O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c

Size: px
Start display at page:

Download "O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c"

Transcription

1 O n t h x t n s i o n o f p r t i l m t r i t o t r m t r i Alin Guénoh, Bruno Llr 2, Vlimir Mkrnkov 3 Institut Mthémtiqus Luminy, 63 vnu Luminy, F-3009 MARSEILLE, FRANCE, gunoh@iml.univ-mrs.fr 2 Cntr 'Anlys t Mthémtiqu Soils, Éol s Huts Étus n Sins Soils, 4 Rspil, F-7270 PARIS CEDEX 06, FRANCE, llr@hss.fr 3 Déprtmnt Sins Biologiqus, Univrsité Montrél, C.P. 628, su. Cntr-vill, Montrél, Qué H3C 3J7, CANADA, n Institut of Control Sins, 6 Profsoyuzny, Mosow 7806, RUSSIA, mkrnv@mglln.umontrl. Rvis, April 2002 Astrt. Frh, Knnn n Wrnow (99) fin Prolm MCA (mtrix ompltion to itiv) n prov it to NP-omplt: givn prtil issimilrity on finit st X, os thr xist tr mtri xtning to ll pirs of lmnts of X. W us prviously sri simpl mtho of phylognti ronstrution, n its xtnsion to prtil issimilritis, to hrtriz som lsss of polynomil instns of MCA n of rlt prolm. W point out tht ths prolms mit mny othr polynomil instns. W fous prtiulrly on two lsss of gnrliz yls, togthr with th orrsponing mximl yli grphs (2-trs n 2trs). Résumé. Frh, Knnn t Wrnow (99) ont posé l prolèm MCA (mtrix ompltion to itiv) suivnt t ont émontré s NP-omplétu : étnt onné un issimilrité prtill sur un nsml fini X, st-il possil l'étnr n un istn 'rr éfini sur touts ls pirs 'élémnts X. Nous utilisons un métho simpl ronstrution phylogénétiqu, préémmnt érit, t son xtnsion ux issimilrités prtills pour rtérisr s lsss 'instns polynomils MCA t 'un prolèm voisin. Nous montrons qu'n fit uoup 'utrs instns sont ussi polynomils. L'outil prinipl st onstitué pr ux lsss yls générlisés, v ls grphs yliqus mximux (2-rrs t 2-rrs) orrsponnts. Kywors: tr mtri, 2-tr, prtil istn. Introution W onsir prtil mtri on fix finit st X. Prisly, th vlu of is known on sust E of unirt pirs of lmnts of X. Th following ision prolm MCA (Mtrix Compltion to Aitiv) riss in svrl pplition omins,.g. phylognti tr ronstrution: os thr xist vlu X-tr T, suh s th tr

2 mtri T ssoit with it stisfis th following onition: for ny xy E, (x,y) = T (x,y). In othr trms, is it possil to omplt into tr mtri? W lso onsir nonmtri vrsion WMCA (Wk Mtrix Compltion to Aitiv) of MCA, whr ngtiv lngths on som gs of th X-tr T r llow n, s onsqun, T os not nssrily stisfy th mtri tringl inqulity. Frh, Knnn n Wrnow (99) prov tht Prolm MCA is NP-omplt. Hr w hrtriz som polynomil instns of oth Prolms WMCA (Stion 4) n MCA (Stion ). Our pproh is s on phylognti ronstrution mtho rll in Stion 3. This mtho ws prviously sri in Llr n Mkrnkov (998) n rntly xtn to fitting thniqu for infrring tr mtri from prtil mtri (Guénoh n Llr 200). Svrl prviously otin rsults r rll in this ppr, ut ll thos givn with thir proofs r nw. Two typs of gnrliz yliitis will xtnsivly us. On of thm is fin, whrs th othr is rll, in Stion 2. In Stion 6, w point out tht Prolms MCA n WMCA r, in ft, polynomil in wi lss of instns. 2. Nottions n finitions In this stion w giv som si finitions on grphs n trs (Stion 2.), n on issimilritis n mtris (Stion 2.2). This llows us to rll Prolm MCA n stt its nonmtri ountrprt WMCA in Stion Grphs n XLL-trs. W onsir hr only unirt simpl grphs without loops or multipl gs. In suh grph G = (V,E), vrtx v is lf if its gr (v) is qul to. In pth (vv, v v 2,, v k v ) of G twn two vrtis v n v, ll th vrtis r istint xpt, possily, whn v = v n th pth P is yl of G. Th grph G is tr if it is onnt n hs no yls. Th uniqu pth twn two istint vrtis v n v of tr T is not T(v,v ). Th grph G is k-liqu if V = k n uv E for ll u, v V. A tringl of G is sust of V inuing 3-liqu; suh sust is not xyz inst of {x,y,z}. A vlu grph is n orr pir (G,A), whr G is grph n A is rl lngth funtion on th g st E of G. Whn th grph G is onnt n hs no iruits of ngtiv lngth, w st, for ny two istint vrtis v n v of G, G (v,v ) = Min P pth of G twn v n v P A(). In th s of tr T, T (v,v ) = T(v,v ) A(). An XLL tr (lf lll oring to X tr) is tr T stisfying two proprtis: (i) th lf st of T is X; (ii) for ny v V(T)-X, (v) 3. In n XLL-tr, th vrtis in V(T)-X r ll ltnt vrtis. Th mximum numr of ltnt vrtis of 2

