Geological Sciences 4550: Geochemistry

Size: px
Start display at page:

Download "Geological Sciences 4550: Geochemistry"

Transcription

1 1. a.) Using the enthalpies of formation given in able 2.02, find H in Joules for the reaction: albite jadite + quartz NaAl2Si2O8 NaAl2SiO6+ SiO2 b.) Which assemblage (side of the equation) is stable at 600 C and 1 MPa? Use the thermodynamic data in able 2.2 and assume the volume change of the reaction is independent of pressure and temperature. a. H = J/mol. bhis question is similar to example 2.8. Whichever side of the reaction has the lowest Gibbs Free Energy will be the stable assemblage. If G for the reaction is positive, the reactants (left side) are stable, if it is negative, the products (right side) are stable. So we want to calculate G at 873 K and 1 MPa (= 10 bars). Since G is a state function, we can do the pressure and temperature calculations G,Pref = G o S ref a + 2 c b 2 ref aln ref separately, and the order doesn t matter. o determine how G r changes with temperature, we can use equation (since the heat capacities are given in Meier-Kelley form): We need to calculate G o and a, b, and c. Let s set up a spreadsheet to do this calculation 1 1

2 Here we have set up the parameters H, S, a, b, c, and V in a matrix. o calculate the s, we just sum the values for Ja and Qz and subtract from that the values for Al. G is then easy to calculate from the H and S. We have assigned names to each of the s, e.g., H is DH, etc. his allows us to set up an equation to calculate G() that makes some sense. Since the answer is positive, the assemblage on the left (albite) is stable. 2. Calcite and aragonite are two forms of CaCO3 that differ only their crystal lattice structure. he reaction between them is thus simply: Calcite Aragonite Using the data in able 2.02, a.) Determine which of these forms is stable at the surface of the earth (25 C and 0.1 MPa). he side of the reaction having the lowest Gibbs Free Energy is stable. According to able 2.2, G Cal = and G Arag = , G = 940 J/mol so calcite is stable. b.) Which form is favored by increasing temperature? If ΔG decreases with increasing temperature, then the product (left) side of the reaction will be favored and visa versa. he trick here is to note that G r = S, so if ΔS is positive, aragonite will be favored and visa versa. Using r P Hess s Law, we find ΔS r = ΔS will be negative, so calcite is favored by increasing. c.) Which form is favored by increasing pressure? Similarly, we note that G r P = V r. If ΔG decreases with increasing pressure, then the product (left) side of the reaction will be favored and visa versa. ΔV r = ΔV is negative, so aragonite is favored by increasing pressure. d.) At what pressure are calcite and aragonite in equilibrium at 298 K? Calcite and aragonite will be in equilibrium when pressure increases enough that ΔG decreases from the standard state value of 0.94 kj/mole to 0. o find this point, we integrate: 2 2

3 ΔG r o = 0.94kJ = P ' 0.1 ΔV r dp and solve for P. Since we have no other information, we assume ΔV is independent of pressure and hence the integral reduces to: -940J=ΔV(P -0.1) Rearranging: -940/ΔV = P Substituting cc/mol (which converts to J/MPa), we find P = 338 MPa. 4. Using your result from part d. of question 2 and the Clapeyron slope, construct an approximate phase diagram showing the stability fields of calcite and aragonite as a function of and P. So the phase boundary is located at 298K and 338 MPa. he slope of the phase boundary is given by the Clapeyron equation (equ. 3.3): d dp = ΔV r ΔS r Substituting values obtained in Problem Set 1, we find the slope is K/MPa. 3. Consider a system consisting of olivine of variable composition ((Mg,Fe)2SiO4) and orthopyroxene of variable composition ((Mg,Fe)SiO3). What is the minimum number of components needed to describe this system? his is a particularly simple case: three. A graphical approach might be easiest. We could chose them in a variety of ways. MgO, FeO, SiO 2 are the obvious and perhaps conventional choices. Other possibilities would be Mg 2 SiO 4, Fe 2 SiO 4, SiO 2 or Fe 1 Mg -1, Mg 2 SiO 4, SiO 2. One the graph below, the olivine and pyroxene compositions lie along the two joins. 3 3

4 SiO 2 MgSiO 3 FeSiO 3 Mg 2 SiO4 Fe 2 SiO 5. Consider a box partitioned into equal volumes, with the left half containing 1 mole of Ne and the right half containing 1 mole of He. When the partition is removed, the gases mix. Show, using a classical thermodynamic approach (i.e., macroscopic) that the entropy change of this process is S = 2R ln 2. Hint: Assume that He and Ne are ideal gases and that temperature is constant. he simplest approach to this problem is to consider that each gas expands into the volume of the other; in other words, the volume of each doubles. he dependence of entropy on volume change is given by equation According to this equation, ( S/ V) = α/β. he gases are ideal, α=1/ and β=1/p, so " S % # $ V & ' = α β = 1/ 1/ P = P (1) We know neither nor P, so it would be nice to have this expressed in terms of other variables. Since the gases are ideal, PV=NR. And P = NR (2) V 4 4

