The homework problem (pucks_on_ice) illustrates several important points:

Size: px
Start display at page:

Download "The homework problem (pucks_on_ice) illustrates several important points:"

Transcription

1 Ekman laers, friction & eostrohic flow The homework roblem (ucks_on_ice) illustrates several imortant oints: 1. Particles move erendicular to the alied force, to the riht in the northern hemishere, to the left in the southern hemishere 2. Particles do not move steadil but oscillate with an inertial frequenc, equal to 2Ωsin(θ), where θ is the latitude 3. After the eternal force is removed, article motion decas ecet when close to the bum where the continue to rotate around the bum with hih elevation on the riht (left) in the northern (southern) hemishere 4. Due to friction, articles near the bum slowl slide down the sloe Point 1 is an illustration of Ekman laers in the ocean. A force (wind stress) ushes them at riht anles in the rotatin sstem. One miht wonder how it is ossible in such a world to drive from California to Seattle: one would have to head westward in our car (towards the Pacific Ocean) to et there! But in fact, friction for automobiles is rather lare: the tires constantl imeded motion ecet in the direction the car is ointed. So don t tr this eeriment!

2 The variation of the article motion with ever-increasin friction is shown in the fiure above. As friction is increased (relative to f ) the article moves more in the direction of the alied force (blue arrow). The oscillation amlitude also decreases. In the limit in which friction is much larer than f, the motion is in the direction of the alied force. The dnamics behind the Pucks on Ice roblem is all contained in the equation for the chane in momentum of a article of mass m movin in a rotatin sstem about a frozen, bum surface h(,) under the action of a bod force, F and weak friction r. As we have seen, when friction is weak enouh (in one limit discussed above), the ucks can do some thins that are initiall surrisin when the bod force is switched on and then off after a short time (3 das in the roblem). The dnamical balance is iven as dv m[ + 2 Ω v] = mrv m h+ F dt ( ) ( ) ( ) ( ) ( ) Each of the terms has been numbered to facilitate some discussion. One feature of the solution is that shortl after the bod force is either switched on or off, articles undero oscillations in a circle. This oscillation is an inertial oscillation and is characterized as a balance between terms (1) & (2). Inertial oscillations: terms (1) & (2) For those articles near the bum toorah, their motion will be such as to move with velocities that have the hih toorah on their riht (in the Northern Hemishere, left in the S. Hemishere). This balance is called the eostrohic balance. Geostrohic flow: terms (2) & (4) Under the action of the bod force, articles will move at riht anles to the force, to the riht in the N. hemishere (left in S. Hemishere). This is reresents a balance between terms (2) and (5) and is the fundamental balance in the wind-driven, Ekman transort (after V. Walfrid Ekman). Ekman flow: terms (2) & (5) [&(3)] Weak friction will modif all of the above, and in the roblem, the above balances are never eactl followed, onl aroimatel, in different reions

3 and at different times. Yet these balances lie at the core of wind-driven motion in the ocean. In all of these cases, the Coriolis force (2) is central. Ekman flow in the ocean Now consider a non-frozen ocean forced b an alied wind stress in the direction of the blue vector. For the surface laer, turbulence is lare and the effective friction is lare: so a article will move downwind but slihtl to the riht (in the N. hemishere, which we will assume in what follows). The laer below, which is causin the dra on the surface laer then wants to move too. It will move to the riht of the overlin surface laer for the same reasons. This continues in the vertical until the turbulence, which coules the laers in the water column, eventuall dies awa and there is no subsequent motion. The resultin velocit vector looks like a siral: oin from slihtl downwind but to the riht of the wind, rotatin to the clockwise and decain with increasin deth. This was first ointed out b Ekman with a ver simle model of the frictional coulin in 1905, and convincinl demonstrated in the ocean b Price, Weller and Schudlich (Science, vol. 238, ) in The net transort in this frictional laer is almost eactl to the riht of the stress as redicted! We call this surface laer of wind stress influence the Ekman laer. In the fiure below, we can see this almost eact balance of net transort interated over the surface Ekman laer, which is about 25m deth, and the wind stress, such that the net transort is the riht of the wind stress (in the N. Hemishere).

4 Imae removed due to coriht concerns. Frictional or Ekman laers can eist near the ocean bottom as well. This was also illustrated in the homework roblem as the ucks slowl slid down the sloin toorah because of friction. The main motion of the ucks was clockwise around the toorahic bum. This reflects the eostrohic balance between motion and the sloe in surface elevation. Since frictional coulin is aain stron when there is flow in near contact with the ocean bottom, this aeostrohic (non-eostrohic) motion, aain deflects the trajectories of articles near to the bottom to the left of those further awa from the bottom. This creates a siral in the oosite direction with net frictional flow to the left of the overlin fluid (in the N. hemishere). A similar result is obtained for eostrohic flow around a dimle. Near the bottom, friction usets this balance and there is aain a flow down the ressure radient and a turnin of the flow to the left of the interior motion.

