Solution of ) Let us suppose that there are 2 zeros and 2. Then = + 2 = 2 + = 2. 2)

More information

FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM. F (m 2 ) + α m 2 + x 0

FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM. F (m 2 ) + α m 2 + x 0 FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM If M is a linear subspace of a normal linear space X and if F is a bounded linear functional on M then F can be extended to M + [x 0 ] without changing its norm.

More information

Markov-Kakutani Theorem and Haar Measure

Markov-Kakutani Theorem and Haar Measure Markov-Kakutani Theorem and Haar Measure Analysis III 1 Markov-Kakutani Definition 1 E is a TVS (topological vector space) if (a) E is a vector space (over R or C). (b) E is a Hausdorff topological space.

More information

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis Real Analysis, 2nd Edition, G.B.Folland Chapter 5 Elements of Functional Analysis Yung-Hsiang Huang 5.1 Normed Vector Spaces 1. Note for any x, y X and a, b K, x+y x + y and by ax b y x + b a x. 2. It

More information

Notes on Distributions

Notes on Distributions Notes on Distributions Functional Analysis 1 Locally Convex Spaces Definition 1. A vector space (over R or C) is said to be a topological vector space (TVS) if it is a Hausdorff topological space and the

More information

Problemas abiertos en dinámica de operadores

Problemas abiertos en dinámica de operadores Problemas abiertos en dinámica de operadores XIII Encuentro de la red de Análisis Funcional y Aplicaciones Cáceres, 6-11 de Marzo de 2017 Wikipedia Old version: In mathematics and physics, chaos theory

More information

Selçuk Demir WS 2017 Functional Analysis Homework Sheet

Selçuk Demir WS 2017 Functional Analysis Homework Sheet Selçuk Demir WS 2017 Functional Analysis Homework Sheet 1. Let M be a metric space. If A M is non-empty, we say that A is bounded iff diam(a) = sup{d(x, y) : x.y A} exists. Show that A is bounded iff there

More information

Topological Properties of Operations on Spaces of Continuous Functions and Integrable Functions

Topological Properties of Operations on Spaces of Continuous Functions and Integrable Functions Topological Properties of Operations on Spaces of Continuous Functions and Integrable Functions Holly Renaud University of Memphis hrenaud@memphis.edu May 3, 2018 Holly Renaud (UofM) Topological Properties

More information

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books. Applied Analysis APPM 44: Final exam 1:3pm 4:pm, Dec. 14, 29. Closed books. Problem 1: 2p Set I = [, 1]. Prove that there is a continuous function u on I such that 1 ux 1 x sin ut 2 dt = cosx, x I. Define

More information

Topological vectorspaces

Topological vectorspaces (July 25, 2011) Topological vectorspaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ Natural non-fréchet spaces Topological vector spaces Quotients and linear maps More topological

More information

Analysis Preliminary Exam Workshop: Hilbert Spaces

Analysis Preliminary Exam Workshop: Hilbert Spaces Analysis Preliminary Exam Workshop: Hilbert Spaces 1. Hilbert spaces A Hilbert space H is a complete real or complex inner product space. Consider complex Hilbert spaces for definiteness. If (, ) : H H

More information

Walker Ray Econ 204 Problem Set 2 Suggested Solutions July 22, 2017

Walker Ray Econ 204 Problem Set 2 Suggested Solutions July 22, 2017 Walker Ray Econ 204 Problem Set 2 Suggested s July 22, 2017 Problem 1. Show that any set in a metric space (X, d) can be written as the intersection of open sets. Take any subset A X and define C = x A

More information

The best generalised inverse of the linear operator in normed linear space

The best generalised inverse of the linear operator in normed linear space Linear Algebra and its Applications 420 (2007) 9 19 www.elsevier.com/locate/laa The best generalised inverse of the linear operator in normed linear space Ping Liu, Yu-wen Wang School of Mathematics and

More information

REAL RENORMINGS ON COMPLEX BANACH SPACES

REAL RENORMINGS ON COMPLEX BANACH SPACES REAL RENORMINGS ON COMPLEX BANACH SPACES F. J. GARCÍA PACHECO AND A. MIRALLES Abstract. In this paper we provide two ways of obtaining real Banach spaces that cannot come from complex spaces. In concrete

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

2.3 Variational form of boundary value problems

2.3 Variational form of boundary value problems 2.3. VARIATIONAL FORM OF BOUNDARY VALUE PROBLEMS 21 2.3 Variational form of boundary value problems Let X be a separable Hilbert space with an inner product (, ) and norm. We identify X with its dual X.