3 T is n-2, whr n = X ; whn it is rh, ll th ltnt vrtis hv gr 3 n th tr T is si to rsolv. For mor finitions n proprtis of suh trs, s th ook of Brthélmy n Guénoh (99) Dissimilritis n mtris. A issimilrity on X is rl funtion on X X stisfying (x,y) = (y,x) n (x,y) (x,x) = 0 for ll x, y X: A issimilrity is mtri (or istn) if it stisfis th lssil mtri tringl inqulity: for ll x, y, z X, (x,z) (x,y) + (y,z). It is wll known tht this proprty is stisfi y th minimum pth lngth funtion of ny positivly vlu onnt n unirt grph. So, shortst pth mtri G is ssoit in this wy to th omplt grph on X vlu y issimilrity. A issimilrity is tr mtri if it stisfis th following four-point onition: for ll x, y, z, w X, th inqulity (F) hols: (x,y) + (z,w) mx{ (x,z) + (y,w), (x,w) + (y,z) }. (F) It is now wll-known tht tr mtri is uniquly rprsntl y th lngths of th pths twn th lvs of non-ngtivly vlu XLL-tr T, ll its tr rprsnttion (Bunmn 97). An xtnsion of th prvious rsult (Llr 99) onsists of onsiring th wk four-point onition, whr th inqulity (F) is mt only for ll istint x, y, z, w X. A issimilrity stisfying this onition is not nssrily mtri. Suh issimilrity is ll tr issimilrity. A rl funtion on X X stisfying th wk four-point onition is ll tr funtion. A tr funtion with som ngtiv ntris is sily trnsform into tr issimilrity y ition of onvnint positiv onstnt 2C -min{(x,y)}. Similrly, issimilrity whih is not mtri is trnsform into mtri y ition of positiv onstnt 2C mx{(x,z) - (x,y) - (y,z): x, y, z X}, n this trnsformtion os not fft th four-point onition. Convrsly, ruing y C th lngths of ll trminl gs in positivly vlu XLL-tr T is quivlnt to ruing y 2C th pth lngths twn lvs of T. Thrfor, tr funtion hs gin uniqu XLL-tr rprsnttion, possily with ngtiv lngths on th xtrnl gs (inint to th lvs). Somtims, th issimilrity is prtil, in tht sns tht it is fin only on st E of unorr pirs of lmnts of X. Thus, w hv support grph G = (X,E), vlu y. W sy tht issimilrity xtns, or omplts into if xy E implis (x,y) = (x,y). Without loss of gnrlity, it will ssum in th squl tht G is onnt. W sy tht is prtil mtri if, for ny xy E, (x,y) = G (x,y). For th omplt grph s G, is prtil mtri if n only if it is mtri. Th following proprty is wll-known n sy to otin. Clrly, using minimum pth lngth 3

4 lgorithm, prtil mtri my lwys omplt in polynomil tim into its ssoit minimum pth lngth mtri G. Proposition 2.. A prtil issimilrity omplts into mtri on X if n only if it is prtil mtri Two prolms. Assum tht prtil issimilrity on X with support grph G = (X,E) is givn. Th following "Mtrix Compltion to Aitiv" (MCA) prolm hs n shown to NP-hr y Frh t l. (99): Prolm MCA: givn prtil mtri on X, os it omplt into tr mtri? Aoring to Proposition 2. ov, whn th givn prtil issimilrity is not mtri, th nswr to Prolm MCA is ngtiv. Th following "Wk Mtrix Compltion to Aitiv" (WMCA) prolm rmins of intrst sin suh ompltion still provis tr strutur (ut ngtiv lngths o not fit most of volutionry mols). In suh n xtnsion, it is not importnt to istinguish tr issimilritis from tr funtions in th ompltion ouput. Hr w o not rss th omplxity sttus of WMCA, n just xhiit som polynomil lsss of instns trs n 2-trs In this stion w rll prvious rsults on two lsss of grphs n omplt thm on som points. Ths grphs onstitut th min supporting tools in this stuy yli grphs. Lt G = (X,E) finit unirt simpl grph, n A E st of gs of G. Thn, X A nots th st of ll vrtis inint to t lst on g of A, n G A th sugrph (X A,A) of G. A st C E is si to k-yl ( for gr) of G if ll th vrtis of X C hv gr t lst k+ in G C n C is miniml for inlusion with this proprty. Clrly, -yl is yl. Hr w stuy th s k = 2. Exmpls. If G C is isomorphi to th omplt grph K k+2 or to th omplt iprtit grph K k+,k+, thn C is k-yl. If G C is whl, thn C is 2-yl. A grph with no k-yls is si k-yli. Th mximl k-yli grphs r ll hr k-trs. Thy hv n hrtriz in rursiv wy y To (989): th omplt grph K k with k vrtis is k-tr; if G = (X,E) is k-tr, thn, for ny sust Y X of rinlity k n nw vrtx x X, th grph G = (X {x}, E {xy: y Y}) is k-tr. Thn, grph G = (X,E) is 2-tr if thr xists n orring (x,x 2,,x n ) of X suh tht x x 2 E n, for i = 3,,n, th vrtx x i hs gr 2 in th sugrph G i 4

