Hierarchical Bayesian Modeling and Analysis: Why and How

Size: px
Start display at page:

Download "Hierarchical Bayesian Modeling and Analysis: Why and How"

Transcription

1 Hierarchical Bayesian Modeling and Analysis: Why and How Mark Berliner Department of Statistics The Ohio State University IMA June 10, 2011 Outline I. Bayesian Hierarchical Modeling II. Examples: Glacial dynamics; Paleoclimate III. Using Large-scale Models

2 Why: General Points Goal: Combine information sources Uncertainty Quantification (UQ) Physical-Statistical Modeling (Berliner 2003 JGR): Build in science (qual. & quant.) Physics and (not versus) Statistics Model-data combination Not just data assimilation Relationships among physical processes; crossing scales

3 How: Probability & Statistics Background Probability density function (PDF) for 2 variables X,Y: [x, y] Marginal PDF of X: [x] = [x, y]dy Conditional PDF of Y given X = x: [y x] [x, y]: [y x] = [x, y]/[x] Hence, [x, y] = [y x][x] (= [x y][y]) Bayes Theorem: [x y] = Bases of hierarchical modeling [y x] [x] [y] factoring joints: [x, y, z] = [y x, z] [x z] [z], etc. forming models: [x] = [x y] [y] dy

4 Basic Stat Problem: Inference about X and its distribution Parameterized Model: [x θ] where θ is unknown Obs. Data: Observe Y = y with conditional PDF [y x, θ] Classical Stat: Observed y provides indirect info about X, θ Bayesian Stat: 1. Inverse probability problem: from [y x, θ] to [x, θ y] [x, θ y] = [y x, θ] [x, θ] [y] 2. Bayesian learning: update [x, θ] having observed y [x, θ y] = [x, θ] [y x, θ] [y]

5 Bayesian Hierarchical Modeling (BHM) HM: Sequence of conditional probability distributions corresponding to a joint distribution BHM (example) Parameterized Model: [x 1,..., x p θ 1,..., θ p ] and [θ 1,..., θ p η] Framework for modeling Observations Y; Processes (state variables) X; Parameters θ 1. Data Model [Y X, θ] 2. Process Model [X θ] 3. Parameter Model [ θ ] Bayes Theorem: [X, θ Y] Implied Marginal: [X Y] = [X, θ Y] dθ

6 BHM: Thinking Conditionally Data Models [Y X, θ ] Combining diverse, complex datasets Multiscale datasets: up- & down-scaling Process Models [X θ ] Incorporate PDE (or SPDE): From D(X) = 0 to [X θ] Interrelate processes, B.C., & I.C. via conditional models [X 1, X 2 θ] = [X 1 X 2, θ] [X 2 θ] Parameterization Parameter Models [ θ ] Incorporate science Enrich structure: multiscale, space-time varying parameters

7 II. Glacial Dynamics (Berliner et al J. Glaciol) Steady Flow of Glaciers and Ice Sheets Flow: gravity moderated by drag (base & sides) & stuff Simple models: flow from geometry Data Program for Arctic Climate Regional Assessments Radarsat Antarctic Mapping Project surface topography (laser altimetry) basal topography (radar altimetry) velocity data (interferometry)

8 North East Ice Stream, Greenland

9 Physical Modeling: Surface: s, Thickness: H, Velocity: u Basal Stress: τ = ρ g H ds/dx (+ stuff ) Velocities: u = u b + b 0 H τ n where u b = k τ p + (ρgh) q Our Model Random Basal Stress: τ = ρ g H ds/dx + η where η is a corrector process Random H: wavelet smoothing prior Random s: parameterized model from literature Random Velocities: u = u b + b H τ n + e where u b = kτ p + (ρgh) q or a constant b is unknown parameter, e is a noise process Process Model : [u s, H, η] [η] [s, H]

10

11

12

13 II. Paleoclimate: Temperature Reconstruction (Brynjarsdóttir & Berliner 2010 Ann Applied Stat) Use of proxies: Inverse problem: proxy f(climate) climate g(proxy) Inverse probability problem: [proxy data climate] [climate proxy data] Boreholes: earth stores info about surface temp s Inverse: borehole data f(surface temp s) Model: Heat equation Infer boundary condition

14 Relative temperature [ºC] San Rafael Desert San Rafael Swell Depth [m] ºC SRD 3 SRD 2 SRD 7 SRD SRD SRS SRS 4 SRS 5 WSR 1

