Statistical Approaches to Combining Models and Observations

Size: px
Start display at page:

Download "Statistical Approaches to Combining Models and Observations"

Transcription

1 Statistical Approaches to Combining Models and Observations Outline Mark Berliner Department of Statistics The Ohio State University SIAM UQ12, April 5, 2012 I. Bayesian Hierarchical Modeling II. Examples: Glacial dynamics; Paleoclimate III. Using Large-scale Models IV. Example: Ocean Forecasting

2 I. Bayesian Hierarchical Modeling (BHM) Bayesian Analysis: (1) UQ via prob. modeling; (2) update via Bayes Theorem; (3) infer, predict & make decisions via prob. ( risk ) analysis Hier. Model: Sequence of conditional probability distributions (corresponding to a joint distribution) Framework for modeling: Observations Y Processes (State Variables) X Parameters θ 1. Data Model [Y X, θ] 2. Prior Process Model [X θ] 3. Prior Parameter Model [ θ ] Bayes Theorem: [X, θ Y]

3 Strategies 1. Incorporating physical models Physical-statistical modeling (Berliner 2003 JGR) From F=ma to process model [ X θ ] 2. Qualitative use of theory (e.g., Pacific SST model (Berliner et al J. Climate) ****************************************************** 3. Incorporating large-scale computer model output 4. Combinations 5. Alternate Approaches

4 Ex) Glacial Dynamics (Berliner et al J. Glaciol) Steady Flow of Glaciers and Ice Sheets Flow: gravity moderated by drag (base & sides) & stuff Simple models: flow from geometry Data Program for Arctic Climate Regional Assessments Radarsat Antarctic Mapping Project surface topography (laser altimetry) basal topography (radar altimetry) velocity data (interferometry)

5 North East Ice Stream, Greenland

6 Physical Modeling: Surface: s, Thickness: H, Velocity: u Basal Stress: τ = ρ g H ds/dx (+ stuff ) Velocities: u = u b + b 0 H τ n where u b = k τ p + (ρgh) q Our Model Random Basal Stress: τ = ρ g H ds/dx + η where η is a corrector process ( model error ) Random H: wavelet smoothing prior Random s: parameterized model from literature Random Velocities: u = u b + b H τ n + e where u b = kτ p + (ρgh) q or a constant (change-point) b is unknown parameter, e is a noise process Process Model : [u s, H, η] [η] [s, H]

7

8

9

10 Ex) Paleoclimate: Temperature Reconstruction (Brynjarsdóttir & Berliner 2010 Ann. Applied Stat) Use of proxies: Inverse problem: proxy f(climate) climate g(proxy) Inverse probability problem: [proxy data climate] [climate proxy data] Boreholes: earth stores info about surface temp s Inverse: borehole data f(surface temp s) Model: Heat equation Infer boundary condition

11 Relative temperature [ºC] San Rafael Desert San Rafael Swell Depth [m] ºC SRD 3 SRD 2 SRD 7 SRD SRD SRS SRS 4 SRS 5 WSR 1

12 Page 1 of 1 Page 1 of 1

13 Data Model : Y T r, q N( T r + T q R(k), σ 2 y I) T r : reduced temperatures (literature: T r = T T 0 1 q R(k)) T 0 : reference surface temperature q: surface heat flow R: thermal resistances ( k 1, thermal conductivities, adjusted for rock types, etc.) Process Model : Heat equation applied to T r B.C.: Surface temp history T h (assumed piecewise constant) Easy to solve the heat equation T r T h, q N(A T h, σ 2 I) Parameter Model : next T h q N( 0, σ 2 h I)

14 Spatial Hierarchy Nine boreholes: 5 in desert region, 4 in swell region Extend the hierarchy: for j = 1,..., 9 Data Model : Yj T rj, q j N( T rj + T 0j 1 + q j Rj (k j ), σ 2 yj I) Process Model : T rj T hj, q j N(A j Thj, σ 2 j I) Parameter Model T hj q j N( 0, σ 2 hj I) T h1,..., T h5 conditionally independent N( µ d, γ 2 d I) T h6,..., T h9 conditionally independent N( µ s, γ 2 s I) µ d & µ s N( µ 0, γ 2 0 I) q 1,..., q 5 conditionally independent N(ν d, η 2 d) q 6,..., q 9 conditionally independent N(ν s, η 2 s) etc.

15 SRD 1, SR Desert SRD 2, SR Desert SRD 3, SR Desert SRD 4, SR Desert SRD 7, SR Desert SRS 3, SR Swell SRS 4, SR Swell SRS 5, SR Swell WSR 1, SR Swell

16 µ S µ D

17 SRD 1, SR Desert SRD 2, SR Desert SRD 3, SR Desert SRD 4, SR Desert SRD 7, SR Desert SRS 3, SR Swell SRS 4, SR Swell SRS 5, SR Swell WSR 1, SR Swell Multi site Single site

18 SRD 2, SR Desert SRS 5, SR Swell Multi site Single site Multi site Single site

19 III. Incorporating Large-Scale Computer Models Ensembles O = O 1 = M(T 1 ),..., O n = M(T n ) (T s include controls, model names, etc.) Data Model Treat O as observations [Y, O X, θ] (include bias, offset, model error.. ) Convenient for design of collection of Y, O Process Model Use O to develop [X θ] Kernel density estimate Σ i α i k(x O i ) Gaussian process models; emulators; UQ Model Output: O = (O 1 = M(T 1 ),..., O n = M(T n )) [O θ, O] [X θ] Parameter Model from model output (eg: Berliner, Levine, & Shea 2003 J. Climate) Combinations

20 A Bayesian Multi-model Climate Projection (Berliner & Kim 2008 J. Climate) Themes climate = parameters of prob. dist. of weather build or parameterize scales into dynamic model for X Future climate depends on future, but unknown, inputs. IPCC: construct plausible future inputs, SRES Scenarios (CO 2 etc.) Assume a scenario and find corresponding projection

21 Hemispheric Monthly Surface Temperatures (X) Observations (Y) for Two models ( O): PCM (n=4), CCSM (n=1) for SRES scenarios (B1,A1B,A2).