5 Substituting into (1) above, # S & % ( $ V ' = NR V (3) o obtain the entropy change, ΔS, we simply rearrange and integrate. Doing so, we have: V 2 NR ΔS = V dv = NR ln V 2 V 1 V 1 he ratio V 2 /V 1 = 2 and since there is one mole, we get ΔS = R ln 2. his is the entropy change for each of the gases. For both the gases, the entropy change is twice this, or 2R ln

CHAPTER 9: INTRODUCTION TO THERMODYNAMICS. Sarah Lambart

CHAPTER 9: INTRODUCTION TO THERMODYNAMICS. Sarah Lambart CHAPTER 9: INTRODUCTION TO THERMODYNAMICS Sarah Lambart RECAP CHAP. 8: SILICATE MINERALOGY Orthosilicate: islands olivine: solid solution, ie physical properties vary between 2 endmembers: Forsterite (Mg

More information

Thermodynamics and Phase Transitions in Minerals

Thermodynamics and Phase Transitions in Minerals Studiengang Geowissenschaften M.Sc. Wintersemester 2004/05 Thermodynamics and Phase Transitions in Minerals Victor Vinograd & Andrew Putnis Basic thermodynamic concepts One of the central themes in Mineralogy

More information

EAS 4550: Geochemistry Prelim Solutions October 13, 2017

EAS 4550: Geochemistry Prelim Solutions October 13, 2017 Name Key Part I Construct a pe-ph diagram for the manganese aqueous species and solids (denoted with subscript s) at 0.1 MPa and 298 K. Use the adjacent thermodynamic data. You may assume that solid phases

More information

Problem set: Constructing metamorphic phase diagrams using phase equilibria and the Clausius-Clapeyron equation

Problem set: Constructing metamorphic phase diagrams using phase equilibria and the Clausius-Clapeyron equation Problem set: Constructing metamorphic phase diagrams using phase equilibria and the Clausius-Clapeyron equation Mark Brandriss, Smith College Mineral assemblages preserved in metamorphic rocks record information

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

The underlying prerequisite to the application of thermodynamic principles to natural systems is that the system under consideration should be at equilibrium. http://eps.mcgill.ca/~courses/c220/ Reversible

More information

Thermochemistry Lecture

Thermochemistry Lecture Thermochemistry Lecture Jennifer Fang 1. Enthalpy 2. Entropy 3. Gibbs Free Energy 4. q 5. Hess Law 6. Laws of Thermodynamics ENTHALPY total energy in all its forms; made up of the kinetic energy of the

More information

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase changes Apply the second law of thermodynamics to chemical

More information

Exam 2 Solutions. for a gas obeying the equation of state. Z = PV m RT = 1 + BP + CP 2,

Exam 2 Solutions. for a gas obeying the equation of state. Z = PV m RT = 1 + BP + CP 2, Chemistry 360 Dr. Jean M. Standard Fall 016 Name KEY 1.) (14 points) Determine # H & % ( $ ' Exam Solutions for a gas obeying the equation of state Z = V m R = 1 + B + C, where B and C are constants. Since

More information

The Gibbs Phase Rule F = 2 + C - P

The Gibbs Phase Rule F = 2 + C - P The Gibbs Phase Rule The phase rule allows one to determine the number of degrees of freedom (F) or variance of a chemical system. This is useful for interpreting phase diagrams. F = 2 + C - P Where F

More information

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition MME 2010 METALLURGICAL THERMODYNAMICS II Fundamentals of Thermodynamics for Systems of Constant Composition Thermodynamics addresses two types of problems: 1- Computation of energy difference between two

More information

Chapter 16. Spontaneity, Entropy and Free energy

Chapter 16. Spontaneity, Entropy and Free energy Chapter 16 Spontaneity, Entropy and Free energy Contents Spontaneous Process and Entropy Entropy and the second law of thermodynamics The effect of temperature on spontaneity Free energy Entropy changes

More information

For an incompressible β and k = 0, Equations (6.28) and (6.29) become:

For an incompressible β and k = 0, Equations (6.28) and (6.29) become: Internal Energy and Entropy as Functions of T and V These are general equations relating the internal energy and entropy of homogeneous fluids of constant composition to temperature and volume. Equation

More information

Chapter Notes Subject: Chemistry Class: XI Chapter: Thermodynamics Top concepts

Chapter Notes Subject: Chemistry Class: XI Chapter: Thermodynamics Top concepts Chapter Notes Subject: Chemistry Class: XI Chapter: Thermodynamics Top concepts 1. The branch of science which deals with study of different forms of energy and their interconversion is called thermodynamics.

