Witness-Bar Visibility Graphs

Size: px
Start display at page:

Download "Witness-Bar Visibility Graphs"

Transcription

1 Mxin Confrn on Disrt Mthmtis n Computtionl Gomtry Witnss-Br Visiility Grphs Crmn Cortés Frrn Hurto Alrto Márquz Jsús Vlnzul Astrt Br visiility grphs wr introu in th svntis s mol for som VLSI lyout prolms. Thy hv n lso stui sin thn y th grph rwing ommunity, n rntly svrl gnrliztions n rstrit vrsions hv n propos. W introu gnrliztion, witnss-r visiility grphs, n w prov tht this lss nompsss ll th r-visiility vritions onsir so fr. In ition, w show tht mny lsss of grphs r ontin in this fmily, inluing in prtiulr ll plnr grphs, intrvl grphs, irulr r grphs n prmuttion grphs. 1 Introution n prliminry finitions Givn st S of isjoint horizontl lin sgmnts in th pln (ll rs hrftr) w sy tht G is r-visiility grph if thr is ijtion twn S n th vrtis of G, n n g twn two of ths if n only if thr is vrtil sgmnt (ll lin of sight) twn th orrsponing rs tht os not intrst ny othr r. W lso sy tht S is r visiility rprsnttion (or r visiility rwing) of G. Br visiility grphs wr introu y Gry, Johnson n So [15] s moling tool for igitl iruit sign (s lso [20]). Ths rprsnttions r lso usful tool for isplying igrms tht onvy visul informtion on rltions mong t, whih is why mny vritions of ths grphs hv n onsir y th grph rwing ommunity [7, 9, 10, 11, 14, 17, 18]. W n som finitions for w n pos prisly our prolm; w us stnr trminology s in [6]. W ll v-sgmnt ny vrtil sgmnt. W ll ε-sgmnt ny xis lign rtngl hving with ε > 0 (intuitivly, thik vrtil sgmnt). Lt s n t two horizontl rs. W sy tht v-sgmnt onnts s n t if its npoints r in s n t. W sy tht n ε-sgmnt onnts s n t if its horizontl sis r ontin in s n t. Lt S st of non-ovrlpping horizontl sgmnts (rs). Two rs s, t S r visil if, n only if, thr is v-sgmnt onnting s n t intrsting no othr sgmnt in S. W sy tht s n t r ε-visil if, n only if thr is n ε sgmnt onnting s n t intrsting no othr sgmnt in S. With th pring finition, r visiility grphs s fin in th first prgrph of this stion tk s nos st of isjoint rs, n thr is n g twn two nos if n only if th orrsponing rs r visil (this is lso ll strong visiility rprsnttion of th grph [21]). If inst of visiility w rquir ε-visiility, thn w gt r ε-visiility grphs or, quivlntly, n ε-visiility rprsnttion of th grph. Th lttr hv n hrtriz s thos grphs tht mit plnr ming with ll utpoints on th xtrior f [21, 22]. A grph G is wk r visiility grph if its nos n put in ijtion with st of isjoint rs n th nos orrsponing to vry g in G r ε-visil (not tht not vry ε-visiility n n g). This fmily of grphs is xtly th lss of ll plnr grphs [12]. Finlly, w sy tht G is r k-visiility grph if thr is ijtion twn st of rs S n th vrtis of G, n n g twn two of ths if n only if thr is v-sgmnt joining th orrsponing rs tht intrsts t most k othr rs. This gnrliztion hs n introu in rnt yrs [10, 14]. Dprtmnto Mtmáti Apli I, Univrsi Svill Dprtmnt Mtmàti Apli II, Univrsitt Politèni Ctluny. Prtilly support y projts MINECO MTM , Gn. Ctluny DGR 2009SGR1040, n ESF EUROCORES progrmm EuroGIGA, CRP ComPoS: MICINN Projt EUI- EURC , for Spin.

