On Generalized Multi Poly-Euler and Multi Poly-Bernoulli Polynomials

Size: px
Start display at page:

Download "On Generalized Multi Poly-Euler and Multi Poly-Bernoulli Polynomials"

Transcription

1 O Geeralized Multi Poly-Euler ad Multi Poly-Beroulli Polyoials arxiv: v [ath.nt] 6 Dec 205 Roberto B. Corcio, Hassa Jolay, Cristia B. Corcio ad Takao Koatsu Abstract I this paper, we establish ore idetities of geeralized ulti poly-euler polyoials with three paraeters ad obtai a kid of syetrized geeralizatio of the polyoials. Moreover, geeralized ulti poly-beroulli polyoials are defied usig ultiple polylogarith ad derive soe properties parallel to those of poly-beroulli polyoials. These are geeralized further usig the cocept of Hurwitz-Lerch ultiple zeta values. Matheatics Subect Classificatio 200. B68, B73, 05A5. Keywords: ulti poly-euler polyoials, Appell polyoials, ultiple polylogarith, poly-beroulli polyoial, Hurwitz-Lerch ultiple zeta value, geeratig fuctio. Itroductio The Euler ubers, deoted by E, are usually itroduced as the coefficiets of the geeratig fuctio cosht 2et e 2t + t E. Evetually, these ubers have bee geeralized i polyoial for as 2e xt e t + E x t where E x deote the so-called Euler polyoials. Euler ubers ad polyoials have a rich literature i the history of atheatics where buch of idetities ad properties have bee established icludig their atheatical ad physical applicatios. These ubers ad polyoials have close coectios with Beroulli ubers ad polyoials, particularly, i the structures of their properties ad geeralizatios. I fact, i alost every property ad geeralizatio of Beroulli ubers

2 ad polyoials there correspods property ad geeralizatio for Euler ubers ad polyoials. For istace, Kaeko [8] itroduced the poly-beroulli ubers B k by eas of the followig expoetial geeratig fuctio Li k e x B k x e x where Li k z z k, while Oho ad Sasaki [2] defied poly-euler ubers as Li k e 4t E k t 4tcosht which have bee recetly exteded by H. Jolay et al. [7] i polyoial for as 2Li k e t e xt E k +e t xt. It is worth-etioig that the above geeralizatio of Kaeko has bee geeralized further by Cekci ad Youg [7] usig the cocept of Hurwitz-Lerch zeta fuctio Φz, s, a as follows Φ e t,k,a B,a k t 2 where Φz,k,a z +a k. 3 The ubers B,a k are called the Hurwitz type poly Beroulli ubers. These ubers have bee show to have explicit forula B k,a 0!S, +a k 4 where S, deotes the Stirlig ubers of the secod kid. A parallel versio of geeralizatio for Euler ubers is still to be doe. However, it is expected that the structure is quite coplicated. For istace, oe ay defie it as 2 e t Φ e t,k,a +e t E k t,a. 5 The ubers E,a k ay becalled the Hurwitz type poly Euler ubers. Oeca easily derive the explicit forula for E,a k as follows E k +,a r r r++q+ + q ++, r q, r r q!s r,. 6 +a k r q 0 2

3 We otice that the explicit forula of E,a k is ore coplicated tha that of B,a. k Aother for of geeralizatio of Beroulli ubers has bee defied by Iatoi et al. [3] i ters of ultiple polylogarith as follows where Li k,k 2,...,k r e t e t Li k,k 2,...,k rz B k,k 2,...,k r t zr 0< < 2 <...< r k k kr r These ubers possess respectively the followig recurrece relatio ad explicit forula B k,k 2,...,k r B k,k 2,...,k r B k,k 2,...,k r 9 + B k,k 2,...,k r + > 2 >...> r>0!s,. 0 k k 2... kr r Parallel to the above geeralizatio is the geeralized ulti poly-euler polyoials which are deoted by E k,k 2,...,k r x;a,b,c. These polyoials have bee itroduced i [6] by eas of the above ultiple poly-logarith, also kow as ultiple zeta values. More precisely, we have 2Li k,k 2,...,k r ab t c rxt E k,k 2,...,k r a t +b t r x;a,b,c t. Whe r, boils dow to the geeralized poly-euler polyoials with three paraeters a,b,c. Moreover, whe c e, reduces to the ulti poly-euler polyoials with two paraeters a, b. These special cases have bee discussed itesively i [6, ]. Soe properties of geeralized ulti poly-euler polyoials E k,k 2,...,k r x;a,b,c are i0 established i [6] which iclude the followig idetities E k,k 2,...,k r x;a,b,c i E k,k 2,...,k r x;a,b,c la+lb E k,k 2,...,k r d dx Ek,k 2,...,k r i0 rlc i E k,k 2,...,k r i a,bx i 2 rxlc+la la+lb + x;a,b,c +rlce k,k 2,...,k r x;a,b,c E k,k 2,...,k r x+y;a,b,c i rlc i E k,k 2,...,k r i x;a,b,cy i. Furtherore, a explicit forula for E k,k 2,...,k r x;a,b,c is give by E k,k 2,...,k r x;a,b,c J, 2,..., r 4 i0 0< < 2 <...<r c +c r 3 3

4 where J, 2,..., r r 0 2rxlc lab i r! +s slab+rla i r i c!c 2!... k k kr r with s c +2c Whe r, these idetities reduce to d dx Ek E k x;a,b,c i0 E k x;a,b,c la+lb E k lc i E k i a,bx i i xlc+la la+lb +x;a,b,c +lce k x;a,b,c E k x+y;a,b,c i0 lc i E k i x;a,b,cy i i which are properties of geeralized poly-euler polyoials see [6]. I this paper, soe idetities of E k,k 2,...,k r x;a,b,c related to Stirlig ubers of the secod kid are established ad certai syetrized geeralizatio for E k,k 2,...,k r x;a,b,c is obtaied. O the other had, geeralized ulti poly-beroulli polyoials are defied ad soe properties of these polyoials are established parallel to those of the poly-beroulli polyoials. Moreover, certai geeralizatio of ulti poly-beroulli ubers is defied i ters of geeralized Hurwitz-Lerch ultiple zeta values. 2 Geeralized Multi Poly-Euler Polyoials ad Stirlig Nubers The geeralized poly-euler polyoials with three paraeters a, b ad c are defied i [6] as follows 2Li k ab t c xt E k a t +b t x;a,b,c t. 5 Soe idetities o geeralized poly-euler polyoials are expressed i ters of Stirlig ubers of the secod kid. Such idetities have appeared i Theore 2.6 of [6] but with c e. More precisely, we have the followig theore. 4

5 Theore 2.. [6] The geeralized poly-euler polyoials E k x;a,b satisfy the followig explicit forulas E k x;a,b 0 l E k x;a,b 0 l E k x;a,b 0 E k x;a,b 0 } l l } l l l0 λ s E k l ;a,bx 6 E k l 0;a,bx 7 l l+s l s 0 } l +s E k s λ s E k s l 0;a,bBs x 8 ;a,bh s x;λ, 9 where x xx+...x+, x xx...x +, s t s λ e xt B s e t xt ad e xt H e t s λ x;λt. Here, we derive soe idetities for E k,k 2,...,k r x;a,b,c which are parallel to those i Theore 2.. The first such idetity is give i the followig theore. Theore 2.2. E k,k 2,...,k r x;a,b,c 0 l } l rlogc l l E k,k 2,...,k r l logc;a,bx. 20 Proof. Note that ca be writte as E k,k 2,...,k r x;a,b,c t 2Li k,k 2,...,k r ab t e rtlogc x a t +b t r Usig Newto s Bioial Theore, we have E k,k 2,...,k r x;a,b t 2Li k,k 2,...,k r ab t x+ e rtlogc a t +b t r l 0 x ertlogc 2Li k,k 2,...,k r ab t e rtlogc! a t +b t r } rtlogc x } } l rlogc l E k,k 2,...,k r l rlogc;a,bx l Coparig coefficiets copletes the proof of E k,k 2,...,k r rlogc;a,b t t

6 I particular, whe c e ad r, 20 yields 6. For the geeralizatio of 7, we have the followig theore. Theore 2.3. E k,k 2,...,k r x;a,b,c 0 l } l rlogc l l E k,k 2,...,k r l 0;a,bx. 2 Proof. Note that ca be writte as E k,k 2,...,k r x;a,b,c t 2Li k,k 2,...,k r ab t e rtlogc + x a t +b t r Usig Newto s Bioial Theore, we have E k,k 2,...,k r x;a,b t 2Li k,k 2,...,k r ab t a t +b t r 0 e rtlogc 2Li k,k x 2,...,k r ab t! a t +b t r } rtlogc x } l rlogc l l l Coparig coefficiets copletes the proof of 2. Theore 2.4. E k,k 2,...,k r x;a,b,c 0 l0 l l+s l x e rtlogc E k,k 2,...,k r 0;a,b t } E k,k 2,...,k r l 0;a,bx } l+s s t E k,k 2,...,k r l 0;a,bB s xrlogc. 22 Proof. Note that ca be writte as E k,k 2,...,k r x;a,b,c t e t s t s e xrtlogc 2Lik,k 2,...,k r ab t s! s! e t s a t +b t r t s } +s t +s B s s +s! xrlogct E k,k 2,...,k r 0;a,b t s!! t s 0 } +s t +s B s s +s! xrlogct! Ek,k 2,...,k r t s! 0;a,b! t s 0 } } l+s t l+s s l+s! Bs xrlogcek,k 2,...,k r t l t l 0; a, b l!!s! t s 0 l0 } } l l +s l+s E k,k 2,...,k r l 0;a,bB s t xrlogc s 0 l0 s! 6