More information

Geology 212 Petrology Prof. Stephen A. Nelson. Thermodynamics and Metamorphism. Equilibrium and Thermodynamics

Geology 212 Petrology Prof. Stephen A. Nelson. Thermodynamics and Metamorphism. Equilibrium and Thermodynamics Geology 212 Petrology Prof. Stephen A. Nelson This document last updated on 02-Apr-2002 Thermodynamics and Metamorphism Equilibrium and Thermodynamics Although the stability relationships between various

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Explain and apply the terms spontaneous process, reversible process, irreversible process, and isothermal process.

More information

Geology 633 Metamorphism and Lithosphere Evolution. Thermodynamic calculation of mineral reactions I: Reactions involving pure phases

Geology 633 Metamorphism and Lithosphere Evolution. Thermodynamic calculation of mineral reactions I: Reactions involving pure phases Geology 633 Metamorphism and Lithosphere Evolution Thermodynamic calculation of mineral reactions I: Reactions involving pure phases The formulation for the free energy change of any reaction involving

More information

Homework Problem Set 8 Solutions

Homework Problem Set 8 Solutions Chemistry 360 Dr. Jean M. Standard Homework roblem Set 8 Solutions. Starting from G = H S, derive the fundamental equation for G. o begin, we take the differential of G, dg = dh d( S) = dh ds Sd. Next,

More information

THERMODYNAMICS. The science that deals with the physical and chemical changes of matter due to work and heat flow

THERMODYNAMICS. The science that deals with the physical and chemical changes of matter due to work and heat flow THERMODYNAMICS Thermodynamics: (From Greek: thermos = heat and dynamic = change) The science that deals with the physical and chemical changes of matter due to work and heat flow Matter: The material of

More information

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Multiple Choice Identify the choice that best completes the statement or answers the question. 1. C 2 H 4 (g) + 3 O 2 (g) 2 CO 2 (g)

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information

Chem 75 February, 2017 Practice Exam 2

Chem 75 February, 2017 Practice Exam 2 As before, here is last year s Exam 2 in two forms: just the questions, and then the questions followed by their solutions. 1. (2 + 6 + 8 points) At high temperature, aluminum nitride, AlN(s), decomposes

More information

UNIT 15: THERMODYNAMICS

UNIT 15: THERMODYNAMICS UNIT 15: THERMODYNAMICS ENTHALPY, DH ENTROPY, DS GIBBS FREE ENERGY, DG ENTHALPY, DH Energy Changes in Reactions Heat is the transfer of thermal energy between two bodies that are at different temperatures.

More information

Chem 401 Unit 1 (Kinetics & Thermo) Review

Chem 401 Unit 1 (Kinetics & Thermo) Review KINETICS 1. For the equation 2 H 2(g) + O 2(g) 2 H 2 O (g) How is the rate of formation of H 2 O mathematically related to the rate of disappearance of O 2? 2. Determine the relative reaction rates of

More information

Problem Set Four Solution Due October 3, 2007

Problem Set Four Solution Due October 3, 2007 Problem Set Four Solution Due October, 007 1. Construct G-bar X diagrams for a regular solution with W= 1 kj (W is the interaction parameter in a non-ideal solution) at 100 temperature intervals from 00

More information

2. Under conditions of constant pressure and entropy, what thermodynamic state function reaches an extremum? i

2. Under conditions of constant pressure and entropy, what thermodynamic state function reaches an extremum? i 1. (20 oints) For each statement or question in the left column, find the appropriate response in the right column and place the letter of the response in the blank line provided in the left column. 1.

More information

3.012 PS 7 3.012 Issued: 11.05.04 Fall 2004 Due: 11.12.04 THERMODYNAMICS 1. single-component phase diagrams. Shown below is a hypothetical phase diagram for a single-component closed system. Answer the

More information

Free-energy change ( G) and entropy change ( S)

Free-energy change ( G) and entropy change ( S) Free-energy change ( G) and entropy change ( S) A SPONTANEOUS PROCESS (e.g. diffusion) will proceed on its own without any external influence. A problem with H A reaction that is exothermic will result

More information

Thermodynamics: Free Energy and Entropy. Suggested Reading: Chapter 19

Thermodynamics: Free Energy and Entropy. Suggested Reading: Chapter 19 Thermodynamics: Free Energy and Entropy Suggested Reading: Chapter 19 System and Surroundings System: An object or collection of objects being studied. Surroundings: Everything outside of the system. the