5 inu y th vrtx st {x,x 2,,x i } (suh n orring is rvrs limintion orr, rvit s RE orr). A 2-tr with n vrtis is 2-onnt n hs 2n-3 gs. It hs t lst on vrtx of gr 2. Both grphs G n G'of Figur r 2trs G G Figur 4 To proposs prour for iing whthr givn st of gs A inlus k-yl. This prour trmins sust Pl(A) of A, ll th kpling of A, s follows: srh vrtx of gr t most k in G A ; if no suh vrtx xists, thn Pl(A) = A; othrwis, lt th vrtx foun with its inint gs, n rpt th oprtion until no vrtis of gr k rmin. Th st of rmining gs is Pl(A). Th st A is k-yli if n only if Pl(A) = k. Suh n lgorithm lrly runs in O(n) tim. A onnt 2-yli grph omplts in mny wys into 2-tr; w giv hr prour tht will usful in Stion 4: If thr xists vrtx x of gr, nw g twn x n n ritrry othr vrtx y, not lry jnt to x. Rpt th oprtion until no vrtx of gr lss thn 2 rmins. List ll th pirs not inlu in E in n ritrry orr n hk thm oring to th list orr. For h suh pir xy, us th 2-pling lgorithm ov to trmin whthr th grph (X, E {xy}) is 2-yli; xy to E if th nswr is positiv, n rjt it othrwis. Stop whn E = 2n-3. Proposition 3.2. If G is 2-yli grph, th ov lgorithm xtns it into 2tr in O(n 3 ) tim. Proof. Clrly, ing n g to vrtx of gr 0 or nnot rt 2-yl. This justifis th first prt of th lgorithm. In th son prt, th finl grph is mximl 2-yli grph, tht is 2-tr; othrwis, furthr pirs woul rtin uring th snning of th list. As fr s th lgorithmi omplxity is onrn, th first prt is in O(n). In th son on, w hv to hk O(n 2 ) pirs, th pling prour ing in O(n) h tim. Th notion of hin n xtn to 2-trs. Lt G = (X,E) 2-tr on X n pir xy E. Th grph G = (X, E {xy}) is no longr 2-yli. It hs uniqu

6 2-yl C xy = Pl(E {xy}). At h stp of th pling lgorithm, vrtx is limint togthr with two gs. So, stting Y = X Pl(E {xy}) n n = Y, th qulity Pl(E {xy}) = 2n -2 hols. Thn, th grph H = (Y,C xy -{xy}) is 2-yli with 2n -3 gs n, so, is 2-tr. This 2-tr hs on or two vrtis of gr two, tkn in th st {x,y}; it is ll th 2-hin G[xy] of G twn x n y. If x n y r two non-jnt vrtis of G[xy], thn th 2-hin G[x y ] is sugrph of G[xy], propr s soon s {x,y } {x,y}. Th lngth of 2-hin, ompris twn 2 n n-2, is th numr of its vrtis minus 2. W thn hv th following proprty: Proposition 3.3. For ny RE orr on X, th lst vrtx of G[xy] is x or y n hs gr 2 in G[xy]. Proof. Assum tht thr xists RE orr L on X n vrtx z of G[xy] suh tht oth x n y r prssors of z in L. Thn, th onstrution ov woul l to 2hin twn x n y without z s vrtx yli grphs. Anothr gnrliztion of yls n trs is mor lssil thn th prvious on, n hs prompt importnt littrtur. Rll tht, givn grph G, ru grph is otin from G y sussiv ontrtions of gs inint to vrtx of gr 2 until no suh possil oprtion rmins. For instn, yl rus to 3-liqu (us yls of lngth two o not xist in simpl grphs). A grph G is homomorphi to grph H without vrtis of gr 2 if its ru grph is isomorphi to H. For k 2, st C E is si to k-yl of G if th grph G C is homomorphi to K k+2. Espilly, -yl is yl. A grph with no k-yls is si k-yli. Th mximl k-yli grphs r th lssil k-trs, whih hv th following wll-known rursiv hrtriztion: th omplt grph K k is k-tr ; if G = (X,E) is k-tr, thn, for ny k-liqu Y X of G n nw vrtx z X, th grph G = (X {z},e {zy: y Y}) is k-tr. So, s it is osrv in To (989): Proposition 3.4. If grph G is k-tr, thn it is k-tr. Th sugrphs of 2-trs r xtly th grphs with no sugrph homomorphi to K 4 ; thy r ll prtil 2-trs or sris-prlll grphs in th litrtur (Wl n Colourn 983). k-trs r lso th mximl tringult (or horl, or rigi iruit) grphs with no (k+2)-liqu (Ros 974), tht is th mximl grphs of trwith k (s.g. Bolnr 997). Suh proprtis mk thm to onstitut n intrsting lss in lgorithmi grph thory. 6

7 W r gin intrst in th s whr k = 2. A grph G = (X,E) is 2-tr if thr xists RE orr (x,x 2,,x n ) of X suh tht x x 2 E n, for i = 3,,n, th vrtx x i hs gr 2 n longs to uniqu tringl in th sugrph G i inu y th vrtx st {x,x 2,,x i }. A 2-tr with n vrtis hs t lst two vrtis of gr 2. 2-trs r th mximl tringult grphs without 4-liqu. Th grph G of Figur is 2-tr whil G is not (not tht it is 2-yl). An O(mx(m,n)) lgorithm to i whthr givn grph G is 2-yli ws vis y Liu n Glmhr (980). Th nlogous prolm is NP-hr for k 3 (Arnorg t l. 987). As onsqun of th ov rursiv hrtriztions of 2-trs n 2- trs, on otins th following proprty whih, for k = 2, is vrint of wll-known rsult of Dir (92; s,.g., Wlsh 976, p. 238, or Aignr 979, p. 387): Proposition 3.. A k-yl inlus t lst on k-yl. Proof. Othrwis, lt C k-yl suh tht G C hs no k-yl. So, G C is sugrph of mximl grph G with no k-yl, tht is k-tr. But G is lso k-tr, ontrition with th hypothsis tht C is k-yl. 4 Th tringl mtho Th tringl mtho llows on to xtn ny issimilrity with 2-tr s support grph to tr funtion. It ws introu in Llr (99) in prtiulr s, thn formliz n stui in mor tils in Mkrnkov (997), Llr n Mkrnkov (998), n xtn in Guénoh n Llr (200). It is rll hr in Stion 4. n us to show our first min rsult: Prolm WMCA is polynomil in 2-yli grph. Thrfor, n tking into ount nw uniity rsult otin in Stion 4.2, Prolm MCA is solv for gnrl instns of 2-tr support grphs. 4.. A solution of WMCA in 2-yli grphs. W first ssum tht th support grph G of th givn prtil issimilrity is 2-tr. In this s, th tringl mtho uils vlu XLL-tr T suh tht T (x,y) = (x,y) for ny xy E. Th si osrvtion is tht tringl {x,y,z}, wight oring to, fins vlu {x,y,z}ll-tr T of th 3-str typ, tht is, with uniqu ltnt vrtx u. Th vlus (x,y), (x,z) n (y,z) r uniquly otin s pth lngths in T ftr rsolving th following systm of linr qutions 2 T (x,u) = (x,y) + (x,z) - (y,z), 2 T (y,u) = (y,x) + (y,z) - (x,z) n 2 T (z,u) = (z,x) + (z,y) - (x,y). Th orr of vrtis in G is n ritrry RE orr x, x 2,, x n. So, for vry x i, thr xist xtly two lmnts y, z {x,, x i- } suh tht oth x i y n x i z long to E. Th tringl {x i,y,z} will hng into n {x i,y,z}ll-tr of th 3-str typ, n th otin 3-strs will sussivly glu togthr to finlly otin n XLL-tr. 7