15 Page 1 of 1 Page 1 of 1

16 Data Model : Y T r, q N( T r + T q R(k), σ 2 y I) T r : reduced temperatures (literature: T r = T T 0 1 q R(k)) T 0 : reference surface temperature q: surface heat flow R: thermal resistances ( k 1, thermal conductivities, adjusted for rock types, etc.) Process Model : Heat equation applied to T r B.C.: Surface temp history T h (assumed piecewise constant) Easy to solve the heat equation T r T h, q N(A T h, σ 2 I) Parameter Model : next T h q N( 0, σ 2 h I)

17 Spatial Hierarchy Nine boreholes: 5 in desert region, 4 in swell region Extend the hierarchy: for j = 1,..., 9 Data Model : Yj T rj, q j N( T rj + T 0j 1 + q j Rj (k j ), σ 2 yj I) Process Model : T rj T hj, q j N(A j Thj, σ 2 j I) Parameter Model T hj q j N( 0, σ 2 hj I) T h1,..., T h5 conditionally independent N( µ d, γ 2 d I) T h6,..., T h9 conditionally independent N( µ s, γ 2 s I) µ d & µ s N( µ 0, γ 2 0 I) q 1,..., q 5 conditionally independent N(ν d, η 2 d) q 6,..., q 9 conditionally independent N(ν s, η 2 s) etc.

18 SRD 1, SR Desert SRD 2, SR Desert SRD 3, SR Desert SRD 4, SR Desert SRD 7, SR Desert SRS 3, SR Swell SRS 4, SR Swell SRS 5, SR Swell WSR 1, SR Swell

19 µ S µ D

20 SRD 1, SR Desert SRD 2, SR Desert SRD 3, SR Desert SRD 4, SR Desert SRD 7, SR Desert SRS 3, SR Swell SRS 4, SR Swell SRS 5, SR Swell WSR 1, SR Swell Multi site Single site

21 SRD 2, SR Desert SRS 5, SR Swell Multi site Single site Multi site Single site

22 III. Incorporating Large-Scale Computer Models Recall Data, Process, and Parameter Models 1. Model output O = O 1,..., O n as observations Data Model: [Y, O X, θ] [ O X, θ] to include bias, offset,.. Convenient for design 2. Process Model from model output: Data analysis on O to estimate a prob. dist. Use result (with modifications) as a prior for X e.g., kernel density estimate Σ i α i k(x O i ) 3. Parameter Model from model output. eg: Prior on coefficients of fingerprints (Berliner, Levine, & Shea 2003 J. Climate) 4. Combinations and another approach in prep

23 A Bayesian Multi-model Climate Projection (Berliner & Kim 2008 J. Climate) Applied to Decadal Forecasting: Kim & Berliner 2011 Themes climate = parameters of prob. dist. of weather build or parameterize scales into dynamic model for X Future climate depends on future, but unknown, inputs. IPCC: construct plausible future inputs, SRES Scenarios (CO 2 etc.) Assume a scenario and find corresponding projection

24 Hemispheric Monthly Surface Temperatures (X) Observations (Y) for Two models ( O): PCM (n=4), CCSM (n=1) for SRES scenarios (B1,A1B,A2).

25 Hierarchical Data Model for Model Output Scalar climate variable X; m = 1,..., M models (time fixed) O m : ensemble of size n m of estimates of X from model m. 1. Given means µ m and variances σ 2 Y m, m = 1,..., M; O m are independent and O m µ m Gau(µ m 1 nm, σ 2 Y m I nm ) 2. Given β, model biases b m and variances σ 2 µ m ; µ m are independent and 3. Given X, µ m β, b m Gau(β + b m, σ 2 µ m ) β X Gau(X, σ 2 β ) and b m X Gau(b 0m, σ 2 b m )

26 Remarks Implied marginal: O given X : Integrating out β induces dependence within & across ensembles Modify intuition about value of increasing ensemble size Infinite ensembles do not give perfect forecasts: If all biases = 0, infinite ensembles give the value of β, not X Extensions to different model classes (more β s) and richer models are feasible.

