Outline. Binary Tree

Size: px
Start display at page:

Download "Outline. Binary Tree"

Transcription

1 Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn Dpt. o Computr Sins Univrsity o Slzur 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or th Eit Distn Complxity Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 Outlin Binry Brnh Distn Binry Rprsnttion o Tr Binry Tr Binry Brnh Distn Binry Rprsnttion o Tr 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or th Eit Distn Complxity In inry tr h no hs t most two hilrn; lt hil n riht hil r istinuish: no n hv riht hil without hvin lt hil; Nottion: T B = (N, E l, E r ) T B nots inry tr N r th nos o th inry tr E l n E r r th s to th lt n riht hilrn, rsptivly Full inry tr: inry tr h no hs xtly zro or two hilrn. Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28

2 Exmpl: Binry Tr Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnh Distn Binry Rprsnttion o Tr Binry Rprsnttion o Tr Two irnt inry trs: T B = (N, E l, E r ) T B1 = ({,,,,,, }, {(, ), (, ), (, ), (, )}, {(, ), (, )}) T B2 = ({,,,,,, }, {(, ), (, ), (, )}, {(, ), (, ), (, )}) T B1 A ull inry tr: h T B2 i Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 Binry Brnh Distn Binry Rprsnttion o Tr Exmpl: Binry Tr Trnsormtion Binry tr trnsormtion: (i) link ll nihorin silins in tr with s (ii) lt ll prnt-hil s xpt th to th irst hil Trnsormtion mintins ll inormtion strutur inormtion Oriinl tr n ronstrut rom th inry tr: lt rprsnts prnt-hil rltionships in th oriinl tr riht s rprsnts riht-silin rltionship in th oriinl tr Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 Binry Brnh Distn Binry Rprsnttion o Tr Normliz Binry Tr Rprsnttion Rprsnt tr T s inry tr: T inry rprsnttion o T W xtn th inry tr with null nos s ollows: null no or h missin lt hil o non-null no null no or h missin riht hil o non-null no Not: L nos t two null-hilrn. Th rsultin normliz inry rprsnttion is ull inry tr ll non-null nos hv two hilrn ll lvs r null-nos (n ll null-nos r lvs) Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28

3 Binry Brnh Distn Exmpl: Normliz Binry Tr Binry Rprsnttion o Tr Outlin Binry Brnh Distn Binry Brnhs Trnsormin T to th normliz inry tr B(T): T B(T) 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or th Eit Distn Complxity Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 Binry Brnh Binry Brnh Distn Binry Brnhs Binry Brnh Distn Binry Brnhs Binry Brnhs o Trs n Dtsts A inry rnh BiB(v) is sutr o th normliz inry tr B(T) onsistin o non-null no v n its two hilrn Exmpl: BiB() = ({,, }, {(, )}, {(, )}) BiB() = ({, 1, 2 }, {(, 1 )}, {(, 2 )}) 1 Binry rnhs n sriliz s strins: BiB(v) = ({v,, }, {(v, )}, {(v, )}) λ(v) λ() λ() w n sort ths strins ( > λ(v) or ll non-null nos v) Binry rnh sts: BiB(T) is th st o ll inry rnhs o B(T) BiB(S) = T S BiB(T) is th st o ll inry rnhs o tst S BiB sort (S) is th vtor o sort sriliz strins o BiB(S) Not: nos r uniqu in th tr, thus inry rnhs r uniqu lls r not uniqu, thus th sriliz inry rnhs r not uniqu Althouh th two null nos hv intil lls (), thy r irnt nos. W mphsiz this y showin thir IDs in susript. Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28