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: WEAK AND WEAK* CONVERGENCE

FUNCTIONAL ANALYSIS LECTURE NOTES: WEAK AND WEAK* CONVERGENCE FUNCTIONAL ANALYSIS LECTURE NOTES: WEAK AND WEAK* CONVERGENCE CHRISTOPHER HEIL 1. Weak and Weak* Convergence of Vectors Definition 1.1. Let X be a normed linear space, and let x n, x X. a. We say that

More information

REAL ANALYSIS II TAKE HOME EXAM. T. Tao s Lecture Notes Set 5

REAL ANALYSIS II TAKE HOME EXAM. T. Tao s Lecture Notes Set 5 REAL ANALYSIS II TAKE HOME EXAM CİHAN BAHRAN T. Tao s Lecture Notes Set 5 1. Suppose that te 1, e 2, e 3,... u is a countable orthonormal system in a complex Hilbert space H, and c 1, c 2,... is a sequence

More information

On the Numerical Range of a Generalized Derivation

On the Numerical Range of a Generalized Derivation International Mathematical Forum, Vol. 12, 2017, no. 6, 277-283 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.611148 On the Numerical Range of a Generalized Derivation F. M. Runji Department

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

Functional Analysis I

Functional Analysis I Functional Analysis I Course Notes by Stefan Richter Transcribed and Annotated by Gregory Zitelli Polar Decomposition Definition. An operator W B(H) is called a partial isometry if W x = X for all x (ker

More information

Self-Referentiality, Fractels, and Applications

Self-Referentiality, Fractels, and Applications Self-Referentiality, Fractels, and Applications Peter Massopust Center of Mathematics Research Unit M15 Technical University of Munich Germany 2nd IM-Workshop on Applied Approximation, Signals, and Images,

More information

Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem

Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem 56 Chapter 7 Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem Recall that C(X) is not a normed linear space when X is not compact. On the other hand we could use semi

More information

A note on the σ-algebra of cylinder sets and all that

A note on the σ-algebra of cylinder sets and all that A note on the σ-algebra of cylinder sets and all that José Luis Silva CCM, Univ. da Madeira, P-9000 Funchal Madeira BiBoS, Univ. of Bielefeld, Germany (luis@dragoeiro.uma.pt) September 1999 Abstract In

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Functional analysis can be seen as a natural extension of the real analysis to more general spaces. As an example we can think at the Heine - Borel theorem (closed and bounded is

More information

Lecture 5. Ch. 5, Norms for vectors and matrices. Norms for vectors and matrices Why?

Lecture 5. Ch. 5, Norms for vectors and matrices. Norms for vectors and matrices Why? KTH ROYAL INSTITUTE OF TECHNOLOGY Norms for vectors and matrices Why? Lecture 5 Ch. 5, Norms for vectors and matrices Emil Björnson/Magnus Jansson/Mats Bengtsson April 27, 2016 Problem: Measure size of

More information

CHAPTER VIII HILBERT SPACES

CHAPTER VIII HILBERT SPACES CHAPTER VIII HILBERT SPACES DEFINITION Let X and Y be two complex vector spaces. A map T : X Y is called a conjugate-linear transformation if it is a reallinear transformation from X into Y, and if T (λx)

More information

SOLUTIONS TO SOME PROBLEMS

SOLUTIONS TO SOME PROBLEMS 23 FUNCTIONAL ANALYSIS Spring 23 SOLUTIONS TO SOME PROBLEMS Warning:These solutions may contain errors!! PREPARED BY SULEYMAN ULUSOY PROBLEM 1. Prove that a necessary and sufficient condition that the

More information

Reflexivity of Locally Convex Spaces over Local Fields

Reflexivity of Locally Convex Spaces over Local Fields Reflexivity of Locally Convex Spaces over Local Fields Tomoki Mihara University of Tokyo & Keio University 1 0 Introduction For any Hilbert space H, the Hermit inner product induces an anti C- linear isometric

More information

arxiv: v1 [math.fa] 11 Oct 2018

arxiv: v1 [math.fa] 11 Oct 2018 SOME REMARKS ON BIRKHOFF-JAMES ORTHOGONALITY OF LINEAR OPERATORS arxiv:1810.04845v1 [math.fa] 11 Oct 2018 DEBMALYA SAIN, KALLOL PAUL AND ARPITA MAL Abstract. We study Birkhoff-James orthogonality of compact

