Research Article On the Genus of the Zero-Divisor Graph of Z n

Size: px
Start display at page:

Download "Research Article On the Genus of the Zero-Divisor Graph of Z n"

Transcription

1 Intrntionl Journl o Comintoris, Artil ID 7, pgs Rsrh Artil On th Gnus o th Zro-Divisor Grph o Z n Huong Su 1 n Piling Li 2 1 Shool o Mthmtil Sins, Gungxi Thrs Eution Univrsity, Nnning, Gungxi 023, Chin 2 Shool o Mthmtil Sins, Gungxi Thrs Eution Univrsity, Nnning 023, Chin Corrsponn shoul rss to Huong Su; huongsu@sohu.om Riv 1 Frury 14; Apt July 14; Pulish 22 July 14 Ami Eitor: Lszlo A. Szkly Copyright 14 H. Su n P. Li. This is n opn ss rtil istriut unr th Crtiv Commons Attriution Lins, whih prmits unrstrit us, istriution, n rproution in ny mium, provi th originl work is proprly it. Lt R ommuttiv ring with intity. Th zro-ivisor grph o R, notγ(r), is th simpl grph whos vrtis r th nonzro zro-ivisors o R, n two istint vrtis x n y r link y n g i n only i xy=0. Th gnus o simpl grph G is th smllst intgr g suh tht G n m into n orintl sur S g. In this ppr, w trmin tht th gnusothzro-ivisorgrphoz n, th ring o intgrs moulo n,istwoorthr. 1. Introution This ppr onrns th zro-ivisor grphs o rings. For ommuttiv ring R, in simpl grph ll zro-ivisor grph, not y Γ(R), whos vrtis r th nonzro zroivisors o R, n two istint vrtis x n y r jnt i n only i xy = 0 in R. This inition ws irst introu y Bk in [1]. Howvr, h lt ll lmnts o R th vrtis o th grph n minly onsir th oloring o this grph. Hr our inition is th sm s in[2], whr som si proprtis o Γ(R) r stlish.th zro-ivisor grph,s wll s othr grphs o rings, is n tiv rsrh topi in th lst two s (s,.g., [3 11]). Lt us irst rll som n notions in grph thory. Lt G simpl grph, tht is, no loops n no multigs. Th gr o vrtx V G, not y g(v),isthnumr o gs o G inint with V. IV V(G), thng V is th sugrph o G otin y lting th vrtis in V n ll gs inint with thm. I V ={x V g(x) = 0 or 1}, thnwus G or th sugrph G V n ll it th rution o G.A omplt iprtit grph is iprtit grph (i.., st o grph vrtis ompos into two isjoint sts suh tht no two vrtis within th sm st r jnt) suh tht vry pir o vrtis in th two sts r jnt. Th omplt iprtit grph with prtitions o sizs m n n is not y K m,n.thomplt grph on n vrtis, not K n,isthgrphinwhihvrypiroistintvrtisis join y n g. A sur is si to o gnus g i it is topologilly homomorphi to sphr with g hnls. A grph G tht n rwn without rossings on ompt sur o gnus g, ut not on on o gnus g 1,isll grph o gnus g.wwritγ(g) orthgnusothgrphg. It is lr tht γ(g) = γ( G),whr G is th rution o G,n γ(h) γ(g) or ny sugrph H o G. Dtrmining th gnus o grph is on o th most unmntl prolms in topologil grph thory. It hs nshowntonp-ompltythomssnin[]. Svrl pprs ous on th gnr o zro-ivisor grphs. For instn, in [, 7, 13, 14], th uthors stui th plnr zroivisorgrphs(gnusqulsto0);wngtl.invstigtth gnus on zro-ivisor grphs in [11,, 1], rsptivly; n Bloomil n Wikhm trmin ll lol rings whos zro-ivisor grphs hv gnus two in [8]. In this ppr, w stuy th zro-ivisor grph o Z n, th ring o intgrs moulo n. In prtiulr, w trmin whn γ(γ(z n )) = 2 or 3. Hrwirstsummrizthrsultsoutthgnus o Γ(Z n ) rom [, Thorm.1()], [8, Thorm1],n[1, Stion ]. Thorm 1. Lt Γ(Z n ) not mpty. Thn th ollowing hol. (1) γ(γ(z n )) = 0 i n only i n {8,, 1,,,, 2p, 3p},whrp is prim. (2) γ(γ(z n )) = 1 i n only i n {,,,, 4}. (3) γ(γ(z p t)) = 2 inonlyip t =81.

