Roller Coaster Dynamics 2: Energy Losses - 1

Size: px
Start display at page:

Download "Roller Coaster Dynamics 2: Energy Losses - 1"

Transcription

1 Lab Safety Policies Don t stand on lab chairs Don t sit or stand on lab tables No dangling jewelry or loose clothes. No open toed shoes. Be careful with sharp corners. Recall location of phone and first-aid kit. Report ALL injuries 1

2 Overview of Labs Lab 1 Introduction to Roller Coaster Design Lab 2 Energy Losses Lab 3 Circuit Prototyping Lab 4 Speed Sensor Calibration Lab 5 Building Session #1 Lab 6 Building Session #2 Lab 7 Building Session #3 Lab 8 Final Construction - Preliminary Testing of Design Lab 9 Final Testing of Design Lab 10 Oral Presentations

3 Roller Coaster Dynamics 2: Energy Losses - 1

4 Recap of previous lab Law of Conservation of Energy Energy can neither be created nor destroyed Energy can transfer from one form to another Examples of Energy Losses are the following: Resistive forces, such as friction and air resistance Act on a body in motion and cause energy to be transferred to unwanted forms (i.e. heat). For the roller coaster ball, " "

5 Recap of physics reading module Friction is a process that results in a force that opposes an action. Static Friction (acts to prevent motion) Kinetic Friction (exists between moving surfaces) Sliding Friction (due to sliding action of the object) Rolling Friction (due to rolling action of the object) Friction causes your ball to lose energy as it traverses along the track.

6 Recap of physics reading module Slippage results from a steep angle causing the ball to slide rather than roll. Sliding friction is generally greater than rolling friction. Curved Motion Critical velocities: At the top of a loop: v gr At the top of a bump: v gr Bank angle creates the centripetal force needed to keep the ball on the track.

7 Agenda Day 1: Experiments to calculate rolling friction coefficient Experiments to calculate average G-force Day 2: Experiments to calculate static friction coefficient Working on post-lab data analysis

8 Roller Coaster Energy Analysis Spreadsheet You will be using a RC Energy Analysis Spreadsheet to model most, but not all of the energy losses that your coaster will experience. This Excel spreadsheet allows for Vertical loops/curves Bumps Horizontal loops/curves Relatively straight sections of track Energy losses due to friction, G-forces and air resistance are included.

9 Additional Energy Losses Snap-fit spacing - Too wide a spacing can cause excessive energy losses through track deformation. Structural stability (including track) - An unstable structure can cause energy losses through movements within the structure. Bending of the track can also cause energy losses. Differential forces between rails along horizontal curves The ball will exert a different amount of force on each rail of the track.

10 Lab Activities (Part 1) Lab Apparatus Circular Arc (Rolling Friction) Group Rotation Data will be collected at the front table by each team. Each team will take turns rotating to the table and collect data with one ball on a total of three apparatus. Each group will be notified when it is their turn to rotate to the front table. Each group should record their data on the printed worksheet at the front table and on the computer at the instructor s station.

11 Circular Arc Apparatus - Friction Ball is released at point A. A The type of motion (oscillation, simple harmonic motion) is a way to roll a ball a relatively large distance with a relatively small apparatus. Ball oscillates for some time and eventually comes to rest Why?

12 Lab Activities (Part 2) This activity will be done at your table during the entire lab period. Locate your sample build kit, speed sensors, Arduino board. Build the support structure and track. Take measurements for four cases. Analyze, graph, and discuss your results.

13 You'll make this support structure 13

14 Experimental Setup You'll add speed sensors at the beginning and end of the horizontal curve and measure the energy losses for different starting points. Sensor B Sensor A

15 Speed Measurement Accuracy Tests of production speed sensors show an accuracy of about +/- 2% when using a correction factor of This is with the LED and photo-transistor visually aligned. Visually confirm that the glued alignment of the two LEDs is correct. If not aligned, errors of up to 10% can occur!

16 Let s put things together! Energy losses on straight track: Frictional forces Air resistance Additional energy losses: Snap-fit spacing Structural stability Differential forces between rails A ball following a curved path: Involves centripetal force. Has different frictional losses than when rolling on straight track.

17 Assignments and Reminders The post-lab data analysis spreadsheet will be due at midnight next Friday for instructor to check your calculations. You will have some time to work on the data analysis in the lab session next week. If you can finish the calculation for circular arc and half-horizontal loop before the lab, the instructor can help your team check the results during the lab session.