5 Notes on the Geostrohic Balance Consider the diaram at the riht. The ocean consists of two densit laers of uniform densit ρ 1 & ρ 2. The heiht of the free surface is iven b h(), that of the interface b H() and of the flat lower surface H 0 : it needn t be the ρ 2 ocean bottom, onl a level surface. We will use the hdrostatic relation to determine the ressure on the lower surface. It is iven b the followin: P( z = H ) = ρ 1( h + H ) + ρ 2 ( H 0 0 H ) ρ 1 Z=h Z=0 Z= -H Z= -H 0 If at this surface there is no horizontal ressure radient, P = 0 and we et the followin (after cancelin out, which aears in both terms): P h = 0 0 = ρ ( h ρ = H ρ 1, 1 + H ) ρ H where ρ ρ ρ Since ρ/ρ 1 << 1, the interface thickens and deeens much more than the free surface rises. For the Gulf Stream, the above icture is what one would see standin near Cae Hatteras and lookin to the east. The surface rises about 1 meter across the Gulf Stream due to the stron flow at the surface, but this flow decas raidl with deth. The densit contrast across the cnocline makes ρ/ρ 1 ~ so the cnocline sloes down to the south (riht) about 500m across the Gulf Stream. Of course, the above situation is onl an idealization of the actual situation (the class will have a homework roblem usin real data), but this illustrates the deree to which the densit field can comensate for a non-level free surface eression., or

6 We will now look at the equations eressin the eostrohic balance for baroclinic motion. In our rand equations, we can write the balance for eostrohic motion [ (u,v)=(u,v )] as ρ fv ρ fu = = where we have noted that the ressure radients in (,) are calculated on a constant eootential surface for clarit. Now recall from the definition of eootential surfaces that there is no chane in otential ener as a article is moved in a surface of constant, and that ((,),,) elicitl deends on ressure as well as horizontal osition. We can use this to make a chane of variables in the above. For eamle, if =( (, ),, ), then δ= δ + δ+. δ For δ, δ = 0,,,, δ = /. δ,,, So we can write / ρ = =, / ρ. = =, And our eostrohic balance becomes

7 (0) D( ) fv ( ) = = + fu (0) D( ) ( ) = = + where we have used the definition of eootential resented earlier in terms of dnamic heiht and also made use of the fact that there is no horizontal variation of one of the terms in the definition of eootential which is roortional to the reference secific volume anomal α 0. Τhe last air of equations can be further simlified reconizin that for = 0, D = 0, thus f [ v f [ u (0) v (0) u D( ) ( )] = D( ) ( )] = This is the form of the eostrohic equations most commonl used since the radient of eootential at the free surface is not easil measured. It eresses how velocit will chane with ressure based on horizontal radients of dnamic heiht. Without an other information, on cannot determine the eostrohic velocit at a oint, onl its variation with ressure (or deth): there is an unknown constant, which can be determined b fiat: [sain that the velocit at some reference ressure must be zero] or b other means [such as equatin the velocit at some deth with direct measurements of velocit and then requirin that measured velocit to be eostrohic ]. [reference for some of this is Fofonoff in The Sea, Vol. 1]. In a later homework roblem, we will calculate eostrohic currents usin actual oceanorahic data. Use of the above air of equations will be essential as well as understandin how to use the concet of a dee reference ressure as a level of no motion. On an f-lane, contours of constant dnamic heiht are equivalent to streamlines of the eostrohic flow relative to some assumed level of no motion. While this is a convenient fact and of much use in eaminin satial mas of dnamic heiht from hdrorahic data, one must alwas be aware of the limitations of this aroimation. Because f can var with latitude, this aroimation breaks down for whole ocean basins.

2.3. PBL Equations for Mean Flow and Their Applications

2.3. PBL Equations for Mean Flow and Their Applications .3. PBL Equations for Mean Flow and Their Applications Read Holton Section 5.3!.3.1. The PBL Momentum Equations We have derived the Reynolds averaed equations in the previous section, and they describe

More information

Synoptic Meteorology I: The Geostrophic Approximation. 30 September, 7 October 2014

Synoptic Meteorology I: The Geostrophic Approximation. 30 September, 7 October 2014 The Equations of Motion Synotic Meteorology I: The Geostrohic Aroimation 30 Setember, 7 October 2014 In their most general form, and resented without formal derivation, the equations of motion alicable

More information

ESCI 485 Air/sea Interaction Lesson 5 Oceanic Boundary Layer

ESCI 485 Air/sea Interaction Lesson 5 Oceanic Boundary Layer ESCI 485 Air/sea Interaction Lesson 5 Oceanic Boundar Laer References: Descriptive Phsical Oceanograph, Pickard and Emer Introductor Dnamical Oceanograph, Pond and Pickard Principles of Ocean Phsics, Apel

More information

Ocean Dynamics. The Equations of Motion 8/27/10. Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI dt = fv. dt = fu.

Ocean Dynamics. The Equations of Motion 8/27/10. Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI dt = fv. dt = fu. Phsical Oceanograph, MSCI 3001 Oceanographic Processes, MSCI 5004 Dr. Katrin Meissner k.meissner@unsw.e.au Ocean Dnamics The Equations of Motion d u dt = 1 ρ Σ F Horizontal Equations: Acceleration = Pressure

More information

ATM The thermal wind Fall, 2016 Fovell

ATM The thermal wind Fall, 2016 Fovell ATM 316 - The thermal wind Fall, 2016 Fovell Reca and isobaric coordinates We have seen that for the synotic time and sace scales, the three leading terms in the horizontal equations of motion are du dt

More information

Final Examination, MEA 443 Fall 2003, Lackmann

Final Examination, MEA 443 Fall 2003, Lackmann Place an X here to count it double! Name: Final Eamination, MEA 443 Fall 003, Lackmann If ou wish to have the final eam count double, and dro our lowest score in an of the three semester eams, mark an