22 Hierarchical Data Model for Model Output Scalar climate variable X; m = 1,..., M models (time fixed) O m : ensemble of size n m of estimates of X from model m. 1. Given means µ m and variances σ 2 Y m, m = 1,..., M; O m are independent and O m µ m Gau(µ m 1 nm, σ 2 Y m I nm ) 2. Given β, model biases b m and variances σ 2 µ m ; µ m are independent and 3. Given X, µ m β, b m Gau(β + b m, σ 2 µ m ) β X Gau(X, σ 2 β ) and b m X Gau(b 0m, σ 2 b m )

23 Remarks Implied marginal dist.: O given X : Integrating out β induces dependence within & across ensembles Modify intuition about value of increasing ensemble size: Infinite ensembles do not give perfect forecasts: If all biases = 0, infinite ensembles give the value of β, not X Extensions to different model classes (more β s) and richer models are feasible.

24 Model Overview 1. [Y X, θ]: measurement error model Gaussian with mean = true temp. & unknown variance (with a change-point) 2. [X θ]: Time series models with time varying parameters X t = µ i(t) + ηn j(t) 0 0 η s j(t) (X t 1 µ i(t 1) ) + e t 3. [θ] Climate = parameters of distribution of weather Climate-weather: multiscale phenomena Time evolution: µ i(t) slow; η j(t) moderate; e t fast, but variances of e t are slow µ i = A + B CO 2i + noise Obs period: η j = C + D SOI j + noise Fore. period: AR model (i.e., SOI not observed) Variances of e t : AR-like prior

25 mean year annual temperature year

26 mean year annual temperature year

27 system variance year

28 Model Adapted to Decadal Forecasting (Kim & Berliner 2012) 16 Temperature(Celcius) Temperature(Celcius)

29 IV. Combining Approaches: Mediterranean Ocean Forecasting 1. Winds as a boundary condition for the ocean surface (Milliff et al. & Bonazzi et al Quart. J. Roy. Met. Soc.) 2. Bayesian Multi-model Ensembling for Ocean Forecasting (Berliner et al. 2012) Observations BHM Winds BHM Oceans Initial Boundary conditions Model 1 Model 2 BHM Ocean Post. Dist.

30 Bayesian Hierarchical Models to Augment ( MFS ) The Mediterranean Forecast System Nadia Pinardi Alessandro Bonazzi, Srdjan Dobricic INGV (I'Istituto Nazionale di Geofisica e Vulcanologia) ( Director Univ. Bologna (MFS INGV, Univ. Bologna Ralph Milliff CoRA Chris Wikle Univ. Missouri Mark Berliner Ohio State Univ.

31 Overview: MFS: deterministic operational forecasting system Boundary condition/forcing: Surface Winds Bayesian Hierarchical Model (BHM) to quantify Surface Vector Wind (SVW) distributions Ocean Ensemble Forecasting (OEF) using 10 member BHM-SVW ensembles Key: Exploit abundant, good satellite wind data combined with physical modeling

32 Building wind dist. (BHM-SVW) 1. Data Stage: Satellite (QSCAT) and Numerical Weather Pred. Analyses (ECMWF) QSCAT ECMWF

33 2. Process Model: Rayleigh Friction Model (Linear Planetary Boundary Layer Equations) Theory (neglect second order time derivative) discretize: Our model

34 BHM Ensemble Winds 10 members selected from the Posterior Distribution (blue) 10 m/s Ensemble mean wind (green); ECMWF Analysis wind (red)

35 BHM-SVW-OEF initial condition spread: Sea Surface Temperature Initial condition spread Sea Surface Height Initial condition spread Uncertainty is concentrated at mesoscales

36 BHM-SVW-OEF 10 day forecast spread Initial condition spread Sea Surface Height 10-th fcst day spread Initial condition ensemble spread has amplified at the 10 day fcst in mesoscales

37 The forecast spread at 10 days EEPS forced ensemble BHM-SVW ensemble ECMWF EPS forcing Ineffective at producing flow field changes at mesoscales

38 Discussion: BHM methods produce realistic distributions of surface winds (SVW) (Milliff et al J Roy Met Soc) BHM-SVW results used to in a new ocean ensemble forecasting method: BHM-SVW-OEF (Bonazzi et al 2011 J Roy Met Soc) The BHM-SVW-OEF produces 10-dayforecast spreads at mesoscales and in the upper thermocline

39 2. Bayesian Multi-model Ensembling for Ocean Forecasting (Berliner et al. 2012) profiles of wintertime (60 days) of temperature T(z,t) (& salinity) (Rhodes Gyre region in Eastern Mediterranean Sea) 16 vertical levels z = 0 m to z = 300 m BHM Winds produce ensembles from two models: 1) Ocean PArallelise (OPA) 2) Nucleus for European Modeling of the Ocean (NEMO) Model as in climate example: model-specific biases Prior: Analyzed fields

40

41

42

Hierarchical Bayesian Modeling and Analysis: Why and How

Hierarchical Bayesian Modeling and Analysis: Why and How Hierarchical Bayesian Modeling and Analysis: Why and How Mark Berliner Department of Statistics The Ohio State University IMA June 10, 2011 Outline I. Bayesian Hierarchical Modeling II. Examples: Glacial

More information

Bayesian Approaches to the Analysis of Computer Model Output

Bayesian Approaches to the Analysis of Computer Model Output Bayesian Approaches to the Analysis of Computer Model Output STATMOS Online Seminar Series May 20, 2014 Mark Berliner Department of Statistics Ohio State University mb@stat.osu.edu Collaborators: Radu