More information

UNIT 9 IB MATERIAL KINETICS & THERMODYNAMICS

UNIT 9 IB MATERIAL KINETICS & THERMODYNAMICS UNIT 9 IB MATERIAL KINETICS & THERMODYNAMICS Name: ESSENTIALS: Know, Understand, and Be Able To State that combustion and neutralization are exothermic processes. Calculate the heat energy change when

More information

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry Recall the equation. w = -PΔV = -(1.20 atm)(1.02 L)( = -1.24 10 2 J -101 J 1 L atm Where did the conversion factor come from? Compare two versions of the gas constant and calculate. 8.3145 J/mol K 0.082057

More information

Entropy and Free Energy

Entropy and Free Energy Page 1 Entropy and Free Energy How to predict if a reaction can occur at a reasonable rate? KINEICS Chapter 17 How to predict if a reaction can occur, given enough time? HERMODYNAMICS 1 Objectives Spontaneity

More information

Chapter 17: Spontaneity, Entropy, and Free Energy

Chapter 17: Spontaneity, Entropy, and Free Energy Chapter 17: Spontaneity, Entropy, and Free Energy Review of Chemical Thermodynamics System: the matter of interest Surroundings: everything in the universe which is not part of the system Closed System:

More information

Chapter 10 Lecture Notes: Thermodynamics

Chapter 10 Lecture Notes: Thermodynamics Chapter 10 Lecture Notes: Thermodynamics During this unit of study, we will cover three main areas. A lot of this information is NOT included in your text book, which is a shame. Therefore, the notes you

More information

THERMODYNAMICS. Thermodynamics: (From Greek: thermos = heat and dynamic = change)

THERMODYNAMICS. Thermodynamics: (From Greek: thermos = heat and dynamic = change) THERMODYNAMICS Thermodynamics: (From Greek: thermos = heat and dynamic = change) The science that deals with the physical and chemical changes of matter due to work and heat flow Matter: The material of

More information

An Introduction To Thermodynamics and Kinetics. for. Introduction To Petrography : GEOL 2335 University of Houston Spring Semester, 1996

An Introduction To Thermodynamics and Kinetics. for. Introduction To Petrography : GEOL 2335 University of Houston Spring Semester, 1996 Introduction An Introduction To Thermodynamics and Kinetics for Introduction To Petrography : GEOL 2335 University of Houston Spring Semester, 1996 A rock sample contains calcite, quartz and wollastonite.

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Understand the meaning of spontaneous process, reversible process, irreversible process, and isothermal process.

More information

For more info visit

For more info visit Basic Terminology: Terms System Open System Closed System Isolated system Surroundings Boundary State variables State Functions Intensive properties Extensive properties Process Isothermal process Isobaric

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Exam 3 Solutions. ClO g. At 200 K and a total pressure of 1.0 bar, the partial pressure ratio for the chlorine-containing compounds is p ClO2

Exam 3 Solutions. ClO g. At 200 K and a total pressure of 1.0 bar, the partial pressure ratio for the chlorine-containing compounds is p ClO2 Chemistry 360 Dr. Jean M. Standard Fall 2016 Name KEY Exam 3 Solutions 1.) (14 points) Consider the gas phase decomposition of chlorine dioxide, ClO 2, ClO 2 ( g) ClO ( g) + O ( g). At 200 K and a total

More information

Thermochemistry Chapter 8

Thermochemistry Chapter 8 Thermochemistry Chapter 8 Thermochemistry First law of thermochemistry: Internal energy of an isolated system is constant; energy cannot be created or destroyed; however, energy can be converted to different

More information

Solubility, mixtures, non-ideality OUTLINE

Solubility, mixtures, non-ideality OUTLINE Solubility, mixtures, non-ideality Equilibrium? OUTLINE Class exercise next class bring laptop, or use class tablet Enthalpy, Entropy The Gibbs Function ΔG and K Mixtures Chemical Potential 1 Enthalpy

More information

3.20 Exam 1 Fall 2003 SOLUTIONS

3.20 Exam 1 Fall 2003 SOLUTIONS 3.0 Exam 1 Fall 003 SOLUIONS Question 1 You need to decide whether to work at constant volume or constant pressure. Since F is given, a natural choice is constant volume. Option 1: At constant and V :

More information

Physical Chemistry I Exam points

Physical Chemistry I Exam points Chemistry 360 Fall 2018 Dr. Jean M. tandard October 17, 2018 Name Physical Chemistry I Exam 2 100 points Note: You must show your work on problems in order to receive full credit for any answers. You must

More information

THERMODYNAMICS. Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes VERY SHORT ANSWER QUESTIONS

THERMODYNAMICS. Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes VERY SHORT ANSWER QUESTIONS THERMODYNAMICS Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes 1. What is Gibbs energy? VERY SHORT ANSWER QUESTIONS Gibbs energy (G): The amount of energy