4 Binry Brnh Distn Binry Brnhs Exmpl: Binry Brnhs o Trs n Dtsts Binry Brnh Vtor Binry Brnh Distn Binry Brnhs T 1 T BiB( 1 ) BiB( 4 ): BiB( 1 ) = ({ 1, 2, 3 }, {( 1, 2 )}, {( 1, 3 )}) BiB( 4 ) = ({ 4, 5, 6 }, {( 4, 5 )}, {( 4, 6 )}) Sriliztion o oth, BiB( 1 ) n BiB( 2 ), is intil: Sort vtor o sriliz strins o BiB(S), whr S = {T 1, T 2 }: BiB sort (S) = (,,,,,,,,, ) Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 Th inry rnh vtor BBV (T) is rprsnttion o th inry rnh st BiB(T) Constrution o th inry rnh vtor BBV (T): omput BiB sort (S) (sriliz n sort BiB(S)) i is th i-th sriliz inry rnh in sort orr ( i = BiB sort (S)[i]) BBV (T)[i]) is th numr o inry rnhs in B(T) tht sriliz to i Not: BBV (T)[i] is zro i i os not ppr in BiB(T) Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 Binry Brnh Distn Exmpl: Binry Brnh Vtors Binry Brnhs Outlin Binry Brnh Distn Lowr Boun or th Eit Distn T 1 T2 S = {T 1, T 2 } is th t st BiB sort (S) is th vtor o sort sriliz strins o BiB(S) BBV (T i ) is th inry rnh vtor o T i th vtor o sriliz strins n th inry rnh vtors r: BiB sort (S) BBV (T 1 ) BBV (T 2 ) Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or th Eit Distn Complxity Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28

5 Binry Brnh Distn Binry Brnh Distn [YKT05] Lowr Boun or th Eit Distn Binry Brnh Distn Exmpl: Binry Brnh Distn Lowr Boun or th Eit Distn Dinition (Binry Brnh Distn) Lt BBV (T) = ( 1,..., k ) n BBV (T ) = ( 1,..., k ) inry rnh vtors o trs T n T, rsptivly. Th inry rnh istn o T n T is k δ B (T, T ) = i i. i=1 Intuition: W ount th inry rnhs tht o not mth twn th two trs. W omput th inry rnh istn twn T 1 n T 2 : T 1 T 2 Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 Binry Brnh Distn Lowr Boun or th Eit Distn Exmpl: Binry Brnh Distn Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 Binry Brnh Distn Lowr Boun or th Eit Distn Exmpl: Binry Brnh Distn Th normliz inry tr rprsnttions r: B (T 1 ) B (T 2 ) Th inry rnh vtors o T 1 n T 2 r: BiB sort (S) BBV (T 1 ) BBV (T 2 ) Th inry rnh istn is δ B (T 1, T 2 ) = 10 i=1 1,i 2,i = = 9, whr 1,i n 2,i r th i-th imnsion o th vtors BBV (T 1 ) n BBV (T 2 ), rsptivly. Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28

6 Binry Brnh Distn Lowr Boun Thorm Lowr Boun or th Eit Distn Binry Brnh Distn Lowr Boun or th Eit Distn Proo Skth: Illustrtion or Rnm Thorm (Lowr Boun) Lt T n T two trs. I th tr it istn twn T n T is δ t (T, T ), thn th inry rnh istn twn thm stisis δ B (T, T ) 5 δ t (T, T ). Proo (Skth Full Proo in [YKT05]). Eh no v pprs in t most two inry rnhs. Rnm: Rnmin no uss t most two inry rnhs in h tr to mismth. Th sum is 4. Similr rtionl or insrt n its omplmntry oprtion lt (t most 5 inry rnhs mismth). Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 trnsorm T 1 to T 2 : rn(, x) inry trs B(T 1 ) n B(T 2 ) x Two inry rnhs (, ) xist only in B(T 1 ) Two inry rnhs (x, x) xist only in B(T 2 ) δ t (T 1, T 2 ) = 1 (1 rnm) δ B (T 1, T 2 ) = 4 (4 inry rnhs irnt) x Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 Binry Brnh Distn Proo Skth: Illustrtion or Insrt Lowr Boun or th Eit Distn Proo Skth Binry Brnh Distn Lowr Boun or th Eit Distn trnsorm T 1 to T 2 : ins(x,, 2, 3) inry trs B(T 1 ) n B(T 2 ) x x Two inry rnhs (, ) xist only in B(T 1 ) Tr inry rnhs (x,, x) xist only in B(T 2 ) δ t (T 1, T 2 ) = 1 (1 insrtion) δ B (T 1, T 2 ) = 5 (5 inry rnhs irnt) Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 In nrl it n shown tht Rnm hns t most 4 inry rnhs Insrt hns t most 5 inry rnhs Dlt hns t most 5 inry rnhs Eh it oprtion hns t most 5 inry rnhs, thus δ B (T, T ) 5 δ t (T, T ). Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28