7 Coparig coefficiets copletes the proof of 22. Theore 2.5. E k,k 2,...,k r x;a,b,c 0 λ s s 0 s λ s E k,k 2,...,k r ;a,bh s xrlogc;λ. Proof. Note that ca be writte as E k,k 2,...,k r x;a,b,c t λ s e t λ s 2Lik,k 2,...,k r ab t e t λ sexrtlogc λ s a t +b t r H s xrlogc;λ t s 0 s s λ s λ s 0 s s λ s λ s 0 0 s s λ s 0 0 s λ s 2Li k,k 2,...,k r ab t e t a t +b t r H s xrlogc;λt H s Coparig coefficiets copletes the proof of 23. E k,k 2,...,k r ;a,b t xrlogc;λe k,k 2,...,k r ;a,b t t. λ s E k,k 2,...,k r ;a,bh s xrlogc;λ The ext theore cotais a idetity which is obtaied by akig use of the followig differetial forula for the geeralized poly-logarith Haahata ad Masubuchi, Itegers 23 d dz Li k,...,k r z z Li k,...,k r,k r z if k r > ; z Li k,...,k r z if k r. 24 Theore 2.6. If k r >, the E k,...,k r + x rlogac x E k,...,k r x r ν If k r, the E k,...,k r ν0 logab ν0 0 ν νe logab k,...,k r ν x 0 ν logab E k,...,k r,k r ν x. + x rlogac x E k,...,k r x ν r logab E k,...,k r ν x+logabe k,...,k r x. ν ν0 0 7

8 Proof. We differetiate both sides of 2ac x rt Li k,...,k r ab t +ab t r with respect to t usig 24. If k, the 2rac x rt logac x Li k,...,k r ab t E k,...,k r x t +2ac x rt ab t logab Li ab t k,...,k r,k r ab t r +ab t r ab t logab E k,...,k r x t + +ab t r Dividig both sides by +ab tr, we have rlogac x 2ac x rt +ab t rli k,...,k r ab t E k,...,k r t x!. + logab 2ac x rt ab t +ab t rli k,...,k r,k r ab t rabt +ab logab t E k,...,k r x t + E + t. Sice ad logab ab logab ab t logab t logab 0 0 ν0 rab t +ab r ab t t r 0 0 ν0 ν logab ν! 0 t ν ν logab t ν, ν! e tlogab 8

9 we obtai Hece, rlogac x rlogac x +logab E k,...,k r 0 ν0 r x t ν t ν logab 0 ν0 E k,...,k r x t + r ν ν0 0 logab ν! µ0 ν t ν logab ν0 E k,...,k r,k r µ x tµ µ! ν! t µ E µ µ! + µ0 E k,...,k r + x t ν logab E k,...,k r ν x ν 0 Coparig the coefficiets o both sides, we have E k,...,k r + x rlogac x E k,...,k r x r ν ν0 logab 0 ν0 E k,...,k r t +. t ν logab E k,...,k r,k r ν x νe logab k,...,k r ν x ν 0 ν logab E k,...,k r,k r ν x. If k r, the the secod ter o the left-had side becoes 2ac x rt ab t logab ab t Li k,...,k r. After dividig of +ab t r, this secod ter becoes Fially, we get E k,...,k r 2ac x rt logab +ab t rli k,...,k r logab E k,...,k r x t. + x rlogac x E k,...,k r x νe r logab k,...,k r ν x+logabe k,...,k r x. ν ν0 0 t. 9

10 3 Syetrized Geeralizatio of E k,k 2,...,k r x;a,b,c The poly-euler polyoials E k x; a, b, c have bee give syetrized geeralizatio [6] of the for D x,y;a,b,c la+lb k0 k E k x;a,b,c k ylc+la. la+lb This syetrized geeralizatio possesses the followig double geeratig fuctio 0 D u x,y;a,b,ct! 2ey lc+la la+lb u e xlc+la la+lb t e t+u e t e t +e t +e u e t+u 25 ad explicit forula D x,y;a,b,c 2 0! 2 l0 i0 ylc+2la+lb la+lb r0 Defiitio 3.. For, 0, we defie D x,y;a,b,c k +k k r ilcx a i+2 b i+ l lc x a i+ b i l la+lb l k,k 2,...k r r r r k E, k 2,... k r x;a,b,c la+lb l l } }. 26 kr r ylc+la. la+lb The followig theore cotais the double geeratig fuctio for D x,y;a,b,c. 27 Theore 3.2. For, 0, we have 0 Proof. 0 D u x,y;a,b,ct! 2e D u x,y;a,b,ct! r y lc+la la+lb u e r r xlc+la la+lb t e r2u+r t e t r +e t r r i et +e iu e t+iu. 28 0

11 0 k +k k r u k!k 2!...k r! k +k k r 0 uk +k k r k!k 2!...k r! k +k k r 0 t u k +k k r k!k 2!...k r! lc+la r y e la+lb u Usig idetity 3, we obtai 0 D u x,y;a,b,ct! E k, k 2,... k r x;a,b,c la+lb E k, k 2,... k r x;a,b,c la+lb E k, k 2,... k r x;a,b,c la+lb k r 0 k +k k r 0 E k, k 2,... k r kr r ylc+la t la+lb kr r ylc+la t la+lb kr r ylc+la u kr la+lb k r! t u k +k k r x;a,b,c la+lb k!k 2!...k r! lc+la r y e la+lb u e uk +k k r k!k 2!...k r! k +k k r 0 lc+la r y la+lb u e r r xlc+la la+lb t uk +k k r k!k 2!...k r! 2er y lc+la la+lb u e r r xlc+la la+lb t +e t r where Su,, 2,..., r k +k k r 0 E k, k 2,... k r k +k k r 0 r xlc+la t la+lb 2Li k, k 2,..., k r e t +e t r 0< < 2 <...< r e t r Su,, 2,..., r u k u 2 k 2...u r k r k!k 2!...k r!

12 0 0! k +k k r u +u u r e u r.! u k u 2 k 2...u r k r k,k 2,...k r Thus, 0 D u x,y;a,b,ct! 2er y lc+la la+lb u e r r xlc+la la+lb t +e t r 2er y lc+la la+lb u e r r xlc+la la+lb t +e t r 0< < 2 <...< r e t r e u r eu e t e 2u e t e u e t e 2u e t... e r u e t e r u e t 2er y lc+la la+lb 2er y lc+la la+lb u e r r xlc+la la+lb t e r2u e t r +e t r r i eiu e t u e r r xlc+la la+lb t e r2u+r t e t r +e t r r i et +e iu e t+iu. Note that equatio 25 ca easily be deduced fro equatio 28 by takig r. It is the iterestig to establish a explicit forula for D x,y;a,b,c parallel to equatio 26. To do this, let us cosider first the followig expressio fro the right-had side of 2

13 equatio 28. That is, +e t r r i et +e iu e t+iu r e t r r e t e t e iu i r r e t e t e iu i 0 r r e t e t c i e iu c i k r q0 k r 0 k r 2 0 i c i 0 k r... k 2... k 0 q 2 q 0 q ++ q! q0 e qt q e qt r e t c i e iu c i i c i 0 0 c +c c r 0 c +c c r r e t e iu c i! i } t r } u c i! i c i r } u c i! i c i e r r xlc+la la+lb d r 2 0 d r 2 0 d r 3 0 d r 2... d 2... d 0 r 2 dr 2... d i+ i t e t r e r! t e r r xlc+la la+lb t! r e q0 k0! r d i } dr 2... d c! di c i+ } t c }c i+!i+ d i u! r q 2 k e kt q 0 q ++ e qt k q! k0 q0 } t r 2 xlc+q klb+q k+r la la+lb } t 3 k+q r k q 2 0 q ++ q!