27 Model Overview 1. [Y X, θ]: measurement error model Gaussian with mean = true temp. & unknown variance (with a change-point) 2. [X θ]: Time series models with time varying parameters X t = µ i(t) + ηn j(t) 0 0 η s j(t) (X t 1 µ i(t 1) ) + e t 3. [θ] Climate = parameters of distribution of weather Climate-weather: multiscale phenomena Time evolution: µ i(t) slow; η j(t) moderate; e t fast, but variances of e t are slow µ i = A + B CO 2i + noise Obs period: η j = C + D SOI j + noise Fore. period: AR model (i.e., SOI not observed) Variances of e t : AR-like prior

28 mean year annual temperature year

29 mean year annual temperature year

30 system variance year

31 Model Adapted to Decadal Forecasting 16 Temperature(Celcius) Temperature(Celcius)

Statistical Approaches to Combining Models and Observations

Statistical Approaches to Combining Models and Observations Statistical Approaches to Combining Models and Observations Outline Mark Berliner Department of Statistics The Ohio State University mb@stat.osu.edu SIAM UQ12, April 5, 2012 I. Bayesian Hierarchical Modeling

More information

Bayesian Approaches to the Analysis of Computer Model Output

Bayesian Approaches to the Analysis of Computer Model Output Bayesian Approaches to the Analysis of Computer Model Output STATMOS Online Seminar Series May 20, 2014 Mark Berliner Department of Statistics Ohio State University mb@stat.osu.edu Collaborators: Radu

More information

Consider the joint probability, P(x,y), shown as the contours in the figure above. P(x) is given by the integral of P(x,y) over all values of y.

Consider the joint probability, P(x,y), shown as the contours in the figure above. P(x) is given by the integral of P(x,y) over all values of y. ATMO/OPTI 656b Spring 009 Bayesian Retrievals Note: This follows the discussion in Chapter of Rogers (000) As we have seen, the problem with the nadir viewing emission measurements is they do not contain

More information

Modeled and observed fast flow in the Greenland ice sheet

Modeled and observed fast flow in the Greenland ice sheet Modeled and observed fast flow in the Greenland ice sheet Ed Bueler 1 Constantine Khroulev 1 Andy Aschwanden 2 Ian Joughin 3 1 Dept of Mathematics and Statistics, University of Alaska Fairbanks 2 Arctic

More information

Title. Author(s)Greve, Ralf. Issue Date Doc URL. Type. Note. File Information.

Title. Author(s)Greve, Ralf. Issue Date Doc URL. Type. Note. File Information. Title Increased future sea level rise due to rapid decay o Author(s)Greve, Ralf CitationProceedings of the First International Symposium on Issue Date 008--04 Doc URL http://hdl.handle.net/5/4868 Type

More information

Decay of the Greenland Ice Sheet due to surface-meltwater-induced acceleration of basal sliding

Decay of the Greenland Ice Sheet due to surface-meltwater-induced acceleration of basal sliding Decay of the Greenland Ice Sheet due to surface-meltwater-induced acceleration of basal sliding arxiv:0905.07v [physics.geo-ph] May 009 Ralf Greve Shin Sugiyama Institute of Low Temperature Science, Hokkaido

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Bayesian data analysis in practice: Three simple examples

Bayesian data analysis in practice: Three simple examples Bayesian data analysis in practice: Three simple examples Martin P. Tingley Introduction These notes cover three examples I presented at Climatea on 5 October 0. Matlab code is available by request to

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

Gaussian Process Regression

Gaussian Process Regression Gaussian Process Regression 4F1 Pattern Recognition, 21 Carl Edward Rasmussen Department of Engineering, University of Cambridge November 11th - 16th, 21 Rasmussen (Engineering, Cambridge) Gaussian Process

More information

Ice in a changing climate

Ice in a changing climate Ice in a changing climate ESA$Ice$sheets$CCI$$ Phase$1$Results$&$Contribu8on$to$Climate$ Research$ $ $ R"Forsberg,"L"Sørensen,"R"Meister,"J"Levinsen,"" J"Dall,"A"Kusk"(DTU>Space,"Denmark)" T"Nagler"(ENVEO,"Austria)"

More information

Introduction to climate modelling: Evaluating climate models

Introduction to climate modelling: Evaluating climate models Introduction to climate modelling: Evaluating climate models Why? How? Professor David Karoly School of Earth Sciences, University of Melbourne Experiment design Detection and attribution of climate change

More information

Data assimilation with and without a model

Data assimilation with and without a model Data assimilation with and without a model Tim Sauer George Mason University Parameter estimation and UQ U. Pittsburgh Mar. 5, 2017 Partially supported by NSF Most of this work is due to: Tyrus Berry,

More information

Climate Change: the Uncertainty of Certainty

Climate Change: the Uncertainty of Certainty Climate Change: the Uncertainty of Certainty Reinhard Furrer, UZH JSS, Geneva Oct. 30, 2009 Collaboration with: Stephan Sain - NCAR Reto Knutti - ETHZ Claudia Tebaldi - Climate Central Ryan Ford, Doug