2 2 Intrntionl Journl o Comintoris All rings onsir in this ppr will ommuttiv rings with intity. Lt n lmnt o ring R.Thnthprinipl il gnrt y is not y. For st A, A mns th orr o A. 2. Th Gnus o Γ(Z n ) Th ollowing two lmms r rquntly us in th proos o our min rsults. Lmm 2 ([17,Thorm.38]). γ(k n ) = {(1/)(n 3)(n 4)}, whr {x} is th lst intgr tht is grtr thn or qul to x. Lmm 3 ([17,Thorm.37]). γ(k m,n ) = {(1/4)(m 2)(n 2)}, whr{x} isthlstintgrthtisgrtrthnorqul to x. Lmm 4 ([17, Corollry.]). Suppos simpl grph G is onnt with V 3vrtis n gs. I G hs no tringls, thn γ(g) (/4) (V/2) + 1. Lmm. Lt G grph with vrtx st {u 1,u 2,u 3,u 4 ; V 1,...,V 7 ;w 1,w 2,w 3,w 4 } n th g st {(u i, V j ) 1 i 4, 1 j 7} {(V i,w j ) 1 i 3,1 j 3}.Thnγ(G) 4. Proo. Not tht thr r no tringls in G.AsG hs gs n vrtis, γ(g) 4 y Lmm 4. W irst onsir th s tht n hs only on prim ivisor. Thorm. Lt n=p t,whrp is prim n t 2.Thn γ(γ(z n )) = 3 i n only i n=4. Proo. ( ). Lt I= p t 1 {0}.Thn I = p 1.Asnytwo vrtis in I r jnt, thr xists omplt sugrph K p 1 in Γ(Z n ).Itollowsthtip 11,thnγ(Γ(Z n )) γ(γ(k )) = 4 y Lmm 2. Thror, p 7.Wpro with thr ss. Cs 1 (p = or 7). By Thorm 1, γ(γ(z 2)) = 0 n γ(γ(z 7 2)) = 1. So w n urthr ssum t 3.LtI = p t 2 p t 1 n J= p t 1 {0}.ThnI Jis mpty n I = p 2 p, J = p 1 4. As h vrtx o I is jnt to vry vrtx o J, thr xists omplt iprtit sugrph K 4, in Γ(Z n ), whih implis tht γ(γ(z n )) γ(γ(k 4, )) = y Lmm 3. Cs 2 (p = 3). From Thorm 1, whvγ(γ(z 3 2)) = 0, γ(γ(z 3 3)) = 0, nγ(γ(z 81 )) = 2. Sowmyssumt. Lt I = 3 t 3 3 t 2 n J = 3 t 2 {0}.ThnI J is mpty n I = =, J = = 8. Sin h vrtx o I is jnt to vry vrtx o J, Γ(Z n ) ontins omplt iprtit sugrph K 8,, whih implis tht γ(γ(z n )) γ(γ(k 8, )) = y Lmm 3. Cs 3 (p =2). By Thorm 1, γ(γ(z 2 t)) = 0 i t = 2, 3, 4,n γ(γ(z 2 )) = 1. I n =4, w n ssum t 7.WltI= 2 t 4 2 t 3, J= 2 t 3 {0}.Thn I = =8, J = = Figur 1: Th rution o Γ(Z 4 ). 0 8 Not tht h vrtx o I is jnt to h vrtx o J n I Jis mpty, so thr xists omplt iprtit sugrph K 7,8 in Γ(Z n ), whih implis tht γ(γ(z n )) γ(k 7,8 )=8y Lmm 3. Thror, n=4. ( ). For n=4,lti = 4 1 n J = 1 {0}. Thn I =, J = 3, n I Jis mpty. Sin h vrtx in I is jnt to h vrtx in J, thr xists omplt iprtit sugrph K 3, in Γ(Z 4 ), whih implis tht γ(γ(z 4 )) γ(k 3, ) = 3 y Lmm 3. On th othr hn,wnmthrutionoγ(z 4 ) into S 3 s shown in Figur 1. Thror, γ(γ(z 4 )) = 3. This omplts our proo. W now onsir th s tht n hs xtly two prim ivisors. Thorm 7. Lt n=p s q t,whrp<qr prims n s, t 1. Thnγ(Γ(Z n )) = 2 i n only i n {,, 44, 0}, n γ(γ(z n )) = 3 i n only i n {, 2, 4}. Proo. W irst prov tht i 2 γ(γ(z n )) 3 thn n {,, 44, 0,, 2, 4}. W thn trmin γ(γ(z n )) or h n {,, 44, 0,, 2, 4}. W pro with our sstogtthrsult. Cs 1 (s =t=1). It is lr tht Γ(Z n ) is omplt iprtit grph K p 1,q 1.Inthiss,ip=n q 11,thnK 4, is sugrph o Γ(Z n );itollowsthtγ(γ(z n )) γ(k 4, )= 4 y Lmm 3. Ip = 2 or p = 3,yThorm 1, whv γ(γ(z n )) = 0.Sop=, q=7;thtis,n=. Cs 2 (s =1n t 2). I t 3,stI= pq t 2 pq t 1 n J = q 2 {0}.ThnI Jis mpty n h vrtx in I is jnt to h vrtx in J. Iq,thn I = q 2 q, J = pq t 2 1, whih implis tht Γ(Z n ) ontins omplt iprtit sugrph K,. Thror γ(γ(z n )) γ(k, )=y Lmm 3. Iq=3n t 4,