2 Jorg Urruti s Fst, Ox, Mxio, Novmr 11-15, 2013 In this ppr w introu strongr gnrliztion, witnss-r visiility grphs, n w prov tht this rprsnttion pproh nompsss ll th r-visiility vritions onsir so fr. In ition, w show tht mny lsss of grphs r ontin in this fmily, inluing in prtiulr ll plnr grphs, intrvl grphs, irulr r grphs n prmuttion grphs. For th finition of witnss-r visiility grphs w onsir, in ition to th st S of rs tht r in orrsponn on-to-on with th vrtis of th grph ing onstrut, st of grn rs tht fvor visiility, n st of r rs tht ostrut visiility. Grn rs t s positiv witnsss whil r rs orrspon to ngtiv witnsss. Th rs from S nithr fvor nor ostrut visiilitis. For th s of sription it is usful to onsir lso purpl rs tht ostrut visiility in slightly iffrnt wy thn r rs. Dfinition 1 Lt S, S G, S P n S R four sts of horizontl sgmnts (rs, grn-rs, purpl-rs, n r-rs, rsptivly) suh tht ny two lmnts in S S G S P S R r isjoint. W fin: 1. Th grn-r visiility grph of S with rspt to S G hs on vrtx for vry lmnt in S, n two rs s, t S r jnt if n only if thr is n ε-sgmnt onnting s n t tht rosss t lst on grn r. 2. Th purpl-r visiility grph of S with rspt to S P hs on vrtx for vry lmnt in S, n two rs s, t S r jnt if n only if thr is n ε-sgmnt onnting s n t tht os not ross ny purpl r. 3. Th witnss-r visiility grph of S with rspt to S G n S R hs on vrtx for vry lmnt in S, n two rs s, t S r jnt if n only if thr is n ε-sgmnt onnting s n t tht rosss stritly mor grn rs thn r rs. Th lss of grn, purpl n witnss-r visiility grphs r not, rsptivly, y GBG, PBG n WBG. An illustrtion of th thr typs of grphs is shown in Figur 1 (on lk n whit printr, nors ppr s thin lins, r rs s thik rk lins, purpl lins s thik lins olor light gry, n th grn lins r sn s thik strip lins). x z y x z y x z y Figur 1: Exmpls of grphs in th fmilis GBG, PBG n WBG, for th st of rs S = {,,,, }. This work is vot to th stuy of th lsss of grphs tht n rprsnt vi grn, purpl or r-visiility grphs n its proprtis. W strt y onsiring th lsss GBG n PBG, whih will prov to sulsss of WBG. Thn w will numrt lsss of grphs tht r ontin in WBG, s wll s proprtis of this lss rlt to plnrity. Th trminology witnss-r visiility grphs is inspir y th onpt of witnss proximity grphs, whih fouss on iing nighorlinss rltions mong points in finit st oring to th prsn of som positiv n/or ngtiv witnss points, topi tht hs n stui in rnt yrs [1, 2, 3, 4, 13].

3 Mxin Confrn on Disrt Mthmtis n Computtionl Gomtry 2 PBG n GBG r sulsss of WBG W prov in this stion tht th lsss PBG n GBG tht w hv introu for th sk of lrity in mny proofs, r sulsss of WBG, th lss tht is our tul sujt of stuy. It is worth notiing first tht if w onsir grph in WBG tht hs only grn rs, thn it is xtly grph in GBG. Howvr, if w hv grph in WBG tht hs only r rs, thn it is just n mpty grph, us for visiility w rquir th grn rs ross y lin of sight to stritly mor thn th ross r rs. This is why w lso onsir th lss PBG in whih purpl rs ply strongr ostrution rol. Lmm 1 Th lss of grphs WBG ontins th lsss GBG n PBG. Proof. (Skth) Th ft tht GBG WBG is trivil; th grn-r visiility rprsnttion is lso witnss-r visiility rprsnttion. In Figur 2 w illustrt mtho to otin WBG rprsnttion of PBG grph. u 1 u 1 u 1 u 5 u 2 u 2 u 3 u 4 u 2 u 3 u 4 u 3 u4 ) ) ) u 5 u 5 Figur 2: ) n ): A grph n on of its purpl-r visiility rprsnttions. Visiility orriors (ε-sgmnts) twn jnt vrtis r shown. ) Th grn-r visiility rprsnttion rri out from ). Th smll r r twn u 4 n u 5 is to voi th jny twn u 1 n u 5 us y th prviously grn rs. In Stion 5 w will prov tht th two inlusions in Lmm 1 r strit. 3 Th grph lss GBG In this stion w stuy th lss GBG hving s min ojtiv to otin proprtis of th suprlss WBG. In our wy, w lso xplor som rltionships with othr grph lsss. Rll now tht n intrvl grph is th intrstion grph of st of (los) intrvls on th rl lin; this is, it hs on vrtx for h intrvl in th st, n n g twn vry pir of vrtis orrsponing to intrvls tht hv nonmpty intrstion. Thorm 2 Lt G grph. If G is n intrvl grph, thn G GBG. Th rvrs is in gnrl fls. Proof. Consir th intrvls on th rl lin tht fin G. First of ll, noti tht w n xtn infinitsimlly th intrvls in suh wy tht vry pir tht intrst ovrlp in n intrvl of positiv lngth. Thn ssign ritrry to ths intrvls iffrnt hights so tht w hv st of rs in th pln. To otin grn-r visiility rprsnttion of G it suffis to shil h sgmnt with two grn rs of th sm lngth, on ov n on low. Noti tht nothr rprsnttion using lss grn rs my lso xist. Th grph lss inlusion is strit, s on n show tht C 4 is in GBG (Figur 3) whil th intrvl grph os not hv yls of lngth grtr thn thr. A iffrn twn th lss of intrvl grphs n GBG is stt in nxt proposition, whos proof is omitt hr. Proposition 3 Th girth of ny grph in GBG is t most four, n this vlu is hivl.