More information

Update on Climate Science. Professor Richard Betts, Met Office

Update on Climate Science. Professor Richard Betts, Met Office Update on Climate Science Professor Richard Betts, Met Office The science of climate change Crown copyright Met Office Prof Richard Betts Head of Climate Impacts Research Crown copyright Met Office Observing

More information

verification, validation, and basal strength in models for the present state of ice sheets

verification, validation, and basal strength in models for the present state of ice sheets verification, validation, and basal strength in models for the present state of ice sheets Ed Bueler 1 Constantine Khroulev 2 Andy Aschwanden 3 1 Dept of Mathematics and Statistics, University of Alaska

More information

Bayesian Linear Regression. Sargur Srihari

Bayesian Linear Regression. Sargur Srihari Bayesian Linear Regression Sargur srihari@cedar.buffalo.edu Topics in Bayesian Regression Recall Max Likelihood Linear Regression Parameter Distribution Predictive Distribution Equivalent Kernel 2 Linear

More information

Approximate Bayesian Computation and Particle Filters

Approximate Bayesian Computation and Particle Filters Approximate Bayesian Computation and Particle Filters Dennis Prangle Reading University 5th February 2014 Introduction Talk is mostly a literature review A few comments on my own ongoing research See Jasra

More information

A Probability Review

A Probability Review A Probability Review Outline: A probability review Shorthand notation: RV stands for random variable EE 527, Detection and Estimation Theory, # 0b 1 A Probability Review Reading: Go over handouts 2 5 in

More information

Future Climate and Sea Level

Future Climate and Sea Level Future Climate and Sea Level Tonight: 2 nd night on human changes and controversy around them. three night series : 1) An Inconvenient truth 2) Impacts: Observed Warming and Projected Sea Level Changes

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

Dropping Ice Shelves onto an Ocean Model and Moving Grounding Lines. Robert Hallberg NOAA / GFDL

Dropping Ice Shelves onto an Ocean Model and Moving Grounding Lines. Robert Hallberg NOAA / GFDL Dropping Ice Shelves onto an Ocean Model and Moving Grounding Lines Robert Hallberg NOAA / GFDL Projected Global Mean Sea Level Rise Sources of uncertainty in 2100 global mean sea level projections: Forcing

More information

Bayesian PalaeoClimate Reconstruction from proxies:

Bayesian PalaeoClimate Reconstruction from proxies: Bayesian PalaeoClimate Reconstruction from proxies: Framework Bayesian modelling of space-time processes General Circulation Models Space time stochastic process C = {C(x,t) = Multivariate climate at all

More information

2. A Basic Statistical Toolbox

2. A Basic Statistical Toolbox . A Basic Statistical Toolbo Statistics is a mathematical science pertaining to the collection, analysis, interpretation, and presentation of data. Wikipedia definition Mathematical statistics: concerned

More information

Bruno Sansó. Department of Applied Mathematics and Statistics University of California Santa Cruz bruno

Bruno Sansó. Department of Applied Mathematics and Statistics University of California Santa Cruz   bruno Bruno Sansó Department of Applied Mathematics and Statistics University of California Santa Cruz http://www.ams.ucsc.edu/ bruno Climate Models Climate Models use the equations of motion to simulate changes

More information

Ch. 8 Math Preliminaries for Lossy Coding. 8.5 Rate-Distortion Theory

Ch. 8 Math Preliminaries for Lossy Coding. 8.5 Rate-Distortion Theory Ch. 8 Math Preliminaries for Lossy Coding 8.5 Rate-Distortion Theory 1 Introduction Theory provide insight into the trade between Rate & Distortion This theory is needed to answer: What do typical R-D

More information

Introduction to Bayesian Statistics

Introduction to Bayesian Statistics School of Computing & Communication, UTS January, 207 Random variables Pre-university: A number is just a fixed value. When we talk about probabilities: When X is a continuous random variable, it has a

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet.

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet. Stat 535 C - Statistical Computing & Monte Carlo Methods Arnaud Doucet Email: arnaud@cs.ubc.ca 1 CS students: don t forget to re-register in CS-535D. Even if you just audit this course, please do register.