More information

C. Non-linear Difference and Differential Equations: Linearization and Phase Diagram Technique

C. Non-linear Difference and Differential Equations: Linearization and Phase Diagram Technique C. Non-linear Difference and Differential Equations: Linearization and Phase Diaram Technique So far we have discussed methods of solvin linear difference and differential equations. Let us now discuss

More information

1 such that v k g. v g. u g

1 such that v k g. v g. u g Mesoscale Meteoroloy: Quasi-Geostrohic Theory 4, 6 February 7 Wait this is a mesoscale class why do we care about a tenet o synotic meteoroloy?? On the synotic-scale, scale analysis o the orcin terms in

More information

Motion in Two Dimensions Sections Covered in the Text: Chapters 6 & 7, except 7.5 & 7.6

Motion in Two Dimensions Sections Covered in the Text: Chapters 6 & 7, except 7.5 & 7.6 Motion in Two Dimensions Sections Covered in the Tet: Chapters 6 & 7, ecept 7.5 & 7.6 It is time to etend the definitions we developed in Note 03 to describe motion in 2D space. In doin so we shall find

More information

6.7 Thermal wind in pressure coordinates

6.7 Thermal wind in pressure coordinates 176 CHAPTER 6. THE EQUATIONS OF FLUID MOTION 6.7 Thermal wind in ressure coordinates The thermal wind relation aroriate to the atmoshere is untidy when exressed with height as a vertical coordinate (because

More information

Lecture Thermodynamics 9. Entropy form of the 1 st law. Let us start with the differential form of the 1 st law: du = d Q + d W

Lecture Thermodynamics 9. Entropy form of the 1 st law. Let us start with the differential form of the 1 st law: du = d Q + d W Lecture hermodnamics 9 Entro form of the st law Let us start with the differential form of the st law: du = d Q + d W Consider a hdrostatic sstem. o know the required d Q and d W between two nearb states,

More information

Estimating h Boundary Layer Equations

Estimating h Boundary Layer Equations Estimating h Boundar Laer Equations ChE 0B Before, we just assumed a heat transfer coefficient, but can we estimate them from first rinciles? Look at stead laminar flow ast a flat late, again: Clearl,

More information

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction OCN/ATM/ESS 587 The wind-driven ocean circulation. Friction and stress The Ekman layer, top and bottom Ekman pumping, Ekman suction Westward intensification The wind-driven ocean. The major ocean gyres

More information

The General Circulation of the Oceans

The General Circulation of the Oceans The General Circulation of the Oceans In previous classes we discussed local balances (Inertial otion, Ekman Transport, Geostrophic Flows, etc.), but can we eplain the large-scale general circulation of

More information

Ocean Dynamics. Equation of motion a=σf/ρ 29/08/11. What forces might cause a parcel of water to accelerate?

Ocean Dynamics. Equation of motion a=σf/ρ 29/08/11. What forces might cause a parcel of water to accelerate? Phsical oceanograph, MSCI 300 Oceanographic Processes, MSCI 5004 Dr. Ale Sen Gupta a.sengupta@unsw.e.au Ocean Dnamics Newton s Laws of Motion An object will continue to move in a straight line and at a

More information

ESCI 343 Atmospheric Dynamics II Lesson 1 Ageostrophic Wind

ESCI 343 Atmospheric Dynamics II Lesson 1 Ageostrophic Wind ESCI 343 Atmospheric Dynamics II Lesson 1 Aeostrophic Wind References: An Introduction to Dynamic Meteoroloy (3 rd edition), J.R. Holton THE QG MOMENTUM EQUATIONS The QG momentum equations are derived

More information

Lecture 2. Lecture 1. Forces on a rotating planet. We will describe the atmosphere and ocean in terms of their:

Lecture 2. Lecture 1. Forces on a rotating planet. We will describe the atmosphere and ocean in terms of their: Lecture 2 Lecture 1 Forces on a rotating planet We will describe the atmosphere and ocean in terms of their: velocity u = (u,v,w) pressure P density ρ temperature T salinity S up For convenience, we will

More information

Ocean currents: some misconceptions and some dynamics

Ocean currents: some misconceptions and some dynamics Ocean currents: some misconceptions and some dynamics Joe LaCasce Dept. Geosciences October 30, 2012 Where is the Gulf Stream? BBC Weather Center Where is the Gulf Stream? Univ. Bergen news website (2011)

More information

Midterm Feb. 17, 2009 Physics 110B Secret No.=

Midterm Feb. 17, 2009 Physics 110B Secret No.= Midterm Feb. 17, 29 Physics 11B Secret No.= PROBLEM (1) (4 points) The radient operator = x i ê i transforms like a vector. Use ɛ ijk to prove that if B( r) = A( r), then B( r) =. B i = x i x i = x j =

More information

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions PC11 Fundamentals of Physics I Lectures 7 and 8 Motion in Two Dimensions Dr Tay Sen Chuan 1 Ground Rules Switch off your handphone and paer Switch off your laptop computer and keep it No talkin while lecture

More information

Solutions to Test #2 (Kawai) MATH 2421

Solutions to Test #2 (Kawai) MATH 2421 Solutions to Test # (Kawai) MATH 4 (#) Each vector eld deicted below is a characterization of F (; ) hm; Ni : The directions of all eld vectors are correct, but the magnitudes are scaled for ease of grahing.