7 Outlin Binry Brnh Distn Complxity Binry Brnh Distn Complxity Complxity: Binry Brnh Distn 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or th Eit Distn Complxity Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 Binry Brnh Distn Complxity Improvin th Tim Complxity with Hsh Funtion Comput th istn twn two trs o siz O(n): (S = {T 1, T 2 }, n = mx{ T 1, T 2 }) Constrution o th inry rnh vtors BBV (T 1 ) n BBV (T 2 ): 1. BiB(S) omput th inry rnhs o T 1 n T 2 : O(n) tim n sp (trvrs T 1 n T 2 ) 2. BiB sort (S) sort sriliz inry rnhs o BiB(S): O(n lo n) tim n O(n) sp 3. onstrut BBV (T 1 ) n BBV (T 2 ): () trvrs ll inry rnhs: O(n) tim n sp () or h inry rnh in position i in BiB sort(s): O(n lo n) tim (inry srh in BiB sort(s) or n inry rnhs) () BBV (T)[i] is inrmnt: O(1) Computin th istn: th two inry rnh vtors r o siz O(n) omputin th istn hs tim omplxity O(n) (sutrtin two inry rnh vtors) Th ovrll omplxity is O(n lo n) tim n O(n) sp. Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 Binry Brnh Distn Complxity or Similrity Joins Complxity Not: Improvmnt usin hsh untion: w ssum hsh untion tht mps th O(n) inry rnhs to O(n) ukts without ollision w o not sort BiB(S) position i in th vtor BBV (T) is omput usin th hsh untion O(n) tim (inst o O(n lo n)) n O(n) sp In th ollowin w ssum th sort lorithm with O(n lo n) runtim. Join two sts with N trs h (tr siz: n): Comput Binry Brnh Vtors (BBVs): O(Nn lo(nn)) tim, O(N 2 n) sp BBVs r o siz O(Nn) tim: sort O(Nn) inry rnhs / O(Nn) inry srhs in BBVs sp: O(N) BBVs must stor Comput Distns: O(N 3 n) tim omputin th istn twn two trs hs O(Nn) tim omplxity (sutrtin two inry rnh vtors) O(N 2 ) istn omputtions rquir Ovrl Complxity: O(N 3 n + Nn lo n) 2 tim n O(N 2 n) sp 2 O(N 3 n + Nn lo(nn)) = O(N 3 n + Nn lo N + Nn lo n) = O(N 3 n + Nn lo n) Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28 Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28

8 Rui Yn, Pnos Klnis, n Anthony K. H. Tun. Similrity vlution on tr-strutur t. In Proins o th ACM SIGMOD Intrntionl Conrn on Mnmnt o Dt, ps , Bltimor, Mryln, USA, Jun ACM Prss. Austn (Univ. Slzur) Similrity Srh Wintrsmstr 2016/ / 28

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs Orniztion Domintors, ontrol-pnn n SSA orm Domintor rltion o CFGs postomintor rltion Domintor tr Computin omintor rltion n tr Dtlow lorithm Lnur n Trjn lorithm Control-pnn rltion SSA orm Control-low rphs

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

Yehuda Lindell Bar-Ilan University

Yehuda Lindell Bar-Ilan University Wintr Shool on Sur Computtion n iiny Br-Iln Unirsity, Isrl 3//2-/2/2 Br Iln Unirsity Dpt. o Computr Sin Yhu Linll Br-Iln Unirsity Br Iln Unirsity Dpt. o Computr Sin Protool or nrl sur to-prty omputtion

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Round 7: Graphs (part I)