More information

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system and its surroundings. a. System = That part of universe

More information

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University Classical Thermodynamics Dr. Massimo Mella School of Chemistry Cardiff University E-mail:MellaM@cardiff.ac.uk The background The field of Thermodynamics emerged as a consequence of the necessity to understand

More information

MCAT General Chemistry Discrete Question Set 19: Thermochemistry & Thermodynamics

MCAT General Chemistry Discrete Question Set 19: Thermochemistry & Thermodynamics MCAT General Chemistry Discrete Question Set 19: Thermochemistry & Thermodynamics Question No. 1 of 10 1: A metal with a high heat capacity is put on a hot plate. What will happen? Question #01 A. The

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

5.2 Energy. N Goalby chemrevise.org Lattice Enthalpy. Definitions of enthalpy changes

5.2 Energy. N Goalby chemrevise.org Lattice Enthalpy. Definitions of enthalpy changes 5.2 Energy 5.2.1 Lattice Enthalpy Definitions of enthalpy changes Enthalpy change of formation The standard enthalpy change of formation of a compound is the energy transferred when 1 mole of the compound

More information

Chapter 17: Energy and Kinetics

Chapter 17: Energy and Kinetics Pages 510-547 S K K Chapter 17: Energy and Kinetics Thermochemistry: Causes of change in systems Kinetics: Rate of reaction progress (speed) Heat, Energy, and Temperature changes S J J Heat vs Temperature

More information

Chemistry 425 September 29, 2010 Exam 1 Solutions

Chemistry 425 September 29, 2010 Exam 1 Solutions Chemistry 425 September 29, 2010 Exam 1 Solutions Name: Instructions: Please do not start working on the exam until you are told to begin. Check the exam to make sure that it contains exactly 6 different

More information

Ch. 19 Entropy and Free Energy: Spontaneous Change

Ch. 19 Entropy and Free Energy: Spontaneous Change Ch. 19 Entropy and Free Energy: Spontaneous Change 19-1 Spontaneity: The Meaning of Spontaneous Change 19-2 The Concept of Entropy 19-3 Evaluating Entropy and Entropy Changes 19-4 Criteria for Spontaneous

More information

Chapter Eighteen. Thermodynamics

Chapter Eighteen. Thermodynamics Chapter Eighteen Thermodynamics 1 Thermodynamics Study of energy changes during observed processes Purpose: To predict spontaneity of a process Spontaneity: Will process go without assistance? Depends

More information

Chemistry and the material world Unit 4, Lecture 4 Matthias Lein

Chemistry and the material world Unit 4, Lecture 4 Matthias Lein Chemistry and the material world 123.102 Unit 4, Lecture 4 Matthias Lein Gibbs ree energy Gibbs ree energy to predict the direction o a chemical process. Exergonic and endergonic reactions. Temperature

More information

CHEMISTRY. Chapter 5 Thermochemistry

CHEMISTRY. Chapter 5 Thermochemistry CHEMISTRY The Central Science 8 th Edition Chapter 5 Thermochemistry Dr. Kozet YAPSAKLI The Nature of Energy Kinetic and Potential Energy Potential energy can be converted into kinetic energy. E p = mgh

More information

Introduction into thermodynamics

Introduction into thermodynamics Introduction into thermodynamics Solid-state thermodynamics, J. Majzlan Chemical thermodynamics deals with reactions between substances and species. Mechanical thermodynamics, on the other hand, works

More information

What s free about Gibbs free energy?

What s free about Gibbs free energy? What s free about Gibbs free energy? The change in free energy for a process equals the maximum work that can be done by the system on the surroundings in a spontaneous process occurring at constant temperature

More information

Thermodynamics Free E and Phase D. J.D. Price

Thermodynamics Free E and Phase D. J.D. Price Thermodynamics Free E and Phase D J.D. Price Force - the acceleration of matter (N, kg m/s 2 ) Pressure (P)( ) - a force applied over an area (N/m 2 ) Work (W) - force multiplied by distance (kg( m 2 /s

More information

Remember next exam is 1 week from Friday. This week will be last quiz before exam.

Remember next exam is 1 week from Friday. This week will be last quiz before exam. Lecture Chapter 3 Extent of reaction and equilibrium Remember next exam is week from Friday. his week will be last quiz before exam. Outline: Extent of reaction Reaction equilibrium rxn G at non-standard

More information

Chemistry 103 Spring Announcements 1. Ch. 16 OWL homework is active. 2. Next midterm exam on May 17 or 19.