More information

Bayesian Hierarchical Models to Augment the Mediterranean Forecast System

Bayesian Hierarchical Models to Augment the Mediterranean Forecast System DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Bayesian Hierarchical Models to Augment the Mediterranean Forecast System Christopher K. Wikle Department

More information

The Mediterranean Operational Oceanography Network (MOON): Products and Services

The Mediterranean Operational Oceanography Network (MOON): Products and Services The Mediterranean Operational Oceanography Network (MOON): Products and Services The MOON consortia And Nadia Pinardi Co-chair of MOON Istituto Nazionale di Geofisica e Vulcanologia Department of Environmental

More information

Ocean ensemble forecasting. Part II: Mediterranean Forecast System response

Ocean ensemble forecasting. Part II: Mediterranean Forecast System response Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 137: 879 893, April 2011 B Ocean ensemble forecasting. Part II: Mediterranean Forecast System response Nadia Pinardi, a Alessandro

More information

Decay of the Greenland Ice Sheet due to surface-meltwater-induced acceleration of basal sliding

Decay of the Greenland Ice Sheet due to surface-meltwater-induced acceleration of basal sliding Decay of the Greenland Ice Sheet due to surface-meltwater-induced acceleration of basal sliding arxiv:0905.07v [physics.geo-ph] May 009 Ralf Greve Shin Sugiyama Institute of Low Temperature Science, Hokkaido

More information

Lecture 14 Bayesian Models for Spatio-Temporal Data

Lecture 14 Bayesian Models for Spatio-Temporal Data Lecture 14 Bayesian Models for Spatio-Temporal Data Dennis Sun Stats 253 August 13, 2014 Outline of Lecture 1 Recap of Bayesian Models 2 Empirical Bayes 3 Case 1: Long-Lead Forecasting of Sea Surface Temperatures

More information

Title. Author(s)Greve, Ralf. Issue Date Doc URL. Type. Note. File Information.

Title. Author(s)Greve, Ralf. Issue Date Doc URL. Type. Note. File Information. Title Increased future sea level rise due to rapid decay o Author(s)Greve, Ralf CitationProceedings of the First International Symposium on Issue Date 008--04 Doc URL http://hdl.handle.net/5/4868 Type

More information

Bayesian Hierarchical Model Characterization of Model Error in Ocean Data Assimilation and Forecasts

Bayesian Hierarchical Model Characterization of Model Error in Ocean Data Assimilation and Forecasts DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Bayesian Hierarchical Model Characterization of Model Error in Ocean Data Assimilation and Forecasts Christopher

More information

Update on Climate Science. Professor Richard Betts, Met Office

Update on Climate Science. Professor Richard Betts, Met Office Update on Climate Science Professor Richard Betts, Met Office The science of climate change Crown copyright Met Office Prof Richard Betts Head of Climate Impacts Research Crown copyright Met Office Observing

More information

Advancing decadal-scale climate prediction in the North Atlantic Sector Noel Keenlyside

Advancing decadal-scale climate prediction in the North Atlantic Sector Noel Keenlyside Advancing decadal-scale climate prediction in the North Atlantic Sector Noel Keenlyside M. Latif, J. Jungclaus, L. Kornblueh, E. Roeckner, V. Semenov & W. Park IPCC, 2007 How warm will be the next decade?

More information

T2.2: Development of assimilation techniques for improved use of surface observations

T2.2: Development of assimilation techniques for improved use of surface observations WP2 T2.2: Development of assimilation techniques for improved use of surface observations Matt Martin, Rob King, Dan Lea, James While, Charles-Emmanuel Testut November 2014, ECMWF, Reading, UK. Contents

More information

Models for models. Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research

Models for models. Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Models for models Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Outline Statistical models and tools Spatial fields (Wavelets) Climate regimes (Regression and clustering)

More information

Modeled and observed fast flow in the Greenland ice sheet

Modeled and observed fast flow in the Greenland ice sheet Modeled and observed fast flow in the Greenland ice sheet Ed Bueler 1 Constantine Khroulev 1 Andy Aschwanden 2 Ian Joughin 3 1 Dept of Mathematics and Statistics, University of Alaska Fairbanks 2 Arctic

More information

Ensembles, Uncertainty and Climate Projections. Chris Brierley (Room 117)

Ensembles, Uncertainty and Climate Projections. Chris Brierley (Room 117) Ensembles, Uncertainty and Climate Projections Chris Brierley (Room 117) Definitions Ensemble: group of model simulations Uncertainty: doubt and ambiguity about future conditions Climate Projection: modeled

More information

Climate Change 2007: The Physical Science Basis

Climate Change 2007: The Physical Science Basis Climate Change 2007: The Physical Science Basis Working Group I Contribution to the IPCC Fourth Assessment Report Presented by R.K. Pachauri, IPCC Chair and Bubu Jallow, WG 1 Vice Chair Nairobi, 6 February

More information

Trends in Climate Teleconnections and Effects on the Midwest

Trends in Climate Teleconnections and Effects on the Midwest Trends in Climate Teleconnections and Effects on the Midwest Don Wuebbles Zachary Zobel Department of Atmospheric Sciences University of Illinois, Urbana November 11, 2015 Date Name of Meeting 1 Arctic

More information

Imperfect Data in an Uncertain World

Imperfect Data in an Uncertain World Imperfect Data in an Uncertain World James B. Elsner Department of Geography, Florida State University Tallahassee, Florida Corresponding author address: Dept. of Geography, Florida State University Tallahassee,

More information

Bruno Sansó. Department of Applied Mathematics and Statistics University of California Santa Cruz bruno

Bruno Sansó. Department of Applied Mathematics and Statistics University of California Santa Cruz   bruno Bruno Sansó Department of Applied Mathematics and Statistics University of California Santa Cruz http://www.ams.ucsc.edu/ bruno Climate Models Climate Models use the equations of motion to simulate changes

More information

Dynamical Paleoclimatology

Dynamical Paleoclimatology Dynamical Paleoclimatology Generalized Theory of Global Climate Change Barry Saltzman Department of Geology and Geophysics Yale University New Haven, Connecticut ACADEMIC PRESS A Harcourt Science and Technology