Round 7: Graphs (part I) Roun 7: Grphs (prt I) Tommi Junttil Alto Univrsity Shool o Sin Dprtmnt o Computr Sin CS-A40 Dt Struturs n Alorithms Autumn 207 Tommi Junttil (Alto Univrsity) Roun 7 CS-A40 / Autumn 207 / 55 Topis: Grphs

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

10/30/12. Today. CS/ENGRD 2110 Object- Oriented Programming and Data Structures Fall 2012 Doug James. DFS algorithm. Reachability Algorithms

10/30/12. Today. CS/ENGRD 2110 Object- Oriented Programming and Data Structures Fall 2012 Doug James. DFS algorithm. Reachability Algorithms 0/0/ CS/ENGRD 0 Ojt- Orint Prormmin n Dt Strutur Fll 0 Dou Jm Ltur 9: DFS, BFS & Shortt Pth Toy Rhility Dpth-Firt Srh Brth-Firt Srh Shortt Pth Unwiht rph Wiht rph Dijktr lorithm Rhility Alorithm Dpth Firt

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

A Space-Economic Representation of Transitive Closures in Relational Databases

A Space-Economic Representation of Transitive Closures in Relational Databases A Sp-Eonomi Rprsnttion o Trnsitiv Closurs in Rltionl Dtss Ynjun Chn* Dpt. Appli Computr Sin, Univrsity o Winnip, 515 Port Av. Winnip, Mnito, Cn R3B E9 yhn@uwinnip. ABSTRACT A omposit ojt rprsnt s irt rph

More information

Multi-Prefix Trie: a New Data Structure for Designing Dynamic Router-Tables

Multi-Prefix Trie: a New Data Structure for Designing Dynamic Router-Tables 1 Multi-Prix Tri: Nw Dt Strutur or Dsigning Dynmi Routr-Tls Sun-Yun Hsih Mmr, IEEE, Yi-Ling Hung, n Ying-Chi Yng Astrt IP looup ts th sp o n inoming pt n th tim rquir to trmin whih output port th pt shoul

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information

Generating Balanced Parentheses and Binary Trees by Prefix Shifts

Generating Balanced Parentheses and Binary Trees by Prefix Shifts Gnrtin Bln Prnthss n Binr Trs Pri Shits Frnk usk 1 Aron Willims 2 Dprtmnt o Computr Sin Univrsit o Vitori, Vitori BC, V8W 3P6, Cn, 1 UL: http://www.s.uvi./~rusk 2 Emil: hron@uvi. Astrt W show tht th st

More information

PAPER Efficient Analyzing General Dominant Relationship based on Partial Order Models

PAPER Efficient Analyzing General Dominant Relationship based on Partial Order Models PAPER Eiint Anlyzing Gnrl Dominnt Rltionship s on Prtil Orr Mols Zhnglu YANG, Lin LI, Nonmmrs, n Msru KITSUREGAWA, Fllow SUMMARY Skylin qury is vry importnt us it is th sis o mny pplitions,.g., ision mking,

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method:

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method: Dinition: GREEDY TECHNIQUE Gry thniqu is gnrl lgorithm sign strtgy, uilt on ollowing lmnts: onigurtions: irnt hois, vlus to in ojtiv untion: som onigurtions to ithr mximiz or minimiz Th mtho: Applil to

More information

Construction 11: Book I, Proposition 42

Construction 11: Book I, Proposition 42 Th Visul Construtions of Euli Constrution #11 73 Constrution 11: Book I, Proposition 42 To onstrut, in givn rtilinl ngl, prlllogrm qul to givn tringl. Not: Equl hr mns qul in r. 74 Constrution # 11 Th

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

Overview. Usages of Fault Simulators. Problem and Motivation. Alternatives and Their Limitations. VLSI Design Verification and Testing

Overview. Usages of Fault Simulators. Problem and Motivation. Alternatives and Their Limitations. VLSI Design Verification and Testing VLSI Dsin Vriiction n Tstin Fult Simultion Mohmm Thrnipoor Elctricl n Computr Eninrin Univrsity o Conncticut Ovrviw Prolm n motivtion Fult simultion lorithms Sril Prlll Ductiv Concurrnt Othr lorithms Rnom

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SI TIS SOWN OS TOP SPRIN INRS INNR W TS R OIN OVR S N OVR OR RIIITY. R IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+) TRNSIVR. R. RR S OPTION (S T ON ST ) TURS US WIT OPTION T SINS. R (INSI TO

More information

Decimals DECIMALS.