4 Jorg Urruti s Fst, Ox, Mxio, Novmr 11-15, 2013 x y ) ) Figur 3: ) C 4 is GBG grph ut ) it is not n intrvl grph: n must not ovrlp. Sin is jnt to oth vrtis it ovrs th gp twn thm, s shoul o. Thrfor n must jnt in th intrvl grph. As onsqun of th prvious rsult, it follows tht th grn-r visiility grph lss os not ontin ny of th r-visiilitis lsss sri in th introution of this ppr, us C n n rprsnt s wk/ε/strong r visiilty grph for vry n 3 [21]. Lt us rll nxt som finitions [8].Th imnsion of prtilly orr st P (post) is th smllst possil numr of totl orrs whos intrstion is th prtil orr in P. Th omprility grph inu y post P = (X, ) is th grph with vrtx st X in whih x, y X r jnt if n only if ithr x y or y x in P; in othr wors, it is th unirt grph unrlying P. Altrntivly [16], omprility grph is grph suh tht vry gnrliz yl of o lngth hs tringulr hor ( gnrliz yl is los wlk tht uss h g of th grph t most on in h irtion). A omprility grph hs imnsion 2 if it is th omprility grph of post of imnsion 2 (it hs n shown tht this onpt of imnsion is wll fin [8]). Ths finitions n lso onsir from gomtri point of viw [19]. Lt R 2 th Eulin 2-imnsionl sp. A mtho of orring th points of R 2 is th following: (x i, y i ) (x j, y j ) if, n only if, x i x j n y i y j ; w sy tht (x i, y i ) is omint y (x j, y j ). A post P = (X, ) hs imnsion t most 2 if it n m in R 2 in suh wy tht th orr is prsrv. Morovr, hnging th oorints slightly if rquir, w n ssum tht th ming is suh tht no two lmnts of X hv qul x or y oorint. As onsqun, ny omprility grph of imnsion 2 n lwys thought s point st in R 2 with th ominn orr. This gomtri rprsnttion pplis in Eulin -imnsionl sp to omprility grphs of imnsion. Thorm 4 Thr r grphs in GBG tht r not omprility grphs. Proof. Th grph pit in Figur 4 ) is not omprility grph sin th gnrliz yl v 1 v 2 v 4 v 5 v 4 v 3 v 2 v 1 hs o lngth (svn) ut hs no tringulr hors. Figur 4 ) shows grn-r visiility rprsnttion of this grph. v 1 v 2 v 2 v 5 v 4 v5 v 1 v 4 v 3 v 3 ) ) Figur 4: ) A grph tht is not omprility grph n ) grn-r visiility rprsnttion of this grph.