More information

Combined tidal and wind driven flows and residual currents

Combined tidal and wind driven flows and residual currents 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Combined tidal and wind driven flows and residual currents 1 Lars Erik Holmedal, Hong Wang Abstract : The effect of a residual current on the combined

More information

Planar Transformations and Displacements

Planar Transformations and Displacements Chater Planar Transformations and Dislacements Kinematics is concerned with the roerties of the motion of oints. These oints are on objects in the environment or on a robot maniulator. Two features that

More information

Fluid Mechanics II. Newton s second law applied to a control volume

Fluid Mechanics II. Newton s second law applied to a control volume Fluid Mechanics II Stead flow momentum equation Newton s second law applied to a control volume Fluids, either in a static or dnamic motion state, impose forces on immersed bodies and confining boundaries.

More information

Thermal wind and temperature perturbations

Thermal wind and temperature perturbations Thermal wind and temerature erturbations Robert Lindsay Korty Massachusetts Institute of Technology October 15, 2002 Following the work of Bretherton (1966), we showed in class that a boundary otential

More information

2.2 Differentiation and Integration of Vector-Valued Functions

2.2 Differentiation and Integration of Vector-Valued Functions .. DIFFERENTIATION AND INTEGRATION OF VECTOR-VALUED FUNCTIONS133. Differentiation and Interation of Vector-Valued Functions Simply put, we differentiate and interate vector functions by differentiatin

More information

Ocean surface circulation

Ocean surface circulation Ocean surface circulation Recall from Last Time The three drivers of atmospheric circulation we discussed: Differential heating Pressure gradients Earth s rotation (Coriolis) Last two show up as direct

More information

Micro I. Lesson 5 : Consumer Equilibrium

Micro I. Lesson 5 : Consumer Equilibrium Microecono mics I. Antonio Zabalza. Universit of Valencia 1 Micro I. Lesson 5 : Consumer Equilibrium 5.1 Otimal Choice If references are well behaved (smooth, conve, continuous and negativel sloed), then

More information

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER AFASES 2012 Brasov, May 2012

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER AFASES 2012 Brasov, May 2012 HENRI OANDA AIR FORE AADEMY ROMANIA INTERNATIONAL ONFERENE of SIENTIFI AER AFASES Brasov, 4-6 Ma ENERAL M.R. STEFANIK ARMED FORES AADEMY SLOAK REUBLI A MATHEMATIAL MODEL FOR OMUTIN THE TRAJETORIES OF ROKETS

More information

Energizing Math with Engineering Applications

Energizing Math with Engineering Applications Enerizin Math with Enineerin Applications Understandin the Math behind Launchin a Straw-Rocket throuh the use of Simulations. Activity created by Ira Rosenthal (rosenthi@palmbeachstate.edu) as part of

More information

Fluid Mechanics (ME 201) 1

Fluid Mechanics (ME 201) 1 Fluid Mechanics (ME 201) 1 9 Forces on Submered Bodies 9.1 Net Force on a Submered Plane Surfaces In this section, we will compute the forces actin on a plane surface. We consider a surface oriented at

More information

Geostrophy & Thermal wind

Geostrophy & Thermal wind Lecture 10 Geostrophy & Thermal wind 10.1 f and β planes These are planes that are tangent to the earth (taken to be spherical) at a point of interest. The z ais is perpendicular to the plane (anti-parallel

More information

The wind-driven models of Stommel and Munk employed a linearization involving a small parameter, the Rossby number, which we need to reconsider.

The wind-driven models of Stommel and Munk employed a linearization involving a small parameter, the Rossby number, which we need to reconsider. Equatorial twists to mid-latitude dnamics As we saw or Stommel s or Munk s wind-driven gres and or Sverdrup s balance, there was no particular problem with the equator. In act, Stommel solved his gre or

More information

Development Theory. Chapter 10

Development Theory. Chapter 10 Chapter 1 Development Theory Development Theory In this section I will discuss: - further aspects of the structure and dynamics of synoptic-scale disturbances, and - derive Sutcliffe's development theory,

More information

SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015)

SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015) SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015) Variation of Coriolis with latitude: β Vorticity Potential vorticity

More information

Cmpt 250 Unsigned Numbers January 11, 2008

Cmpt 250 Unsigned Numbers January 11, 2008 Cmt 25 Unsined Numbers Januar, 28 These notes serve two uroses in the contet of Cmt 25: as we develo the basic desin of an inteer ALU, we ll review the basics of number reresentation and combinational

More information

2.6 Primitive equations and vertical coordinates

2.6 Primitive equations and vertical coordinates Chater 2. The continuous equations 2.6 Primitive equations and vertical coordinates As Charney (1951) foresaw, most NWP modelers went back to using the rimitive equations, with the hydrostatic aroximation,

More information

Stable ion beam transport through periodic electrostatic structures: linear and non-linear effects

Stable ion beam transport through periodic electrostatic structures: linear and non-linear effects Available online at www.sciencedirect.com hsics rocedia rocedia 001 (008) (008) 000 000 87 97 www.elsevier.com/locate/rocedia www.elsevier.com/locate/ roceedings of the Seventh International Conference

More information

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K affan_414@live.com https://promotephysics.wordpress.com [MOTION IN TWO DIMENSIONS] CHAPTER NO. 4 In this chapter we are oin to discuss motion in projectile

More information

III. Flow Around Bends: Meander Evolution

III. Flow Around Bends: Meander Evolution III. Flow Around Bends: Meander Evolution 1. Introduction Hooke (1975) [aer available] first detailed data and measurements about what haens around meander bends how flow velocity and shear stress fields

More information

Fluid Physics 8.292J/12.330J

Fluid Physics 8.292J/12.330J Fluid Phsics 8.292J/12.0J Problem Set 4 Solutions 1. Consider the problem of a two-dimensional (infinitel long) airplane wing traeling in the negatie x direction at a speed c through an Euler fluid. In

More information

Synoptic Meteorology I. Some Thermodynamic Concepts

Synoptic Meteorology I. Some Thermodynamic Concepts Synotic Meteoroloy I Some hermodynamic Concets Geootential Heiht Geootential Heiht (h): the otential enery of a nit mass lifted from srface to. Φ d 0 -Since constant in the trooshere, we can write Φ Δ

More information

The broadest definition of a low-level jet (LLJ) is simply any lower-tropospheric maximum in the vertical profile of the horizontal winds.