More information

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key NAME: Mathematics 205A, Fall 2008, Final Examination Answer Key 1 1. [25 points] Let X be a set with 2 or more elements. Show that there are topologies U and V on X such that the identity map J : (X, U)

More information

Representations and Derivations of Modules

Representations and Derivations of Modules Irish Math. Soc. Bulletin 47 (2001), 27 39 27 Representations and Derivations of Modules JANKO BRAČIČ Abstract. In this article we define and study derivations between bimodules. In particular, we define

More information

Geometry and topology of continuous best and near best approximations

Geometry and topology of continuous best and near best approximations Journal of Approximation Theory 105: 252 262, Geometry and topology of continuous best and near best approximations Paul C. Kainen Dept. of Mathematics Georgetown University Washington, D.C. 20057 Věra

More information

Banach Spaces V: A Closer Look at the w- and the w -Topologies

Banach Spaces V: A Closer Look at the w- and the w -Topologies BS V c Gabriel Nagy Banach Spaces V: A Closer Look at the w- and the w -Topologies Notes from the Functional Analysis Course (Fall 07 - Spring 08) In this section we discuss two important, but highly non-trivial,

More information

arxiv: v1 [math.fa] 1 Nov 2017

arxiv: v1 [math.fa] 1 Nov 2017 NON-EXPANSIVE BIJECTIONS TO THE UNIT BALL OF l 1 -SUM OF STRICTLY CONVEX BANACH SPACES V. KADETS AND O. ZAVARZINA arxiv:1711.00262v1 [math.fa] 1 Nov 2017 Abstract. Extending recent results by Cascales,

More information

Errata Applied Analysis

Errata Applied Analysis Errata Applied Analysis p. 9: line 2 from the bottom: 2 instead of 2. p. 10: Last sentence should read: The lim sup of a sequence whose terms are bounded from above is finite or, and the lim inf of a sequence

More information

Semenov E. M. Banach limits and their applications. Banach limits... Semenov E. M. 1 / 22

Semenov E. M. Banach limits and their applications. Banach limits... Semenov E. M. 1 / 22 Semenov E. M. Banach limits and their applications Banach limits... Semenov E. M. 1 / 22 Joint work with E. A. Alekhno, F. A. Sukochev, A. S. Usachev. This work is supported by RNF, grant 16 11 101 25.

More information

Stochastic Dynamic Programming: The One Sector Growth Model

Stochastic Dynamic Programming: The One Sector Growth Model Stochastic Dynamic Programming: The One Sector Growth Model Esteban Rossi-Hansberg Princeton University March 26, 2012 Esteban Rossi-Hansberg () Stochastic Dynamic Programming March 26, 2012 1 / 31 References

More information

NOTES ON BARNSLEY FERN

NOTES ON BARNSLEY FERN NOTES ON BARNSLEY FERN ERIC MARTIN 1. Affine transformations An affine transformation on the plane is a mapping T that preserves collinearity and ratios of distances: given two points A and B, if C is

More information

The weak topology of locally convex spaces and the weak-* topology of their duals

The weak topology of locally convex spaces and the weak-* topology of their duals The weak topology of locally convex spaces and the weak-* topology of their duals Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto April 3, 2014 1 Introduction These notes

More information

Best approximations in normed vector spaces

Best approximations in normed vector spaces Best approximations in normed vector spaces Mike de Vries 5699703 a thesis submitted to the Department of Mathematics at Utrecht University in partial fulfillment of the requirements for the degree of

More information

Spectral theory for compact operators on Banach spaces

Spectral theory for compact operators on Banach spaces 68 Chapter 9 Spectral theory for compact operators on Banach spaces Recall that a subset S of a metric space X is precompact if its closure is compact, or equivalently every sequence contains a Cauchy

More information

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday January 20, 2015 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday January 20, 2015 (Day 1) Tuesday January 20, 2015 (Day 1) 1. (AG) Let C P 2 be a smooth plane curve of degree d. (a) Let K C be the canonical bundle of C. For what integer n is it the case that K C = OC (n)? (b) Prove that if

More information

DAVIS WIELANDT SHELLS OF NORMAL OPERATORS

DAVIS WIELANDT SHELLS OF NORMAL OPERATORS DAVIS WIELANDT SHELLS OF NORMAL OPERATORS CHI-KWONG LI AND YIU-TUNG POON Dedicated to Professor Hans Schneider for his 80th birthday. Abstract. For a finite-dimensional operator A with spectrum σ(a), the

More information

MAT 771 FUNCTIONAL ANALYSIS HOMEWORK 3. (1) Let V be the vector space of all bounded or unbounded sequences of complex numbers.