14 r r 2 xlc+q klb+q k +r la la+lb q0 k0 k+q r q 2 k 0 q ++ t } t! q! r r 2 xlc+q klb+q k +r la p la+lb p0 q0 k0 k+q r q 2 } k 0 q ++ p t! q! lc+la r } r y u e la+lb u e r 2u c i! 0 0 i c i r ylc+ r 2 lb+ r } 2 + la u la+lb! d r 2... d 2 d 0 di dr 2... d c! c } r 2 d r 2 0 d r 2 0 d r 3 0 dr 2... d i+ }c i+!i+ d u i c i+! r ylc+ r 2 lb+ r } l 2 + la l la+lb 0 l0 l d r 2... d 2 d 0 di c i+ D u x,y;a,b,ct! 0 l d r 2 0 d r 3 0 } di c i+ l d r 2 l dr 2... d c! c } } c i+!i+ d i u! 0 c +c c r l0 l d r 2... d 2... d 0 c i+!i+ d i } r 2 i d i l d r 2 d r 2 0 d r 3 0 l dr 2... d i+ i d i r ylc+ r 2 lb+ r } 2 + la la+lb l dr 2... d c! r p0 q0 k0 p c } r 2 d i... l p... l dr 2... d i+ i q 2 k 0 k+q r q ++ p! q! 4 } F p q } t u!

15 where r Fq p 2 p xlc+q klb+q k +r la. la+lb Coparig coefficiets, we obtai the followig theore. Theore 3.3. For, 0, we have D x,y;a,b,c 0 c +c c r r ylc+ r 2 lb+ r } l 2 + la la+lb l0 where l l d r 2 d r 2 0d r 3 0 di c i+ l d r 2... d 2... } c i+!i+ d i d 0 p0 q0 k0 l dr 2... d c! r p c l dr 2... d i+ } r 2 i q 2 k 0 k+q r q ++ p! q! r Fq p 2 p xlc+q klb+q k +r la. la+lb 4 Geeralized Multi Poly-Beroulli Polyoials Parallel to the defiitio of geeralized ulti poly-euler polyoials i, we have the followig geeralizatio of poly-beroulli ubers. Defiitio 4.. The geeralized ulti poly-beroulli polyoials are defied by Li k,k 2,...,k r ab t c rxt B k,k 2,...,k r b t a t r x;a,b,c t. 29 Oe ca easily prove the followig theore usig the sae arguet i derivig the idetities i Theore Theore 4.2. The geeralized ulti poly-beroulli polyoials satisfy the followig idetities. } B k,k 2,...,k r l x;a,b,c rlogc l B k,k 2,...,k r l logc;a,bx l 0 l } B k,k 2,...,k r l x;a,b,c rlogc l B k,k 2,...,k r l 0;a,bx l 0 l B k,k 2,...,k r } l l +s x;a,b,c l+s B k,k 2,...,k r l 0;a,bB s s xrlogc 0 l0 l s B k,k 2,...,k r x;a,b,c s λ s B k,k 2,...,k r λ s ;a,bh s xrlogc;λ 0 0 d i } F p q 5

16 The ext theore cotais a explicit forula for B k,k 2,...,k r x;a,b,c. Theore 4.3. Explicit Forula For k Z, 0, we have B k,k 2,...,k r x;a,b,c Proof. r>...> >0 Li k,k 2,...,k r ab t b t a t r b rt So, we get k k kr r b rt r>...> >0 r>...> >0 r>...> >0 r r 0 r r ab t r r k k kr r k k kr r k k kr r 0 rx la +lb. 30 r r r r e tlab 0 r r r r e tla++lb. Li k,k 2,...,k r ab t b t a t r e xrtlc r>...> k >0 k 2 r>...> >0 2...kr r r r 0 k k kr r r r r r 0 r r e trx la +lb rx la +lb By coparig the coefficiets of t o both sides, the proof is copleted. t The ext theore cotais a expressio of B k,k 2,...,k r x;a,b,c as polyoial i x. Theore 4.4. The geeralized ulti poly-beroulli polyoials satisfy the followig relatio B k,k 2,...,k r x;a,b,c lc i B k,k 2,...,k r i a,bx i 3 i i0 6

17 Proof. Usig 29, we have B k,k 2,...,k r x;a,b,c t Li k,k 2,...,k r ab t c xt e xtlc b t a t r xtlc i B k,k 2,...,k r i a,b ti i! i! i0 lc i B k,k 2,...,k r i a,bx i i i0 B k,k 2,...,k r a,b t t. Coparig the coefficiets of t, we obtai the desired result. Note that, whe a c e ad b, Defiitio 4. reduces to Li k,k 2,...,k r e t e t r e rxt B k,k 2,...,k r x t. 32 The followig theore gives a relatio betwee B k,k 2,...,k r x;a,b,c ad B k,k 2,...,k r x. Theore 4.5. The geeralized ulti poly-beroulli polyoials satisfy the followig relatio B k,k 2,...,k r x;a,b,c la+lb B k,k 2,...,k r xlc rlb 33 la+lb Proof. Usig 29, we have B k,k 2,...,k r x;a,b,c t Li k,k 2,...,k r ab t e xtlc b rt ab t r e xlc rlb lab tlab Li k,k 2,...,k r e tlab +e tlab la+lb B k,k 2,...,k r xlc rlb la+lb t. Coparig the coefficiets of t, we obtai the desired result. Theore 4.6. The geeralized poly-beroulli polyoials satisfy the followig relatio d dx Bk,k 2,...,k r + x;a,b,c +lcb k,k 2,...,k r x;a,b,c 34 7

18 Proof. Usig 29, we have Hece, d dx Bk,k 2,...,k r d dx Bk,k 2,...,k r d + dx Bk,k 2,...,k r x;a,b,c t x;a,b,c t tlcli k,k 2,...,k r ab t e xrtlc b t a t r rlcb k,k 2,...,k r x;a,b,c t. + x;a,b,c t lcb k,k 2,...,k r x;a,b,c t. Coparig the coefficiets of t, we obtai the desired result. The followig corollary iediately follows fro Theore 4.6 by takig c e. For brevity, let us deote B k,k 2,...,k r x;a,b,e by B k,k 2,...,k r x;a,b. Corollary 4.7. The geeralized poly-beroulli polyoials are Appell polyoials i the sese that d dx Bk,k 2,...,k r + x;a,b +B k,k 2,...,k r x; a, b 35 Cosequetly, usig the characterizatio of Appell polyoials [20, 22, 23], the followig additio forula ca easily be obtaied. Corollary 4.8. The geeralized poly-beroulli polyoials satisfy the followig additio forula B k,k 2,...,k r x+y;a,b B k,k 2,...,k r i x;a,by i 36 i i0 However, we ca derive the additio forula for B k,k 2,...,k r x;a,b,c as follows B k,k 2,...,k r x+y;a,b,c t Li k,k 2,...,k r ab t b t a t r c x+yrt Li k,k 2,...,k r ab t c xrt c yrt b t a t r B k,k 2,...,k r x;a,b,c t yrlc t yrlc i B k,k 2,...,k r t i x;a,b,c i. i0 Coparig the coefficiets of t yields the followig result. 8

19 Theore 4.9. The geeralized poly-beroulli polyoials satisfy the followig additio forula B k,k 2,...,k r x+y;a,b,c i0 rlc i B k,k 2,...,k r i x;a,b,cy i. i 5 Hurwitz-Lerch Type Multi Poly-Beroulli Polyoials Cosider the case i which x, a e ad b c for the paraeters i Defiitio 4.. The we have Li k,k 2,...,k r e t B k,k 2,...,k r t e t r. 37 This ca be geeralized usig the followig geeralizatio of Hurwitz-Lerch ultiple zeta values Φ k,k 2,...,k rz,a zr a r+ k 2 +a r+2 k 2...r +a kr. r 38 Note that Li k,k 2,...,k rz zr 0< < 2 <...< r k k 2 z r 2...kr r k 2 k 2...r k r 0< < 2 <...< r zr r z r r z r Φ k,k 2,...,k rz,r zr + k 2 +2 k 2... r +r kr Thus, we have Li k,k 2,...,k rz Φ z r k,k 2,...,k rz,r. 39 More precisely, oe ca geeralize 40 as follows Φ k,k 2,...,k r e t,a B k,k 2,...,k r t,a. 40 We call B k,k 2,...,k r,a as Hurwitz-Lerch Type Multi Poly-Beroulli Nubers. Furtherore, we cadefiethehurwitz-lerch TypeMulti Poly-BeroulliPolyoials,deotedbyB k,k 2,...,k r,a x, as follows Φ k,k 2,...,k r e t,ae rxt 9 B k,k 2,...,k r,a x t 4

20 where B k,k 2,...,k r,a 0 B k,k 2,...,k r,a. The ext theore cotais a explicit forula for B k,k 2,...,k r },a x expressed i ters of the r, β-stirlig ubers [0], which satisfy the followig expoetial geeratig β,r fuctio } β! ert e βt t. 42 β,r Theore 5.. The Hurwitz-Lerch type ulti poly-beroulli polyoials have the followig explicit forula } r! B k,k 2,...,k r r,xr,a x +a r + k 2 +a r +2 k 2...r +a kr r Proof. Usig 38 ad 42, we have B k,k 2,...,k r,a x t Φ k,k 2,...,k r e t,ae xrt r! e xrt e t r a r+ k 2 +a r+2 k 2...r +a kr r r! r r! } a r+ k 2 +a r+2 k 2...r +a kr r r r } r r! r,xr t +a r + k 2 +a r +2 k 2...r +a kr Coparig the coefficiets of t copletes the proof of the theore. Note that 42 iplies } r,0 +r r }. Hece, as a direct cosequece of Theore 5., we have the followig corollary. Corollary 5.2. The Hurwitz-Lerch type ulti poly-beroulli ubers equal } +r r! B k,k 2,...,k r r,a +a r + k 2 +a r +2 k 2...r +a kr r,xr 43 t 20

