Properties of Hexagonal Tile local and XYZ-local Series

Size: px
Start display at page:

Download "Properties of Hexagonal Tile local and XYZ-local Series"

Transcription

1 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt o Mthmtis B.J.M. Govrnmnt Collg, Chvr, Kollm, Krl, Ini. nitnson123@ymil.om 3 Dprtmnt o Mthmtis, Fthim Mt Ntionl Collg, Kollm, Krl, Ini. rsnp@yhoo.om Astrt In this ppr w will hrtriz th mily o pitur sris, rogniz y WHPA (wight hxpoli pitur utomton n lso, y using wight hxgonl tiling n hxgonl omino systms. W will prov tht hxgonl pitur sris is th projtion o hxgonl til lol sris n lso o xyz-lol sris. Thus w otin roust inition o lss o rognizl hxgonl pitur sris. Kywors: Wight hxgonl tiling systm, hxgonl omino systm, wight hxpoli pitur utomton Mthmtis Sujt Clssiition. Appli Mthmtis I INTRODUCTION Gnrlly whn ompr with othr mthos pitur is us or unrstning things in ttr wy. A lot o thnologis r thr to omput piturs with th hlp o omputrs. This hs rsult in th introution o pitur gnrting vis. Wight init utomt, two imnsionl utomt, th onpt o gnrliztion lol lngugs rom wors n irnt typs o grmmrs r th sis on whih ths vis vlop. Jurgn Dssow [1] hs isuss irnt typs o grmmrs in his ppr. In 1991, Gimmrsi n Rstivo propos th mily o rognizl lngugs (REC [2]. Tiling systms r us to in th lngugs in REC. K.S. Drsnmik t l. [3] hv in tht hxgonl piturs r us prtiulrly in pitur prossing n lso in img nlysis. In 2003, K.S. Drsnmik t l. us irnt ormlism or hxgonl pitur lngugs. Th ormlisms r hxgonl tiling systm, lol hxgonl pitur lngugs, rognizl hxgonl pitur lngugs, lll hxgonl Wng tils n inlly Wng systms. Introution out xyzomino systms wr m y thm n prov tht it is quivlnt to hxgonl tiling systms. In this ppr w will ssign wights to ths lol n xyz-lol hxgonl pitur vis using hxgonl tils or hxgonl ominos. By projtion vry simpl lol hrtriztions o WHPArognizl hxgonl pitur sris n on. II PRELIMINARIES Hr w rll th inition, strutur, xis n Hxgonl tils n orrsponing ominos rom K.S. Drsnmik t l. [3] Fig. 1. II.1 x Hxgonl Piturs [3] Hr w rll th notions o hxgonl piturs n th hxgonl pitur lngug [4]. Lt Σ init lpht o symols. A hxgonl pitur p ovr Σ is hxgonl rry y z 40