8 First, th tringl {x,x 2,x 3 } is rprsnt s 3-str T 3. Thn, th sm oprtion is m on th tringl {x 4,y,z}, whr y, z {x,x 2,x 3 }. A son 3-str T 4 is otin with th pth T 4 (yz) ommon with T 3 (yz), with th sm lngth (y,z). Th trs T 3 n T 4 r glu on this pth to otin n {x,x 2,x 3,x 4 }LL-tr. A nw tringl with th vrtis x i, y, z suh tht y, z {x,x 2,,x i- } is onsir t h stp; th xistn of suh tringl is gurnt y th proprtis of RE orrs. If yz E, thn its vlu is fix s T i-(y,z), th lngth of th pth twn y n z in th urrnt {x,x 2,,x i- }LL-tr T i-. So, th 3-str orrsponing to th tringl {x i,y,z} provis grfting of th nw vrtx x i onto this tr. Finlly, n XLL-tr T =T n is otin, prsrving ll th issimilrity vlus in. Applying th tringl mtho is polynomil with O(n 2 ) omplxity. Thus: Proposition 4.. If G = (X,E) is 2-tr, thn thr xists vlu XLL-tr T suh tht th tr funtion T xtns. Thorm 4.2. If G = (X,E) is 2-yli, thn thr xists vlu XLL-tr T suh tht th tr funtion T xtns. Proof. Assum G is 2-yli n us th lgorithm givn in Stion 3. to otin 2-tr G = (X, E ) with E E. Giv ritrry positiv lngths to ll th pirs in E -E. Now xtns to prtil issimilrity with 2-yli support grph n th rsult follows from Proposition 4.. Sin this lgorithm runs in O(n 3 ) n th tringl mtho runs in O(n 2 ), w r l to onlu: Corollry 4.3. Prtil issimilritis with 2-yli support grphs onstitut polynomil lss of WMCA Prolm. In th prtiulr s whr G is 2-tr, Llr n Mkrnkov (998) show tht th finl X-tr os not pn on th orr on tringls. Thir rgumnts r xtn hr to 2-trs. Thorm 4.4. Th tringl mtho uniquly xtns prtil issimilrity with 2tr support grph G = (X,E) to tr funtion T, inpnntly of th us RE orr. Proof. Lt x, y X suh tht xy E. W pro y inution on th lngth k of th 2hin G[xy]. Th rsult is ovious for k 4. Assum tht it is tru for ll 2-trs of lngth t most k- n, without lost of gnrlity, tht x hs gr 2 in G[xy]. Lt z n z th vrtis jnt to x in this grph. As osrv in Stion 3., ithr th pir zz longs to E, or G[zz ] G[xy]. In oth ss, T (z,z ) is givn or, y th inution 8

9 hypothsis, uniquly trmin y th tringl mtho ppli to G[zz ]; th sm for oth pirs yz n yz. Finlly, on hs T (x,y) = mx{ (x,z) + T (y,z ), T (x,z ) + T (y,z) } - T (z,z ). Exmpl 4.. Consir Figur 2, whih shows 2-tr now with prtil mtri. Figur 3 shows th 3-strs ssoit to its tringls n thir sussiv inorportion, until th finl X-tr is otin. In ll our xmpls, th lphti orr on th vrtis will n RE orr f Figur 2: 2-tr now with prtil mtri f 20 f f Figur 3: onstrution of n X-tr from th vlu 2-tr of Figur 2 9

10 4.2. Rsolv 2-trs n th MCA prolm. Th tringl mtho provis uniqu tr funtion xtnsion of ny prtil issimilrity fin on 2-tr. But it my xist othr xtnsions, not givn y this mtho Figur 4 Figur Exmpl 4.6. Consir th vlu 2-tr of Figur 4, with th RE orr (,,,, ). Th tr of Figur shows four possil grftings of on th initil {,,}-tr, mong n infinity; hr, is th grfting provi y th tringl mtho. Th rson of suh n miguity is th qulity of th sums (,)+(,) n (,)+(,). So, th thir sum T (,)+(,) n tk ny vlu infrior to 2 (orrsponing to th tringl mtho), n suprior to 4 if mtri is rquir. Thn, th grfting of provis tr mtri only for 2 T (,) 6: 2 n 4 r th xtrm plmnts of omptil with this onition. With slight hng on th givn prtil issimilrity, sy (,) = 7., th tringl mtho xtnsion oms th uniqu possil on sin, oring to th fourpoint onition, on thn otins T (,)+(,) = 2. n, so, T (,) = 0.. Although n hv no longr th sm grfting point on th pth T(), th otin XLL-tr is vry los to th prvious on with th plmnt for. In tht sns, th tringl mtho xtnsion givs prtiulrly stl tr. Not lso tht, lthough th t onstitut prtil mtri, th uniqu possil xtnsion is not tr mtri. Dfinition 4.7. A vlu 2-tr G on X is si to rsolv if it ls, y pplying th tringl mtho, to rsolv XLL-tr. Thorm 4.8. Th tr funtion xtnsion of prtil issimilrity with 2-tr support grph G is uniqu if n only if G is rsolv. 0