21 Whe r, equatio 44 gives B k,a 0 +! +a k which is exactly the explicit forula for Hurwitz type poly-beroulli ubers i Theore 2. of [7]. Refereces [] S. Araci, M. Acikgoz ad E. Se, O the exteded Ki s p-adic q-defored ferioic itegrals i the p-adic iteger rig, J. Nuber Theory, , [2] A. Bayad ad Y. Haahata, Arakawa-Kaeko L-fuctios ad geeralized poly-beroulli polyoials, J. Nuber Theory, 3 20, [3] A. Bayad ad Y. Haahata, Multiple polylogariths ad ulti-poly-beroulli polyoials, Fuct. Approx. Coet. Math., , [4] B. Beńyi, Advaces i Biective Cobiatorics, Ph.D. Thesis, 204. [5] C. Brewbaker, A Cobiatorial Iterpretatio of the Poly-Beroulli Nubers ad Two Ferat Aalogues, Itegers, , #A02. [6] B. Cadelpergher ad M. A. Coppo, A ew class of idetities ivolvig Cauchy ubers, haroic ubers ad zeta values, Raaua J., , [7] M. Cekci ad P. T. Youg, Geeralizatios of Poly-Beroulli ad Poly-Cauchy Nubers, Eur. J. Math., Published Olie o 0 Septeber 205, DOI 0.007/s [8] L. Cotet, Advaced Cobiatorics, D. Reidel Publishig Copay, 974. [9] M-A. Coppo ad B. Cadelpergher, The Arakawa-Kaeko Zeta Fuctio, Raaua J., , [0] R. B. Corcio, C. B. Corcio ad R. Aldea, Asyptotic Norality of ther, β-stirlig Nubers, Ars Cobi., , [] R. B. Corcio, H. Jolay, M. Aliabadi ad M. R. Darafsheh, A Note o Multi Poly- Euler Nubers ad Beroulli Polyoials, Geeral Matheatics, , ROMANIA. [2] Y. Haahata, Poly-Euler Polyoials ad Arakawa-Kaeko Type Zeta Fuctios, Fuct. Approx. Coet. Math., 5 204, [3] K. Iatoi, M. Kaeko ad E. Takeda, Multi-Poly-Beroulli Nubers ad Fiite Multiple Zeta Values, J. Iteger Seq., 7 204, Article }

22 [4] L. Jag, T. Ki, ad H. K. Pak, A ote o q-euler ad Geocchi ubers, Proc. Japa Acad. Ser. A Math. Sci., , [5] H. Jolay, R. E. Alikelaye ad S. S. Mohaad, Soe Results o the Geeralizatio of Beroulli, Euler ad Geocchi Polyoials, Acta Uiv. Apulesis Math. Ifor., 27 20, [6] H. Jolay, R. B. Corcio ad T. Koatsu, More Properties of Multi Poly-Euler Polyoials, Bol. Soc. Mat. Mex., 2 205, [7] H. Jolay, M.R. Darafsheh, R.E. Alikelaye, Geeralizatios of Poly-Beroulli Nubers ad Polyoials, It. J. Math. Cob., 2 200, 7 4. [8] M. Kaeko, Poly-Beroulli ubers, J. Théor. Nobres Bordeaux, 9 997, [9] T. Ki, q-geeralized Euler ubers ad polyoials, Russ. J. Math. Phys , [20] D. W. Lee, O Multiple Appell Polyoials, Proc. Aer. Math. Soc., 39 20, [2] Y. Oho ad Y. Sasaki, O the parity of poly-euler ubers, RIMS Kokyuroku Bessatsu, B32 202, [22] J. Shohat, The Relatio of the Classical Orthogoal Polyoials to the Polyoials of Appell, Aer. J. Math., , [23] L. Toscao, Polioi Ortogoali o Reciproci di Ortogoali Nella classe di Appell, Le Mateatiche, 956, Roberto B. Corcio Cebu Noral Uiversity Cebu City, Philippies e-ail: rcorcio@yahoo.co Hassa Jolay Uiversité des Scieces et Techologies de Lille UFR de Mathéatiques Laboratoire Paul Pailevé CNRS-UMR Villeeuve d Ascq Cedex/Frace e-ail: hassa.olay@ath.uiv-lille.fr Cristia B. Corcio Cebu Noral Uiversity Cebu City, Philippies e-ail: cristiacorcio@yahoo.co 22

23 Takao Koatsu School of Matheatics ad Statistics Wuha Uiversity Wuha Chia e-ail: 23

Binomial transform of products

Binomial transform of products Jauary 02 207 Bioial trasfor of products Khristo N Boyadzhiev Departet of Matheatics ad Statistics Ohio Norther Uiversity Ada OH 4580 USA -boyadzhiev@ouedu Abstract Give the bioial trasfors { b } ad {

More information

Some results on the Apostol-Bernoulli and Apostol-Euler polynomials

Some results on the Apostol-Bernoulli and Apostol-Euler polynomials Soe results o the Apostol-Beroulli ad Apostol-Euler polyoials Weipig Wag a, Cagzhi Jia a Tiaig Wag a, b a Departet of Applied Matheatics, Dalia Uiversity of Techology Dalia 116024, P. R. Chia b Departet

More information

Research Article Sums of Products of Cauchy Numbers, Including Poly-Cauchy Numbers

Research Article Sums of Products of Cauchy Numbers, Including Poly-Cauchy Numbers Hiawi Publishig Corporatio Joural of Discrete Matheatics Volue 2013, Article ID 373927, 10 pages http://.oi.org/10.1155/2013/373927 Research Article Sus of Proucts of Cauchy Nubers, Icluig Poly-Cauchy

More information

#A18 INTEGERS 11 (2011) THE (EXPONENTIAL) BIPARTITIONAL POLYNOMIALS AND POLYNOMIAL SEQUENCES OF TRINOMIAL TYPE: PART I

#A18 INTEGERS 11 (2011) THE (EXPONENTIAL) BIPARTITIONAL POLYNOMIALS AND POLYNOMIAL SEQUENCES OF TRINOMIAL TYPE: PART I #A18 INTEGERS 11 (2011) THE (EXPONENTIAL) BIPARTITIONAL POLYNOMIALS AND POLYNOMIAL SEQUENCES OF TRINOMIAL TYPE: PART I Miloud Mihoubi 1 Uiversité des Scieces et de la Techologie Houari Bouediee Faculty

More information

Automated Proofs for Some Stirling Number Identities

Automated Proofs for Some Stirling Number Identities Autoated Proofs for Soe Stirlig Nuber Idetities Mauel Kauers ad Carste Scheider Research Istitute for Sybolic Coputatio Johaes Kepler Uiversity Altebergerstraße 69 A4040 Liz, Austria Subitted: Sep 1, 2007;

More information

CERTAIN CONGRUENCES FOR HARMONIC NUMBERS Kotor, Montenegro

CERTAIN CONGRUENCES FOR HARMONIC NUMBERS Kotor, Montenegro MATHEMATICA MONTISNIGRI Vol XXXVIII (017) MATHEMATICS CERTAIN CONGRUENCES FOR HARMONIC NUMBERS ROMEO METROVIĆ 1 AND MIOMIR ANDJIĆ 1 Maritie Faculty Kotor, Uiversity of Moteegro 85330 Kotor, Moteegro e-ail:

More information

#A51 INTEGERS 14 (2014) MULTI-POLY-BERNOULLI-STAR NUMBERS AND FINITE MULTIPLE ZETA-STAR VALUES

#A51 INTEGERS 14 (2014) MULTI-POLY-BERNOULLI-STAR NUMBERS AND FINITE MULTIPLE ZETA-STAR VALUES #A5 INTEGERS 4 (24) MULTI-POLY-BERNOULLI-STAR NUMBERS AND FINITE MULTIPLE ZETA-STAR VALUES Kohtaro Imatomi Graduate School of Mathematics, Kyushu Uiversity, Nishi-ku, Fukuoka, Japa k-imatomi@math.kyushu-u.ac.p

More information

A Pair of Operator Summation Formulas and Their Applications

A Pair of Operator Summation Formulas and Their Applications A Pair of Operator Suatio Forulas ad Their Applicatios Tia-Xiao He 1, Leetsch C. Hsu, ad Dogsheg Yi 3 1 Departet of Matheatics ad Coputer Sciece Illiois Wesleya Uiversity Blooigto, IL 6170-900, USA Departet

More information

x !1! + 1!2!

x !1! + 1!2! 4 Euler-Maclauri Suatio Forula 4. Beroulli Nuber & Beroulli Polyoial 4.. Defiitio of Beroulli Nuber Beroulli ubers B (,,3,) are defied as coefficiets of the followig equatio. x e x - B x! 4.. Expreesio