2 2 Fig. 2. g or g o symols o Σ n th st o ll hxgonl piturs ovr Σ is not y Σ H A hxgonl pitur ovr th lpht,,, is shown in igur 1 Th st o ll hxgonl rrys ovr th lpht Γ is not y Γ H. Dinition II.1. [3] I x Γ H, thn ˆx is th hxgonl rry otin y surrouning x with spil ounry symol Γ. A hxgonl pitur ovr th lpht,,,,, surroun y is shown in ig. 1. Dinition II.4. [3] Lt L hxgonl pitur lngug. Th lngug L is xyz-lol i thr xists st o ominos s in ov ovr th lpht Σ suh tht L = ω Σ H /ll omino tils rlting to ω W writ L = L( i L is xyz-lol n is st o ominos ovr Γ. A hxgonl pitur lngug L is xyz-omino rognizl i thr xists omino systm D suh tht L = Π(L(. Th lss o hxgonl lngugs rognizl y omino systms is not y L(HDS Thorm II.5. [3] I HREC is th mily o ll rognizl hxgonl pitur lngugs n L(HDS is th lss o hxgonl lngugs rognizl y omino systms, thn w hv HREC = L(HDS II.2 Hxgonl Tils n Dominos [3] A hxgonl pitur o th orm shown in ig. 2 is ll hxgonl til ovr n lpht,,,,,,g. Givn hxgonl pitur p o siz (l,m,n, or g l,h m,k n w not B g,h,k (p, th st o ll hxgonl loks (or hxgonl su-piturs o p o siz (g,h,k. B is in t hxgonl til. Dinition II.2. [3] Lt Σ init lpht. A hxgonl pitur lngug L Γ H is ll rognizl i thr xists hxgonl lol pitur lngug L (givn y st o hxgonl tils ovr n lpht Γ n mpping Π : Γ Σ suh tht L = Π(L. Th mily o ll rognizl hxgonl pitur lngugs will not y HREC. Exmpl II.3. Th st o ll hxgons ovr Σ = is rognizl y hxgonl tiling systm. St L = L n π(1 = π(0 = III TILE LOCAL AND xyz-local SERIES Hxgonl tils r piturs o siz (2,2,2 n hxgonl ominos hv siz (2,1,1 or (1,2,1 or (1,1,2. For pitur p w not T(p (rsptivly D(p th st o ll suhxgonl til (rsptivly su-hxgonl ominos o p. A lngug L Γ H is lol (rsptivly xyz-lol i thr xists st o hxgonl tils (rsptivly hxgonl ominos ovr Γ, suh tht L = p Γ H T(ˆp rsptivly L = p Γ H D(ˆp Thn (Γ, hrtrizs L. W writ L = L(. For pitur p Σ l m n, w will onsir su-hxgonl tils (su-hxgonl ominos t rtin positions o ˆp. In s o hxgonl tils, w n in: L π For ll 1 i l+1, 1 j m+1, 1 k n+1 : t(ˆp i,j,k = ˆp i,j,k ˆp i,j,k+1 Now w onsir nothr ormlism to rogniz hxgonl piturs whih is s on omino systms introu y Lttux, t l. [5]. Hr w onsir ominos o th ollowing typs. ˆp i+1,j,k ˆp i,j+1,k ˆp i,j+1,k+1 ˆp i+1,j+1,k ˆp i+1,j+1,k+1 41

3 3 Also w onsir th su-hxgonl ominos in z, y, x- irtion istinguish y thir positions in ˆp. For ll 1 i l+2, or ll 1 j m+2, 1 k n+1 : z (ˆp i,j,k = ˆp i,j,k ˆp i,j,k+1 or ll 1 i l+2, or ll 1 j m+1, 1 k n+2 : y (ˆp i,j,k = ˆp i,j,k ˆp i,j+1,k or ll 1 i l+1, or ll 1 j m+2, 1 k n+2 : x (ˆp i,j,k = W gt th ollowing inition. ˆp i+1,j,k ˆp i,j,k Dinition III.1. A (wight hxgonl til systm is in y T 1 = (Σ,T whr T : (Σ K is untion mpping hxgonl tils ovr Σ to K. It omputs th hxgonl pitur sris T 1 : Σ H K, in y or ll p Σ H ; T 1 (p = T(t(ˆp i,j,k 1 i I x(p+1 1 j I y(p+1 1 k I z(p+1 W ll S : Σ H K, hxgonl til-lol i thr xists hxgonl til systm T 1 stisying T 1 = S. Similrly or hxgonl ominos w hv th ollowing inition. Dinition III.2. A (wight hxgonl omino systm is in y D 1 = (Σ,D, whr D : (Σ (2,1,1,(1,2,1,(1,1,2 K mps hxgonl ominos ovr Σ to K. It omputs th sris D 1 : Σ H K in y, or ll p Σ H : D 1 (p = D( x (ˆp i,j,k 1 i I x(p+2 1 j I y(p+1 1 k I z(p+2 1 i I x(p+1 1 j I y(p+2 1 k I z(p+2 D( y (ˆp i,j,k 1 i I x(p+2 1 j I y(p+2 1 k I z(p+1 D( z (ˆp i,j,k. A hxgonl pitur sris S : Σ H K is ll xyzlol i thr xists omino-systm D 1 stisying D 1 = S. Th milis o hxgonl til lol sris n xyz-lol sris n not y K lo Σ H n K xyz Σ H rsptivly. Now, T 1 (rsptivly D 1 r ll hxgonl til (rsptivly hxgonl omino untion. Th milis o sris tht r projtions o hxgonl tillol (rsptivly hxgonl xyz-lol sris n not y K plo Σ H (rsptivly K pxyz Σ H. Proposition III.3. A hxgonl pitur lngug L Γ H is lol (xyz-lol rsptivly i n only i its hrtristi sris I L B Γ H is hxgonl til lol (xyz-lol rsptivly. In orr to prov prposition III.7, w n th ollowing inition III.4 n propositions III.5 n III.6, tht w hv isuss in th prvious ppr [7]. Dinition III.4. A wight hxpoli pitur utomton (WHPA is n 8 tupl B = (Q,R,F N, F S, F NW, F SW,F NE,F SE onsisting o init st Q o stts, init st o rulsr Σ K Q 6, s wll s six pols o ptn F N,F S,F NW,F SW,F NE,F SE Q [N-north, S-south, NW -north wst, SW -south wst, NEnorth st, SE-south st] Proposition III.5. Lt S K r Γ H sris omput y rul trministi WHPA. Thn S is rtionl Hxgonl pitur sris. Proposition III.6. Lt B WHPA ovr Σ. Thr xists rul trministi WHPA ovr n lpht Γ n projtion Π : Γ Σ stisying B = Π( B Proposition III.7. W hv K r Σ H K pxyz Σ H Proo. Using th projtion (III.6 w now onsir th rul trministi utomt s ollows. Lt B = (Q,R,F N,F S,F NW,F SE,F NE,F SW rul trministi omputing B = S. W my us th nottions vlop or th proo o prposition III.5 n inition III.4. For, Σ, in s th ourring ruls xist, w in hxgonl omino-untion D : (Σ 2 1 1,1 2 1,1 1 2 K s ollows: 1 i σ SW (r( F SW 1 i σnw (r( F NW 1 i σ NE (r( F NE 1 i σse (r( F SE 1 i σ NE (r( = σ SW (r( 1 i σ SE (r( = σ NW (r( 42