3 Intrntionl Journl o Comintoris 3 thn I = q 2 q =, J = pq t , whih implis tht thr xists omplt iprtit sugrph K,17 in Γ(Z n ). Thror γ(γ(z n )) γ(k,17 )=y Lmm 3. Hn,in this sitution, w hv n=2 3 3 =4. Consir now t=2;thtis,n=pq 2.LtI = q pq n J= pq {0}.ThnI Jis mpty n I = pq q, J = q 1. Noti tht h vrtx in I is jnt to h vrtx in J, so thr xists omplt iprtit sugrph K pq q,q 1 in Γ(Z n ).Iq=7,thnγ(Γ(Z n )) γ(k 7p 7, ).Iq=n p=3thn γ(γ(z n )) γ(k 4, )=4.ByThorm 1,wknow γ(γ(z )) = 0.Son=0. Cs 3 (s 2 n t = 1). Lt I = p s {0}n J = q {0}. Thn I = q 1, J = p s 1,nI Jis mpty. Sin h vrtx in I is jnt to h vrtx in J, thr xists omplt iprtit sugrph K q 1,p s 1 in Γ(Z n ). Thror γ(γ(z n )) γ(k q 1,p s 1). Simply hking, w n s tht thr r only svn ss stisying th inqulity γ(k q 1,p s 1) 3;thtis,n {2 s 3,,,,, 44, 2}.By Thorm 1, whvγ(γ(z )) = 1 n γ(γ(z )) = 1. So n {2 s 3,,, 44, 2}. For n =, w st I = {8, 1,, }, J = {,,,,,, }, nk = {4,,, }. Nottht h vrtx in I is jnt to h vrtx in J,nthvrtis,, n r jnt to h vrtx in K,soyLmm, γ(γ(z )) 4. For th s n=2 s 3,yThorm 1,whvγ(Γ(Z )) = 0 n γ(γ(z )) = 1. Is = 4,thtis,n = 48,wst I = {8, 1,, }, J = {,,,,,, 42}, nk = {4,,, 44}. NotththvrtxinI is jnt to h vrtx in J, n th vrtis,, n r jnt to h vrtx in K, soylmm, γ(γ(z 48 )) 4. Is,wst I= 2 s 1 n J= {0}.Thn I = 4, J = 2 s 1 1 n I Jis mpty. Sin h vrtx in I is jnt to h vrtx in J,thrisompltiprtitsugrphK 4,2 s 1 1 in Γ(Z n ).Itthnollowsthtγ(Γ(Z n )) γ(k 4,2 s 1 1) 7 y Lmm 3. Cs 4 (s 2n t 2). W st I= p s 1 q t 1 {0}.Thn I = pq 1. Sin ny two vrtis in I r jnt, thr xists omplt sugrph K pq 1 in Γ(Z n ).Ipq 11, thn γ(γ(z n )) γ(k )=4y Lmm 2.Son=2 s 3 t or n=2 s t. I n=2 s 3 t,sti= 2 s {0} n J= 3 t {0};thn I = 3 t 1, J = 2 s 1,nI Jis mpty. Sin h vrtx in I is jnt to h vrtx in J, thr xists omplt iprtit sugrph K 2 s 1,3 t 1 in Γ(Z n ).I 1 3or 2 3,thnγ(Γ(Z n )) 4.So s=2, t=2;thtisn=.in=2 s t,similrly,thrxists omplt iprtit sugrph K 2 s 1, t 1 in Γ(Z n ). Thror, γ(γ(z n )) γ(k 2 s 1, t 1) y Lmm 3. Nowwhvprovthti2 γ(γ(z n )) 3, thnn {,, 44, 0,, 2, 4}. In th ollowing, w trmin γ(γ(z n )) or h n {,, 44, 0,, 2, 4}. It is sy to s tht Γ(Z )=K 4,.Soγ(Γ(Z )) = 2 y Lmm 3. For n=,smntionincs4ov,γ(z ) ontins sugrphk 3,8.Soγ(Γ(Z )) γ(k 3,8 )=2. Γ(Z ) n m into S 2 s shown in Figur 2.Soγ(Γ(Z )) = Figur 2: Th rution o Γ(Z ). Sin th rutions o th grphs Γ(Z 44 ) n Γ(Z 2 ) r K 3, n K 3,,rsptivly,whvγ(Γ(Z 44 )) = γ(k 3, )=2 n γ(γ(z 2 )) = γ(k 3, )=3,rsptivly. For n = 0,smntioninCs2ov,whv γ(γ(z n )) γ(k 4, ) = 2 y Lmm 3. Wnmth rution o th grph Γ(Z 0 ) into S 2 s shown in Figur 3. Thus, γ(γ(z 0 )) = 2. For n=,wsti = {0} n J = {0}.Thn I = 4, J = 8,nI Jis mpty. Sin h vrtx in I is jnt to h vrtx in J, thr is omplt iprtit sugrph K 4,8 in Γ(Z ).Itthnollowsthtγ(Γ(Z )) γ(k 4,8 )=3.Onth othr hn, w n m th rution o th grph Γ(Z ) into S 3 s shown in Figur 4.Thus,γ(Γ(Z )) = 3. For n=4,lti = n J= {0}.Thn I =, J =, ni Jis mpty. Sin h vrtx in I is jnt to h vrtx in J, thr xists omplt iprtit sugrph K, in Γ(Z 4 ). Thror γ(γ(z 4 )) γ(k, )=3. On th othr hn, w n m th grph Γ(Z 4 ) into S 3 s shown in Figur. This omplts th proo. Th inl s is tht n hs mor thn two prim ivisors. Thorm 8. Lt n=p 1 1 p 2 2 p s s (s 3), whr p 1 <p 2 < < p s r prims. Thn γ(γ(z n )) = 2 i n only i n=, n γ(γ(z n )) = 3 i n only i n=42. Proo. Lt I = p 1 1 p 2 2 {0}n J = n/p 1 1 p 2 2 {0}. Thn I = p 3 3 p s s 1, J = p 1 1 p n I Jis mpty; morovr, vry vrtx in I is jnt to h vrtx in J. Thus, thr xists omplt iprtit sugrph K I, J in Γ(Z n ).Itthnollowsthtp 3 3 p s s 7s γ(γ(z n )) 3.So ithr n= or n= For th ormr s, st I= {0}n J = {0}; thn I = 4, J = n I Jis mpty. Not tht h vrtx in I is jnt to h vrtx in J, so thr xists