The broadest definition of a low-level jet (LLJ) is simply any lower-tropospheric maximum in the vertical profile of the horizontal winds. 2.4.3. Low-level (especially nocturnal) Jet The broadest definition of a low-level jet (LLJ) is simply any lower-tropospheric maximum in the vertical profile of the horizontal winds. A LLJ can occur under

More information

Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI Dr. Katrin Meissner Week 5.

Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI Dr. Katrin Meissner Week 5. Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI 5004 Dr. Katrin Meissner k.meissner@unsw.e.au Week 5 Ocean Dynamics Transport of Volume, Heat & Salt Flux: Amount of heat, salt or volume

More information

Homework # 2. SOLUTION - We start writing Newton s second law for x and y components: F x = 0, (1) F y = mg (2) x (t) = 0 v x (t) = v 0x (3)

Homework # 2. SOLUTION - We start writing Newton s second law for x and y components: F x = 0, (1) F y = mg (2) x (t) = 0 v x (t) = v 0x (3) Physics 411 Homework # Due:..18 Mechanics I 1. A projectile is fired from the oriin of a coordinate system, in the x-y plane (x is the horizontal displacement; y, the vertical with initial velocity v =

More information

I. Ocean Layers and circulation types

I. Ocean Layers and circulation types OCEAN CIRCULATION I. Ocean Layers and circulation types 1) Ocean Layers Ocean is strongly Stratified Consists of distinct LAYERS controlled by density takes huge amounts of energy to mix up the stable

More information

I. Ocean Layers and circulation types

I. Ocean Layers and circulation types OCEAN Title CIRCULATION slide I. Ocean Layers and circulation types 1) Ocean Layers Ocean is strongly Stratified Consists of distinct LAYERS controlled by density takes huge amounts of energy to mix up

More information

Turbulent Mean Flow Effects: Inclusion of Rotation

Turbulent Mean Flow Effects: Inclusion of Rotation Turbulent Mean Flow Effects: Inclusion of Rotation Ocean Edd L U H Horizontal Equation of Motion Du 1 1 f u h p Dt z where D u u u ' w' kz Dt t z Added horizontal Friction (eddies) u u 1 v u u p u u u

More information

Experiment 3 The Simple Pendulum

Experiment 3 The Simple Pendulum PHY191 Fall003 Experiment 3: The Simple Pendulum 10/7/004 Pae 1 Suested Readin for this lab Experiment 3 The Simple Pendulum Read Taylor chapter 5. (You can skip section 5.6.IV if you aren't comfortable

More information

Accelerator School Transverse Beam Dynamics-2. V. S. Pandit

Accelerator School Transverse Beam Dynamics-2. V. S. Pandit Accelerator School 8 Transverse Beam Dnamics- V. S. Pandit Equation of Motion Reference orbit is a single laner curve. Diole is used for bending and quadruole for focusing We use coordinates (r, θ, ) Diole

More information

5 Shallow water Q-G theory.

5 Shallow water Q-G theory. 5 Shallow water Q-G theory. So far we have discussed the fact that lare scale motions in the extra-tropical atmosphere are close to eostrophic balance i.e. the Rossby number is small. We have examined

More information

= ( 2) = p 5.

= ( 2) = p 5. MATH 0 Exam (Version ) Solutions Setember, 00 S. F. Ellermeyer Name Instructions. Your work on this exam will be raded accordin to two criteria: mathematical correctness clarity of resentation. In other

More information

Ocean dynamics: the wind-driven circulation

Ocean dynamics: the wind-driven circulation Ocean dynamics: the wind-driven circulation Weston Anderson March 13, 2017 Contents 1 Introduction 1 2 The wind driven circulation (Ekman Transport) 3 3 Sverdrup flow 5 4 Western boundary currents (western

More information

1. THE MOMENTUM EQUATIONS FOR SYNOPTIC-SCALE FLOW IN THE ROTATING COORDINATE SYSTEM

1. THE MOMENTUM EQUATIONS FOR SYNOPTIC-SCALE FLOW IN THE ROTATING COORDINATE SYSTEM NOTES FO THE THEOY OF WKD 35. THE MOMENTUM EQUATIONS FO SYNOPTIC-SCALE FLOW IN THE OTATING COODINATE SYSTEM Scalin o the momentm eqations or snotic scale circlation (>000km dimension) reslted in the elimination

More information

Exam 2A Solution. 1. A baseball is thrown vertically upward and feels no air resistance. As it is rising

Exam 2A Solution. 1. A baseball is thrown vertically upward and feels no air resistance. As it is rising Exam 2A Solution 1. A baseball is thrown vertically upward and feels no air resistance. As it is risin Solution: Possible answers: A) both its momentum and its mechanical enery are conserved - incorrect.