More information

Bertrand s postulate Chapter 2

Bertrand s postulate Chapter 2 Bertrad s postulate Chapter We have see that the sequece of prie ubers, 3, 5, 7,... is ifiite. To see that the size of its gaps is ot bouded, let N := 3 5 p deote the product of all prie ubers that are

More information

q-fibonacci polynomials and q-catalan numbers Johann Cigler [ ] (4) I don t know who has observed this well-known fact for the first time.

q-fibonacci polynomials and q-catalan numbers Johann Cigler [ ] (4) I don t know who has observed this well-known fact for the first time. -Fiboacci polyoials ad -Catala ubers Joha Cigler The Fiboacci polyoials satisfy the recurrece F ( x s) = s x = () F ( x s) = xf ( x s) + sf ( x s) () with iitial values F ( x s ) = ad F( x s ) = These

More information

A PROBABILITY PROBLEM

A PROBABILITY PROBLEM A PROBABILITY PROBLEM A big superarket chai has the followig policy: For every Euros you sped per buy, you ear oe poit (suppose, e.g., that = 3; i this case, if you sped 8.45 Euros, you get two poits,

More information

A note on multi Poly-Euler numbers and Bernoulli p olynomials 1

A note on multi Poly-Euler numbers and Bernoulli p olynomials 1 General Mathematics Vol 20, No 2-3 (202, 22 34 A note on multi Poly-Euler numbers and Bernoulli p olynomials Hassan Jolany, Mohsen Aliabadi, Roberto B Corcino, and MRDarafsheh Abstract In this paper we

More information

The Arakawa-Kaneko Zeta Function

The Arakawa-Kaneko Zeta Function The Arakawa-Kaeko Zeta Fuctio Marc-Atoie Coppo ad Berard Cadelpergher Nice Sophia Atipolis Uiversity Laboratoire Jea Alexadre Dieudoé Parc Valrose F-0608 Nice Cedex 2 FRANCE Marc-Atoie.COPPO@uice.fr Berard.CANDELPERGHER@uice.fr

More information

Jacobi symbols. p 1. Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and nonresidues. That is, we could have ( a

Jacobi symbols. p 1. Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and nonresidues. That is, we could have ( a Jacobi sybols efiitio Let be a odd positive iteger If 1, the Jacobi sybol : Z C is the costat fuctio 1 1 If > 1, it has a decopositio ( as ) a product of (ot ecessarily distict) pries p 1 p r The Jacobi

More information

Bernoulli Polynomials Talks given at LSBU, October and November 2015 Tony Forbes

Bernoulli Polynomials Talks given at LSBU, October and November 2015 Tony Forbes Beroulli Polyoials Tals give at LSBU, October ad Noveber 5 Toy Forbes Beroulli Polyoials The Beroulli polyoials B (x) are defied by B (x), Thus B (x) B (x) ad B (x) x, B (x) x x + 6, B (x) dx,. () B 3

More information

A solid Foundation for q-appell Polynomials

A solid Foundation for q-appell Polynomials Advaces i Dyamical Systems ad Applicatios ISSN 0973-5321, Volume 10, Number 1, pp. 27 35 2015) http://campus.mst.edu/adsa A solid Foudatio for -Appell Polyomials Thomas Erst Uppsala Uiversity Departmet

More information

SZEGO S THEOREM STARTING FROM JENSEN S THEOREM

SZEGO S THEOREM STARTING FROM JENSEN S THEOREM UPB Sci Bull, Series A, Vol 7, No 3, 8 ISSN 3-77 SZEGO S THEOREM STARTING FROM JENSEN S THEOREM Cǎli Alexe MUREŞAN Mai îtâi vo itroduce Teorea lui Jese şi uele coseciţe ale sale petru deteriarea uǎrului

More information

On the Fibonacci-like Sequences of Higher Order

On the Fibonacci-like Sequences of Higher Order Article Iteratioal Joural of oder atheatical Scieces, 05, 3(): 5-59 Iteratioal Joural of oder atheatical Scieces Joural hoepage: wwwoderscietificpressco/jourals/ijsaspx O the Fiboacci-like Sequeces of

More information

6.4 Binomial Coefficients

6.4 Binomial Coefficients 64 Bioial Coefficiets Pascal s Forula Pascal s forula, aed after the seveteeth-cetury Frech atheaticia ad philosopher Blaise Pascal, is oe of the ost faous ad useful i cobiatorics (which is the foral ter

More information

Finite Triple Integral Representation For The Polynomial Set Tn(x 1,x 2,x 3,x 4 )

Finite Triple Integral Representation For The Polynomial Set Tn(x 1,x 2,x 3,x 4 ) IOSR Joural of Matheatics (IOSR-JM) e-issn: 78-578, p-issn: 9-765X. Volue, Issue 6 Ver. (Nov. - Dec. 05), 09- www.iosrjourals.org Fiite Triple Itegral Represetatio For The olyoial Set T(x,x,x,x ) Ahad

More information

GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES

GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES J. Nuber Theory 0, o., 9-9. GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES Zhi-Hog Su School of Matheatical Scieces, Huaiyi Noral Uiversity, Huaia, Jiagsu 00, PR Chia Eail: zhihogsu@yahoo.co

More information

JORGE LUIS AROCHA AND BERNARDO LLANO. Average atchig polyoial Cosider a siple graph G =(V E): Let M E a atchig of the graph G: If M is a atchig, the a

JORGE LUIS AROCHA AND BERNARDO LLANO. Average atchig polyoial Cosider a siple graph G =(V E): Let M E a atchig of the graph G: If M is a atchig, the a MEAN VALUE FOR THE MATCHING AND DOMINATING POLYNOMIAL JORGE LUIS AROCHA AND BERNARDO LLANO Abstract. The ea value of the atchig polyoial is coputed i the faily of all labeled graphs with vertices. We dee

More information

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION J Korea Math Soc 44 (2007), No 2, pp 487 498 GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION Gi-Sag Cheo ad Moawwad E A El-Miawy Reprited from the Joural of the Korea Mathematical

More information

On the Inverse of a Certain Matrix Involving Binomial Coefficients

On the Inverse of a Certain Matrix Involving Binomial Coefficients It. J. Cotemp. Math. Scieces, Vol. 3, 008, o. 3, 5-56 O the Iverse of a Certai Matrix Ivolvig Biomial Coefficiets Yoshiari Iaba Kitakuwada Seior High School Keihokushimoyuge, Ukyo-ku, Kyoto, 60-0534, Japa

More information

Generalized Fibonacci-Like Sequence and. Fibonacci Sequence

Generalized Fibonacci-Like Sequence and. Fibonacci Sequence It. J. Cotep. Math. Scieces, Vol., 04, o., - 4 HIKARI Ltd, www.-hiari.co http://dx.doi.org/0.88/ijcs.04.48 Geeralized Fiboacci-Lie Sequece ad Fiboacci Sequece Sajay Hare epartet of Matheatics Govt. Holar

More information

A New Type of q-szász-mirakjan Operators

A New Type of q-szász-mirakjan Operators Filoat 3:8 07, 567 568 https://doi.org/0.98/fil7867c Published by Faculty of Scieces ad Matheatics, Uiversity of Niš, Serbia Available at: http://www.pf.i.ac.rs/filoat A New Type of -Szász-Miraka Operators

More information

SOME TRIBONACCI IDENTITIES

SOME TRIBONACCI IDENTITIES Mathematics Today Vol.7(Dec-011) 1-9 ISSN 0976-38 Abstract: SOME TRIBONACCI IDENTITIES Shah Devbhadra V. Sir P.T.Sarvajaik College of Sciece, Athwalies, Surat 395001. e-mail : drdvshah@yahoo.com The sequece

More information

Some families of generating functions for the multiple orthogonal polynomials associated with modified Bessel K-functions

Some families of generating functions for the multiple orthogonal polynomials associated with modified Bessel K-functions J. Math. Aal. Appl. 297 2004 186 193 www.elsevier.com/locate/jmaa Some families of geeratig fuctios for the multiple orthogoal polyomials associated with modified Bessel K-fuctios M.A. Özarsla, A. Altı

More information

Math 4707 Spring 2018 (Darij Grinberg): midterm 2 page 1. Math 4707 Spring 2018 (Darij Grinberg): midterm 2 with solutions [preliminary version]

Math 4707 Spring 2018 (Darij Grinberg): midterm 2 page 1. Math 4707 Spring 2018 (Darij Grinberg): midterm 2 with solutions [preliminary version] Math 4707 Sprig 08 Darij Griberg: idter page Math 4707 Sprig 08 Darij Griberg: idter with solutios [preliiary versio] Cotets 0.. Coutig first-eve tuples......................... 3 0.. Coutig legal paths

More information

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction Acta Math. Uiv. Comeiaae Vol. LXXXVI, 2 (2017), pp. 279 286 279 k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c N. IRMAK ad M. ALP Abstract. The k-geeralized Fiboacci sequece { F (k)