4 4 Intrntionl Journl o Comintoris Figur 3: Th rution o Γ(Z 0 ). Figur : Th rution o Γ(Z 4 ) Figur 4: Th rution o Γ(Z ). 3 Figur : Th rution o Γ(Z ). omplt iprtit sugrph K 4, in Γ(Z n ).I , thnγ(γ(z n )) 4 y Lmm 3. So 1 = 2 =1;thtis, n=. Lt I = {0} n J= {0}.Thn I =, J = 4,n I Jis mpty. Sin h vrtx in I is jnt to h vrtx in J, thr xists omplt iprtit sugrph K 4, in Γ(Z ). It thn ollows tht γ(γ(z )) γ(k 4, )=2. On th othr hn,wnmγ(z ) into S 2 s shown in Figur, so γ(γ(z )) = 2. For th lttr s, with similr rgumnt ov, w hv n=42.lti = 7 {0} n J= {0}.Thn I =, J =, ni Jis mpty. Sin h vrtx in I is jnt to h vrtx in J, thr xists omplt iprtit sugrph K, in Γ(Z 42 ), whih implis tht γ(γ(z 42 )) γ(k, )=3. On th othr hn, w n m Γ(Z 42 ) into S 3 s shown in Figur 7,soγ(Γ(Z 42 )) = 3. This omplts our proo. Now w hv ompltly trmin whn γ(γ(z n )) = 2 or 3. W summriz th rsult y th ollowing thorm. Thorm. (1) γ(γ(z n )) = 2 i n only i n {,,, 44, 0, 81}. (2) γ(γ(z n )) = 3 i n only i n {42,, 2, 4, 4}.