First-Year Engineering Program. Physics RC Reading Module

First-Year Engineering Program. Physics RC Reading Module Physics RC Reading Module Frictional Force: A Contact Force Friction is caused by the microscopic interactions between the two surfaces. Direction is parallel to the contact surfaces and proportional to

More information

Roller Coaster Energy Losses

Roller Coaster Energy Losses Roller Coaster Energy Losses Background This lab is designed to collect information and calculate various forms of energy losses in your roller coaster design. Some of the calculations will allow you to

More information

Roller Coaster Design Project Lab 3: Coaster Physics Part 2

Roller Coaster Design Project Lab 3: Coaster Physics Part 2 Roller Coaster Design Project Lab 3: Coaster Physics Part 2 Introduction The focus of today's lab is on the understanding how various features influence the movement and energy loss of the ball. Loops

More information

Potential and Kinetic Energy: Roller Coasters Teacher Version

Potential and Kinetic Energy: Roller Coasters Teacher Version Potential and Kinetic Energy: Roller Coasters Teacher Version This lab illustrates the type of energy conversions that are experienced on a roller coaster, and as a method of enhancing the students understanding

More information

1 A car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true?

1 A car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true? Slide 1 / 30 1 car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true? The car s velocity is constant The car s acceleration is constant The

More information

Potential and Kinetic Energy: The Roller Coaster Lab Teacher Version

Potential and Kinetic Energy: The Roller Coaster Lab Teacher Version Potential and Kinetic Energy: The Roller Coaster Lab Teacher Version This lab illustrates the type of energy conversions that are experienced on a roller coaster, and as a method of enhancing the students

More information

Chapter 8: Newton s Laws Applied to Circular Motion

Chapter 8: Newton s Laws Applied to Circular Motion Chapter 8: Newton s Laws Applied to Circular Motion Centrifugal Force is Fictitious? F actual = Centripetal Force F fictitious = Centrifugal Force Center FLEEing Centrifugal Force is Fictitious? Center

More information

AP Physics Free Response Practice Dynamics

AP Physics Free Response Practice Dynamics AP Physics Free Response Practice Dynamics 14) In the system shown above, the block of mass M 1 is on a rough horizontal table. The string that attaches it to the block of mass M 2 passes over a frictionless

More information

Lecture 10. Example: Friction and Motion

Lecture 10. Example: Friction and Motion Lecture 10 Goals: Exploit Newton s 3 rd Law in problems with friction Employ Newton s Laws in 2D problems with circular motion Assignment: HW5, (Chapter 7, due 2/24, Wednesday) For Tuesday: Finish reading

More information

Forces. Dynamics FORCEMAN

Forces. Dynamics FORCEMAN 1 Forces Dynamics FORCEMAN 2 What causes things to move? Forces What is a force? A push or a pull that one body exerts on another. 3 Balanced No change in motion 4 5 Unbalanced If the forces acting on

More information

Chapter: Motion, Acceleration, and Forces

Chapter: Motion, Acceleration, and Forces Chapter 3 Table of Contents Chapter: Motion, Acceleration, and Forces Section 1: Describing Motion Section 2: Acceleration Section 3: Motion and Forces 1 Motion Describing Motion Distance and time are

More information

9/27/12. Chapter: Motion, Acceleration, and Forces. Motion and Position. Motion. Distance. Relative Motion

9/27/12. Chapter: Motion, Acceleration, and Forces. Motion and Position. Motion. Distance. Relative Motion 9/7/ Table of Contents Chapter: Motion,, and Forces Section : Chapter Section : Section : Motion Distance and time are important. In order to win a race, you must cover the distance in the shortest amount

More information

WHITE KNUCKLE RIDE AN INTRODUCTION TO DYNAMICS

WHITE KNUCKLE RIDE AN INTRODUCTION TO DYNAMICS WHITE KNUCKLE RIDE AN INTRODUCTION TO DYNAMICS P R E A M B L E The original version of White Knuckle Ride is run as a Laboratory Group Research Project, undertaken by students in small groups. There are

More information

Potential and Kinetic Energy: Roller Coasters Student Advanced Version

Potential and Kinetic Energy: Roller Coasters Student Advanced Version Potential and Kinetic Energy: Roller Coasters Student Advanced Version Key Concepts: Energy is the ability of a system or object to perform work. It exists in various forms. Potential energy is the energy

More information

Chapter 4. Forces and the Laws of Motion. CH 4 Forces and the Laws of Motion.notebook. April 09, Changes in Motion. A. Force