Chemistry 103 Spring Announcements 1. Ch. 16 OWL homework is active. 2. Next midterm exam on May 17 or 19. Today 1. More on entropy. Announcements 1. Ch. 16 OWL homework is active. 2. Next midterm exam on May 17 or 19. 3. CSULA closure on May 21 (furlough). 4. CSULA closure on May 31 (holiday). 5. Bring textbook

More information

Lecture Notes 2: Physical Equilibria Phase Diagrams

Lecture Notes 2: Physical Equilibria Phase Diagrams Lecture Notes 2: Physical Equilibria Phase Diagrams There are number of graphical means to help to understand the relationships between the different phases of a particular substance. The first thing we

More information

Study of energy changes that accompany physical and chemical changes.

Study of energy changes that accompany physical and chemical changes. Thermodynamics: Study of energy changes that accompany physical and chemical changes. First Law of Thermodynamics: Energy is niether created nor destroyed but simply converted from one form to another.

More information

du = δq + δw = δq rev + δw rev = δq rev + 0

du = δq + δw = δq rev + δw rev = δq rev + 0 Chem 4501 Introduction to hermodynamics, 3 Credits Kinetics, and Statistical Mechanics Module Number 6 Active Learning Answers and Optional Problems/Solutions 1. McQuarrie and Simon, 6-6. Paraphrase: Compute

More information

All answers are to be done on test paper. If more room is needed use the back side of the paper and indicate.

All answers are to be done on test paper. If more room is needed use the back side of the paper and indicate. 1 Chem 1105-Midterm Date: July 18, 2016 Instructor: Calvin Howley Time Period: 3 hour Student: Student #: Instructions: Please turn off all cell phones. Only scientific calculators are allowed in the exam

More information

OAT General Chemistry Problem Drill 15: Thermochemistry & Thermodynamics

OAT General Chemistry Problem Drill 15: Thermochemistry & Thermodynamics OAT General Chemistry Problem Drill 15: Thermochemistry & Thermodynamics Question No. 1 of 10 1. A metal with a high heat capacity is put on a hot plate. What will happen? Question #01 (A) The temperature

More information

CHM 112 Chapter 16 Thermodynamics Study Guide

CHM 112 Chapter 16 Thermodynamics Study Guide CHM 112 Chapter 16 Thermodynamics Study Guide Remember from Chapter 5: Thermodynamics deals with energy relationships in chemical reactions Know the definitions of system, surroundings, exothermic process,

More information

UNIT ONE BOOKLET 6. Thermodynamic

UNIT ONE BOOKLET 6. Thermodynamic DUNCANRIG SECONDARY ADVANCED HIGHER CHEMISTRY UNIT ONE BOOKLET 6 Thermodynamic Can we predict if a reaction will occur? What determines whether a reaction will be feasible or not? This is a question that

More information

Problem Set 10 Solutions

Problem Set 10 Solutions Chemistry 360 Dr Jean M Standard Problem Set 10 Solutions 1 Sketch (roughly to scale) a phase diagram for molecular oxygen given the following information: the triple point occurs at 543 K and 114 torr;

More information

Chemical Thermodynamics

Chemical Thermodynamics Page III-16-1 / Chapter Sixteen Lecture Notes Chemical Thermodynamics Thermodynamics and Kinetics Chapter 16 Chemistry 223 Professor Michael Russell How to predict if a reaction can occur, given enough

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Thermodynamics is not concerned about. (i) energy changes involved in a chemical reaction. the extent to which a chemical reaction proceeds. the rate at which a

More information

II. The Significance of the Signs Property Positive (+) Negative (-)

II. The Significance of the Signs Property Positive (+) Negative (-) Entropy I. Entropy, S, is the measure of the disorder of a system. A. This, like enthalpy, cannot be measured. B. Thus, only the change in disorder ( S) can be measured. II. A reaction is spontaneous (more

More information

temperature begins to change noticeably. Feedback D. Incorrect. Putting an object on a hot plate will always cause the temperature to increase.

temperature begins to change noticeably. Feedback D. Incorrect. Putting an object on a hot plate will always cause the temperature to increase. SAT Chemistry - Problem Drill 22: Thermodynamics No. 1 of 10 1. A metal with a high heat capacity is placed on top of a hot plate that is turned on. What will happen to the temperature of the piece of

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Spontaneous Processes Entropy and the Second Law of Thermodynamics The Molecular Interpretation of Entropy Entropy Changes in Chemical Reactions Gibbs Free Energy Free

More information

Unit 12. Thermochemistry

Unit 12. Thermochemistry Unit 12 Thermochemistry A reaction is spontaneous if it will occur without a continuous input of energy However, it may require an initial input of energy to get it started (activation energy) For Thermochemistry