More information

Introduction to Bayesian Inference

Introduction to Bayesian Inference University of Pennsylvania EABCN Training School May 10, 2016 Bayesian Inference Ingredients of Bayesian Analysis: Likelihood function p(y φ) Prior density p(φ) Marginal data density p(y ) = p(y φ)p(φ)dφ

More information

Rapid Climate Change: Heinrich/Bolling- Allerod Events and the Thermohaline Circulation. By: Andy Lesage April 13, 2010 Atmos.

Rapid Climate Change: Heinrich/Bolling- Allerod Events and the Thermohaline Circulation. By: Andy Lesage April 13, 2010 Atmos. Rapid Climate Change: Heinrich/Bolling- Allerod Events and the Thermohaline Circulation By: Andy Lesage April 13, 2010 Atmos. 6030 Outline Background Heinrich Event I/Bolling-Allerod Transition (Liu et

More information

Data assimilation in high dimensions

Data assimilation in high dimensions Data assimilation in high dimensions David Kelly Courant Institute New York University New York NY www.dtbkelly.com February 12, 2015 Graduate seminar, CIMS David Kelly (CIMS) Data assimilation February

More information

Models for models. Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research

Models for models. Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Models for models Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Outline Statistical models and tools Spatial fields (Wavelets) Climate regimes (Regression and clustering)

More information

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016 Spatial Statistics Spatial Examples More Spatial Statistics with Image Analysis Johan Lindström 1 1 Mathematical Statistics Centre for Mathematical Sciences Lund University Lund October 6, 2016 Johan Lindström

More information

Climate Projections and Energy Security

Climate Projections and Energy Security NOAA Research Earth System Research Laboratory Physical Sciences Division Climate Projections and Energy Security Andy Hoell and Jim Wilczak Research Meteorologists, Physical Sciences Division 7 June 2016

More information

An introduction to Bayesian statistics and model calibration and a host of related topics

An introduction to Bayesian statistics and model calibration and a host of related topics An introduction to Bayesian statistics and model calibration and a host of related topics Derek Bingham Statistics and Actuarial Science Simon Fraser University Cast of thousands have participated in the

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

Bayesian Calibration of Simulators with Structured Discretization Uncertainty

Bayesian Calibration of Simulators with Structured Discretization Uncertainty Bayesian Calibration of Simulators with Structured Discretization Uncertainty Oksana A. Chkrebtii Department of Statistics, The Ohio State University Joint work with Matthew T. Pratola (Statistics, The

More information

Machine Learning. Theory of Classification and Nonparametric Classifier. Lecture 2, January 16, What is theoretically the best classifier

Machine Learning. Theory of Classification and Nonparametric Classifier. Lecture 2, January 16, What is theoretically the best classifier Machine Learning 10-701/15 701/15-781, 781, Spring 2008 Theory of Classification and Nonparametric Classifier Eric Xing Lecture 2, January 16, 2006 Reading: Chap. 2,5 CB and handouts Outline What is theoretically

More information

CS8803: Statistical Techniques in Robotics Byron Boots. Hilbert Space Embeddings

CS8803: Statistical Techniques in Robotics Byron Boots. Hilbert Space Embeddings CS8803: Statistical Techniques in Robotics Byron Boots Hilbert Space Embeddings 1 Motivation CS8803: STR Hilbert Space Embeddings 2 Overview Multinomial Distributions Marginal, Joint, Conditional Sum,

More information

WEATHER NORMALIZATION METHODS AND ISSUES. Stuart McMenamin Mark Quan David Simons

WEATHER NORMALIZATION METHODS AND ISSUES. Stuart McMenamin Mark Quan David Simons WEATHER NORMALIZATION METHODS AND ISSUES Stuart McMenamin Mark Quan David Simons Itron Forecasting Brown Bag September 17, 2013 Please Remember» Phones are Muted: In order to help this session run smoothly,

More information

A short introduction to INLA and R-INLA

A short introduction to INLA and R-INLA A short introduction to INLA and R-INLA Integrated Nested Laplace Approximation Thomas Opitz, BioSP, INRA Avignon Workshop: Theory and practice of INLA and SPDE November 7, 2018 2/21 Plan for this talk

More information

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay Lecture 6: State Space Model and Kalman Filter Bus 490, Time Series Analysis, Mr R Tsay A state space model consists of two equations: S t+ F S t + Ge t+, () Z t HS t + ɛ t (2) where S t is a state vector

More information

ECE531 Lecture 2b: Bayesian Hypothesis Testing

ECE531 Lecture 2b: Bayesian Hypothesis Testing ECE531 Lecture 2b: Bayesian Hypothesis Testing D. Richard Brown III Worcester Polytechnic Institute 29-January-2009 Worcester Polytechnic Institute D. Richard Brown III 29-January-2009 1 / 39 Minimizing