More information

R. Hallberg, A. Adcroft, J. P. Dunne, J. P. Krasting and R. J. Stouffer NOAA/GFDL & Princeton University

R. Hallberg, A. Adcroft, J. P. Dunne, J. P. Krasting and R. J. Stouffer NOAA/GFDL & Princeton University Sensitivity of 21st Century Steric Sea Level Rise to Ocean Model Formulation R. Hallberg, A. Adcroft, J. P. Dunne, J. P. Krasting and R. J. Stouffer NOAA/GFDL & Princeton University Hallberg, R., A. Adcroft,

More information

The oceans: Sea level rise & gulf stream

The oceans: Sea level rise & gulf stream Lecture Climate Change Lesson 10 The oceans: Sea level rise & gulf stream Rene Orth rene.orth@bgc-jena.mpg.de 1 Course webpage https://www.bgc-jena.mpg.de/bgi/index.php/lectures/hydrobioclimclimatechange

More information

Rapid Climate Change: Heinrich/Bolling- Allerod Events and the Thermohaline Circulation. By: Andy Lesage April 13, 2010 Atmos.

Rapid Climate Change: Heinrich/Bolling- Allerod Events and the Thermohaline Circulation. By: Andy Lesage April 13, 2010 Atmos. Rapid Climate Change: Heinrich/Bolling- Allerod Events and the Thermohaline Circulation By: Andy Lesage April 13, 2010 Atmos. 6030 Outline Background Heinrich Event I/Bolling-Allerod Transition (Liu et

More information

Climate Projections and Energy Security

Climate Projections and Energy Security NOAA Research Earth System Research Laboratory Physical Sciences Division Climate Projections and Energy Security Andy Hoell and Jim Wilczak Research Meteorologists, Physical Sciences Division 7 June 2016

More information

Modelling trends in the ocean wave climate for dimensioning of ships

Modelling trends in the ocean wave climate for dimensioning of ships Modelling trends in the ocean wave climate for dimensioning of ships STK1100 lecture, University of Oslo Erik Vanem Motivation and background 2 Ocean waves and maritime safety Ships and other marine structures

More information

Uncertainty in Ocean Surface Winds over the Nordic Seas

Uncertainty in Ocean Surface Winds over the Nordic Seas Uncertainty in Ocean Surface Winds over the Nordic Seas Dmitry Dukhovskoy and Mark Bourassa Arctic Ocean Center for Ocean-Atmospheric Prediction Studies Florida State University Funded by the NASA OVWST,

More information

The Canadian approach to ensemble prediction

The Canadian approach to ensemble prediction The Canadian approach to ensemble prediction ECMWF 2017 Annual seminar: Ensemble prediction : past, present and future. Pieter Houtekamer Montreal, Canada Overview. The Canadian approach. What are the

More information

Project of Strategic Interest NEXTDATA. Deliverables D1.3.B and 1.3.C. Final Report on the quality of Reconstruction/Reanalysis products

Project of Strategic Interest NEXTDATA. Deliverables D1.3.B and 1.3.C. Final Report on the quality of Reconstruction/Reanalysis products Project of Strategic Interest NEXTDATA Deliverables D1.3.B and 1.3.C Final Report on the quality of Reconstruction/Reanalysis products WP Coordinator: Nadia Pinardi INGV, Bologna Deliverable authors Claudia

More information

Statistics and the Future of the Antarctic Ice Sheet

Statistics and the Future of the Antarctic Ice Sheet Statistics and the Future of the Antarctic Ice Sheet by Murali Haran, Won Chang, Klaus Keller, Robert Nicholas and David Pollard Introduction One of the enduring symbols of the impact of climate change

More information

Climate Change: the Uncertainty of Certainty

Climate Change: the Uncertainty of Certainty Climate Change: the Uncertainty of Certainty Reinhard Furrer, UZH JSS, Geneva Oct. 30, 2009 Collaboration with: Stephan Sain - NCAR Reto Knutti - ETHZ Claudia Tebaldi - Climate Central Ryan Ford, Doug

More information

Current Climate Science and Climate Scenarios for Florida

Current Climate Science and Climate Scenarios for Florida Current Climate Science and Climate Scenarios for Florida Daniel Bader and Vivien Gornitz Water Utilities and Climate Change Workshop Palm Beach County Water Utilities/ Water Research Foundation June 10,

More information

An Introduction to Physical-Statistical Modelling Using Bayesian Methods

An Introduction to Physical-Statistical Modelling Using Bayesian Methods An Introduction to Physical-Statistical Modelling Using Bayesian Methods Technical Report 004/49 Edward P. Campbell CSIRO Mathematical & Information Sciences Centre for Environment and Life Sciences Private

More information

MERIDIONAL OVERTURNING CIRCULATION: SOME BASICS AND ITS MULTI-DECADAL VARIABILITY

MERIDIONAL OVERTURNING CIRCULATION: SOME BASICS AND ITS MULTI-DECADAL VARIABILITY MERIDIONAL OVERTURNING CIRCULATION: SOME BASICS AND ITS MULTI-DECADAL VARIABILITY Gokhan Danabasoglu National Center for Atmospheric Research OUTLINE: - Describe thermohaline and meridional overturning

More information

Coupled ocean-atmosphere ENSO bred vector

Coupled ocean-atmosphere ENSO bred vector Coupled ocean-atmosphere ENSO bred vector Shu-Chih Yang 1,2, Eugenia Kalnay 1, Michele Rienecker 2 and Ming Cai 3 1 ESSIC/AOSC, University of Maryland 2 GMAO, NASA/ Goddard Space Flight Center 3 Dept.

More information

Recent Climate History - The Instrumental Era.