More information

The r-generalized Fibonacci Numbers and Polynomial Coefficients

The r-generalized Fibonacci Numbers and Polynomial Coefficients It. J. Cotemp. Math. Scieces, Vol. 3, 2008, o. 24, 1157-1163 The r-geeralized Fiboacci Numbers ad Polyomial Coefficiets Matthias Schork Camillo-Sitte-Weg 25 60488 Frakfurt, Germay mschork@member.ams.org,

More information

BINOMIAL COEFFICIENT HARMONIC SUM IDENTITIES ASSOCIATED TO SUPERCONGRUENCES

BINOMIAL COEFFICIENT HARMONIC SUM IDENTITIES ASSOCIATED TO SUPERCONGRUENCES #A37 INTEGERS (20) BINOMIAL COEFFICIENT HARMONIC SUM IDENTITIES ASSOCIATED TO SUPERCONGRUENCES Derot McCarthy Departet of Matheatics, Texas A&M Uiversity, Texas ccarthy@athtauedu Received: /3/, Accepted:

More information

EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES

EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES LE MATEMATICHE Vol. LXXIII 208 Fasc. I, pp. 3 24 doi: 0.448/208.73.. EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES THOMAS ERNST We preset idetities of various kids for

More information

Factors of sums and alternating sums involving binomial coefficients and powers of integers

Factors of sums and alternating sums involving binomial coefficients and powers of integers Factors of sums ad alteratig sums ivolvig biomial coefficiets ad powers of itegers Victor J. W. Guo 1 ad Jiag Zeg 2 1 Departmet of Mathematics East Chia Normal Uiversity Shaghai 200062 People s Republic

More information

GAMALIEL CERDA-MORALES 1. Blanco Viel 596, Valparaíso, Chile. s: /

GAMALIEL CERDA-MORALES 1. Blanco Viel 596, Valparaíso, Chile.  s: / THE GELIN-CESÀRO IDENTITY IN SOME THIRD-ORDER JACOBSTHAL SEQUENCES arxiv:1810.08863v1 [math.co] 20 Oct 2018 GAMALIEL CERDA-MORALES 1 1 Istituto de Matemáticas Potificia Uiversidad Católica de Valparaíso

More information

A note on the p-adic gamma function and q-changhee polynomials

A note on the p-adic gamma function and q-changhee polynomials Available olie at wwwisr-publicatioscom/jmcs J Math Computer Sci, 18 (2018, 11 17 Research Article Joural Homepage: wwwtjmcscom - wwwisr-publicatioscom/jmcs A ote o the p-adic gamma fuctio ad q-chaghee

More information

A talk given at Institut Camille Jordan, Université Claude Bernard Lyon-I. (Jan. 13, 2005), and University of Wisconsin at Madison (April 4, 2006).

A talk given at Institut Camille Jordan, Université Claude Bernard Lyon-I. (Jan. 13, 2005), and University of Wisconsin at Madison (April 4, 2006). A tal give at Istitut Caille Jorda, Uiversité Claude Berard Lyo-I (Ja. 13, 005, ad Uiversity of Wiscosi at Madiso (April 4, 006. SOME CURIOUS RESULTS ON BERNOULLI AND EULER POLYNOMIALS Zhi-Wei Su Departet

More information

New Generalization of Eulerian Polynomials and their Applications

New Generalization of Eulerian Polynomials and their Applications J. Aa. Num. Theor. 2, No. 2, 59-63 2014 59 Joural of Aalysis & Number Theory A Iteratioal Joural http://dx.doi.org/10.12785/jat/020206 New Geeralizatio of Euleria Polyomials ad their Applicatios Sera Araci

More information

FACTORS OF SUMS OF POWERS OF BINOMIAL COEFFICIENTS. Dedicated to the memory of Paul Erdős. 1. Introduction. n k. f n,a =

FACTORS OF SUMS OF POWERS OF BINOMIAL COEFFICIENTS. Dedicated to the memory of Paul Erdős. 1. Introduction. n k. f n,a = FACTORS OF SUMS OF POWERS OF BINOMIAL COEFFICIENTS NEIL J. CALKIN Abstract. We prove divisibility properties for sus of powers of bioial coefficiets ad of -bioial coefficiets. Dedicated to the eory of

More information

On Order of a Function of Several Complex Variables Analytic in the Unit Polydisc

On Order of a Function of Several Complex Variables Analytic in the Unit Polydisc ISSN 746-7659, Eglad, UK Joural of Iforatio ad Coutig Sciece Vol 6, No 3, 0, 95-06 O Order of a Fuctio of Several Colex Variables Aalytic i the Uit Polydisc Rata Kuar Dutta + Deartet of Matheatics, Siliguri

More information

SphericalHarmonicY. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

SphericalHarmonicY. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation SphericalHaroicY Notatios Traditioal ae Spherical haroic Traditioal otatio Y, φ Matheatica StadardFor otatio SphericalHaroicY,,, φ Priary defiitio 05.0.0.000.0 Y, φ φ P cos ; 05.0.0.000.0 Y 0 k, φ k k

More information

A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS. Mircea Merca

A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS. Mircea Merca Idia J Pure Appl Math 45): 75-89 February 204 c Idia Natioal Sciece Academy A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS Mircea Merca Departmet of Mathematics Uiversity

More information

Binomial Notations Traditional name Traditional notation Mathematica StandardForm notation Primary definition

Binomial Notations Traditional name Traditional notation Mathematica StandardForm notation Primary definition Bioial Notatios Traditioal ae Bioial coefficiet Traditioal otatio Matheatica StadardFor otatio Bioial, Priary defiitio 06.03.0.0001.01 1 1 1 ; 0 For Ν, Κ egative itegers with, the bioial coefficiet Ν caot

More information

A GENERALIZED BERNSTEIN APPROXIMATION THEOREM

A GENERALIZED BERNSTEIN APPROXIMATION THEOREM Ø Ñ Å Ø Ñ Ø Ð ÈÙ Ð Ø ÓÒ DOI: 10.2478/v10127-011-0029-x Tatra Mt. Math. Publ. 49 2011, 99 109 A GENERALIZED BERNSTEIN APPROXIMATION THEOREM Miloslav Duchoň ABSTRACT. The preset paper is cocered with soe

More information

SOME FINITE SIMPLE GROUPS OF LIE TYPE C n ( q) ARE UNIQUELY DETERMINED BY THEIR ELEMENT ORDERS AND THEIR ORDER

SOME FINITE SIMPLE GROUPS OF LIE TYPE C n ( q) ARE UNIQUELY DETERMINED BY THEIR ELEMENT ORDERS AND THEIR ORDER Joural of Algebra, Nuber Theory: Advaces ad Applicatios Volue, Nuber, 010, Pages 57-69 SOME FINITE SIMPLE GROUPS OF LIE TYPE C ( q) ARE UNIQUELY DETERMINED BY THEIR ELEMENT ORDERS AND THEIR ORDER School

More information

On Divisibility concerning Binomial Coefficients

On Divisibility concerning Binomial Coefficients A talk give at the Natioal Chiao Tug Uiversity (Hsichu, Taiwa; August 5, 2010 O Divisibility cocerig Biomial Coefficiets Zhi-Wei Su Najig Uiversity Najig 210093, P. R. Chia zwsu@ju.edu.c http://math.ju.edu.c/

More information

Matrix representations of Fibonacci-like sequences

Matrix representations of Fibonacci-like sequences NTMSCI 6, No. 4, 03-0 08 03 New Treds i Mathematical Scieces http://dx.doi.org/0.085/tmsci.09.33 Matrix represetatios of Fiboacci-like sequeces Yasemi Tasyurdu Departmet of Mathematics, Faculty of Sciece

More information

Problem. Consider the sequence a j for j N defined by the recurrence a j+1 = 2a j + j for j > 0

Problem. Consider the sequence a j for j N defined by the recurrence a j+1 = 2a j + j for j > 0 GENERATING FUNCTIONS Give a ifiite sequece a 0,a,a,, its ordiary geeratig fuctio is A : a Geeratig fuctios are ofte useful for fidig a closed forula for the eleets of a sequece, fidig a recurrece forula,

More information

Math 2784 (or 2794W) University of Connecticut

Math 2784 (or 2794W) University of Connecticut ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

More information

Some properties of the generalized Apostol-type polynomials

Some properties of the generalized Apostol-type polynomials Lu ad Luo Boudary Value Probles 2013, 2013:64 http://www.boudaryvalueprobles.co/cotet/2013/1/64 R E S E A R C H Ope Access Soe properties of the geeralized Apostol-type polyoials Da-Qia Lu 1 ad Qiu-Mig

More information

42 Dependence and Bases

42 Dependence and Bases 42 Depedece ad Bases The spa s(a) of a subset A i vector space V is a subspace of V. This spa ay be the whole vector space V (we say the A spas V). I this paragraph we study subsets A of V which spa V

More information

The Riemann Zeta Function

The Riemann Zeta Function Physics 6A Witer 6 The Riema Zeta Fuctio I this ote, I will sketch some of the mai properties of the Riema zeta fuctio, ζ(x). For x >, we defie ζ(x) =, x >. () x = For x, this sum diverges. However, we