4 wight (r( i σn (r( F N 1 i σs (r( F S wight (r(, i σs (r( = σ N (r( D mps ll othr hxgonl ominos to 0. Thn D 1 = (Σ, D is hxgonl omino-systm. For hxgonl pitur p with (uniqu sussul omputtion R H in B, th prout vlus od(tkn ovr th nonil omino ovring o ˆp oinis with wight (. This is us or vry position p i,j,k o p, thr xists prisly on tor wight (r(p i,j,k in th prout or D 1 (p. On th othrhn, ip hs no sussul omputtion in B, thn lrly th inition o D givs D 1 (p = 0. Thus D 1 = S Proposition III.8. Evry xyz-lol sris is hxgonl tillol. Proo. Lt S : Γ H K n xyz-lol sris ovr n lpht Γ, omput y D 1 = (Γ,D. W in T 1 = (Γ,T s hxgonl til-systm omputing S suh tht T : (Γ K nots th hxgonl til untion. For ritrry Γ n,,,, Γ, w put (hr nwnorth wst ornr, n- north st ornr, n- north ornr, n- north st g, w- wst g, m- mil ( nw : T = D( D( ( D( D( n : T ( = D( D( D( D( D( D( ( n : T = D( D( D( D( n : T w : T ( = D( D( D( D( D( D( ( = D( D( D( D( D( D( ( m : T g = D( g D( D( Furthrmor w st ( T = 0. Th vlus o D ovr th hxgonl omino-ovring o hxgonl pitur p r istriut with T ovr th hxgonl til-ovring or p. Evry x (ˆp i,j,k, y (ˆp i,j,k n z (ˆp i,j,k hppns prisly on in th prout or T 1 (p. Thn or p Γ H, w gt T1 (p = D 1 (p = (S,p. Proposition III.9. W hv K plo Σ H K r Σ H Proo. It suis to prov th rsult or hxgonl til lol sris. Lt S : Σ H K hxgonl til lol, omput y T1 = (Σ, T with hxgonl til untion T : (Σ K. W in B = (Q,R,F N,F S,F NW,F SW,F NE,F SE s WHPA ovr Σ omputing S y putting Q = (Σ n F N = Σ,,, Σ F S = Σ,,, Σ F NW = Σ,,,, Σ F SW = Σ,,,, Σ F NE = Σ,,,, Σ 43