Decimals DECIMALS. Dimls DECIMALS www.mthltis.o.uk ow os it work? Solutions Dimls P qustions Pl vlu o imls 0 000 00 000 0 000 00 0 000 00 0 000 00 0 000 tnths or 0 thousnths or 000 hunrths or 00 hunrths or 00 0 tn thousnths

More information

SAMPLE PAGES. Primary. Primary Maths Basics Series THE SUBTRACTION BOOK. A progression of subtraction skills. written by Jillian Cockings

SAMPLE PAGES. Primary. Primary Maths Basics Series THE SUBTRACTION BOOK. A progression of subtraction skills. written by Jillian Cockings PAGES Primry Primry Mths Bsis Sris THE SUBTRACTION BOOK A prorssion o sutrtion skills writtn y Jillin Cokins INTRODUCTION This ook is intn to hlp sur th mthmtil onpt o sutrtion in hilrn o ll s. Th mstry

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP MO: PSM SY SI TIS SOWN SPRIN INRS OS TOP INNR W TS R OIN OVR S N OVR OR RIIITY. R TURS US WIT OPTION T SINS. R (UNOMPRSS) RR S OPTION (S T ON ST ) IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+)

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Hmiltonin Wlks of Phylognti Trsps Kvughn Goron, Eri For, n Kthrin St. John strt W nswr rynt s omintoril hllng on miniml

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

3, 4 2, 4 4, 4 0, 4 1, 4 1, 3 4, 3 0, 3 2, 3 3, 3 1, 2 2, 2 4, 2 0, 2 3, 2 2, 1 0, 1 1, 1 3, 1 4, 1 2, 0 3, 0 4, 0 1, 0 0, 0

3, 4 2, 4 4, 4 0, 4 1, 4 1, 3 4, 3 0, 3 2, 3 3, 3 1, 2 2, 2 4, 2 0, 2 3, 2 2, 1 0, 1 1, 1 3, 1 4, 1 2, 0 3, 0 4, 0 1, 0 0, 0 00 Conrn on Inormtion Sins n Systms, Printon Univrsity, Mrh 0, 00 Cpity Provisionin n Filur Rovry or Stllit Constlltions Jun Sun n Eytn Moino 1 Lortory or Inormtion n Dision Systms Msshustts Institut o

More information

MAT 403 NOTES 4. f + f =

MAT 403 NOTES 4. f + f = MAT 403 NOTES 4 1. Fundmentl Theorem o Clulus We will proo more generl version o the FTC thn the textook. But just like the textook, we strt with the ollowing proposition. Let R[, ] e the set o Riemnn

More information

CMSC 451: Lecture 2 Graph Basics Thursday, Aug 31, 2017

CMSC 451: Lecture 2 Graph Basics Thursday, Aug 31, 2017 Dv Mount CMSC 45: Ltur Grph Bsis Thursy, Au, 07 Rin: Chpt. in KT (Klinr n Tros) n Chpt. in DBV (Dsupt, Ppimitriou, n Vzirni). Som o our trminoloy irs rom our txt. Grphs n Dirphs: A rph G = (V, E) is strutur

More information

Data Structures (INE2011)

Data Structures (INE2011) Dt Strutures (INE2011) Eletronis nd Communition Engineering Hnyng University Hewoon Nm Leture 7 INE2011 Dt Strutures 1 Binry Tree Trversl Mny inry tree opertions re done y perorming trversl o the inry

More information

TURFGRASS DISEASE RESEARCH REPORT J. M. Vargas, Jr. and R. Detweiler Department of Botany and Plant Pathology Michigan State University