More information

Neutron inverse kinetics via Gaussian Processes

Neutron inverse kinetics via Gaussian Processes Neutron inverse kinetics via Gaussian Processes P. Picca Politecnico di Torino, Torino, Italy R. Furfaro University of Arizona, Tucson, Arizona Outline Introduction Review of inverse kinetics techniques

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Data assimilation with and without a model

Data assimilation with and without a model Data assimilation with and without a model Tyrus Berry George Mason University NJIT Feb. 28, 2017 Postdoc supported by NSF This work is in collaboration with: Tim Sauer, GMU Franz Hamilton, Postdoc, NCSU

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

Modeling multiscale interactions in the climate system

Modeling multiscale interactions in the climate system Modeling multiscale interactions in the climate system Christopher S. Bretherton Atmospheric Sciences and Applied Mathematics University of Washington 08.09.2017 Aqua Worldview Motivation Weather and climate

More information

Reduced Overdispersion in Stochastic Weather Generators for Statistical Downscaling of Seasonal Forecasts and Climate Change Scenarios

Reduced Overdispersion in Stochastic Weather Generators for Statistical Downscaling of Seasonal Forecasts and Climate Change Scenarios Reduced Overdispersion in Stochastic Weather Generators for Statistical Downscaling of Seasonal Forecasts and Climate Change Scenarios Yongku Kim Institute for Mathematics Applied to Geosciences National

More information

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008 Gaussian processes Chuong B Do (updated by Honglak Lee) November 22, 2008 Many of the classical machine learning algorithms that we talked about during the first half of this course fit the following pattern:

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information

COS513 LECTURE 8 STATISTICAL CONCEPTS

COS513 LECTURE 8 STATISTICAL CONCEPTS COS513 LECTURE 8 STATISTICAL CONCEPTS NIKOLAI SLAVOV AND ANKUR PARIKH 1. MAKING MEANINGFUL STATEMENTS FROM JOINT PROBABILITY DISTRIBUTIONS. A graphical model (GM) represents a family of probability distributions

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

Climate Change 2007: The Physical Science Basis

Climate Change 2007: The Physical Science Basis Climate Change 2007: The Physical Science Basis Working Group I Contribution to the IPCC Fourth Assessment Report Presented by R.K. Pachauri, IPCC Chair and Bubu Jallow, WG 1 Vice Chair Nairobi, 6 February

More information

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D.

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Ruppert A. EMPIRICAL ESTIMATE OF THE KERNEL MIXTURE Here we

More information

Statistical Data Analysis Stat 3: p-values, parameter estimation

Statistical Data Analysis Stat 3: p-values, parameter estimation Statistical Data Analysis Stat 3: p-values, parameter estimation London Postgraduate Lectures on Particle Physics; University of London MSci course PH4515 Glen Cowan Physics Department Royal Holloway,

More information

Statistics and Data Analysis

Statistics and Data Analysis Statistics and Data Analysis The Crash Course Physics 226, Fall 2013 "There are three kinds of lies: lies, damned lies, and statistics. Mark Twain, allegedly after Benjamin Disraeli Statistics and Data

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

Ensemble Data Assimilation and Uncertainty Quantification

Ensemble Data Assimilation and Uncertainty Quantification Ensemble Data Assimilation and Uncertainty Quantification Jeff Anderson National Center for Atmospheric Research pg 1 What is Data Assimilation? Observations combined with a Model forecast + to produce

More information

Spatial smoothing using Gaussian processes

Spatial smoothing using Gaussian processes Spatial smoothing using Gaussian processes Chris Paciorek paciorek@hsph.harvard.edu August 5, 2004 1 OUTLINE Spatial smoothing and Gaussian processes Covariance modelling Nonstationary covariance modelling

More information

An integrated speleothem proxy and climate modeling study of the last deglacial climate in the Pacific Northwest

An integrated speleothem proxy and climate modeling study of the last deglacial climate in the Pacific Northwest An integrated speleothem proxy and climate modeling study of the last deglacial climate in the Pacific Northwest Jerry Potter UC Davis, University of Michigan, NASA GSFC Isabel Montanez, University of

More information

Estimation of Natural Variability and Detection of Anthropogenic Signal in Summertime Precipitation in La Plata Basin

Estimation of Natural Variability and Detection of Anthropogenic Signal in Summertime Precipitation in La Plata Basin Estimation of Natural Variability and Detection of Anthropogenic Signal in Summertime Precipitation in La Plata Basin Marcelo Barreiro Stefanie Talento Talento and Barreiro (2012) Facultad de Ciencias

More information

Lecture 9. Time series prediction

Lecture 9. Time series prediction Lecture 9 Time series prediction Prediction is about function fitting To predict we need to model There are a bewildering number of models for data we look at some of the major approaches in this lecture

More information

Projecting the uncertainty of sea level rise using climate models and statistical downscaling!