5 Mxin Confrn on Disrt Mthmtis n Computtionl Gomtry 4 Th grph lss PBG In this stion w turn our ttntion to th lss PBG, hving gin s min ojtiv to otin proprtis of th suprlss WBG. In our wy w xplor s wll som rltionships with othr grph lsss. On my think tht th lsss GBG n PBG r rlt y omplmnttion, possily y swithing purpl n grn r oloring, ut it is not th s. For xmpl th union of two isjoint tringulr yls is in GBG, s sn in th pring stion, ut its omplmnt is K 3,3, whih is not in PBG, ft tht w prov low. Rvrsly, th ft tht G PBG os not imply tht G GBG. A simpl xmpl is otin y onsiring G = G = C 5, whih mits purpl-r visiility rprsnttion (s Figur 5), ut w hv prov in Proposition 3 tht C 5 / GBG. Figur 5: A purpl-r visiility rprsnttion of C 5. It is nithr tru tht th omplmnt of grph in PBG is in PBG. Consir G = K 3,3, whih onsists of th union of two tringls n hn G PBG (tringls r intrvl grphs) ut G = K 3,3 / PBG s will shown in Thorm 7. On th othr hn, C 5 is lso n xmpl tht th lss PBG ontins som non-prft grphs. Rll tht prft grph is grph in whih th hromti numr of vry inu sugrph quls th siz of th lrgst liqu of tht sugrph. Th lrgst liqu in C 5 is K 2, howvr χ(c 5 ) = 3, thrfor C 5 is not prft. On th positiv si, lt us s tht intrvl grphs mit purpl-r visiility rprsnttion n prov lmm tht will usful ltr. Thorm 5 If G is n intrvl grph, thn G PBG (n thrfor G WBG). Proof. Consir th intrvls on th rl lin tht fin G n lift thm to ritrry iffrnt hights so tht w hv st of rs in th pln. This is lry purpl-r visiility rprsnttion of G. Lmm 6 Lt G tringl-fr grph. If G PBG thn G is plnr grph. Proof. (Skth) Givn grph G PBG w n us th visiility winows in orr to otin pln rprsnttion of G s it is pit in Figur 6. u 4 u 4 u 2 u 5 u 7 u 2 u 5 u 7 u 6 u 6 u 3 u 8 u 3 u 8 u 1 u 1 ) ) Figur 6: A purpl-r visiility rprsnttion of tringl-fr grph n th orrsponing onstrution of its plnr ming -in lu-.

6 Jorg Urruti s Fst, Ox, Mxio, Novmr 11-15, 2013 Thorm 7 1) K 3,3 / PBG. 2) K n PBG, n. 3) Th proprty of mitting purpl-r visiility rprsnttion is not inhrit y sugrphs. Proposition 8 Thr r nonplnr grphs with tringls tht o not mit purpl-r visiility rprsnttion. An xmpl is shown in Figur 7 g h i f o p j k l m n Figur 7: A nonplnr grph G with tringl ( gjk),suh tht G / PBG. Thorm 9 Evry grph G tht n rprsnt s strong/ε/wk r visiility grph mits s wll purpl-r visiility rprsnttion (n thrfor WBG rprsnttion s wll). Proof. As vry grph tht mits th first or son rprsnttion is lso rlizl using wk visiility [21], w only hv to prov tht th lttr lss of grphs is ontin in PBG. Lt G grph rliz s wk r visiility grph. Eh no u of G is r, tht hs som visiility orriors ov n low (s Figur 8()). Osrv tht w n shrink ll th visiility orriors to still hv positiv with, yt trmining isjoint intrvls on u (Figur 8()). Aftr th shrinking, w n shil ll th rs with purpl rs on oth sis, yt without rossing th orriors of sight (Figur 8() n ()). This is lrly purpl-r visiility rprsnttion of G. ) ) ) ) Figur 8: Construting purpl-r visiility rprsnttion of r visiility grph. 5 Th lss WBG of witnss-r visiility grphs W strt this stion y osrving tht th ontntions in Lmm 1 r strit, tht is, th lsss GBG n PBG r stritly ontin in WBG. Figur 9 shows witnss-r rprsnttion of suivision of K 3,3. By Proposition 3, this grph is not in GBG sin it ontins horlss yls of lngth fiv. On th othr hn, th grph is tringl-fr n nonplnr, thrfor it is not in PBG y Lmm 6. W lim in th introution tht k-r visiility is lso gnrliz y witnss-r visiility. This is prisly wht w prov in th following thorm:

7 Mxin Confrn on Disrt Mthmtis n Computtionl Gomtry v 1 v 1 v 2 v 3 v 14 v 14 v 6 v 5 v 4 v 2 v 4 v 5 v 6 v 3 Figur 9: A witnss-r rprsnttion of suivision of K 3,3. Thorm 10 Evry grph G tht n rprsnt s r k-visiility grph mits s wll witnss-r visiility rprsnttion. Proof. Lt B th st of rs in r k-visiility rprsnttion of G; rll tht thr is n g twn two of ths if n only if thr is v-sgmnt joining th orrsponing rs tht intrsts t most k othr rs. For th sk of lrity lt us s tht, if nssry, w n moify slightly th rs in B to voi som gnris, otining gin st of rs whos orrsponing r k-visiility grph is still G. Lu us onsir vrtil lin through h npoint of ll rs in B. If for ny of ths vrtil lins l thr is st L of rs in B whos right npoint is on l, n st R of rs in B whos lft npoint is lso on l, w xtn infinitsimlly to th right ll th rs in L, without jumping ovr ny of th othr vrtil lins. Clrly th nw st of rs still inus G y r k-visiility, s nithr k-visiilitis r stroy, nor nw k-visiilitis r rt. Thrfor w n ssum, without loss of gnrlity, tht no suh ovrtilitis r prsnt in B. Lu us ll onsir th st of vrtil lins through th npoints of th rs in B. Ths lins ompos th plns into strips; insi h strip w hv stk of (portions of) rs of qul lngth, th with of th strip, pl t iffrnt hights. Lt us fous in ny of ths strips (only if it is non mpty of rs), whih w not S. Lt B S th st of rs in S n lt m th numr of rs in B S. Noti tht t this stp w isrgr rs or portions of rs outsi S. Cs 1: m k + 2. In this s w us two uxiliry vrtil lins to split S into thr vrtil strips of qul with, whih w ll sls. In th ntrl sl, twn ny two onsutiv rs, w pl grn r. Th grph WBG inu insi S is th omplt grph, whih ws xtly th sitution for r k-visiility. Cs 2: m > k + 2. Lt us ll 1,..., m th rs in B S, in orr on inrsing hight. In this s thr r m k 1 susts of k + 2 onsutiv rs in B S, nmly B 1 = { 1,..., k+2 }, B 2 = { 2,..., k+3 },..., B m k 1 = { m k 1,..., m }. Lt us suivi th strip S into 2(m k 1) + 1 = 2m 2k 1 vrtil sls, tht w not S 1,..., S 2m 2k 1. W r ling insi sl S 2i with th WBG-visiility mong th rs in B i, y pling grn r with th sm with thn S 2i twn ny two onsutiv portions of r in B i, n on stk of k + 1 r rs of th sm with just low i (ut ov i 1 ) n nothr stk of k + 1 r rs of th sm with just ov i+k+1 (ut low i+k+2 ). Th grph WBG inu insi S 2i for th rs B i is th omplt grph, n no othr WBG-visiilitis ppr in S 2i. Rpting th onstrution, w hv mimik xtly th sitution for r k-visiility using WBG-visiility, s lim. W prov nxt tht nothr intrsting lss of grphs is ontin in WBG. A irulr-r grph is th intrstion grph of st of (usully ssum to opn) rs on th irl. It hs on vrtx for h r in th st, n n g twn vry pir of vrtis orrsponing to rs tht intrst. Thorm 11 If G is irulr-r grph, thn G WBG.