TURFGRASS DISEASE RESEARCH REPORT J. M. Vargas, Jr. and R. Detweiler Department of Botany and Plant Pathology Michigan State University I TURFGRASS DISEASE RESEARCH REPORT 9 J. M. Vrgs, Jr. n R. Dtwilr Dprtmnt f Btny n Plnt Pthlgy Mihign Stt Univrsity. Snw Ml Th 9 snw ml fungii vlutin trils wr nut t th Byn Highln Rsrt, Hrr Springs, Mihign

More information

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then:

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then: Assinmnts: DFA Minimiztion CMPU 24 Lnu Tory n Computtion Fll 28 Assinmnt 3 out toy. Prviously: Computtionl mols or t rulr lnus: DFAs, NFAs, rulr xprssions. Toy: How o w in t miniml DFA or lnu? Tis is t

More information

Treemaps for Directed Acyclic Graphs

Treemaps for Directed Acyclic Graphs Trmps or Dirt Ayli Grphs Vssilis Tsirs, Soi Trintilou, n Ionnis G. Tollis Institut o Computr Sin, Fountion or Rsrh n Thnology-Hlls, Vssilik Vouton, P.O. Box 1385, Hrklion, GR-71110 Gr {tsirs,strint,tollis}@is.orth.gr

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Constructing Minimal Spanning/Steiner Trees. with Bounded Path Length. Department of EE-Systems

Constructing Minimal Spanning/Steiner Trees. with Bounded Path Length. Department of EE-Systems Construting Miniml pnning/tinr Trs with Boun Pth Lngth Iksoo Pyo Jwon Oh n Mssou Prm JF1-61 Dprtmnt o EE-ystms Intl Corporttion Univrsity o outhrn Cliorni Hillsoro, OR 9714 Los Angls, CA 90089 Astrt This

More information

CSI35 Chapter 11 Review

CSI35 Chapter 11 Review 1. Which of th grphs r trs? c f c g f c x y f z p q r 1 1. Which of th grphs r trs? c f c g f c x y f z p q r . Answr th qustions out th following tr 1) Which vrtx is th root of c th tr? ) wht is th hight

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Layout Decomposition for Triple Patterning Lithography

Layout Decomposition for Triple Patterning Lithography Lyout Domposition or Tripl Pttrning Lithogrphy Bi Yu, Kun Yun, Boyng Zhng, Duo Ding, Dvi Z. Pn ECE Dpt. Univrsity o Txs t Austin, Austin, TX USA 7871 Cn Dsign Systms, In., Sn Jos, CA USA 9514 Emil: {i,

More information

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016 Wintr 2016 COMP-250: Introduction to Computr Scinc Lctur 23, April 5, 2016 Commnt out input siz 2) Writ ny lgorithm tht runs in tim Θ(n 2 log 2 n) in wors cs. Explin why this is its running tim. I don

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f lulu jwtt pnlton sin towr ounrs hpl lpp lu Our irst non-linr t strutur! rph G onsists o two sts G = {V, E} st o V vrtis, or nos st o E s, rltionships twn nos surph G onsists o sust o th vrtis n s o G jnt

More information

8-3/8" G HANDHOLE C A 1 SUCTION STEEL BASE TABLE OF DIMENSIONS

8-3/8 G HANDHOLE C A 1 SUCTION STEEL BASE TABLE OF DIMENSIONS VORTX SOLIS-NLIN WSTWTR S K OUR " N ONNTIONS OUR " I. OLS OR NOR OLTS -/" STION 0 OUTLIN RWIN TYP VTX- JO: SS-7 T VTX- VORTX (S) OR _PM T _T. T J PPX. N OVRLL L M PLN VIW PPX. P OVRLL 8-/8" P ISR OUPLIN

More information

LEO VAN IERSEL TU DELFT

LEO VAN IERSEL TU DELFT LEO VAN IERSEL TU DELFT UT LEO VAN IERSEL TU DELFT UT LEO VAN IERSEL TU DELFT TU/ CWI UT LEO VAN IERSEL TU DELFT TU/ CWI UT TUD LEO VAN IERSEL TU DELFT TU/ Tnzni & Kny yr LEO VAN IERSEL TU DELFT Nw Zln.5

More information