5 5 F SE = Σ,,,, Σ W st R = R nw R n R n R n R w R m Σ K Q 6 with ritrry,,,,,, g,h,t, x,y,z Σ. R nw =,ω (,, g,, g, g, g,/ Σ ( ( whr ω ( = T ( ( g ( g R n =,ω (,,,, g g, z, g Σ x y ( ( whr ω ( = T ( ( g g R n =,ω (,, g, g,, y x Σ g whr ω ( = T ( x ( ( ( g R n =,ω (, g,, g, y z g,, x Σ x y ( ( whr ω ( = T g g ( ( g R w =,ω (,, g, g, g g, x, Σ ω ( = T ( ( g ( g ( x x y R m =,ω (,, g z, g, z x,, y Σ g y y g ( whr ω ( = T To prov B = S, w osrv th ollowing. Th ov onstrution with its pting onition givs wight 44

6 6 hxpoli pitur utomton tht hs prisly on sussul run or vry lmnt in Σ H. This run simults th istriution o wights long th nonil hxgonl tilovring o th hxgonl pitur. Suppos tht B Σ H with sussul omputtion R H in B is givn wight ( = i,j,k wight ( i,j,k. In th multiplition, th img o th hxgonl til-untion o th rsptiv hxgonl til t vry position o th nonil hxgonl til ovring o ˆp ours xtly on. Agin, th inition o th vlus o ω ( simult th ovring in suh wy tht no othr wights our. For p Σ H, w hv B (p = T(t(ˆp i,j,k = T 1 (p 1 i I x(p+1 1 j I y(p+1 1 k I z(p+1 = (S,p IV CONCLUSION In this ppr w introu irnt vis to hrtriz rognizl hxgonl pitur sris. W tri to prov tht hxgonl pitur sris is th projtion o hxgonl til lol sris n lso o xyz-lol sris. In similr mnnr, w n xtn vrious othr proprtis o rognizl rtngulr pitur sris to hxgonl rognizl pitur sris. REFERENCES [1] Jurgn Dssow (2006 Grmmtil Pitur Gnrtion, Otto-vongurik-univrsitt Mgurg, Fkultt Fr Inormtik. [2] Gimmrrsi D. & Rstivo A., Rognizl pitur lngugs. In Prlll img prossing, (Worl Sintii [3] K.S. Drsnmik, K. Krithivsn, C. Mrtin-Vi & K.G. Surmnin, Lol n Rognizl hxgonl pitur lngugs. Int. journl pttrn rognition Arti-Intllign 19, [4] Bozpliis S. & Grmmtopoulou, A Rognizl Pitur Sris. J. Autom-Lng. Com. 10, (2005 [5] M. Lttun n D. Simplot, Rognizl pitur lngugs n omino tiling, Thortil Computr Sin, 178, (1997, ( [6] K.S. Drsnmik, Kml Krithivsn, K.G. surmnin, (2003 P systm gnrting Hxgonl pitur lngugs, Ltur nots in Computr Sin, Springr Brlin Hilrg, Volum 2933 pp [7] Jy Arhm & Drsnmik K.S., Chrtriztions o Hxgonl rognizl Pitur Sris, in Ntionl Conrn on Emrging Trns in Mthmtis n Applitions in Enginring n Thnology

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM Fr Est Journl o Mthtil Sins (FJMS) Volu 6 Nur Pgs 8- Pulish Onlin: Sptr This ppr is vill onlin t http://pphjo/journls/jsht Pushp Pulishing Hous DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF MATRICES

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE

A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE Y.Fujit 1*, T. Kurshii 1, H.Ymtsu 1, M. Zo 2 1 Dpt. o Mngmnt

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS Intrntionl Journl o Sintii nd Rrh Publition Volum, Iu 5, M ISSN 5-353 APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS S.M.Khirnr, R.M.Pi*, J.N.Slun** Dprtmnt o Mthmti Mhrhtr

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

Orthogonal and Biorthogonal FIR Hexagonal Filter Banks with Sixfold Symmetry

Orthogonal and Biorthogonal FIR Hexagonal Filter Banks with Sixfold Symmetry IEEE TRANS. SIGNAL PROC. VOL. 56 NO. 586-58 DEC. 008 Orthogonl n Biorthogonl FIR Hxgonl Filtr Bns with Sixol Symmtry Qingtng Jing Astrt Rntly hxgonl img prossing hs ttrt ttntion. Th hxgonl ltti hs svrl