5 Intrntionl Journl o Comintoris Conlit o Intrsts Figur 7: Th rution o Γ(Z 42 ). Th uthors lr tht thr is no onlit o intrsts rgring th pulition o this ppr. [8] N. Bloomil n C. Wikhm, Lol rings with gnus two zro ivisor grph, Communitions in Algr, vol. 38, no. 8, pp. 2 0,. [] Q. Liu n T. Wu, On zro-ivisor grphs whos ors ontin no rtngls, Algr Colloquium, vol.,no.4,pp.7 84, 11. [] J. Skowronk-Kziów, Som igrphs rising rom numr thory n rmrks on th zro-ivisor grph o th ring Z n, Inormtion Prossing Lttrs,vol.8,no.3,pp.1 1,08. [11] H.-J. Wng, Zro-ivisor grphs o gnus on, Journl o Algr,vol.4,no.2,pp. 78,0. [] C. Thomssn, Th grph gnus prolm is NP-omplt, Journl o Algorithms, vol., no. 4, pp. 8 7, 18. [13] N. O. Smith, Plnr zro-ivisor grphs, Intrntionl Journl o Commuttiv Rings,vol.2,pp.177 8,03. [14] N. O. Smith, Ininit plnr zro-ivisor grphs, Communitions in Algr,vol.,no.1,pp.171 0,07. [] H. Ching-Hsih, N. O. Smith, n H. Wng, Commuttiv rings with toroil zro-ivisor grphs, Houston Journl o Mthmtis,vol.,no.1,pp.1 31,. [1] C. Wikhm, Clssiition o rings with gnus on zroivisor grphs, Communitions in Algr, vol.,no.2,pp. 3, 08. [17] A. T. Whit, Grphs, Groups n Surs, North-Holln Mthmtis Stuis, North-Holln, Amstrm, Th Nthrlns, 184. Aknowlgmnts Th uthors thnk th nonymous rrs or thir vry rul ring o th ppr n or thir mny vlul ommntswhihimprovthppr.thisworkwssupporty th Ntionl Nturl Sin Fountion o Chin (1110) n th Gungxi Eution Committ Rsrh Fountion (LX14223). Rrns [1] I. Bk, Coloring o ommuttiv rings, Journl o Algr, vol. 11, no. 1, pp. 8 22, 188. [2] D. F. Anrson n P. S. Livingston, Th zro-ivisor grph o ommuttivring, Journl o Algr,vol.7,no.2,pp , 1. [3] D. F. Anrson, M. C. Axtll, n J. A. Stikls Jr., Zro-ivisor grphs, in ommuttiv rings, in Commuttiv Algr, Nothrin n Non-Nothrin Prsptivs,pp.23,Springr,Nw York, NY, USA, 11. [4] M. C. Axtll, N. Bth, n J. A. Stikls, Cut vrtis in zroivisor grphs o init ommuttiv rings, Communitions in Algr,vol.3,no.,pp.7,11. [] D. F. Anrson, A. Frzir, A. Luv, n P. S. Livingston, Th zro-ivisor grph o ommuttiv ring, II, Ltur Nots in Pur n Appli Mthmtis, vol. 2, pp. 1 72, 01. [] S. Akri, H. R. Mimni, n S. Yssmi, Whn zroivisor grph is plnr or omplt r-prtit grph, Journl o Algr,vol.0,no.1,pp.1 0,03. [7] R. Blsho n J. Chpmn, Plnr zro-ivisor grphs, Journl o Algr,vol.31,no.1,pp ,07.