MAT 771 FUNCTIONAL ANALYSIS HOMEWORK 3. (1) Let V be the vector space of all bounded or unbounded sequences of complex numbers. MAT 771 FUNCTIONAL ANALYSIS HOMEWORK 3 (1) Let V be the vector space of all bounded or unbounded sequences of complex numbers. (a) Define d : V V + {0} by d(x, y) = 1 ξ j η j 2 j 1 + ξ j η j. Show that

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

Completeness and quasi-completeness. 1. Products, limits, coproducts, colimits

Completeness and quasi-completeness. 1. Products, limits, coproducts, colimits (April 24, 2014) Completeness and quasi-completeness Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/fun/notes 2012-13/07d quasi-completeness.pdf]

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 22: Preliminaries for Semiparametric Inference

Introduction to Empirical Processes and Semiparametric Inference Lecture 22: Preliminaries for Semiparametric Inference Introduction to Empirical Processes and Semiparametric Inference Lecture 22: Preliminaries for Semiparametric Inference Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics

More information

Homework Assignment #5 Due Wednesday, March 3rd.

Homework Assignment #5 Due Wednesday, March 3rd. Homework Assignment #5 Due Wednesday, March 3rd. 1. In this problem, X will be a separable Banach space. Let B be the closed unit ball in X. We want to work out a solution to E 2.5.3 in the text. Work

More information

MATH 4200 HW: PROBLEM SET FOUR: METRIC SPACES

MATH 4200 HW: PROBLEM SET FOUR: METRIC SPACES MATH 4200 HW: PROBLEM SET FOUR: METRIC SPACES PETE L. CLARK 4. Metric Spaces (no more lulz) Directions: This week, please solve any seven problems. Next week, please solve seven more. Starred parts of

More information

Introduction to Index Theory. Elmar Schrohe Institut für Analysis

Introduction to Index Theory. Elmar Schrohe Institut für Analysis Introduction to Index Theory Elmar Schrohe Institut für Analysis Basics Background In analysis and pde, you want to solve equations. In good cases: Linearize, end up with Au = f, where A L(E, F ) is a

More information

B. Appendix B. Topological vector spaces

B. Appendix B. Topological vector spaces B.1 B. Appendix B. Topological vector spaces B.1. Fréchet spaces. In this appendix we go through the definition of Fréchet spaces and their inductive limits, such as they are used for definitions of function

More information

LINEAR MAPS ON M n (C) PRESERVING INNER LOCAL SPECTRAL RADIUS ZERO

LINEAR MAPS ON M n (C) PRESERVING INNER LOCAL SPECTRAL RADIUS ZERO ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS N. 39 2018 (757 763) 757 LINEAR MAPS ON M n (C) PRESERVING INNER LOCAL SPECTRAL RADIUS ZERO Hassane Benbouziane Mustapha Ech-Chérif Elkettani Ahmedou Mohamed

More information

Linear Operators Preserving the Numerical Range (Radius) on Triangular Matrices

Linear Operators Preserving the Numerical Range (Radius) on Triangular Matrices Linear Operators Preserving the Numerical Range (Radius) on Triangular Matrices Chi-Kwong Li Department of Mathematics, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA. E-mail:

More information

The projectivity of C -algebras and the topology of their spectra

The projectivity of C -algebras and the topology of their spectra The projectivity of C -algebras and the topology of their spectra Zinaida Lykova Newcastle University, UK Waterloo 2011 Typeset by FoilTEX 1 The Lifting Problem Let A be a Banach algebra and let A-mod

More information

1.3 Group Actions. Exercise Prove that a CAT(1) piecewise spherical simplicial complex is metrically flag.

1.3 Group Actions. Exercise Prove that a CAT(1) piecewise spherical simplicial complex is metrically flag. Exercise 1.2.6. Prove that a CAT(1) piecewise spherical simplicial complex is metrically flag. 1.3 Group Actions Definition 1.3.1. Let X be a metric space, and let λ : X X be an isometry. The displacement