More information

1. The figure shows sea surface height (SSH) anomaly at 24 S (southern hemisphere), from a satellite altimeter.

1. The figure shows sea surface height (SSH) anomaly at 24 S (southern hemisphere), from a satellite altimeter. SIO 210 Problem Set 3 November 16, 2015 1. The figure shows sea surface height (SSH) anomaly at 24 S (southern hemisphere), from a satellite altimeter. (a) What is the name of this type of data display?_hovmöller

More information

r cosθ θ -gsinθ -gcosθ Rotation 101 (some basics)

r cosθ θ -gsinθ -gcosθ Rotation 101 (some basics) Rotation 101 (some basics) Most students starting off in oceanography, even if they have had some fluid mechanics, are not familiar with viewing fluids in a rotating reference frame. This is essential

More information

(a) 1m s -2 (b) 2 m s -2 (c) zero (d) -1 m s -2

(a) 1m s -2 (b) 2 m s -2 (c) zero (d) -1 m s -2 11 th Physics - Unit 2 Kinematics Solutions for the Textbook Problems One Marks 1. Which one of the followin Cartesian coordinate system is not followed in physics? 5. If a particle has neative velocity

More information

Angular motion in two-component systems Notes on Quantum Mechanics

Angular motion in two-component systems Notes on Quantum Mechanics Angular motion in two-comonent sstems Notes on Quantum Mechanics htt://quantum.bu.edu/notes/quantummechanics/angularmotionintwocomonentsstems.df Last udated Thursda, December, 5 :7:9-5: Coright 5 Dan Dill

More information

Conservation of absolute vorticity. MET 171A: Barotropic Midlatitude Waves. Draw a picture of planetary vorticity

Conservation of absolute vorticity. MET 171A: Barotropic Midlatitude Waves. Draw a picture of planetary vorticity Conservation of absolute vorticity : Barotropic Midlatitude Waves Recall the important terms in the vorticity equation in the middle troposphere, near the level of non-diverence Lecture Outline 1. Conservation

More information

Homework 2: Solutions GFD I Winter 2007

Homework 2: Solutions GFD I Winter 2007 Homework : Solutions GFD I Winter 007 1.a. Part One The goal is to find the height that the free surface at the edge of a spinning beaker rises from its resting position. The first step of this process

More information

Chapter 2. Turbulence and the Planetary Boundary Layer

Chapter 2. Turbulence and the Planetary Boundary Layer Chapter 2. Turbulence and the Planetary Boundary Layer In the chapter we will first have a qualitative overview of the PBL then learn the concept of Reynolds averain and derive the Reynolds averaed equations.

More information

The dynamics of high and low pressure systems

The dynamics of high and low pressure systems The dynamics of high and low pressure systems Newton s second law for a parcel of air in an inertial coordinate system (a coordinate system in which the coordinate axes do not change direction and are

More information

A Solution for the Dark Matter Mystery based on Euclidean Relativity

A Solution for the Dark Matter Mystery based on Euclidean Relativity Long Beach 2010 PROCEEDINGS of the NPA 1 A Solution for the Dark Matter Mystery based on Euclidean Relativity Frédéric Lassiaille Arcades, Mougins 06250, FRANCE e-mail: lumimi2003@hotmail.com The study

More information

Day 3. Fluid Statics. - pressure - forces

Day 3. Fluid Statics. - pressure - forces Day 3 Fluid Statics - ressure - forces we define fluid article: small body of fluid with finite mass but negligible dimension (note: continuum mechanics must aly, so not too small) we consider a fluid

More information

The. Consortium. Continuum Mechanics. Original notes by Professor Mike Gunn, South Bank University, London, UK Produced by the CRISP Consortium Ltd

The. Consortium. Continuum Mechanics. Original notes by Professor Mike Gunn, South Bank University, London, UK Produced by the CRISP Consortium Ltd The C R I S P Consortium Continuum Mechanics Original notes b Professor Mike Gunn, South Bank Universit, London, UK Produced b the CRISP Consortium Ltd THOR OF STRSSS In a three dimensional loaded bod,

More information

Atmosphere, Ocean and Climate Dynamics Fall 2008

Atmosphere, Ocean and Climate Dynamics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 12.003 Atmosphere, Ocean and Climate Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Problem

More information

Note that Rossby waves are tranverse waves, that is the particles move perpendicular to the direction of propagation. f up, down (clockwise)

Note that Rossby waves are tranverse waves, that is the particles move perpendicular to the direction of propagation. f up, down (clockwise) Ocean 423 Rossby waves 1 Rossby waves: Restoring force is the north-south gradient of background potential vorticity (f/h). That gradient can be due to either the variation in f with latitude, or to a

More information

Directed Reading. Section: Ocean Currents. a(n). FACTORS THAT AFFECT SURFACE CURRENTS

Directed Reading. Section: Ocean Currents. a(n). FACTORS THAT AFFECT SURFACE CURRENTS Skills Worksheet Directed Reading Section: Ocean Currents 1 A horizontal movement of water in a well-defined pattern is called a(n) 2 What are two ways that oceanographers identify ocean currents? 3 What

More information

Mechanics Cycle 3 Chapter 12++ Chapter 12++ Revisit Circular Motion

Mechanics Cycle 3 Chapter 12++ Chapter 12++ Revisit Circular Motion Chapter 12++ Revisit Circular Motion Revisit: Anular variables Second laws for radial and tanential acceleration Circular motion CM 2 nd aw with F net To-Do: Vertical circular motion in ravity Complete