8 Jorg Urruti s Fst, Ox, Mxio, Novmr 11-15, A B ) ) ) Figur 10: A witnss-r rprsnttion of irulr-r grph. Proof. (Skth) Th rliztion stps r shmtiz in th xmpl in Figur 10. W prov nxt nothr intrsting grph lss ontinmnt in WBG. Lmm 12 Lt G grph. If G is omprility grph of imnsion 2, thn G WBG. Proof. Lt X = {(x 1, y 1 ),..., (x n, y n )} th vrtx st of th ominn rliztion of G in th pln, n ssum, without loss of gnrlity, tht th vrtis hv n ll in suh wy tht x 1 < x 2 <... < x n. For i = 1,..., n, lt us now rprsnt vrtx (x i, y i ) s r in R 2 givn y th sgmnt s i with npoints (x 1, y i ) n (x n, y i ). W pl ov s i i = 1,..., n, r r ginning t x-oorint x 1 n ning t x i, n grn r ginning t x-oorint x i n ning t x n. Blow s i, w rw grn r ginning t x-oorint x 1 n ning t x i n r on ginning t x-oorint x i n ning t x n (Figur 11). It is not iffiult to s tht this is witnss-r visiility rprsnttion of G. y j y i y i y j x 1 x 2... x i... x j... x n ) x 1 x 2... x i... x j... x n ) Figur 11: Proof of Lmm 12. A prmuttion grph is th intrstion grph of fmily of lin sgmnts tht onnt two prlll lins. Equivlntly, givn prmuttion (σ 1, σ 2,..., σ n ) of th numrs 1, 2, 3,...n, prmuttion grph hs vrtx for h numr 1, 2, 3,...n n n g twn ny two numrs tht r in rvrs orr in th prmuttion, i.., n g twn ny two numrs whr th sgmnts ross in th prmuttion igrm. Th lss of prmuttion grphs hs n wily stui [8], n sin thy r hrtriz s omprility grphs unrlying prtilly orr sts tht hv imnsion t most two, w n sily infr tht thy r lso ontin in WBG.

9 Mxin Confrn on Disrt Mthmtis n Computtionl Gomtry Thorm 13 If G is prmuttion grph, thn G WBG. Givn grph G, lt G th grph rsulting from suiviing on ll gs in G. Thn w hv: Lmm 14 Lt G grph. If G WBG thn G is plnr grph. Lmm 15 K 3,3 / WBG n K 3,3 WBG. Thorm 16 Th lss of th grphs tht mit witnss-r visiility rprsnttion is not los unr omplmnttion. W onlu this stion with nothr rsult on th lss WBG, tht isrs th possiility of hrtrizing th lss y forin minors: Thorm 17 Th proprty of mitting witnss-r visiility rprsnttion is not inhrit y sugrphs. Proof. W know tht K 6 WBG from Thorm 7 n Lmm 1. On th othr hn K 3,3 is suivision of sugrph of K 6, ut w know from Lmm 15 tht K 3,3 is not in WBG. This sttls th lim. 6 Conluing rmrks Lt us summriz th proprtis w hv prov for th lss WBG of witnss-r visiility grphs: Evry grph G tht n rprsnt s strong/ε/wk r visiility grph mits s wll witnss-r visiility rprsnttion Evry grph G tht n rprsnt s r k-visiility grph mits s wll witnss-r visiility rprsnttion Th lss of intrvl grphs is ontin in th lss WBG. If G is irulr r grph, thn G WBG If G is prmuttion grph, thn G WBG Th lss of th grphs tht mit witnss-r visiility rprsnttion is not los unr omplmnttion. Th proprty of mitting witnss-r visiility rprsnttion is not inhrit y sugrphs, whih isrs th possiility of hrtrizing th grph lss WBG y forin minors. W onlu tht th grph lss WBG is vry rih n nompsss mny othr lsss. Howvr, to otin hrtriztion or rognition lgorithm ppr to quit hllnging prolms. Rfrns [1] O. Aihholzr, R. Fil, T. Hkl, A. Pilz, P. Rmos, M. vn Krvl, n B. Vogtnhur. Bloking Dluny tringultions. To ppr in Computtionl Gomtry: Thory n Applitions (pt 2012). Onlin vrsion vill t [2] B. Aronov, M. Duliu n F. Hurto, Witnss (Dluny) grphs. Computtionl Gomtry: Thory n Applitions 44(6-7): , [3] B. Aronov, M. Duliu n F. Hurto, Witnss Gril grphs. To ppr in Computtionl Gomtry: Thory n Applitions (pt 2011). Onlin vrsion t DOI: /j.omgo