Recent Climate History - The Instrumental Era. 2002 Recent Climate History - The Instrumental Era. Figure 1. Reconstructed surface temperature record. Strong warming in the first and late part of the century. El Ninos and major volcanic eruptions are

More information

Current Issues and Challenges in Ensemble Forecasting

Current Issues and Challenges in Ensemble Forecasting Current Issues and Challenges in Ensemble Forecasting Junichi Ishida (JMA) and Carolyn Reynolds (NRL) With contributions from WGNE members 31 th WGNE Pretoria, South Africa, 26 29 April 2016 Recent trends

More information

Future Climate and Sea Level

Future Climate and Sea Level Future Climate and Sea Level Tonight: 2 nd night on human changes and controversy around them. three night series : 1) An Inconvenient truth 2) Impacts: Observed Warming and Projected Sea Level Changes

More information

Validation of satellite derived snow cover data records with surface networks and m ulti-dataset inter-comparisons

Validation of satellite derived snow cover data records with surface networks and m ulti-dataset inter-comparisons Validation of satellite derived snow cover data records with surface networks and m ulti-dataset inter-comparisons Chris Derksen Climate Research Division Environment Canada Thanks to our data providers:

More information

Ice in a changing climate

Ice in a changing climate Ice in a changing climate ESA$Ice$sheets$CCI$$ Phase$1$Results$&$Contribu8on$to$Climate$ Research$ $ $ R"Forsberg,"L"Sørensen,"R"Meister,"J"Levinsen,"" J"Dall,"A"Kusk"(DTU>Space,"Denmark)" T"Nagler"(ENVEO,"Austria)"

More information

Exploring and extending the limits of weather predictability? Antje Weisheimer

Exploring and extending the limits of weather predictability? Antje Weisheimer Exploring and extending the limits of weather predictability? Antje Weisheimer Arnt Eliassen s legacy for NWP ECMWF is an independent intergovernmental organisation supported by 34 states. ECMWF produces

More information

ECMWF Medium-Range Forecast Graphical Products

ECMWF Medium-Range Forecast Graphical Products ECMWF Medium-Range Forecast Graphical Products Analysis Snow cover, ice cover, albedo, leaf area index, orography and sea depth Albedo Europe, Global, Central Europe, North West Europe, North East Europe,

More information

Projecting the uncertainty of sea level rise using climate models and statistical downscaling!

Projecting the uncertainty of sea level rise using climate models and statistical downscaling! Projecting the uncertainty of sea level rise using climate models and statistical downscaling! Peter Guttorp! Norsk Regnesentral! University of Washington! Outline! The importance of sea level rise! Measuring

More information

Is CESM the best Earth System Model? Reto Knutti Institute for Atmospheric and Climate Science ETH Zurich, Switzerland

Is CESM the best Earth System Model? Reto Knutti Institute for Atmospheric and Climate Science ETH Zurich, Switzerland Is CESM the best Earth System Model? Reto Knutti Institute for Atmospheric and Climate Science ETH Zurich, Switzerland reto.knutti@env.ethz.ch Is CESM the best Earth System Model? Yes Is CESM the best

More information

ALASKA REGION CLIMATE OUTLOOK BRIEFING. December 22, 2017 Rick Thoman National Weather Service Alaska Region

ALASKA REGION CLIMATE OUTLOOK BRIEFING. December 22, 2017 Rick Thoman National Weather Service Alaska Region ALASKA REGION CLIMATE OUTLOOK BRIEFING December 22, 2017 Rick Thoman National Weather Service Alaska Region Today s Outline Feature of the month: Autumn sea ice near Alaska Climate Forecast Basics Climate

More information

The importance of sampling multidecadal variability when assessing impacts of extreme precipitation

The importance of sampling multidecadal variability when assessing impacts of extreme precipitation The importance of sampling multidecadal variability when assessing impacts of extreme precipitation Richard Jones Research funded by Overview Context Quantifying local changes in extreme precipitation

More information

Development and Validation of Polar WRF

Development and Validation of Polar WRF Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio Development and Validation of Polar WRF David H. Bromwich 1,2, Keith M. Hines 1, and Le-Sheng Bai 1 1 Polar

More information

Sea level change recent past, present, future

Sea level change recent past, present, future Sea level change recent past, present, future Anny Cazenave LEGOS-CNES Toulouse, France CCI_Colocation meeting, ESA/ESRIN Global mean sea level rise during the 20 th century (red : tide gauges; blue :

More information

Oceans and Climate. Caroline Katsman. KNMI Global Climate Division

Oceans and Climate. Caroline Katsman. KNMI Global Climate Division Oceans and Climate Caroline Katsman KNMI Global Climate Division Aimée Slangen, Roderik van de Wal (IMAU, Utrecht University) Sybren Drijfhout, Wilco Hazeleger (KNMI, Global Climate) Bert Vermeersen (NIOZ/Delft

More information

An Introduction to Coupled Models of the Atmosphere Ocean System

An Introduction to Coupled Models of the Atmosphere Ocean System An Introduction to Coupled Models of the Atmosphere Ocean System Jonathon S. Wright jswright@tsinghua.edu.cn Atmosphere Ocean Coupling 1. Important to climate on a wide range of time scales Diurnal to

More information

Early warning of climate tipping points Tim Lenton

Early warning of climate tipping points Tim Lenton Early warning of climate tipping points Tim Lenton With thanks to John Schellnhuber, Valerie Livina, Vasilis Dakos, Marten Scheffer Outline Tipping elements Early warning methods Tests and application

More information

The ECMWF Extended range forecasts

The ECMWF Extended range forecasts The ECMWF Extended range forecasts Laura.Ferranti@ecmwf.int ECMWF, Reading, U.K. Slide 1 TC January 2014 Slide 1 The operational forecasting system l High resolution forecast: twice per day 16 km 91-level,

More information

Ocean Data Assimilation for Seasonal Forecasting

Ocean Data Assimilation for Seasonal Forecasting Ocean Data Assimilation for Seasonal Forecasting Magdalena A. Balmaseda Arthur Vidard, David Anderson, Alberto Troccoli, Jerome Vialard, ECMWF, Reading, UK Outline Why Ocean Data Assimilation? The Operational