11 Proof. If G is rsolv, h of th n-2 ltnt vrtis is pl in turn t n intrior point of n g of th urrnt tr. Thr is no hoi for this plmnt n th proof is sily otin y inution on n. For th onvrs, ssum tht, t som stp of th tringl mtho, nw vrtx x i = x is grft on th pth T(yz) t point u whih is lry ltnt vrtx. So, two gs xu n uv, oth not longing to th pth T(yz), r otin, with rsptiv lngths A(xu) n A(uv). Dtrmin nw tr T y rpling xu n uv with thr gs uu, u x n u v, n giv thm lngths rsptivly qul to A (uu ) = ε, A (u x) = A(ux)-ε, A (u v) = A(uv)-ε, whr ε is smll nough stritly positiv onstnt. Th mtri in th otin vlu tr T is n ltrntiv xtnsion of th vlus of twn ll th pirs of prssors of x in th onsir RE orr. Strting from T to ontinu th tringl mtho pross ls to n xtnsion of tht iffrs from th tringl mtho on. Exmpl 4.9. St X = {,,,, } n onsir th vlu 2-tr G (hr, 2-tr) in Figur 6. Th tringl mtho givs th XLL-tr of Figur 7, with th vrtx u of gr 4. With ε =, th oprtion sri in th ov proof provis th ltrntiv tr T of Figur 8, whr ll th lngths of gs of G r still prsrv s pth lngths. On th ontrry, th vlu 2-tr of Exmpl 4. is rsolv. Consquntly, it ls to uniqu XLL-tr, whih is pit in Figur u u u Figur 6 Figur 7 Figur 8 Givn prtil issimilrity with 2-tr support grph G, on my us th tringl mtho (in O(n 2 )) to trmin th orrsponing XLL-tr T. If T is rsolv, thn th xtnsion of is uniqu. This xtn msur will mt th mtri onition if n only if non of xtrnl gs in T hs strongly ngtiv lngth. So: Corollry 4.0. Prtil issimilritis with rsolv 2-tr support grphs onstitut polynomil lss of Prolm MCA. Thorm 4.8 will usful in Stion 6 to fin othr polynomil lsss. W n this stion with thr rmrks:

12 Rmrk 4.. As Exmpl 4.6 shows, Prolm MCA rmins iffiult in n unrsolv 2-tr. In tht s, mny tr funtion xtnsions r possil, n th prolm is to trmin whthr som of thm r mtri. Exmpl 4.9 shows n sy s, whr th tringl mtho xtnsion is lry mtri. Rmrk 4.2. For similr rsons, Corollry 4.0 nnot xtn to 2-yli grphs. In this s gin, mny tr funtion xtnsions xist. Although it is lwys possil to xtn prtil mtri from 2-yli to 2-tr support grph (st th lngth of nw g s th minimum pth lngth twn its xtrmitis whnvr this quntity is fin), suh n xtnsion is not gurnt to prtil tr mtri. Rmrk 4.3. Th s of rsolv 2-trs my onsir s th gnrl on, sin unrsolv ons orrspon to itionl linr pnnis twn th vlus of. For instn, in Exmpl 4.9, w hv 2A(,u) = (,)+(,)-(,) = (,)+(,)- (,). Prtil 2-trs n Prolm MCA Compr to 2-trs, 2-trs provi, s support grphs, itionl informtion out th orrsponing vlu XLL-tr. In this stion, it is shown tht Prolm MCA is polynomil for ny prtil mtri with ny 2-yli support grph G, through n qut ompltion of G into 2-tr. Th strtpoint is th following rsult: Proposition. (Llr n Mkrnkov 998). Lt prtil issimilrity with 2-tr support grph G, n T th tr funtion xtning otin y th tringl mtho. Thn, T is tr mtri if n only if is prtil mtri. Sin 2-trs r horl grphs, it is sy to vrify tht, with 2-tr support grph G = (X, E), is prtil mtri if n only if ll th tringls of G r mtri. Assum tht G is just 2-yli. W thn n nw pirs to E until 2-tr is otin. To gt tr mtri xtnsion y th tringl mtho, w hv to giv to h nw g xy lngth prsrving th proprty of ing gnrlly prtil gin - mtri. For tht purpos, simpl solution onsists of tking th minimum lngth G (x,y) of pth of G twn x n y s (x,y). As rll in Stion 3.2, fst lgorithms xist to rogniz prtil 2-trs, tht r grphs without sugrphs homomorphi to K 4 (tht is, 2-yls). Hr w giv simpl lgorithm tht omins this rognition with 2-tr xtnsion of givn prtil mtri. Th lgorithm is s on th onstrution of RE orr, togthr with 2