More information

+ ω = 0, (1) (b) In geometric height coordinates in the rotating frame of the Earth, momentum balance for an inviscid fluid is given by

+ ω = 0, (1) (b) In geometric height coordinates in the rotating frame of the Earth, momentum balance for an inviscid fluid is given by Problem Sheet 1: Due Thurs 3rd Feb 1. Primitive equations in different coordinate systems (a) Using Lagrangian considerations and starting from an infinitesimal mass element in cartesian coordinates (x,y,z)

More information

Course , General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 8: Lorenz Energy Cycle

Course , General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 8: Lorenz Energy Cycle Course.8, General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 8: Lorenz Enery Cycle Enery Forms: As we saw in our discussion of the heat budet, the enery content of the atmosphere per

More information

Physics 111 P 2 A = P 1. A + mg = P 1. A + ρ( AΔh)g. Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468.

Physics 111 P 2 A = P 1. A + mg = P 1. A + ρ( AΔh)g. Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468. ics Announcements day, ember 11, 011 C5: Fluids Pascal s Principle Archimede s Principle Fluid Flows Continuity Equation Bernoulli s Equation Toricelli s Theorem Wednesday, 8-9 pm in NSC 118/119 Sunday,

More information

Ch 14: Feedback Control systems

Ch 14: Feedback Control systems Ch 4: Feedback Control systems Part IV A is concerned with sinle loop control The followin topics are covered in chapter 4: The concept of feedback control Block diaram development Classical feedback controllers

More information

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions.

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions. Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

0.1 Practical Guide - Surface Integrals. C (0,0,c) A (0,b,0) A (a,0,0)

0.1 Practical Guide - Surface Integrals. C (0,0,c) A (0,b,0) A (a,0,0) . Practical Guide - urface Integrals urface integral,means to integrate over a surface. We begin with the stud of surfaces. The easiest wa is to give as man familiar eamles as ossible ) a lane surface

More information

f ax ; a 0 is a periodic function b is a periodic function of x of p b. f which is assumed to have the period 2 π, where

f ax ; a 0 is a periodic function b is a periodic function of x of p b. f which is assumed to have the period 2 π, where (a) (b) If () Year - Tutorial: Toic: Fourier series Time: Two hours π π n Find the fundamental eriod of (i) cos (ii) cos k k f a ; a is a eriodic function b is a eriodic function of of b. f is a eriodic

More information

v( t) g 2 v 0 sin θ ( ) ( ) g t ( ) = 0

v( t) g 2 v 0 sin θ ( ) ( ) g t ( ) = 0 PROJECTILE MOTION Velocity We seek to explore the velocity of the projectile, includin its final value as it hits the round, or a taret above the round. The anle made by the velocity vector with the local

More information

Lecture 28: A laboratory model of wind-driven ocean circulation

Lecture 28: A laboratory model of wind-driven ocean circulation Lecture 28: A laboratory model of wind-driven ocean circulation November 16, 2003 1 GFD Lab XIII: Wind-driven ocean gyres It is relatively straightforward to demonstrate the essential mechanism behind

More information

Notes on pressure coordinates Robert Lindsay Korty October 1, 2002

Notes on pressure coordinates Robert Lindsay Korty October 1, 2002 Notes on ressure coordinates Robert Lindsay Korty October 1, 2002 Obviously, it makes no difference whether the quasi-geostrohic equations are hrased in height coordinates (where x, y,, t are the indeendent

More information

1.1 The Equations of Motion

1.1 The Equations of Motion 1.1 The Equations of Motion In Book I, balance of forces and moments acting on an component was enforced in order to ensure that the component was in equilibrium. Here, allowance is made for stresses which

More information

MET 4302 Midterm Study Guide 19FEB18

MET 4302 Midterm Study Guide 19FEB18 The exam will be 4% short answer and the remainder (6%) longer (1- aragrahs) answer roblems and mathematical derivations. The second section will consists of 6 questions worth 15 oints each. Answer 4.

More information

Physics 11 Fall 2012 Practice Problems 2 - Solutions

Physics 11 Fall 2012 Practice Problems 2 - Solutions Physics 11 Fall 01 Practice Problems - s 1. True or false (inore any effects due to air resistance): (a) When a projectile is fired horizontally, it takes the same amount of time to reach the round as

More information

Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius cm and height cm.

Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius cm and height cm. Coordinator: W. Al-Basheer Sunday, June 28, 2015 Page: 1 Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius 10.00 cm and height 30.48 cm. A) 25.85

More information

INFLUENCE OF TUBE BUNDLE GEOMETRY ON HEAT TRANSFER TO FOAM FLOW

INFLUENCE OF TUBE BUNDLE GEOMETRY ON HEAT TRANSFER TO FOAM FLOW HEFAT7 5 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics Sun City, South Africa Paper number: GJ1 INFLUENCE OF TUBE BUNDLE GEOMETRY ON HEAT TRANSFER TO FOAM FLOW Gylys

More information

Chapter 6. Thermodynamics and the Equations of Motion

Chapter 6. Thermodynamics and the Equations of Motion Chater 6 hermodynamics and the Equations of Motion 6.1 he first law of thermodynamics for a fluid and the equation of state. We noted in chater 4 that the full formulation of the equations of motion required

More information

Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI Dr. Katrin Meissner Ocean Dynamics.

Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI Dr. Katrin Meissner Ocean Dynamics. Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI 5004 Dr. Katrin Meissner k.meissner@unsw.e.au Ocean Dynamics The Equations of Motion d u dt = 1 ρ Σ F dt = 1 ρ ΣF x dt = 1 ρ ΣF y dw dt =

More information

Fluid Mechanics for International Engineers HW #4: Conservation of Linear Momentum and Conservation of Energy

Fluid Mechanics for International Engineers HW #4: Conservation of Linear Momentum and Conservation of Energy 2141-365 Fluid Mechanics for International Engineers 1 Problem 1 RTT and Time Rate of Change of Linear Momentum and The Corresponding Eternal Force Notation: Here a material volume (MV) is referred to

More information

An-Najah National University Civil Engineering Departemnt. Fluid Mechanics. Chapter [2] Fluid Statics

An-Najah National University Civil Engineering Departemnt. Fluid Mechanics. Chapter [2] Fluid Statics An-Najah National University Civil Engineering Deartemnt Fluid Mechanics Chater [2] Fluid Statics 1 Fluid Statics Problems Fluid statics refers to the study of fluids at rest or moving in such a manner

More information

the equations for the motion of the particle are written as

the equations for the motion of the particle are written as Dynamics 4600:203 Homework 02 Due: ebruary 01, 2008 Name: Please denote your answers clearly, ie, box in, star, etc, and write neatly There are no points for small, messy, unreadable work please use lots

More information

4.3. Solving Friction Problems. Static Friction Problems. Tutorial 1 Static Friction Acting on Several Objects. Sample Problem 1.

4.3. Solving Friction Problems. Static Friction Problems. Tutorial 1 Static Friction Acting on Several Objects. Sample Problem 1. Solvin Friction Problems Sometimes friction is desirable and we want to increase the coefficient of friction to help keep objects at rest. For example, a runnin shoe is typically desined to have a lare

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2009

AAPT UNITED STATES PHYSICS TEAM AIP 2009 2009 F = ma Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 2009 2009 F = ma Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTI YOU ARE TOD TO BEGIN Use = 10 N/k throuhout this contest.

More information

Electronic properties of Graphene and 2-D materials. Part 2

Electronic properties of Graphene and 2-D materials. Part 2 Electronic roerties of Grahene and -D materials z Part y The laws of Quantum Mechanics continued Time indeendent Schroedinger equation Eamles Particle in a well Harmonic oscillator Quantum Tunneling The

More information

Inertial Instability. 1. Perspective from the Horizontal Equations of Motion (Momentum Equations) x component. y component

Inertial Instability. 1. Perspective from the Horizontal Equations of Motion (Momentum Equations) x component. y component Inertial Instability The following is not meant to be a self-contained tutorial. It is meant to accompany active discussion and demonstration in the classroom. 1. Perspective from the Horizontal Equations

More information

Rational Expressions. Definition: P, is an algebraic expression that can be written as the quotient of two polynomials, P. A rational expression, Q

Rational Expressions. Definition: P, is an algebraic expression that can be written as the quotient of two polynomials, P. A rational expression, Q Rational Eressions What is a Rational Eression? A rational eression is siml a fraction so conseuentl the are sometimes called algebraic fractions To be more secific, a rational eression is an algebraic

More information

CHAPTER 16. Basic Concepts. Basic Concepts. The Equilibrium Constant. Reaction Quotient & Equilibrium Constant. Chemical Equilibrium

CHAPTER 16. Basic Concepts. Basic Concepts. The Equilibrium Constant. Reaction Quotient & Equilibrium Constant. Chemical Equilibrium Proerties of an Equilibrium System CHAPTER 6 Chemial Equilibrium Equilibrium systems are DYNAMIC (in onstant motion) REVERSIBLE an be aroahed from either diretion Pink to blue Co(H O) 6 Cl ---> > Co(H

More information

Simplifications to Conservation Equations

Simplifications to Conservation Equations Chater 5 Simlifications to Conservation Equations 5.1 Steady Flow If fluid roerties at a oint in a field do not change with time, then they are a function of sace only. They are reresented by: ϕ = ϕq 1,

More information

Satellite Aerodynamics and Determination of Thermospheric Density and Wind

Satellite Aerodynamics and Determination of Thermospheric Density and Wind Satellite Aerodnamics and etermination of Thermosheric ensit and Wind Georg Koenwallner HTG Hersonic Technolog Goettingen Ma Planck Strasse 9 79Katlenburg Lindau, German Abstract. At resent several satellites

More information

Dynamics II: rotation L. Talley SIO 210 Fall, 2011

Dynamics II: rotation L. Talley SIO 210 Fall, 2011 Dynamics II: rotation L. Talley SIO 210 Fall, 2011 DATES: Oct. 24: second problem due Oct. 24: short info about your project topic Oct. 31: mid-term Nov. 14: project due Rotation definitions Centrifugal

More information

16. CHARACTERISTICS OF SHOCK-WAVE UNDER LORENTZ FORCE AND ENERGY EXCHANGE

16. CHARACTERISTICS OF SHOCK-WAVE UNDER LORENTZ FORCE AND ENERGY EXCHANGE 16. CHARACTERISTICS OF SHOCK-WAVE UNDER LORENTZ FORCE AND ENERGY EXCHANGE H. Yamasaki, M. Abe and Y. Okuno Graduate School at Nagatsuta, Tokyo Institute of Technology 459, Nagatsuta, Midori-ku, Yokohama,

More information