More information

John Steffen and Mark A. Bourassa

John Steffen and Mark A. Bourassa John Steffen and Mark A. Bourassa Funding by NASA Climate Data Records and NASA Ocean Vector Winds Science Team Florida State University Changes in surface winds due to SST gradients are poorly modeled

More information

Detection and attribution, forced changes, natural variability, signal and noise, ensembles

Detection and attribution, forced changes, natural variability, signal and noise, ensembles ETH Zurich Reto Knutti Detection and attribution, forced changes, natural variability, signal and noise, ensembles Reto Knutti, IAC ETH What s wrong with this presentation? For the next two decades, a

More information

Ocean data assimilation for reanalysis

Ocean data assimilation for reanalysis Ocean data assimilation for reanalysis Matt Martin. ERA-CLIM2 Symposium, University of Bern, 14 th December 2017. Contents Introduction. On-going developments to improve ocean data assimilation for reanalysis.

More information

Canadian contribution to the Year of Polar Prediction: deterministic and ensemble coupled atmosphere-ice-ocean forecasts

Canadian contribution to the Year of Polar Prediction: deterministic and ensemble coupled atmosphere-ice-ocean forecasts Canadian contribution to the Year of Polar Prediction: deterministic and ensemble coupled atmosphere-ice-ocean forecasts G.C. Smith, F. Roy, J.-F. Lemieux, F. Dupont, J-M Belanger and the CONCEPTS team

More information

Dropping Ice Shelves onto an Ocean Model and Moving Grounding Lines. Robert Hallberg NOAA / GFDL

Dropping Ice Shelves onto an Ocean Model and Moving Grounding Lines. Robert Hallberg NOAA / GFDL Dropping Ice Shelves onto an Ocean Model and Moving Grounding Lines Robert Hallberg NOAA / GFDL Projected Global Mean Sea Level Rise Sources of uncertainty in 2100 global mean sea level projections: Forcing

More information

Seamless weather and climate for security planning

Seamless weather and climate for security planning Seamless weather and climate for security planning Kirsty Lewis, Principal Climate Change Consultant, Met Office Hadley Centre 28 June 2010 Global Climate Models Mitigation timescale changes could be avoided

More information

Climate change and variability -

Climate change and variability - Climate change and variability - Current capabilities - a synthesis of IPCC AR4 (WG1) Pete Falloon, Manager Impacts Model Development, Met Office Hadley Centre WMO CaGM/SECC Workshop, Orlando, 18 November

More information

Overview of data assimilation in oceanography or how best to initialize the ocean?

Overview of data assimilation in oceanography or how best to initialize the ocean? Overview of data assimilation in oceanography or how best to initialize the ocean? T. Janjic Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany Outline Ocean observing system Ocean

More information

Preparing Ocean Observations for Reanalysis

Preparing Ocean Observations for Reanalysis Preparing Ocean Observations for Reanalysis Nick Rayner, Met Office Hadley Centre 5 th International Conference on Reanalyses, Rome, 13 th -17 th November 2017 Material provided by John Kennedy, Clive

More information

Operational event attribution

Operational event attribution Operational event attribution Peter Stott, NCAR, 26 January, 2009 August 2003 Events July 2007 January 2009 January 2009 Is global warming slowing down? Arctic Sea Ice Climatesafety.org climatesafety.org

More information

Patterns and impacts of ocean warming and heat uptake

Patterns and impacts of ocean warming and heat uptake Patterns and impacts of ocean warming and heat uptake Shang-Ping Xie Scripps Inst of Oceanography, UCSD Ocean warming & circulation change Ocean heat uptake & meridional overturning circulation Global

More information

Seasonal Outlook for Summer Season (12/05/ MJJ)

Seasonal Outlook for Summer Season (12/05/ MJJ) Seasonal Outlook for Summer Season (12/05/2010 - MJJ) Ι. SEASONAL FORECASTS for MAY JUNE JULY FROM GLOBAL CIRCULATION MODELS... 2 I.1. Oceanic Forecast... 2 I.1.a Sea Surface Temperature (SST)... 2 I.1.b

More information

CMIP3/CMIP5 differences: Scenario (SRESA1B vs RCP4.5) Ensemble mean Tas responses: CMIP3 = 2.8 K CMIP5 = 1.9 K CMIP5 higher average resolution

CMIP3/CMIP5 differences: Scenario (SRESA1B vs RCP4.5) Ensemble mean Tas responses: CMIP3 = 2.8 K CMIP5 = 1.9 K CMIP5 higher average resolution CMIP3/CMIP5 differences: Scenario (SRESA1B vs RCP4.5) Ensemble mean Tas responses: CMIP3 = 2.8 K CMIP5 = 1.9 K CMIP5 higher average resolution Several `high-top models in CMIP5 Key question What are

More information

NSF Expeditions in Computing. Understanding Climate Change: A Data Driven Approach. Vipin Kumar University of Minnesota

NSF Expeditions in Computing. Understanding Climate Change: A Data Driven Approach. Vipin Kumar University of Minnesota NSF Expeditions in Computing Understanding Climate Change: A Data Driven Approach Vipin Kumar University of Minnesota kumar@cs.umn.edu www.cs.umn.edu/~kumar Vipin Kumar UCC Aug 15, 2011 Climate Change:

More information

Climate changes in Finland, but how? Jouni Räisänen Department of Physics, University of Helsinki

Climate changes in Finland, but how? Jouni Räisänen Department of Physics, University of Helsinki Climate changes in Finland, but how? Jouni Räisänen Department of Physics, University of Helsinki 19.9.2012 Outline Some basic questions and answers about climate change How are projections of climate