Chapter 4. Forces and the Laws of Motion. CH 4 Forces and the Laws of Motion.notebook. April 09, Changes in Motion. A. Force CH 4 Forces and the Laws of Motion.notebook Chapter 4 A. Force April 09, 2015 Changes in Motion Forces and the Laws of Motion 1. Defined as the cause of an acceleration, or the change in an object s motion,

More information

Potential and Kinetic Energy: Roller Coasters Student Version

Potential and Kinetic Energy: Roller Coasters Student Version Potential and Kinetic Energy: Roller Coasters Student Version Key Concepts: Energy is the ability of a system or object to perform work. It exists in various forms. Potential energy is the energy an object

More information

AP* Circular & Gravitation Free Response Questions

AP* Circular & Gravitation Free Response Questions 1992 Q1 AP* Circular & Gravitation Free Response Questions A 0.10-kilogram solid rubber ball is attached to the end of a 0.80-meter length of light thread. The ball is swung in a vertical circle, as shown

More information

Physics 101: Lecture 08. Common Incorrect Forces (Spooky Rules!) Items below are NOT forces Acceleration: F Net = ma Centripetal Acceleration

Physics 101: Lecture 08. Common Incorrect Forces (Spooky Rules!) Items below are NOT forces Acceleration: F Net = ma Centripetal Acceleration Physics 101: Lecture 08 Circular Motion Review of Newton s Laws Checkpoint 4, Lecture 7 In the game of tetherball, a rope connects a ball to the top of a vertical pole as shown. In one case, a ball of

More information

School of the Future * Curriculum Map for Physics I: Mechanics Teacher(s) Michael Zitolo

School of the Future * Curriculum Map for Physics I: Mechanics Teacher(s) Michael Zitolo School of the Future * Curriculum Map for Physics I: Mechanics Teacher(s) Michael Zitolo Year Long Essential Question: How can physics be used to improve our understanding of the world? & How and to what

More information

Chapter 8: Dynamics in a plane

Chapter 8: Dynamics in a plane 8.1 Dynamics in 2 Dimensions p. 210-212 Chapter 8: Dynamics in a plane 8.2 Velocity and Acceleration in uniform circular motion (a review of sec. 4.6) p. 212-214 8.3 Dynamics of Uniform Circular Motion

More information

PHY 221 Lab 9 Work and Energy

PHY 221 Lab 9 Work and Energy PHY 221 Lab 9 Work and Energy Name: Partners: Before coming to lab, please read this packet and do the prelab on page 13 of this handout. Goals: While F = ma may be one of the most important equations

More information

Chapter 6. Applications of Newton s Laws

Chapter 6. Applications of Newton s Laws Chapter 6 Applications of Newton s Laws Applications of Newton s Laws Friction Drag Forces Motion Along a Curved Path The Center of Mass MFMcGraw - PHY 2425 Chap_06H-More Newton-Revised 1/11/2012 2 Microscopic

More information

Static and Kinetic Friction

Static and Kinetic Friction Dual-Range Force Sensor Computer 12 If you try to slide a heavy box resting on the floor, you may find it difficult to get the box moving. Static friction is the force that counters your force on the box.

More information

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion.

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion. Forces and Motion Preview Section 1 Gravity and Motion Section 2 Newton s Laws of Motion Section 3 Momentum Concept Mapping Section 1 Gravity and Motion Bellringer Answer the following question in your

More information

Honor Physics Final Exam Review. What is the difference between series, parallel, and combination circuits?

Honor Physics Final Exam Review. What is the difference between series, parallel, and combination circuits? Name Period Date Honor Physics Final Exam Review Circuits You should be able to: Calculate the total (net) resistance of a circuit. Calculate current in individual resistors and the total circuit current.

More information

Chapter 7 Potential Energy and Energy Conservation

Chapter 7 Potential Energy and Energy Conservation Chapter 7 Potential Energy and Energy Conservation We saw in the previous chapter the relationship between work and kinetic energy. We also saw that the relationship was the same whether the net external

More information

Static and Kinetic Friction

Static and Kinetic Friction Experiment 12 If you try to slide a heavy box resting on the floor, you may find it difficult to get the box moving. Static friction is the force that is acting against the box. If you apply a light horizontal

More information

Linear Motion with Constant Acceleration

Linear Motion with Constant Acceleration Linear Motion 1 Linear Motion with Constant Acceleration Overview: First you will attempt to walk backward with a constant acceleration, monitoring your motion with the ultrasonic motion detector. Then

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Weight Friction Tension 07-1 1 Current assignments Thursday prelecture assignment. HW#7 due this Friday at 5 pm. 07-1 2 Summary To solve problems in mechanics,