Projecting the uncertainty of sea level rise using climate models and statistical downscaling! Projecting the uncertainty of sea level rise using climate models and statistical downscaling! Peter Guttorp! Norsk Regnesentral! University of Washington! Outline! The importance of sea level rise! Measuring

More information

Statistical Measures of Uncertainty in Inverse Problems

Statistical Measures of Uncertainty in Inverse Problems Statistical Measures of Uncertainty in Inverse Problems Workshop on Uncertainty in Inverse Problems Institute for Mathematics and Its Applications Minneapolis, MN 19-26 April 2002 P.B. Stark Department

More information

Current Climate Science and Climate Scenarios for Florida

Current Climate Science and Climate Scenarios for Florida Current Climate Science and Climate Scenarios for Florida Daniel Bader and Vivien Gornitz Water Utilities and Climate Change Workshop Palm Beach County Water Utilities/ Water Research Foundation June 10,

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Hydrological statistics for engineering design in a varying climate

Hydrological statistics for engineering design in a varying climate EGS - AGU - EUG Joint Assembly Nice, France, 6- April 23 Session HS9/ Climate change impacts on the hydrological cycle, extremes, forecasting and implications on engineering design Hydrological statistics

More information

Discovering molecular pathways from protein interaction and ge

Discovering molecular pathways from protein interaction and ge Discovering molecular pathways from protein interaction and gene expression data 9-4-2008 Aim To have a mechanism for inferring pathways from gene expression and protein interaction data. Motivation Why

More information

Introduction to Mobile Robotics Probabilistic Robotics

Introduction to Mobile Robotics Probabilistic Robotics Introduction to Mobile Robotics Probabilistic Robotics Wolfram Burgard 1 Probabilistic Robotics Key idea: Explicit representation of uncertainty (using the calculus of probability theory) Perception Action

More information

PMR Learning as Inference

PMR Learning as Inference Outline PMR Learning as Inference Probabilistic Modelling and Reasoning Amos Storkey Modelling 2 The Exponential Family 3 Bayesian Sets School of Informatics, University of Edinburgh Amos Storkey PMR Learning

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

The Temperature Proxy Controversy

The Temperature Proxy Controversy School of Mathematics February 8, 2012 Overview Introduction 1 Introduction 2 3 4 A provocative statement Figures often beguile me, particularly when I have the arranging of them myself; in which case

More information

Multiple timescale coupled atmosphere-ocean data assimilation

Multiple timescale coupled atmosphere-ocean data assimilation Multiple timescale coupled atmosphere-ocean data assimilation (for climate prediction & reanalysis) Robert Tardif Gregory J. Hakim H L H University of Washington w/ contributions from: Chris Snyder NCAR

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley 1 and Sudipto Banerjee 2 1 Department of Forestry & Department of Geography, Michigan

More information

CS-E3210 Machine Learning: Basic Principles

CS-E3210 Machine Learning: Basic Principles CS-E3210 Machine Learning: Basic Principles Lecture 4: Regression II slides by Markus Heinonen Department of Computer Science Aalto University, School of Science Autumn (Period I) 2017 1 / 61 Today s introduction

More information

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop Music and Machine Learning (IFT68 Winter 8) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Bayesian inference Bayes rule. Monte Carlo integation.

More information

Some slides from Carlos Guestrin, Luke Zettlemoyer & K Gajos 2

Some slides from Carlos Guestrin, Luke Zettlemoyer & K Gajos 2 Logistics CSE 446: Point Estimation Winter 2012 PS2 out shortly Dan Weld Some slides from Carlos Guestrin, Luke Zettlemoyer & K Gajos 2 Last Time Random variables, distributions Marginal, joint & conditional

More information

Probabilistic assessment of regional climate change: a Bayesian approach to combining. predictions from multi-model ensembles

Probabilistic assessment of regional climate change: a Bayesian approach to combining. predictions from multi-model ensembles Probabilistic assessment of regional climate change: a Bayesian approach to combining predictions from multi-model ensembles Claudia Tebaldi (ESIG/NCAR), Richard L. Smith (UNC-Chapel Hill) Doug Nychka