More information

Multiple timescale coupled atmosphere-ocean data assimilation

Multiple timescale coupled atmosphere-ocean data assimilation Multiple timescale coupled atmosphere-ocean data assimilation (for climate prediction & reanalysis) Robert Tardif Gregory J. Hakim H L H University of Washington w/ contributions from: Chris Snyder NCAR

More information

XVI. Warming and the cryosphere

XVI. Warming and the cryosphere XVI. Warming and the cryosphere review temperature from thermometers, satellites, glacier lengths and boreholes all show significant warming in the 20th C+ reconstruction of past temperatures from corals,

More information

Bayesian PalaeoClimate Reconstruction from proxies:

Bayesian PalaeoClimate Reconstruction from proxies: Bayesian PalaeoClimate Reconstruction from proxies: Framework Bayesian modelling of space-time processes General Circulation Models Space time stochastic process C = {C(x,t) = Multivariate climate at all

More information

Introduction to Bayesian Inference

Introduction to Bayesian Inference University of Pennsylvania EABCN Training School May 10, 2016 Bayesian Inference Ingredients of Bayesian Analysis: Likelihood function p(y φ) Prior density p(φ) Marginal data density p(y ) = p(y φ)p(φ)dφ

More information

EFFECTS OF TROPICAL CYCLONES ON OCEAN HEAT TRANSPORT AS SIMULATED BY A HIGH RESOLUTION COUPLED GENERAL CIRCULATION MODEL

EFFECTS OF TROPICAL CYCLONES ON OCEAN HEAT TRANSPORT AS SIMULATED BY A HIGH RESOLUTION COUPLED GENERAL CIRCULATION MODEL ISTITUTO NAZIONALE di GEOFISICA e VULCANOLOGIA EFFECTS OF TROPICAL CYCLONES ON OCEAN HEAT TRANSPORT AS SIMULATED BY A HIGH RESOLUTION COUPLED GENERAL CIRCULATION MODEL E. Scoccimarro 1 S. Gualdi 12, A.

More information

The Climate System and Climate Models. Gerald A. Meehl National Center for Atmospheric Research Boulder, Colorado

The Climate System and Climate Models. Gerald A. Meehl National Center for Atmospheric Research Boulder, Colorado The Climate System and Climate Models Gerald A. Meehl National Center for Atmospheric Research Boulder, Colorado The climate system includes all components of the physical earth system that affect weather

More information

Global climate predictions: forecast drift and bias adjustment issues

Global climate predictions: forecast drift and bias adjustment issues www.bsc.es Ispra, 23 May 2017 Global climate predictions: forecast drift and bias adjustment issues Francisco J. Doblas-Reyes BSC Earth Sciences Department and ICREA Many of the ideas in this presentation

More information

Uncertainty in energy system models

Uncertainty in energy system models Uncertainty in energy system models Amy Wilson Durham University May 2015 Table of Contents 1 Model uncertainty 2 3 Example - generation investment 4 Conclusion Model uncertainty Contents 1 Model uncertainty

More information

4.3.2 Configuration. 4.3 Ensemble Prediction System Introduction

4.3.2 Configuration. 4.3 Ensemble Prediction System Introduction 4.3 Ensemble Prediction System 4.3.1 Introduction JMA launched its operational ensemble prediction systems (EPSs) for one-month forecasting, one-week forecasting, and seasonal forecasting in March of 1996,

More information

Roger Revelle Memorial lectures, 2008

Roger Revelle Memorial lectures, 2008 INTERGOVERNMENTAL OCEANOGRAPHIC COMMISSION (of UNESCO) Forty-first Session of the Executive Council UNESCO, Paris, 24 June 1 st July 2008 Roger Revelle Memorial lectures, 2008 Thursday 26 June 2008, UNESCO

More information

Sea Ice Forecast Verification in the Canadian Global Ice Ocean Prediction System

Sea Ice Forecast Verification in the Canadian Global Ice Ocean Prediction System Sea Ice Forecast Verification in the Canadian Global Ice Ocean Prediction System G Smith 1, F Roy 2, M Reszka 2, D Surcel Colan, Z He 1, J-M Belanger 1, S Skachko 3, Y Liu 3, F Dupont 2, J-F Lemieux 1,

More information

Forecasting and data assimilation

Forecasting and data assimilation Supported by the National Science Foundation DMS Forecasting and data assimilation Outline Numerical models Kalman Filter Ensembles Douglas Nychka, Thomas Bengtsson, Chris Snyder Geophysical Statistics

More information

Model error and seasonal forecasting

Model error and seasonal forecasting Model error and seasonal forecasting Antje Weisheimer European Centre for Medium-Range Weather Forecasts ECMWF, Reading, UK with thanks to Paco Doblas-Reyes and Tim Palmer Model error and model uncertainty

More information

On Modeling the Oceanic Heat Fluxes from the North Pacific / Atlantic into the Arctic Ocean

On Modeling the Oceanic Heat Fluxes from the North Pacific / Atlantic into the Arctic Ocean On Modeling the Oceanic Heat Fluxes from the North Pacific / Atlantic into the Arctic Ocean Wieslaw Maslowski Naval Postgraduate School Collaborators: Jaclyn Clement Kinney Terry McNamara, John Whelan

More information

Global Climate Systems

Global Climate Systems Global Climate Systems I. Earth s Climate A. Past Climate B. Present Climate and Classification 1. Climate components 2. Classification 3. Köppen Climate Classification 4. El Nino III. Global Climate Change

More information

CCI achievements atmosphere / surface

CCI achievements atmosphere / surface CCI achievements atmosphere / surface aerosol CCI SST CCI cloud CCI ozone CCI + a bonus discussion : can these CCI provide insights / explanations to the surface T hiatus? aerosol CCI at the start there

More information

The ECMWF prototype for coupled reanalysis. Patrick Laloyaux

The ECMWF prototype for coupled reanalysis. Patrick Laloyaux The ECMWF prototype for coupled reanalysis Patrick Laloyaux ECMWF July 10, 2015 Outline Current status and future plans for ECMWF operational reanalyses Extended climate reanalyses Coupled atmosphere-ocean