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

arxiv: v1 [math.mg] 5 Oct 2015

arxiv: v1 [math.mg] 5 Oct 2015 onvx pntgons tht mit i-lok trnsitiv tilings sy Mnn, Jnnifr MLou-Mnn, vi Von ru rxiv:1510.01186v1 [mth.mg] 5 Ot 2015 strt Univrsity of Wshington othll Univrsity of Wshington othll Univrsity of Wshington

More information

Journal of Solid Mechanics and Materials Engineering

Journal of Solid Mechanics and Materials Engineering n Mtrils Enginring Strss ntnsit tor of n ntrf Crk in Bon Plt unr Uni-Axil Tnsion No-Aki NODA, Yu ZHANG, Xin LAN, Ysushi TAKASE n Kzuhiro ODA Dprtmnt of Mhnil n Control Enginring, Kushu nstitut of Thnolog,

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Construction 11: Book I, Proposition 42

Construction 11: Book I, Proposition 42 Th Visul Construtions of Euli Constrution #11 73 Constrution 11: Book I, Proposition 42 To onstrut, in givn rtilinl ngl, prlllogrm qul to givn tringl. Not: Equl hr mns qul in r. 74 Constrution # 11 Th

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

1 Ovrviw In this ppr w onsir two istint, ut intrtwin, thms. Th rst is nighorhoo xpnsion grmmrs whih onstitut onsirl hng rom mor tritionl phrs strutur

1 Ovrviw In this ppr w onsir two istint, ut intrtwin, thms. Th rst is nighorhoo xpnsion grmmrs whih onstitut onsirl hng rom mor tritionl phrs strutur Nighorhoo Expnsion Grmmrs John L. Pltz Dpt. o Computr Sin Univrsity o Virgini Chrlottsvill, VA 22903 Mrh 1, 1999 Dpt. o Computr Sin Thnil Rport, TR 99-009 Astrt Phrs strutur grmmrs, in whih non-trminl

More information

Research Article On the Genus of the Zero-Divisor Graph of Z n

Research Article On the Genus of the Zero-Divisor Graph of Z n Intrntionl Journl o Comintoris, Artil ID 7, pgs http://x.oi.org/.1/14/7 Rsrh Artil On th Gnus o th Zro-Divisor Grph o Z n Huong Su 1 n Piling Li 2 1 Shool o Mthmtil Sins, Gungxi Thrs Eution Univrsity,

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method:

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method: Dinition: GREEDY TECHNIQUE Gry thniqu is gnrl lgorithm sign strtgy, uilt on ollowing lmnts: onigurtions: irnt hois, vlus to in ojtiv untion: som onigurtions to ithr mximiz or minimiz Th mtho: Applil to

More information

Handwritten Japanese Address Recognition Technique Based on Improved Phased Search of Candidate Rectangle Lattice

Handwritten Japanese Address Recognition Technique Based on Improved Phased Search of Candidate Rectangle Lattice Hnwrittn Jpns Arss Rognition Thniqu Bs on Improv Phs Srh o Cnit Rtngl Ltti Hihis NAKAYAMA, Msto SUZUKI, Ni KATO, n Yoshiki NEMOTO Grut Shool o Inormtion Sins, Tohoku Univrsity z-ao 05, Armki, Ao-ku, Sni-shi,

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

Flat Splicing Array Grammar Systems Generating Picture Arrays

Flat Splicing Array Grammar Systems Generating Picture Arrays Intrntionl Journl of Computr Informtion Systms n Inustril Mngmnt Applictions. ISSN 2150-7988 Volum 8 (2016) pp. 336 344 c MIR Ls, www.mirls.nt/ijcisim/inx.html Flt Splicing Arry Grmmr Systms Gnrting Pictur

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW Smll Pth Quiz ML n Dtss Cn you giv n xprssion tht rturns th lst / irst ourrn o h istint pri lmnt? Ltur 8 Strming Evlution: how muh mmory o you n? Sstin Mnth NICTA n UNSW

More information

New challenges on Independent Gate FinFET Transistor Network Generation

New challenges on Independent Gate FinFET Transistor Network Generation Nw hllngs on Inpnnt Gt FinFET Trnsistor Ntwork Gnrtion Viniius N. Possni, Anré I. Ris, Rnto P. Ris, Flip S. Mrqus, Lomr S. Ros Junior Thnology Dvlopmnt Cntr, Frl Univrsity o Plots, Plots, Brzil Institut

More information

Discovering Pairwise Compatibility Graphs

Discovering Pairwise Compatibility Graphs Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut..