More information

NON POSITIVELY CURVED METRIC IN THE SPACE OF POSITIVE DEFINITE INFINITE MATRICES

NON POSITIVELY CURVED METRIC IN THE SPACE OF POSITIVE DEFINITE INFINITE MATRICES REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA Volumen 48, Número 1, 2007, Páginas 7 15 NON POSITIVELY CURVED METRIC IN THE SPACE OF POSITIVE DEFINITE INFINITE MATRICES ESTEBAN ANDRUCHOW AND ALEJANDRO VARELA

More information

Math General Topology Fall 2012 Homework 8 Solutions

Math General Topology Fall 2012 Homework 8 Solutions Math 535 - General Topology Fall 2012 Homework 8 Solutions Problem 1. (Willard Exercise 19B.1) Show that the one-point compactification of R n is homeomorphic to the n-dimensional sphere S n. Note that

More information

Geometry of Banach spaces and sharp versions of Jackson and Marchaud inequalities

Geometry of Banach spaces and sharp versions of Jackson and Marchaud inequalities Geometry of Banach spaces and sharp versions of Jackson and Marchaud inequalities Andriy Prymak joint work with Zeev Ditzian January 2012 Andriy Prymak (University of Manitoba) Geometry of Banach spaces

More information

The Proper Generalized Decomposition: A Functional Analysis Approach

The Proper Generalized Decomposition: A Functional Analysis Approach The Proper Generalized Decomposition: A Functional Analysis Approach Méthodes de réduction de modèle dans le calcul scientifique Main Goal Given a functional equation Au = f It is possible to construct

More information

Appendix B Convex analysis

Appendix B Convex analysis This version: 28/02/2014 Appendix B Convex analysis In this appendix we review a few basic notions of convexity and related notions that will be important for us at various times. B.1 The Hausdorff distance

More information

Pythagorean Property and Best Proximity Pair Theorems

Pythagorean Property and Best Proximity Pair Theorems isibang/ms/2013/32 November 25th, 2013 http://www.isibang.ac.in/ statmath/eprints Pythagorean Property and Best Proximity Pair Theorems Rafa Espínola, G. Sankara Raju Kosuru and P. Veeramani Indian Statistical

More information

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1 MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION ELEMENTS OF SOLUTION Problem 1 1. Let X be a Hausdorff space and K 1, K 2 disjoint compact subsets of X. Prove that there exist disjoint open sets U 1 and

More information

NOTES ON THE NUMERICAL RANGE

NOTES ON THE NUMERICAL RANGE NOTES ON THE NUMERICAL RANGE JOEL H. SHAPIRO Abstract. This is an introduction to the notion of numerical range for bounded linear operators on Hilbert space. The main results are: determination of the

More information

Plasticity of the unit ball and related problems

Plasticity of the unit ball and related problems Plasticity of the unit ball and related problems A survey of joint results with B. Cascales, C. Angosto, J. Orihuela, E.J. Wingler, and O. Zavarzina, 2011 2018 Vladimir Kadets Kharkiv National University,

More information

A NOTE ON QUASI ISOMETRIES II. S.M. Patel Sardar Patel University, India

A NOTE ON QUASI ISOMETRIES II. S.M. Patel Sardar Patel University, India GLASNIK MATEMATIČKI Vol. 38(58)(2003), 111 120 A NOTE ON QUASI ISOMETRIES II S.M. Patel Sardar Patel University, India Abstract. An operator A on a complex Hilbert space H is called a quasi-isometry if

More information

Chapter II. Metric Spaces and the Topology of C

Chapter II. Metric Spaces and the Topology of C II.1. Definitions and Examples of Metric Spaces 1 Chapter II. Metric Spaces and the Topology of C Note. In this chapter we study, in a general setting, a space (really, just a set) in which we can measure

More information

LINEAR PRESERVER PROBLEMS: generalized inverse

LINEAR PRESERVER PROBLEMS: generalized inverse LINEAR PRESERVER PROBLEMS: generalized inverse Université Lille 1, France Banach Algebras 2011, Waterloo August 3-10, 2011 I. Introduction Linear preserver problems is an active research area in Matrix,

More information

Notes for Functional Analysis

Notes for Functional Analysis Notes for Functional Analysis Wang Zuoqin (typed by Xiyu Zhai) October 16, 2015 1 Lecture 11 1.1 The closed graph theorem Definition 1.1. Let f : X Y be any map between topological spaces. We define its