More information

Physical Dynamics of the Coastal Zone in the Mediterranean on Annual to Decadal Scales

Physical Dynamics of the Coastal Zone in the Mediterranean on Annual to Decadal Scales Physical Dynamics of the Coastal Zone in the Mediterranean on Annual to Decadal Scales Hans-Peter Plag Nevada Bureau of Mines and Geology and Seismological Laboratory University of Nevada, Reno, Nevada,

More information

Ensemble Copula Coupling: Towards Physically Consistent, Calibrated Probabilistic Forecasts of Spatio-Temporal Weather Trajectories

Ensemble Copula Coupling: Towards Physically Consistent, Calibrated Probabilistic Forecasts of Spatio-Temporal Weather Trajectories Ensemble Copula Coupling: Towards Physically Consistent, Calibrated Probabilistic Forecasts of Spatio-Temporal Weather Trajectories Tilmann Gneiting and Roman Schefzik Institut für Angewandte Mathematik

More information

Probabilistic Models of Past Climate Change

Probabilistic Models of Past Climate Change Probabilistic Models of Past Climate Change Julien Emile-Geay USC College, Department of Earth Sciences SIAM International Conference on Data Mining Anaheim, California April 27, 2012 Probabilistic Models

More information

Chapter outline. Reference 12/13/2016

Chapter outline. Reference 12/13/2016 Chapter 2. observation CC EST 5103 Climate Change Science Rezaul Karim Environmental Science & Technology Jessore University of science & Technology Chapter outline Temperature in the instrumental record

More information

2.1 OBSERVATIONS AND THE PARAMETERISATION OF AIR-SEA FLUXES DURING DIAMET

2.1 OBSERVATIONS AND THE PARAMETERISATION OF AIR-SEA FLUXES DURING DIAMET 2.1 OBSERVATIONS AND THE PARAMETERISATION OF AIR-SEA FLUXES DURING DIAMET Peter A. Cook * and Ian A. Renfrew School of Environmental Sciences, University of East Anglia, Norwich, UK 1. INTRODUCTION 1.1

More information

Challenges for Climate Science in the Arctic. Ralf Döscher Rossby Centre, SMHI, Sweden

Challenges for Climate Science in the Arctic. Ralf Döscher Rossby Centre, SMHI, Sweden Challenges for Climate Science in the Arctic Ralf Döscher Rossby Centre, SMHI, Sweden The Arctic is changing 1) Why is Arctic sea ice disappearing so rapidly? 2) What are the local and remote consequences?

More information

A re-sampling based weather generator

A re-sampling based weather generator A re-sampling based weather generator Sara Martino 1 Joint work with T. Nipen 2 and C. Lussana 2 1 Sintef Energy Resources 2 Norwegian Metereologic Institute Berlin 19th Sept. 2017 Sara Martino Joint work

More information

ECMWF: Weather and Climate Dynamical Forecasts

ECMWF: Weather and Climate Dynamical Forecasts ECMWF: Weather and Climate Dynamical Forecasts Medium-Range (0-day) Partial coupling Extended + Monthly Fully coupled Seasonal Forecasts Fully coupled Atmospheric model Atmospheric model Wave model Wave

More information

Assessment of Ensemble Forecasts

Assessment of Ensemble Forecasts Assessment of Ensemble Forecasts S. L. Mullen Univ. of Arizona HEPEX Workshop, 7 March 2004 Talk Overview Ensemble Performance for Precipitation Global EPS and Mesoscale 12 km RSM Biases, Event Discrimination

More information

Multilevel Sequential 2 Monte Carlo for Bayesian Inverse Problems

Multilevel Sequential 2 Monte Carlo for Bayesian Inverse Problems Jonas Latz 1 Multilevel Sequential 2 Monte Carlo for Bayesian Inverse Problems Jonas Latz Technische Universität München Fakultät für Mathematik Lehrstuhl für Numerische Mathematik jonas.latz@tum.de November

More information

Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... )

Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... ) Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... ) 4 Land, biosphere, cryosphere 1. Introduction 2. Atmosphere 3. Ocean 4. Land, biosphere, cryosphere 4.1 Land

More information

Northern European Sea Level Rise. Aslak Grinsted Centre for Ice and Climate Niels Bohr Institute University of Copenhagen

Northern European Sea Level Rise. Aslak Grinsted Centre for Ice and Climate Niels Bohr Institute University of Copenhagen Northern European Sea Level Rise Aslak Grinsted Centre for Ice and Climate Niels Bohr Institute University of Copenhagen Global Sea Level Rise The world is warming and this causes sea level to rise because:

More information

Probabilities for climate projections

Probabilities for climate projections Probabilities for climate projections Claudia Tebaldi, Reinhard Furrer Linda Mearns, Doug Nychka National Center for Atmospheric Research Richard Smith - UNC-Chapel Hill Steve Sain - CU-Denver Statistical

More information

Contents of this file

Contents of this file Geophysical Research Letters Supporting Information for Future changes in tropical cyclone activity in high-resolution large-ensemble simulations Kohei Yoshida 1, Masato Sugi 1, Ryo Mizuta 1, Hiroyuki

More information

Adapting NEMO for use as the UK operational storm surge forecasting model

Adapting NEMO for use as the UK operational storm surge forecasting model Adapting NEMO for use as the UK operational storm surge forecasting model Rachel Furner 1, Jane Williams 2, Kevin Horsburgh 2, Andy Saulter 1 1; Met Office 2; NOC Table of Contents Existing CS3 model Developments

More information

Aspects of a climate observing system: energy and water. Kevin E Trenberth NCAR

Aspects of a climate observing system: energy and water. Kevin E Trenberth NCAR Aspects of a climate observing system: energy and water Kevin E Trenberth NCAR Tracking Earth s Global Energy Where has global warming from increased GHGs gone? Kevin E Trenberth NCAR Where did the heat

More information