More information

Chapter 16 - Spontaneity, Entropy, and Free Energy

Chapter 16 - Spontaneity, Entropy, and Free Energy Chapter 16 - Spontaneity, Entropy, and Free Energy 1 st Law of Thermodynamics - energy can be neither created nor destroyed. Although total energy is constant, the various forms of energy can be interchanged

More information

Entropy, Free Energy, and Equilibrium

Entropy, Free Energy, and Equilibrium Entropy, Free Energy, and Equilibrium Chapter 17 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Spontaneous Physical and Chemical Processes A waterfall runs

More information

10 NEET 31 Years 11. The enthalpy of fusion of water is kcal/mol. The molar entropy change for the melting of ice at

10 NEET 31 Years 11. The enthalpy of fusion of water is kcal/mol. The molar entropy change for the melting of ice at 6 Thermodynamics. A gas is allowed to expand in a well insulated container against a constant external pressure of.5 atm from an initial volume of.50 L to a final volume of 4.50 L. The change in internal

More information

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0.

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0. CHAPTER 5 LECTURE NOTES Phases and Solutions Phase diagrams for two one component systems, CO 2 and H 2 O, are shown below. The main items to note are the following: The lines represent equilibria between

More information

Chapter 8 Phase Diagram, Relative Stability of Solid, Liquid, and Gas

Chapter 8 Phase Diagram, Relative Stability of Solid, Liquid, and Gas Chapter 8 Phase Diagram, Relative Stability of Solid, Liquid, and Gas Three states of matter: solid, liquid, gas (plasma) At low T: Solid is most stable. At high T: liquid or gas is most stable. Ex: Most

More information

ENTROPY HEAT HEAT FLOW. Enthalpy 3/24/16. Chemical Thermodynamics. Thermodynamics vs. Kinetics

ENTROPY HEAT HEAT FLOW. Enthalpy 3/24/16. Chemical Thermodynamics. Thermodynamics vs. Kinetics Chemical Thermodynamics The chemistry that deals with energy exchange, entropy, and the spontaneity of a chemical process. HEAT The energy that flows into or out of system because of a difference in temperature

More information

Chem 401 Unit 1 (Kinetics & Thermo) Review

Chem 401 Unit 1 (Kinetics & Thermo) Review KINETICS 1. For the equation 2 H 2(g) + O 2(g) 2 H 2 O (g) How is the rate of formation of H 2 O mathematically related to the rate of disappearance of O 2? 1 Δ [H2O] Δ[O 2] = 2 Δt Δt 2. Determine the

More information

Chemistry 1A, Spring 2007 Midterm Exam 3 April 9, 2007 (90 min, closed book)

Chemistry 1A, Spring 2007 Midterm Exam 3 April 9, 2007 (90 min, closed book) Chemistry 1A, Spring 2007 Midterm Exam 3 April 9, 2007 (90 min, closed book) Name: KEY SID: TA Name: 1.) Write your name on every page of this exam. 2.) This exam has 34 multiple choice questions. Fill

More information

Lesmahagow High School AHChemistry Inorganic and Physical Chemistry Lesmahagow High School CfE Advanced Higher Chemistry

Lesmahagow High School AHChemistry Inorganic and Physical Chemistry Lesmahagow High School CfE Advanced Higher Chemistry Lesmahagow High School CfE Advanced Higher Chemistry Unit 1 Inorganic and Physical Chemistry Reaction Feasibility 1 Thermochemistry Thermochemistry is the study of energy changes in reactions. The First

More information

CHAPTER 4 Physical Transformations of Pure Substances.

CHAPTER 4 Physical Transformations of Pure Substances. I. Generalities. CHAPTER 4 Physical Transformations of Pure Substances. A. Definitions: 1. A phase of a substance is a form of matter that is uniform throughout in chemical composition and physical state.

More information

CHEMISTRY 12 EQUILIBRIUM PROPERTIES & ENTROPY AND ENTHALPY WORKSHEET CHEMISTRY 12 EQUILIBRIUM PROPERTIES WORKSHEET

CHEMISTRY 12 EQUILIBRIUM PROPERTIES & ENTROPY AND ENTHALPY WORKSHEET CHEMISTRY 12 EQUILIBRIUM PROPERTIES WORKSHEET CHEMISTRY 12 EQUILIBRIUM PROPERTIES & ENTROPY AND ENTHALPY WORKSHEET CHEMISTRY 12 EQUILIBRIUM PROPERTIES WORKSHEET 1) Write six statements that apply to all chemical equilibrium systems. (2 marks) System

More information

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change Thermodynamics 1 st law (Cons of Energy) Deals with changes in energy Energy in chemical systems Total energy of an isolated system is constant Total energy = Potential energy + kinetic energy E p mgh

More information

Last Name or Student ID

Last Name or Student ID 10/06/08, Chem433 Exam # 1 Last Name or Student ID 1. (3 pts) 2. (3 pts) 3. (3 pts) 4. (2 pts) 5. (2 pts) 6. (2 pts) 7. (2 pts) 8. (2 pts) 9. (6 pts) 10. (5 pts) 11. (6 pts) 12. (12 pts) 13. (22 pts) 14.