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

DFA (Deterministic Finite Automata) q a

DFA (Deterministic Finite Automata) q a Big pictur All lngugs Dcidl Turing mchins NP P Contxt-fr Contxt-fr grmmrs, push-down utomt Rgulr Automt, non-dtrministic utomt, rgulr xprssions DFA (Dtrministic Finit Automt) 0 q 0 0 0 0 q DFA (Dtrministic

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information

An Efficient FPGA Implementation of the Advanced Encryption Standard Algorithm G. Mohan 1 K. Rambabu 2

An Efficient FPGA Implementation of the Advanced Encryption Standard Algorithm G. Mohan 1 K. Rambabu 2 IJSRD - Intrntionl Journl or Sintii Rsrh & Dvlopmnt Vol., Issu, ISSN (onlin): - An Eiint FPGA Implmnttion o th Avn Enryption Stnr Algorithm G. Mohn K. Rmu M.Th Assistnt Prossor Dprtmnt o Eltronis n ommunition

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Formal Concept Analysis

Formal Concept Analysis Forml Conpt Anlysis Conpt intnts s losd sts Closur Systms nd Implitions 4 Closur Systms 0.06.005 Nxt-Closur ws dvlopd y B. Gntr (984). Lt M = {,..., n}. A M is ltilly smllr thn B M, if B A if th smllst

More information

Uniform 2D-Monotone Minimum Spanning Graphs

Uniform 2D-Monotone Minimum Spanning Graphs CCCG 2018, Winnipg, Cn, August 8 10, 2018 Uniorm 2D-Monoton Minimum Spnning Grphs Konstntinos Mstks Astrt A gomtri grph G is xy monoton i h pir o vrtis o G is onnt y xy monoton pth. W stuy th prolm o prouing

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

This chapter covers special properties of planar graphs.

This chapter covers special properties of planar graphs. Chptr 21 Plnr Grphs This hptr ovrs spil proprtis of plnr grphs. 21.1 Plnr grphs A plnr grph is grph whih n b rwn in th pln without ny gs rossing. Som piturs of plnr grph might hv rossing gs, but it s possibl

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Monotone Precision and Recall Measures for Comparing Executions and Specifications of Dynamic Systems

Monotone Precision and Recall Measures for Comparing Executions and Specifications of Dynamic Systems PRE-PRINT SUBMITTED TO ARXIV.ORG. DECEMBER 2018 1 Monoton Prision n Rll Msurs for Compring Exutions n Spifitions of Dynmi Systms Artm Polyvynyy, Anrs Solti, Mtthis Wilih, Cluio Di Ciio, n Jn Mnling rxiv:1812.07334v1

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c.

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c. MA56 utorial Solutions Qustion a Intgrating fator is ln p p in gnral, multipl b p So b ln p p sin his kin is all a Brnoulli quation -- st Sin w fin Y, Y Y, Y Y p Qustion Dfin v / hn our quation is v μ

More information

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016 Wintr 2016 COMP-250: Introduction to Computr Scinc Lctur 23, April 5, 2016 Commnt out input siz 2) Writ ny lgorithm tht runs in tim Θ(n 2 log 2 n) in wors cs. Explin why this is its running tim. I don

More information

Expert System. Knowledge-Based Systems. Page 1. Development of KB Systems. Knowledge base. Expert system = Structured computer program

Expert System. Knowledge-Based Systems. Page 1. Development of KB Systems. Knowledge base. Expert system = Structured computer program Knowlg-Bs Systms Exprt Systm Anrw Kusik 2139 Smns Cntr Iow City, Iow 52242-1527 nrw-kusik@uiow.u http://www.in.uiow.u/~nkusik Tl: 319-335 5934 Fx: 319-335 5669 Knowlg s Infrn Engin Dt Exprt systm = Strutur

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information