13 mrking som nw gs. Lt x vrtx with minimum gr (x) in th urrnt grph: if (x) =, lt y th vrtx jnt to x n z vrtx, iffrnt from x, jnt to y; onvnint lngth is ssign to th pir yz, whih is mrk, n x is limint togthr with th g xy; if (x) = 2, lt y n z th vrtis jnt to x; if th pir xy is not lry n g of th urrnt grph, thn this g is mrk n, onvnint lngth is ssign to it, n x is limint togthr with th gs xy n xz; if (x) > 2, th lgorithm stops; G is not prtil 2-tr. Th irruil prt of G, not Irr(G) is th grph otin t th n of this prour; ithr Irr(G) = K 3 or ll its vrtis hv gr t lst 3. Lt E th st E ugmnt with ll th mrk pirs. Thorm.3. Th ov prour xtns givn prtil mtri with th support grph G to prtil mtri with 2-tr support grph if n only if G is 2-yli. Proof. Th ompltion-limintion prour trmins RE orr on X. W first show tht th limintion of x nnot hng th vntul 2-yliity of G. This is ovious whn (x) =. For (x) = 2, whn lting x, 2-yl C of G inluing th gs xy n xz oul rmov. Th xistn of suh 2-yl implis nothr on C otin y sustituting yz to ths two gs; if yz E, thn th 2-yl C xists in G n is not fft y th ltion of x; if yz E, thn C is sustitut to C for lting x. In ll ss, th nw grph is 2-yli if n only if G is. So, if Irr(G) = K 3, ll th sussivly onsir grphs r 2-yli. Othrwis, Irr(G) hs 2-yl, s fin in Stion 3. n, y Proposition 3.2, is not 2-yli. Assum Irr(G) = K 3 n onsir th grph G = (X,E ): on this grph, th ov vlution n limintion prour onsists of sussiv limintions of vrtx longing to uniqu tringl, whih is mtri. So, G is mtri 2-tr n th rsult follows. Corollry.4. Prtil mtris with 2-yli support grphs onstitut polynomil lss of Prolm MCA. Exmpl.. Consir th prtil mtri of Figur 9 with yl support grph. Whil liminting vrtis n, gs n r with rsptiv lngths 0 n 7. Th rsulting 2-tr orrspons to th XLL-tr of Figur 0, with null lngths for th gs jnt to n, whih givs tr mtri xtnsion of. 3

14 Figur 9 Figur 0 Rmrk.6. Whn th ompltion-limintion prour ls to omplt grph Irr(G) with vrtx st Y of rinlity t lst 4, it oul xpt tht w just hv to trmin whthr Y is tr mtri. In ft, this is only th s if ll of th gs of Irr(G) hv not riv thir lngths uring th prour. Othrwis, mny possil lngths wr onvnint, provi thy r omptil with th tringl mtri onition. So, it is not possil to giv gnrl onlusion. Exmpl.7. Applying th ompltion-limintion prour to th vlu grph of Figur ls to K 4. In tht xmpl, no possil systm of lngths on th nw gs n giv tr mtri f 3 Figur Th limintion of vrtis n implis ition of gs f n. Ths oprtions l to th omplt grph on Y = {,,, f}. On my hv (,f) 0 n (,) ; so, (,) + (,f) = 9, 0 (,f) + (,) n (,) + (,f) 9. Th four-point onition nnot stisfi. In th xmpl ov, th nswr to Prolm MCA ws otin with polynomil numr of lmntry oprtions. In mor gnrl s, th grph Irr(G) is now with g lngths, som of thm ompris into intrvls. On hs thn n instn of th "snwih prolm", lso prov NP-omplt y Frh t l. (99). 6 Furthr polynomil ss Clrly, 2-yli grphs r sprs, whr th g nsity rss s th numr of vrtis inrss. In this stion, mor ns grphs r invstigt. It is first osrv in Stion 6. tht suffiint numr of mningful yls of lngth four l to n 4

15 lgri solution. Stion 6.2 prsnts n pproh irtly rlt with th rsults of Stions Skw C 4 s. A C 4 of G is yl of lngth 4 (th usul trm 4-yl hs nothr mning in this ppr). A C 4 xyzw is si skw if (x,y)+(z,w) (x,w)+(y,z). Thn, if, sy, xz E, w hv (y,w) = mx{(x,y)+(z,w), (x,w)+(y,z)} - (x,y). If xyzw os not mit hor, w hv th linr qution (y,w) + (x,z) = mx{ (x,y) + (z,w), (x,w) + (y,z) } with two vrils. A grph G with nough skw 4-yls ls in this wy to systm of linr qutions, whos rsolution my giv n nswr to prolms MCA n WMCA in polynomil tim. Exmpl 6.. Th support grph of Figur 2 hs 9 gs; so, it rmins 6 untrmin vlus for n xtnsion of f Figur 2 Figur 3 G hs 9 skw C 4 s ling to th following systm of qutions: : (,)+(,) = 2 f : (,)+(,f) = 3 : (,)+(,) = 2 f : (,)+(,f) = 3 f : (,)+(,f) = 2 f : (,)+(,f) = 2 : (,)+(,) = f : (,f)+(,) = 2 f : (,)+(,f) = This systm hs th solution: (,) = (,) = 7, (,) =(,f) =, (,f) = (,) = 6. Th orrsponing tr mtri is rprsnt y th XLL-tr of Figur G inlus 2-tr. 2-yli grphs r sprs, us thy hv t most 2n-3 gs. Whn th numr of gs inrss, it my xpt tht th support grph G mits 2-tr H = (Y,F) s sugrph (w ll H 2-sutr of G). Th tringl mtho thn provis n YLL-tr T n, if H is rsolv, uniqu tr funtion T xtning th rstrition F. On my thn, in first stp, ompr th otin vlus of T to th vlus of on pirs of E not in F, ut with xtrmitis in Y. If th vlus r not intil, Prolm WMCA (n so MCA) hs ngtiv nswr for th t. Othrwis, th positiv nswr to WMCA otin for prt of th t n lso, oring to Stion 4.2, ngtiv on for MCA. In oth prolms, on my, with positiv nswr on Y, try to xtn th otin solution to th rmining pirs of E, or to sk nothr 2-tr in G. 2 f