10 Jorg Urruti s Fst, Ox, Mxio, Novmr 11-15, 2013 [4] B. Aronov, M. Duliu, n F. Hurto, Witnss rtngl grphs. In Algorithms n Dt Struturs Symposium (WADS), volum 6844 of Lturs Nots in Computr Sin, pgs Springr, [5] K. A. Bkr, P. Fishurn n F. S. Rorts, Prtil orrs of imnsion 2. Ntworks 2(1):11-28, [6] G. Di Bttist, P. Es, R. Tmssi, n I. G. Tollis. Grph Drwing. Prnti Hll In., Uppr Sl Rivr, NJ, [7] P. Bos, A. M. Dn, J. P. Huthinson, n T. C. Shrmr. On rtngl visiility grphs. In S. C. North, itor, Grph Drwing 1996, volum 1190 of Ltur Nots in Computr Sin, pgs 25-44, Brlin, Springr- Vrlg. [8] A. Brnstät, V.B. L, J. Spinr, Grph lsss: A survy,siam Monogrphs on Disrt Mth. Appl., Vol. 3, SIAM, Phillphi, [9] G. Chn, J. P. Huthinson, K. Kting, n J. Shn. Chrtriztions of [1,k]-r visiility trs. Eltr. J. Com. 13(1), [10] A. M. Dn, W. Evns, E. Gthnr, J. D. Lison, M. A. Sfri, n W. T. Trottr. Br k-visiility grphs. J. Grph Algorithms & Applitions, 11(1):45-59, [11] A. M. Dn, E. Gthnr, n J. P. Huthinson. Unit r-visiility lyouts of tringult polygons: Extn strt. In J. Ph, itor, Grph Drwing 2004, volum 3383 of Ltur Nots in Computr Sin, pgs , Brlin, Springr-Vrlg. [12] P. Duht, Y. Hmioun, M. L. Vrgns, n H. Mynil. Rprsnting plnr grph y vrtil lins joining iffrnt lvls. Disrt Mthmtis, 46: , [13] M. Duliu, Witnss proximity grphs n othr gomtri prolms, Ph.D. thsis, Polythni Institut of Nw York Univrsity, April [14] S. Flsnr n M. Mssow, Prmtrs of Br k-visiility Grphs. Journl of Grph Algorithms n Applitions vol. 12, no. 1, pp. 5û27 (2008). [15] M. R. Gry, D. S. Johnson, n H. C. So. An pplition of grph oloring to print iruit tsting. IEEE Trns. Ciruits n Systms, CAS-23(10):591û599, [16] P. C. Gilmor n A. J. Hoffmn, A hrtriztion of omprility grphs n of intrvl grphs, Cnin Journl of Mthmtis 16: , [17] J. P. Huthinson. Ar- n irl-visiility grphs. Austrls. J. Comin., 25: , [18] J. P. Huthinson, T. Shrmr, n A. Vin. On rprsnttions of som thiknsstwo grphs. Computtionl Gomtry, 13:161û171, [19] O. Or, Thory of grphs, Amrin Mthmtil Soity Colloquium Pulitions, Vol. XXXVIII, Amrin Mthmtil Soity, Provin, R.I., 1962 [20] M. Shlg, F. Luio, P. Mstrini, D. L, n C. Wong. A visiility prolm in VLSI lyout omption. In F. Prprt, itor, Avns in Computing Rsrh, volum 2, pgs JAI Prss In., Grnwih, CT, [21] R. Tmssi n I. G. Tollis. A unifi pproh to visiility rprsnttions of plnr grphs. Disrt Comput. Gom., 1(4): , [22] S. K. Wismth. Chrtrizing r lin-of-sight grphs. In Proings of th First Symposium of Computtionl Gomtry, pgs ACM, 1985.

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Can transitive orientation make sandwich problems easier?

Can transitive orientation make sandwich problems easier? Disrt Mthmtis 07 (007) 00 04 www.lsvir.om/lot/is Cn trnsitiv orinttion mk snwih prolms sir? Mihl Hi, Dvi Klly, Emmnull Lhr,, Christoph Pul,, CNRS, LIRMM, Univrsité Montpllir II, 6 ru A, 4 9 Montpllir C,

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

Discovering Pairwise Compatibility Graphs

Discovering Pairwise Compatibility Graphs Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut..

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Uniform 2D-Monotone Minimum Spanning Graphs

Uniform 2D-Monotone Minimum Spanning Graphs CCCG 2018, Winnipg, Cn, August 8 10, 2018 Uniorm 2D-Monoton Minimum Spnning Grphs Konstntinos Mstks Astrt A gomtri grph G is xy monoton i h pir o vrtis o G is onnt y xy monoton pth. W stuy th prolm o prouing

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

This chapter covers special properties of planar graphs.