More information

Multilevel Sequential 2 Monte Carlo for Bayesian Inverse Problems

Multilevel Sequential 2 Monte Carlo for Bayesian Inverse Problems Jonas Latz 1 Multilevel Sequential 2 Monte Carlo for Bayesian Inverse Problems Jonas Latz Technische Universität München Fakultät für Mathematik Lehrstuhl für Numerische Mathematik jonas.latz@tum.de November

More information

Smoothers: Types and Benchmarks

Smoothers: Types and Benchmarks Smoothers: Types and Benchmarks Patrick N. Raanes Oxford University, NERSC 8th International EnKF Workshop May 27, 2013 Chris Farmer, Irene Moroz Laurent Bertino NERSC Geir Evensen Abstract Talk builds

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Alan Gelfand 1 and Andrew O. Finley 2 1 Department of Statistical Science, Duke University, Durham, North

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

Overview. Probabilistic Interpretation of Linear Regression Maximum Likelihood Estimation Bayesian Estimation MAP Estimation

Overview. Probabilistic Interpretation of Linear Regression Maximum Likelihood Estimation Bayesian Estimation MAP Estimation Overview Probabilistic Interpretation of Linear Regression Maximum Likelihood Estimation Bayesian Estimation MAP Estimation Probabilistic Interpretation: Linear Regression Assume output y is generated

More information

General Bayesian Inference I

General Bayesian Inference I General Bayesian Inference I Outline: Basic concepts, One-parameter models, Noninformative priors. Reading: Chapters 10 and 11 in Kay-I. (Occasional) Simplified Notation. When there is no potential for

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota,

More information

Seamless Prediction. Hannah Christensen & Judith Berner. Climate and Global Dynamics Division National Center for Atmospheric Research, Boulder, CO

Seamless Prediction. Hannah Christensen & Judith Berner. Climate and Global Dynamics Division National Center for Atmospheric Research, Boulder, CO Seamless Prediction Can we use shorter timescale forecasts to calibrate climate change projections? Hannah Christensen & Judith Berner Climate and Global Dynamics Division National Center for Atmospheric

More information

Exploring and extending the limits of weather predictability? Antje Weisheimer

Exploring and extending the limits of weather predictability? Antje Weisheimer Exploring and extending the limits of weather predictability? Antje Weisheimer Arnt Eliassen s legacy for NWP ECMWF is an independent intergovernmental organisation supported by 34 states. ECMWF produces

More information

Validation of satellite derived snow cover data records with surface networks and m ulti-dataset inter-comparisons

Validation of satellite derived snow cover data records with surface networks and m ulti-dataset inter-comparisons Validation of satellite derived snow cover data records with surface networks and m ulti-dataset inter-comparisons Chris Derksen Climate Research Division Environment Canada Thanks to our data providers:

More information

Multivariate Gaussians. Sargur Srihari

Multivariate Gaussians. Sargur Srihari Multivariate Gaussians Sargur srihari@cedar.buffalo.edu 1 Topics 1. Multivariate Gaussian: Basic Parameterization 2. Covariance and Information Form 3. Operations on Gaussians 4. Independencies in Gaussians

More information

Using a library of downscaled climate projections to teach climate change analysis

Using a library of downscaled climate projections to teach climate change analysis Using a library of downscaled climate projections to teach climate change analysis Eugene Cordero, Department of Meteorology San Jose State University Overview of Dataset Climate change activity Applications

More information

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester Physics 403 Parameter Estimation, Correlations, and Error Bars Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Best Estimates and Reliability

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Preliminaries. Probabilities. Maximum Likelihood. Bayesian

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

Bayesian rules of probability as principles of logic [Cox] Notation: pr(x I) is the probability (or pdf) of x being true given information I

Bayesian rules of probability as principles of logic [Cox] Notation: pr(x I) is the probability (or pdf) of x being true given information I Bayesian rules of probability as principles of logic [Cox] Notation: pr(x I) is the probability (or pdf) of x being true given information I 1 Sum rule: If set {x i } is exhaustive and exclusive, pr(x

More information

Gaussians Linear Regression Bias-Variance Tradeoff

Gaussians Linear Regression Bias-Variance Tradeoff Readings listed in class website Gaussians Linear Regression Bias-Variance Tradeoff Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University January 22 nd, 2007 Maximum Likelihood Estimation

More information