More information

REGULARIZATION OF CERTAIN DIVERGENT SERIES OF POLYNOMIALS

REGULARIZATION OF CERTAIN DIVERGENT SERIES OF POLYNOMIALS REGULARIZATION OF CERTAIN DIVERGENT SERIES OF POLYNOMIALS LIVIU I. NICOLAESCU ABSTRACT. We ivestigate the geeralized covergece ad sums of series of the form P at P (x, where P R[x], a R,, ad T : R[x] R[x]

More information

AVERAGE MARKS SCALING

AVERAGE MARKS SCALING TERTIARY INSTITUTIONS SERVICE CENTRE Level 1, 100 Royal Street East Perth, Wester Australia 6004 Telephoe (08) 9318 8000 Facsiile (08) 95 7050 http://wwwtisceduau/ 1 Itroductio AVERAGE MARKS SCALING I

More information

1 6 = 1 6 = + Factorials and Euler s Gamma function

1 6 = 1 6 = + Factorials and Euler s Gamma function Royal Holloway Uiversity of Lodo Departmet of Physics Factorials ad Euler s Gamma fuctio Itroductio The is a self-cotaied part of the course dealig, essetially, with the factorial fuctio ad its geeralizatio

More information

arxiv: v1 [math.co] 23 Mar 2016

arxiv: v1 [math.co] 23 Mar 2016 The umber of direct-sum decompositios of a fiite vector space arxiv:603.0769v [math.co] 23 Mar 206 David Ellerma Uiversity of Califoria at Riverside August 3, 208 Abstract The theory of q-aalogs develops

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20 ECE 6341 Sprig 016 Prof. David R. Jackso ECE Dept. Notes 0 1 Spherical Wave Fuctios Cosider solvig ψ + k ψ = 0 i spherical coordiates z φ θ r y x Spherical Wave Fuctios (cot.) I spherical coordiates we

More information

Harmonic Number Identities Via Euler s Transform

Harmonic Number Identities Via Euler s Transform 1 2 3 47 6 23 11 Joural of Iteger Sequeces, Vol. 12 2009), Article 09.6.1 Harmoic Number Idetities Via Euler s Trasform Khristo N. Boyadzhiev Departmet of Mathematics Ohio Norther Uiversity Ada, Ohio 45810

More information

THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION

THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION MATHEMATICA MONTISNIGRI Vol XXVIII (013) 17-5 THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION GLEB V. FEDOROV * * Mechaics ad Matheatics Faculty Moscow State Uiversity Moscow, Russia

More information

A 2nTH ORDER LINEAR DIFFERENCE EQUATION

A 2nTH ORDER LINEAR DIFFERENCE EQUATION A 2TH ORDER LINEAR DIFFERENCE EQUATION Doug Aderso Departmet of Mathematics ad Computer Sciece, Cocordia College Moorhead, MN 56562, USA ABSTRACT: We give a formulatio of geeralized zeros ad (, )-discojugacy

More information

SOME PROPERTIES OF CERTAIN MULTIVALENT ANALYTIC FUNCTIONS USING A DIFFERENTIAL OPERATOR

SOME PROPERTIES OF CERTAIN MULTIVALENT ANALYTIC FUNCTIONS USING A DIFFERENTIAL OPERATOR Joural of the Alied Matheatics Statistics ad Iforatics (JAMSI) 5 (9) No SOME PROPERTIES OF CERTAIN MULTIVALENT ANALYTIC FUNCTIONS USING A DIFFERENTIAL OPERATOR SP GOYAL AND RAKESH KUMAR Abstract Here we

More information

Refinements of Jensen s Inequality for Convex Functions on the Co-Ordinates in a Rectangle from the Plane

Refinements of Jensen s Inequality for Convex Functions on the Co-Ordinates in a Rectangle from the Plane Filoat 30:3 (206, 803 84 DOI 0.2298/FIL603803A Published by Faculty of Scieces ad Matheatics, Uiversity of Niš, Serbia Available at: http://www.pf.i.ac.rs/filoat Refieets of Jese s Iequality for Covex

More information

Orthogonal Functions

Orthogonal Functions Royal Holloway Uiversity of odo Departet of Physics Orthogoal Fuctios Motivatio Aalogy with vectors You are probably failiar with the cocept of orthogoality fro vectors; two vectors are orthogoal whe they

More information

Journal of Ramanujan Mathematical Society, Vol. 24, No. 2 (2009)

Journal of Ramanujan Mathematical Society, Vol. 24, No. 2 (2009) Joural of Ramaua Mathematical Society, Vol. 4, No. (009) 199-09. IWASAWA λ-invariants AND Γ-TRANSFORMS Aupam Saikia 1 ad Rupam Barma Abstract. I this paper we study a relatio betwee the λ-ivariats of a

More information

ON MONOTONICITY OF SOME COMBINATORIAL SEQUENCES

ON MONOTONICITY OF SOME COMBINATORIAL SEQUENCES Publ. Math. Debrece 8504, o. 3-4, 85 95. ON MONOTONICITY OF SOME COMBINATORIAL SEQUENCES QING-HU HOU*, ZHI-WEI SUN** AND HAOMIN WEN Abstract. We cofirm Su s cojecture that F / F 4 is strictly decreasig

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

FUZZY RELIABILITY ANALYSIS OF COMPOUND SYSTEM BASED ON WEIBULL DISTRIBUTION

FUZZY RELIABILITY ANALYSIS OF COMPOUND SYSTEM BASED ON WEIBULL DISTRIBUTION IJAMML 3:1 (2015) 31-39 Septeber 2015 ISSN: 2394-2258 Available at http://scietificadvaces.co.i DOI: http://dx.doi.org/10.18642/ijal_7100121530 FUZZY RELIABILITY ANALYSIS OF COMPOUND SYSTEM BASED ON WEIBULL

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

On Subordination and Superordination of New Multiplier Transformation

On Subordination and Superordination of New Multiplier Transformation It. J. Ope Probles Copt. Math., Vol., No., March 00 ISSN 998-66; Copyright ICSRS Publicatio, 00 www.i-csrs.org O Subordiatio ad Superordiatio of New Multiplier Trasforatio Aabed Mohaed ad Maslia Darus

More information

Sequences of Definite Integrals, Factorials and Double Factorials

Sequences of Definite Integrals, Factorials and Double Factorials 47 6 Joural of Iteger Sequeces, Vol. 8 (5), Article 5.4.6 Sequeces of Defiite Itegrals, Factorials ad Double Factorials Thierry Daa-Picard Departmet of Applied Mathematics Jerusalem College of Techology

More information

Some remarks for codes and lattices over imaginary quadratic

Some remarks for codes and lattices over imaginary quadratic Some remarks for codes ad lattices over imagiary quadratic fields Toy Shaska Oaklad Uiversity, Rochester, MI, USA. Caleb Shor Wester New Eglad Uiversity, Sprigfield, MA, USA. shaska@oaklad.edu Abstract

More information

The Hypergeometric Coupon Collection Problem and its Dual

The Hypergeometric Coupon Collection Problem and its Dual Joural of Idustrial ad Systes Egieerig Vol., o., pp -7 Sprig 7 The Hypergeoetric Coupo Collectio Proble ad its Dual Sheldo M. Ross Epstei Departet of Idustrial ad Systes Egieerig, Uiversity of Souther

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

arxiv: v1 [math.fa] 3 Apr 2016

arxiv: v1 [math.fa] 3 Apr 2016 Aticommutator Norm Formula for Proectio Operators arxiv:164.699v1 math.fa] 3 Apr 16 Sam Walters Uiversity of Norther British Columbia ABSTRACT. We prove that for ay two proectio operators f, g o Hilbert

More information

LOWER BOUNDS FOR MOMENTS OF ζ (ρ) 1. Introduction

LOWER BOUNDS FOR MOMENTS OF ζ (ρ) 1. Introduction LOWER BOUNDS FOR MOMENTS OF ζ ρ MICAH B. MILINOVICH AND NATHAN NG Abstract. Assuig the Riea Hypothesis, we establish lower bouds for oets of the derivative of the Riea zeta-fuctio averaged over the otrivial

More information

Some p-adic congruences for p q -Catalan numbers

Some p-adic congruences for p q -Catalan numbers Some p-adic cogrueces for p q -Catala umbers Floria Luca Istituto de Matemáticas Uiversidad Nacioal Autóoma de México C.P. 58089, Morelia, Michoacá, México fluca@matmor.uam.mx Paul Thomas Youg Departmet

More information

-ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION

-ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION NEW NEWTON-TYPE METHOD WITH k -ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION R. Thukral Padé Research Cetre, 39 Deaswood Hill, Leeds West Yorkshire, LS7 JS, ENGLAND ABSTRACT The objective

More information

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) =

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) = AN INTRODUCTION TO SCHRÖDER AND UNKNOWN NUMBERS NICK DUFRESNE Abstract. I this article we will itroduce two types of lattice paths, Schröder paths ad Ukow paths. We will examie differet properties of each,