This chapter covers special properties of planar graphs. Chptr 21 Plnr Grphs This hptr ovrs spil proprtis of plnr grphs. 21.1 Plnr grphs A plnr grph is grph whih n b rwn in th pln without ny gs rossing. Som piturs of plnr grph might hv rossing gs, but it s possibl

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids On Lol Trnsformtions in Pln Gomtri Grphs Em on Smll Gris Mnul Allns Prosnjit Bos Alfro Grí Frrn Hurto Pro Rmos Euro Rivr-Cmpo Jvir Tjl Astrt Givn two n-vrtx pln grphs G 1 = (V 1, E 1 ) n G 2 = (V 2, E

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

arxiv: v1 [math.co] 15 Dec 2015

arxiv: v1 [math.co] 15 Dec 2015 On th Plnr Split Thiknss of Grphs Dvi Eppstin, Philipp Kinrmnn, Stphn Koourov, Giuspp Liott, Ann Luiw, Au Mignn, Djyoti Monl, Hmih Vosoughpour, Su Whitsis 8, n Stphn Wismth 9 rxiv:.89v [mth.co] D Univrsity

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c O n t h x t n s i o n o f p r t i l m t r i t o t r m t r i Alin Guénoh, Bruno Llr 2, Vlimir Mkrnkov 3 Institut Mthémtiqus Luminy, 63 vnu Luminy, F-3009 MARSEILLE, FRANCE, gunoh@iml.univ-mrs.fr 2 Cntr

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players. Stphn P. Borgtti Grph Thory A lthough grph thory is on o th youngr rnhs o mthmtis, it is unmntl to numr o ppli ils, inluing oprtions rsrh, omputr sin, n soil ntwork nlysis. In this hptr w isuss th si onpts

More information

Construction 11: Book I, Proposition 42

Construction 11: Book I, Proposition 42 Th Visul Construtions of Euli Constrution #11 73 Constrution 11: Book I, Proposition 42 To onstrut, in givn rtilinl ngl, prlllogrm qul to givn tringl. Not: Equl hr mns qul in r. 74 Constrution # 11 Th

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Research Article On the Genus of the Zero-Divisor Graph of Z n

Research Article On the Genus of the Zero-Divisor Graph of Z n Intrntionl Journl o Comintoris, Artil ID 7, pgs http://x.oi.org/.1/14/7 Rsrh Artil On th Gnus o th Zro-Divisor Grph o Z n Huong Su 1 n Piling Li 2 1 Shool o Mthmtil Sins, Gungxi Thrs Eution Univrsity,

More information

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery A 43k Krnl for Plnr Dominting St using Computr-Ai Rution Rul Disovry John Torås Hlsth Dprtmnt of Informtis Univrsity of Brgn A thsis sumitt for th gr of Mstr of Sin Suprvisor: Dnil Lokshtnov Frury 2016

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

Polygons POLYGONS.

Polygons POLYGONS. Polgons PLYGNS www.mthltis.o.uk ow os it work? Solutions Polgons Pg qustions Polgons Polgon Not polgon Polgon Not polgon Polgon Not polgon Polgon Not polgon f g h Polgon Not polgon Polgon Not polgon Polgon

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

In order to learn which questions have been answered correctly: 1. Print these pages. 2. Answer the questions.

In order to learn which questions have been answered correctly: 1. Print these pages. 2. Answer the questions. Crystl Rports for Visul Stuio.NET In orr to lrn whih qustions hv n nswr orrtly: 1. Print ths pgs. 2. Answr th qustions. 3. Sn this ssssmnt with th nswrs vi:. FAX to (212) 967-3498. Or. Mil th nswrs to

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES

ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES N. JONOSKA, G. L. MCCOLM, AND A. STANINSKA Astrt. Givn st of flxil rnh juntion DNA moluls with stiky-ns (uiling loks), ll hr tils, w onsir

More information

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Hmiltonin Wlks of Phylognti Trsps Kvughn Goron, Eri For, n Kthrin St. John strt W nswr rynt s omintoril hllng on miniml

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information