16 This pproh llows on to solv Prolms WMCA n MCA in mny ss. W prsnt hr mor formliz prour tht works s soon s G mits sugrph H whih is rsolv 2-tr on X. Dfinition 6.2. A imon D of G is qurupl xyzw of lmnts of X suh tht {xy, yz, zw, wx, xz} E n yw E (so, D is C 4 with uniqu hor). Th imon D is rsolv if th C 4 xyzw is skw. It ws osrv in Stion 6. ov tht Conition (F) uniquly trmins th vlu of th son hor of rsolv imon. Th min stp of th prour is s follows: sn ll th qurupls of lmnts of X. Whn qurupl is 4-liqu of G, hk whthr it stisfis th four-point onition (F); if not, stop: is not tr funtion. Whn qurupl xyzw is imon, hk whthr it is rsolv; if it is th s, st (y,w) = mx{ (x,y) + (z,w), (x,w) + (y,z) } - (x,y) n th pir yw to E. This stp is itrt until ithr ll th pirs hv riv tr funtion vlu, or 4- liqu not stisfying Conition (F) is foun, or no nw pirs n vlu; in th lst s, th prolms rmin untrmin. Assum tht G inlus rsolv 2-tr H n onsir th lmnts of X in RE orr. Th first four vrtis of rsolv 2-tr onstitut rsolv imon in H; t th nxt stp, th fith vrtx onstituts rsolv imon with som tripls in th prvious vrtis, n so on. Aoring to Thorm 4.8, th xtnsion is uniqu or ls to ontritory Conition (F); in oth ss, prolms WMCA n MCA r solv. Th snning of qurupls is in O(n 4 ) n th numr of itrtions is oun y th numr of pirs not in E, tht is O(n 2 ). Finlly, th prour ns t worst O(n 6 ) tim. Thorm 6.3. Prtil issimilritis with support grphs inluing rsolv 2-tr onstitut polynomil instns of Prolms WMCA n MCA. In phylognti pplitions, for instn, thr r gnrlly svrl, ut fw, missing ntris in onsir volutionry istn mtrix. Thrfor, n lgorithm s on th ov-isuss prour n usfull in this sitution. In Guénoh n Llr (200), th tringl mtho ws ppli, in tr mtri pproximtion purpos, to mor thn 00 prtil mtri tls orrsponing to vrtrt homologous gns issu from th HOVERGEN ts (Durt t l. 994). Among thm, th nswr to MCA rmin untrmin for only ozn tls, with unonnt support grphs. Exmpl 6.4. Consir th vlu grph in Figur 4; it hs n = 6 vrtis n m = 0 gs. Th ltion of th g provis rsolv 2-tr (whil th ltion of f givs n unrsolv on). In th ov prour, first snning of qurupls givs 6

17 th imons (unrsolv), ((,) = 7) n f ((,f) = 6). Th gs n f r to E n son snning is prform. From th imons f, f n f, w fin, rsptivly, (,) = 6, (,) = 6 n (,f) = 0. Consquntly, os not stisfy Conition (F) on th 4-liqu f. Th onlusion is tht this prtil mtri nnot omplt into tr funtion f Figur 4 7. Conlusion W sri n stlish nw proprtis of two lsss of yli-lik grphs (Stion 3), whih l to th following min rsults. For prtil issimilrity with support grph G: If G is 2-yli, thn xtns to tr funtion in polynomil tim (Stion 4.); If, morovr, G is rsolv 2-tr, thn iing whthr xtns or not to tr mtri n solv in polynomil tim (Stion 4.2); If G is 2-yli, thn th prolm whthr is not prtil mtri n os not xtn to mtri of ny typ (Stion 2.2) or is prtil mtri n xtns to tr mtri n solv in polynomil tim (Stion ); If G inlus rsolv 2-tr G, thn th prolm whthr xtns or not to tr funtion or to tr mtri n solv in polynomil tim. Morovr th prour propos in th rtil os not rquir th rovry of G (Stion 6.2). So, mny prtil instns of prolms WMCA n MCA r rsolvl in polynomil tim. Hr is our lst xmpl, prsnting smingly iffiult instn. Th Ptrsn grph of Figur is 2-yl n hs no 2-sutrs. It is now with prtil tr mtri, xpt th vlu of on g (in ol), inrs y. It my xpt tht suh prtil mtri no longr xtns to tr mtri. How to prov (or isprov) tht? 7

18 Figur Rfrns M. Aignr (979), Comintoril Thory, Springr-Vrlg, Brlin. S. Arnorg, D.G. Cornil, A. Proskurowski (987), Complxity of fining mings in k-tr, SIAM J. Alg. Dis. Mth. 8, J.P. Brthélmy, A. Guénoh (99), Trs n Proximity Rprsnttions, Lonon, J. Wily. H.L. Bolnr (997), Trwith: lgorithmi thniqus n rsults, in Proings 22n Intrntionl Symposium on Mthmtil Fountions of Computr Sins, MFCS 97, I. Privr, P. Ruzik (s), Ltur Nots in Computr Sins 29, Brlin, Springr-Vrlg, pp P. Bunmn (97), Th rovry of trs from msurs of issimilrity in Mthmtis in Arhologil n Historil Sins, F.H. Hoson, D.G. Knll, P. Tutu (Es.), Eimurg, Eimurg Univrsity Prss, pp G.A. Dir (92), A proprty of 4-hromti grphs n som rmrks on ritil grphs, J. Lonon Mth. So. 27, L. Durt, D. Mouhirou, M. Gouy (994), HOVERGEN: ts of homologous vrtrt gns, Nuli Ais Rs. 22, M. Frh, S. Knnn n T. Wrnow (99), A roust mol for fining optiml volutionry trs, Algorithmi, 3, -79. A. Guénoh, S. Grnols (999), Approximtion pr rr 'un istn prtill, Mthémtiqus, Informtiqu t Sins humins 46, -64. A. Guénoh, B. Llr (200), Th tringls mtho to uil X-trs from inomplt istn mtris, RAIRO Oprtions Rsrh 3, B. Llr (99), Minimum spnning trs for tr mtris: rigmnts n justmnts, J. of Clssifition 2 (99)