More information

Ma/CS 6a Class 22: Power Series

Ma/CS 6a Class 22: Power Series Ma/CS 6a Class 22: Power Series By Ada Sheffer Power Series Mooial: ax i. Polyoial: a 0 + a 1 x + a 2 x 2 + + a x. Power series: A x = a 0 + a 1 x + a 2 x 2 + Also called foral power series, because we

More information

Bernoulli Numbers and a New Binomial Transform Identity

Bernoulli Numbers and a New Binomial Transform Identity 1 2 3 47 6 23 11 Joural of Iteger Sequece, Vol. 17 2014, Article 14.2.2 Beroulli Nuber ad a New Bioial Trafor Idetity H. W. Gould Departet of Matheatic Wet Virgiia Uiverity Morgatow, WV 26506 USA gould@ath.wvu.edu

More information

Dirichlet s Theorem on Arithmetic Progressions

Dirichlet s Theorem on Arithmetic Progressions Dirichlet s Theorem o Arithmetic Progressios Athoy Várilly Harvard Uiversity, Cambridge, MA 0238 Itroductio Dirichlet s theorem o arithmetic progressios is a gem of umber theory. A great part of its beauty

More information

Lecture 10: Bounded Linear Operators and Orthogonality in Hilbert Spaces

Lecture 10: Bounded Linear Operators and Orthogonality in Hilbert Spaces Lecture : Bouded Liear Operators ad Orthogoality i Hilbert Spaces 34 Bouded Liear Operator Let ( X, ), ( Y, ) i i be ored liear vector spaces ad { } X Y The, T is said to be bouded if a real uber c such

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS ADVANCED PROBLEMS AND SOLUTIONS EDITED BY FLORIAN LUCA Please sed all couicatios cocerig ADVANCED PROBLEMS AND SOLUTIONS to FLORIAN LUCA, SCHOOL OF MATHEMATICS, UNIVERSITY OF THE WITWA- TERSRAND, PRIVATE

More information

Partial Bell Polynomials and Inverse Relations

Partial Bell Polynomials and Inverse Relations 1 2 3 47 6 23 11 Joural of Iteger Seueces, Vol. 13 (2010, Article 10.4.5 Partial Bell Polyomials ad Iverse Relatios Miloud Mihoubi 1 USTHB Faculty of Mathematics P.B. 32 El Alia 16111 Algiers Algeria miloudmihoubi@hotmail.com

More information

On twin primes associated with the Hawkins random sieve

On twin primes associated with the Hawkins random sieve Joural of Nuber Theory 9 006 84 96 wwwelsevierco/locate/jt O twi pries associated with the Hawkis rado sieve HM Bui,JPKeatig School of Matheatics, Uiversity of Bristol, Bristol, BS8 TW, UK Received 3 July

More information

De la Vallée Poussin Summability, the Combinatorial Sum 2n 1

De la Vallée Poussin Summability, the Combinatorial Sum 2n 1 J o u r a l of Mathematics ad Applicatios JMA No 40, pp 5-20 (2017 De la Vallée Poussi Summability, the Combiatorial Sum 1 ( 2 ad the de la Vallée Poussi Meas Expasio Ziad S. Ali Abstract: I this paper

More information

Concavity of weighted arithmetic means with applications

Concavity of weighted arithmetic means with applications Arch. Math. 69 (1997) 120±126 0003-889X/97/020120-07 $ 2.90/0 Birkhäuser Verlag, Basel, 1997 Archiv der Mathematik Cocavity of weighted arithmetic meas with applicatios By ARKADY BERENSTEIN ad ALEK VAINSHTEIN*)

More information

General Properties Involving Reciprocals of Binomial Coefficients

General Properties Involving Reciprocals of Binomial Coefficients 3 47 6 3 Joural of Iteger Sequeces, Vol. 9 006, Article 06.4.5 Geeral Properties Ivolvig Reciprocals of Biomial Coefficiets Athoy Sofo School of Computer Sciece ad Mathematics Victoria Uiversity P. O.

More information

Benaissa Bernoussi Université Abdelmalek Essaadi, ENSAT de Tanger, B.P. 416, Tanger, Morocco

Benaissa Bernoussi Université Abdelmalek Essaadi, ENSAT de Tanger, B.P. 416, Tanger, Morocco EXTENDING THE BERNOULLI-EULER METHOD FOR FINDING ZEROS OF HOLOMORPHIC FUNCTIONS Beaissa Beroussi Uiversité Abdelmalek Essaadi, ENSAT de Tager, B.P. 416, Tager, Morocco e-mail: Beaissa@fstt.ac.ma Mustapha

More information

WHAT ARE THE BERNOULLI NUMBERS? 1. Introduction

WHAT ARE THE BERNOULLI NUMBERS? 1. Introduction WHAT ARE THE BERNOULLI NUMBERS? C. D. BUENGER Abstract. For the "What is?" semiar today we will be ivestigatig the Beroulli umbers. This surprisig sequece of umbers has may applicatios icludig summig powers

More information

Discrete Orthogonal Moment Features Using Chebyshev Polynomials

Discrete Orthogonal Moment Features Using Chebyshev Polynomials Discrete Orthogoal Momet Features Usig Chebyshev Polyomials R. Mukuda, 1 S.H.Og ad P.A. Lee 3 1 Faculty of Iformatio Sciece ad Techology, Multimedia Uiversity 75450 Malacca, Malaysia. Istitute of Mathematical

More information

Proof of two divisibility properties of binomial coefficients conjectured by Z.-W. Sun

Proof of two divisibility properties of binomial coefficients conjectured by Z.-W. Sun Proof of two ivisibility properties of bioial coefficiets cojecture by Z.-W. Su Victor J. W. Guo Departet of Matheatics Shaghai Key Laboratory of PMMP East Chia Noral Uiversity 500 Dogchua Roa Shaghai

More information

A new sequence convergent to Euler Mascheroni constant

A new sequence convergent to Euler Mascheroni constant You ad Che Joural of Iequalities ad Applicatios 08) 08:7 https://doi.org/0.86/s3660-08-670-6 R E S E A R C H Ope Access A ew sequece coverget to Euler Mascheroi costat Xu You * ad Di-Rog Che * Correspodece:

More information

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS Folia Mathematica Vol. 5, No., pp. 4 6 Acta Uiversitatis Lodziesis c 008 for Uiversity of Lódź Press SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS ROMAN WITU LA, DAMIAN S

More information

EVALUATION OF SUMS INVOLVING PRODUCTS OF GAUSSIAN q-binomial COEFFICIENTS WITH APPLICATIONS

EVALUATION OF SUMS INVOLVING PRODUCTS OF GAUSSIAN q-binomial COEFFICIENTS WITH APPLICATIONS EALATION OF SMS INOLING PRODCTS OF GASSIAN -BINOMIAL COEFFICIENTS WITH APPLICATIONS EMRAH KILIÇ* AND HELMT PRODINGER** Abstract Sums of products of two Gaussia -biomial coefficiets are ivestigated oe of

More information

distinct distinct n k n k n! n n k k n 1 if k n, identical identical p j (k) p 0 if k > n n (k)

distinct distinct n k n k n! n n k k n 1 if k n, identical identical p j (k) p 0 if k > n n (k) THE TWELVEFOLD WAY FOLLOWING GIAN-CARLO ROTA How ay ways ca we distribute objects to recipiets? Equivaletly, we wat to euerate equivalece classes of fuctios f : X Y where X = ad Y = The fuctios are subject

More information

AMS Mathematics Subject Classification : 40A05, 40A99, 42A10. Key words and phrases : Harmonic series, Fourier series. 1.

AMS Mathematics Subject Classification : 40A05, 40A99, 42A10. Key words and phrases : Harmonic series, Fourier series. 1. J. Appl. Math. & Computig Vol. x 00y), No. z, pp. A RECURSION FOR ALERNAING HARMONIC SERIES ÁRPÁD BÉNYI Abstract. We preset a coveiet recursive formula for the sums of alteratig harmoic series of odd order.

More information

Name Period ALGEBRA II Chapter 1B and 2A Notes Solving Inequalities and Absolute Value / Numbers and Functions

Name Period ALGEBRA II Chapter 1B and 2A Notes Solving Inequalities and Absolute Value / Numbers and Functions Nae Period ALGEBRA II Chapter B ad A Notes Solvig Iequalities ad Absolute Value / Nubers ad Fuctios SECTION.6 Itroductio to Solvig Equatios Objectives: Write ad solve a liear equatio i oe variable. Solve

More information

Dominant of Functions Satisfying a Differential Subordination and Applications

Dominant of Functions Satisfying a Differential Subordination and Applications Domiat of Fuctios Satisfyig a Differetial Subordiatio ad Applicatios R Chadrashekar a, Rosiha M Ali b ad K G Subramaia c a Departmet of Techology Maagemet, Faculty of Techology Maagemet ad Busiess, Uiversiti

More information