6 Avns in Oprtions Rsrh Avns in Dision Sins Journl o Appli Mthmtis Algr Journl o Proility n Sttistis Th Sintii Worl Journl Intrntionl Journl o Dirntil Equtions Sumit your mnusripts t Intrntionl Journl o Avns in Comintoris Mthmtil Physis Journl o Complx Anlysis Intrntionl Journl o Mthmtis n Mthmtil Sins Mthmtil Prolms in Enginring Journl o Mthmtis Disrt Mthmtis Journl o Disrt Dynmis in Ntur n Soity Journl o Funtion Sps Astrt n Appli Anlysis Intrntionl Journl o Journl o Stohsti Anlysis Optimiztion

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM Fr Est Journl o Mthtil Sins (FJMS) Volu 6 Nur Pgs 8- Pulish Onlin: Sptr This ppr is vill onlin t http://pphjo/journls/jsht Pushp Pulishing Hous DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF MATRICES

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Two Approaches to Analyzing the Permutations of the 15 Puzzle

Two Approaches to Analyzing the Permutations of the 15 Puzzle Two Approhs to Anlyzin th Prmuttions o th 15 Puzzl Tom How My 2017 Astrt Th prmuttions o th 15 puzzl hv n point o ous sin th 1880 s whn Sm Lloy sin spin-o o th puzzl tht ws impossil to solv. In this ppr,

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

arxiv: v1 [math.co] 15 Dec 2015

arxiv: v1 [math.co] 15 Dec 2015 On th Plnr Split Thiknss of Grphs Dvi Eppstin, Philipp Kinrmnn, Stphn Koourov, Giuspp Liott, Ann Luiw, Au Mignn, Djyoti Monl, Hmih Vosoughpour, Su Whitsis 8, n Stphn Wismth 9 rxiv:.89v [mth.co] D Univrsity

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery A 43k Krnl for Plnr Dominting St using Computr-Ai Rution Rul Disovry John Torås Hlsth Dprtmnt of Informtis Univrsity of Brgn A thsis sumitt for th gr of Mstr of Sin Suprvisor: Dnil Lokshtnov Frury 2016

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

Discovering Pairwise Compatibility Graphs

Discovering Pairwise Compatibility Graphs Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut..

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Witness-Bar Visibility Graphs

Witness-Bar Visibility Graphs Mxin Confrn on Disrt Mthmtis n Computtionl Gomtry Witnss-Br Visiility Grphs Crmn Cortés Frrn Hurto Alrto Márquz Jsús Vlnzul Astrt Br visiility grphs wr introu in th svntis s mol for som VLSI lyout prolms.

More information

Can transitive orientation make sandwich problems easier?