More information

Weak Topologies, Reflexivity, Adjoint operators

Weak Topologies, Reflexivity, Adjoint operators Chapter 2 Weak Topologies, Reflexivity, Adjoint operators 2.1 Topological vector spaces and locally convex spaces Definition 2.1.1. [Topological Vector Spaces and Locally convex Spaces] Let E be a vector

More information

1 Lesson 1: Brunn Minkowski Inequality

1 Lesson 1: Brunn Minkowski Inequality 1 Lesson 1: Brunn Minkowski Inequality A set A R n is called convex if (1 λ)x + λy A for any x, y A and any λ [0, 1]. The Minkowski sum of two sets A, B R n is defined by A + B := {a + b : a A, b B}. One

More information

The numerical index of Banach spaces

The numerical index of Banach spaces The numerical index of Banach spaces Miguel Martín http://www.ugr.es/local/mmartins April 2nd, 2009 Zaragoza Schedule of the talk 1 Basic notation 2 Numerical range of operators 3 Numerical index of Banach

More information

Compression, Matrix Range and Completely Positive Map

Compression, Matrix Range and Completely Positive Map Compression, Matrix Range and Completely Positive Map Iowa State University Iowa-Nebraska Functional Analysis Seminar November 5, 2016 Definitions and notations H, K : Hilbert space. If dim H = n

More information

Extensions of pure states

Extensions of pure states Extensions of pure M. Anoussis 07/ 2016 1 C algebras 2 3 4 5 C -algebras Definition Let A be a Banach algebra. An involution on A is a map a a on A s.t. (a + b) = a + b (λa) = λa, λ C a = a (ab) = b a

More information

p-operator Spaces Zhong-Jin Ruan University of Illinois at Urbana-Champaign GPOTS 2008 June 18-22, 2008

p-operator Spaces Zhong-Jin Ruan University of Illinois at Urbana-Champaign GPOTS 2008 June 18-22, 2008 p-operator Spaces Zhong-Jin Ruan University of Illinois at Urbana-Champaign GPOTS 2008 June 18-22, 2008 1 Operator Spaces Operator spaces are spaces of operators on Hilbert spaces. A concrete operator

More information

Projection-valued measures and spectral integrals

Projection-valued measures and spectral integrals Projection-valued measures and spectral integrals Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto April 16, 2014 Abstract The purpose of these notes is to precisely define

More information

Spectral Theory, with an Introduction to Operator Means. William L. Green

Spectral Theory, with an Introduction to Operator Means. William L. Green Spectral Theory, with an Introduction to Operator Means William L. Green January 30, 2008 Contents Introduction............................... 1 Hilbert Space.............................. 4 Linear Maps

More information

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space 1 Professor Carl Cowen Math 54600 Fall 09 PROBLEMS 1. (Geometry in Inner Product Spaces) (a) (Parallelogram Law) Show that in any inner product space x + y 2 + x y 2 = 2( x 2 + y 2 ). (b) (Polarization

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

Corollary A linear operator A is the generator of a C 0 (G(t)) t 0 satisfying G(t) e ωt if and only if (i) A is closed and D(A) = X;

Corollary A linear operator A is the generator of a C 0 (G(t)) t 0 satisfying G(t) e ωt if and only if (i) A is closed and D(A) = X; 2.2 Rudiments 71 Corollary 2.12. A linear operator A is the generator of a C 0 (G(t)) t 0 satisfying G(t) e ωt if and only if (i) A is closed and D(A) = X; (ii) ρ(a) (ω, ) and for such λ semigroup R(λ,

More information

THE BOUNDEDNESS BELOW OF 2 2 UPPER TRIANGULAR OPERATOR MATRICES. In Sung Hwang and Woo Young Lee 1

THE BOUNDEDNESS BELOW OF 2 2 UPPER TRIANGULAR OPERATOR MATRICES. In Sung Hwang and Woo Young Lee 1 THE BOUNDEDNESS BELOW OF 2 2 UPPER TRIANGULAR OPERATOR MATRICES In Sung Hwang and Woo Young Lee 1 When A LH and B LK are given we denote by M C an operator acting on the Hilbert space H K of the form M

More information

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set Analysis Finite and Infinite Sets Definition. An initial segment is {n N n n 0 }. Definition. A finite set can be put into one-to-one correspondence with an initial segment. The empty set is also considered

More information