19 B. Llr, V. Mkrnkov (998), On som rltions twn 2-trs n tr mtris, Disrt Mth. 92, P.C. Liu, R.C. Glmhr (980), An O(mx(m,n)) lgorithm for fining sugrph homomorphi to K 4, in Proings th Southstrn Confrn on Comintoris, Grph Thory n Computing, pp V. Mkrnkov (997), Propriétés omintoirs s istns 'rr : Algorithms t pplitions, Ph.. thsis, EHESS, Pris. R.E. Pipprt, L.W. Bink (969), Chrtristion of 2-imntionl trs, in Th Mny Fts of Grph Thory, G. Chtrn, SF. Kpoor (Es.), Ltur Nots in Mthmtis 0, Brlin, Springr-Vrlg, pp A. Proskurowski (984), Sprting sugrphs in k-trs: ls n trpillrs, Disrt Mth. 49, D.J. Ros (974), On simpl hrtriztions of k-trs, Disrt Mth. 7, P. To (989), A k-tr gnrliztion tht hrtrizs onsistny of imnsion nginring rwings, SIAM J. Dis. Mth. 2 (2), A. Wl, C.J. Colourn (983), Stinr trs, prtil 2-trs n minimum IFI ntworks, Ntworks 3, D.J.A. Wlsh (976) Mtroi Thory, Lonon, Ami Prss. 9

20 Psuoos Algorithm 3.. Compltion of 2-yli grph into 2-tr. Whil thr xists x X suh tht (x) = Slt y X suh tht y x n xy E E := E {xy} En Whil If E = 2n-3 thn stop Algorithm Els Mk list L of ll pir xy not inlu in E Whil E < 2n-3 Slt ny pir xy from L Apply 2-pling lgorithm to hk whthr th grph G = (X, E {xy}) is 2-yli L: = L \ {xy } If G is 2-yli E := E {xy} En Whil En Els Algorithm.2. Compltion-limintion prour. Whil thr xists x X suh tht (x) = Slt y suh tht xy E n z x suh tht yz E Mrk xz (x,z) := G (x,z) X := X \ {x} n E := E \ {xy} En Whil Whil thr xists x X suh tht (x) = 2 Slt y n z suh tht xy E n xz E If yz E Mrk yz E := E {yz} (y,z) := G (y,z) X := X \ {x} E := E \ {xy,xz} En Whil 20

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

Discovering Pairwise Compatibility Graphs

Discovering Pairwise Compatibility Graphs Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut..

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

Quartets and unrooted level-k networks

Quartets and unrooted level-k networks Phylogntis Workshop, Is Nwton Institut or Mthmtil Sins Cmrig 21/06/2011 Qurtts n unroot lvl-k ntworks Philipp Gmtt Outlin Astrt n xpliit phylognti ntworks Lvl-k ntworks Unroot lvl-1 ntworks n irulr split

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

arxiv: v1 [math.mg] 5 Oct 2015

arxiv: v1 [math.mg] 5 Oct 2015 onvx pntgons tht mit i-lok trnsitiv tilings sy Mnn, Jnnifr MLou-Mnn, vi Von ru rxiv:1510.01186v1 [mth.mg] 5 Ot 2015 strt Univrsity of Wshington othll Univrsity of Wshington othll Univrsity of Wshington

More information

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids On Lol Trnsformtions in Pln Gomtri Grphs Em on Smll Gris Mnul Allns Prosnjit Bos Alfro Grí Frrn Hurto Pro Rmos Euro Rivr-Cmpo Jvir Tjl Astrt Givn two n-vrtx pln grphs G 1 = (V 1, E 1 ) n G 2 = (V 2, E

More information

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Hmiltonin Wlks of Phylognti Trsps Kvughn Goron, Eri For, n Kthrin St. John strt W nswr rynt s omintoril hllng on miniml

More information

Can transitive orientation make sandwich problems easier?

Can transitive orientation make sandwich problems easier? Disrt Mthmtis 07 (007) 00 04 www.lsvir.om/lot/is Cn trnsitiv orinttion mk snwih prolms sir? Mihl Hi, Dvi Klly, Emmnull Lhr,, Christoph Pul,, CNRS, LIRMM, Univrsité Montpllir II, 6 ru A, 4 9 Montpllir C,

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

arxiv: v1 [math.co] 15 Dec 2015

arxiv: v1 [math.co] 15 Dec 2015 On th Plnr Split Thiknss of Grphs Dvi Eppstin, Philipp Kinrmnn, Stphn Koourov, Giuspp Liott, Ann Luiw, Au Mignn, Djyoti Monl, Hmih Vosoughpour, Su Whitsis 8, n Stphn Wismth 9 rxiv:.89v [mth.co] D Univrsity

More information

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players. Stphn P. Borgtti Grph Thory A lthough grph thory is on o th youngr rnhs o mthmtis, it is unmntl to numr o ppli ils, inluing oprtions rsrh, omputr sin, n soil ntwork nlysis. In this hptr w isuss th si onpts

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

A comparison of routing sets for robust network design

A comparison of routing sets for robust network design A omprison of routing sts for roust ntwork sign Mihl Poss Astrt Dsigning ntwork l to rout st of non-simultnous mn vtors is n importnt prolm rising in tlommunitions. Th prolm n sn two-stg roust progrm whr

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES

ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES N. JONOSKA, G. L. MCCOLM, AND A. STANINSKA Astrt. Givn st of flxil rnh juntion DNA moluls with stiky-ns (uiling loks), ll hr tils, w onsir

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

Witness-Bar Visibility Graphs

Witness-Bar Visibility Graphs Mxin Confrn on Disrt Mthmtis n Computtionl Gomtry Witnss-Br Visiility Grphs Crmn Cortés Frrn Hurto Alrto Márquz Jsús Vlnzul Astrt Br visiility grphs wr introu in th svntis s mol for som VLSI lyout prolms.

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information