More information

OCR Chemistry A H432

OCR Chemistry A H432 All the energy changes we have considered so far have been in terms of enthalpy, and we have been able to predict whether a reaction is likely to occur on the basis of the enthalpy change associated with

More information

Chapter 19. Chemical Thermodynamics. Chemical Thermodynamics

Chapter 19. Chemical Thermodynamics. Chemical Thermodynamics Chapter 19 Enthalpy A thermodynamic quantity that equal to the internal energy of a system plus the product of its volume and pressure exerted on it by its surroundings; Enthalpy is the amount of energy

More information

Homework 11 - Second Law & Free Energy

Homework 11 - Second Law & Free Energy HW11 - Second Law & Free Energy Started: Nov 1 at 9:0am Quiz Instructions Homework 11 - Second Law & Free Energy Question 1 In order for an endothermic reaction to be spontaneous, endothermic reactions

More information

2/18/2013. Spontaneity, Entropy & Free Energy Chapter 16. The Dependence of Free Energy on Pressure Sample Exercises

2/18/2013. Spontaneity, Entropy & Free Energy Chapter 16. The Dependence of Free Energy on Pressure Sample Exercises Spontaneity, Entropy & Free Energy Chapter 16 16.7 The Dependence of Free Energy on Pressure Why is free energy dependent on pressure? Isn t H, enthalpy independent of pressure at constant pressure? No

More information

Chem 1B Dr. White 1 Chapter 17: Thermodynamics. Review From Chem 1A (Chapter 6, section 1) A. The First Law of Thermodynamics

Chem 1B Dr. White 1 Chapter 17: Thermodynamics. Review From Chem 1A (Chapter 6, section 1) A. The First Law of Thermodynamics Chem 1B Dr. White 1 Chapter 17: Thermodynamics Review From Chem 1A (Chapter 6, section 1) A. The First Law of Thermodynamics 17.1 Spontaneous Processes and Entropy A. Spontaneous Change Chem 1B Dr. White

More information

Second Law of Thermodynamics

Second Law of Thermodynamics Second Law of Thermodynamics First Law: the total energy of the universe is a constant Second Law: The entropy of the universe increases in a spontaneous process, and remains unchanged in a process at

More information

CHEMICAL THERMODYNAMICS. Nature of Energy. ΔE = q + w. w = PΔV

CHEMICAL THERMODYNAMICS. Nature of Energy. ΔE = q + w. w = PΔV CHEMICAL HERMODYNAMICS Nature of Energy hermodynamics hermochemistry Energy (E) Work (w) Heat (q) Some Definitions Study the transformation of energy from one form to another during physical and chemical

More information

Problem Set. Assigned October 18, 2013 Due Friday, October 25, Please show all work for credit

Problem Set. Assigned October 18, 2013 Due Friday, October 25, Please show all work for credit Problem Set Assigned October 18, 2013 Due Friday, October 25, 2013 Please show all work for credit To hand in: Thermodynamic Relations 1. The shells of marine organisms contain CaCO 3 largely in the crystalline

More information

Thermodynamics: Study of heat and its relationship with other forms of energy

Thermodynamics: Study of heat and its relationship with other forms of energy Unit 6 The 6 th planet in our solar system is Saturn Ch. 5: Thermodynamics: Study of heat and its relationship with other forms of energy Two types of energy: Kinetic: movement, active energy Potential:

More information

CHAPTER 4 THERMODYNAMICS AND EQUILIBRIUM

CHAPTER 4 THERMODYNAMICS AND EQUILIBRIUM CHAPTER 4 THERMODYNAMICS AND EQUILIBRIUM Introduction Thus far, we have assumed that the limiting reactant is always consumed completely in a reaction, but this is not always the case because many reactions

More information

The Reaction module. Cu) Isothermal standard state reactions (oxidation of copper) of pure (Al)) Two phase single component equilibrium (ideal

The Reaction module. Cu) Isothermal standard state reactions (oxidation of copper) of pure (Al)) Two phase single component equilibrium (ideal Table of contents The module Use to calculate the thermochemical properties of a species or a chemical reaction. accesses only compound type databases. Note that assumes all gases to be ideal and ignores

More information

The Laws of Thermodynamics

The Laws of Thermodynamics Entropy I. This, like enthalpy, Thus, II. A reaction is ( more on this later) if: (H, enthalpy) (S, entropy) III. IV. Why does entropy happen? Probability It s harder to keep things in order (look at my

More information