Can transitive orientation make sandwich problems easier? Disrt Mthmtis 07 (007) 00 04 www.lsvir.om/lot/is Cn trnsitiv orinttion mk snwih prolms sir? Mihl Hi, Dvi Klly, Emmnull Lhr,, Christoph Pul,, CNRS, LIRMM, Univrsité Montpllir II, 6 ru A, 4 9 Montpllir C,

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

Uniform 2D-Monotone Minimum Spanning Graphs

Uniform 2D-Monotone Minimum Spanning Graphs CCCG 2018, Winnipg, Cn, August 8 10, 2018 Uniorm 2D-Monoton Minimum Spnning Grphs Konstntinos Mstks Astrt A gomtri grph G is xy monoton i h pir o vrtis o G is onnt y xy monoton pth. W stuy th prolm o prouing

More information

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundamental Algorithms for System Modeling, Analysis, and Optimization Fundmntl Algorithms for Sstm Modling, Anlsis, nd Optimiztion Edwrd A. L, Jijt Rohowdhur, Snjit A. Sshi UC Brkl EECS 144/244 Fll 2011 Copright 2010-11, E. A. L, J. Rohowdhur, S. A. Sshi, All rights rsrvd

More information

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS Intrntionl Journl o Sintii nd Rrh Publition Volum, Iu 5, M ISSN 5-353 APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS S.M.Khirnr, R.M.Pi*, J.N.Slun** Dprtmnt o Mthmti Mhrhtr

More information

Combinatorial Networks Week 1, March 11-12

Combinatorial Networks Week 1, March 11-12 1 Nots on March 11 Combinatorial Ntwors W 1, March 11-1 11 Th Pigonhol Principl Th Pigonhol Principl If n objcts ar placd in hols, whr n >, thr xists a box with mor than on objcts 11 Thorm Givn a simpl

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Treemaps for Directed Acyclic Graphs

Treemaps for Directed Acyclic Graphs Trmps or Dirt Ayli Grphs Vssilis Tsirs, Soi Trintilou, n Ionnis G. Tollis Institut o Computr Sin, Fountion or Rsrh n Thnology-Hlls, Vssilik Vouton, P.O. Box 1385, Hrklion, GR-71110 Gr {tsirs,strint,tollis}@is.orth.gr

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

A comparison of routing sets for robust network design

A comparison of routing sets for robust network design A omprison of routing sts for roust ntwork sign Mihl Poss Astrt Dsigning ntwork l to rout st of non-simultnous mn vtors is n importnt prolm rising in tlommunitions. Th prolm n sn two-stg roust progrm whr

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Formal Concept Analysis

Formal Concept Analysis Forml Conpt Anlysis Conpt intnts s losd sts Closur Systms nd Implitions 4 Closur Systms 0.06.005 Nxt-Closur ws dvlopd y B. Gntr (984). Lt M = {,..., n}. A M is ltilly smllr thn B M, if B A if th smllst

More information

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c O n t h x t n s i o n o f p r t i l m t r i t o t r m t r i Alin Guénoh, Bruno Llr 2, Vlimir Mkrnkov 3 Institut Mthémtiqus Luminy, 63 vnu Luminy, F-3009 MARSEILLE, FRANCE, gunoh@iml.univ-mrs.fr 2 Cntr

More information

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players. Stphn P. Borgtti Grph Thory A lthough grph thory is on o th youngr rnhs o mthmtis, it is unmntl to numr o ppli ils, inluing oprtions rsrh, omputr sin, n soil ntwork nlysis. In this hptr w isuss th si onpts

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

(4, 2)-choosability of planar graphs with forbidden structures

(4, 2)-choosability of planar graphs with forbidden structures 1 (4, )-oosility o plnr rps wit orin struturs 4 5 Znr Brikkyzy 1 Cristopr Cox Mil Diryko 1 Kirstn Honson 1 Moit Kumt 1 Brnr Liiký 1, Ky Mssrsmit 1 Kvin Moss 1 Ktln Nowk 1 Kvin F. Plmowski 1 Drrik Stol

More information

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Hmiltonin Wlks of Phylognti Trsps Kvughn Goron, Eri For, n Kthrin St. John strt W nswr rynt s omintoril hllng on miniml

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW Smll Pth Quiz ML n Dtss Cn you giv n xprssion tht rturns th lst / irst ourrn o h istint pri lmnt? Ltur 8 Strming Evlution: how muh mmory o you n? Sstin Mnth NICTA n UNSW

More information