More information

Circular Motion PreTest

Circular Motion PreTest Circular Motion PreTest Date: 06/03/2008 Version #: 0 Name: 1. In a series of test runs, a car travels around the same circular track at different velocities. Which graph best shows the relationship between

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m Work/nergy 1. student throws a ball upward where the initial potential energy is 0. t a height of 15 meters the ball has a potential energy of 60 joules and is moving upward with a kinetic energy of 40

More information

Multiple Choice Portion

Multiple Choice Portion Unit 5: Circular Motion and Gravitation Please Note that the gravitational potential energy questions are located in Unit 4 (Energy etc.) Multiple Choice Portion 1. What is the centripetal acceleration

More information

Name: School: Class: Teacher: Date:

Name: School: Class: Teacher: Date: ame: School: Class: Teacher: Date: Materials needed: Pencil, stopwatch, and scientific calculator d v λ f λ λ Wave Pool Side View During wave cycles, waves crash along the shore every few seconds. The

More information

Algebra Based Physics Uniform Circular Motion

Algebra Based Physics Uniform Circular Motion 1 Algebra Based Physics Uniform Circular Motion 2016 07 20 www.njctl.org 2 Uniform Circular Motion (UCM) Click on the topic to go to that section Period, Frequency and Rotational Velocity Kinematics of

More information

Physics 20 Practice Problems for Exam 1 Fall 2014

Physics 20 Practice Problems for Exam 1 Fall 2014 Physics 20 Practice Problems for Exam 1 Fall 2014 Multiple Choice Short Questions (1 pt ea.) Circle the best answer. 1. An apple falls from a tree and hits the ground 5 meters below. It hits the ground

More information

1 Weight, 100 g, with hook Measuring tape 1 Weight, 200 g, with hook Sandpaper, carpet, or other rough surface

1 Weight, 100 g, with hook Measuring tape 1 Weight, 200 g, with hook Sandpaper, carpet, or other rough surface Work and Friction That is why we labor and strive; because we have put our hope in the living God, who is the savior of all people, and especially of those of believe. 1 Timothy 4:10 Introduction In Physics,

More information

PHYSICS 221 SPRING EXAM 1: February 20, 2014; 8:15pm 10:15pm

PHYSICS 221 SPRING EXAM 1: February 20, 2014; 8:15pm 10:15pm PHYSICS 221 SPRING 2014 EXAM 1: February 20, 2014; 8:15pm 10:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit questions,

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Circular motion Impulse and momentum 08-2 1 Current assignments Reading: Chapter 9 in textbook Prelecture due next Thursday HW#8 due NEXT Friday (extension!)

More information

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion.

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion. 1 PHYS:100 LECTURE 9 MECHANICS (8) In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion. 9 1. Conservation of Energy. Energy is one of the most fundamental

More information

the spring is compressed and x is the compression

the spring is compressed and x is the compression Lecture 4 Spring problem and conservation of mechanical energy Hooke's Law The restoring force exerted by the spring is directly proportional to its displacement. The restoring force acts in a direction

More information

<This Sheet Intentionally Left Blank For Double-Sided Printing>

<This Sheet Intentionally Left Blank For Double-Sided Printing> 21 22 Transformation Of Mechanical Energy Introduction and Theory One of the most powerful laws in physics is the Law of Conservation of

More information

Static and Kinetic Friction

Static and Kinetic Friction Experiment Static and Kinetic Friction Prelab Questions 1. Examine the Force vs. time graph and the Position vs. time graph below. The horizontal time scales are the same. In Region I, explain how an object

More information

Conservation of Energy Challenge Problems Problem 1

Conservation of Energy Challenge Problems Problem 1 Conservation of Energy Challenge Problems Problem 1 An object of mass m is released from rest at a height h above the surface of a table. The object slides along the inside of the loop-the-loop track consisting

More information

P R E A M B L E. The module is run with the following pattern over 3 weeks. Introduction (1 hour) Facilitated Practical Class (2 hours)

P R E A M B L E. The module is run with the following pattern over 3 weeks. Introduction (1 hour) Facilitated Practical Class (2 hours) WHITE KNUCKLE EXPERIMENT FRICTIONAL FORCES - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small

More information

Forces. Video Demos. Graphing HW: October 03, 2016

Forces. Video Demos. Graphing HW: October 03, 2016 Distance (m or km) : Create a story using the graph. Describe what will be happening at each point during the day (A-D). Example: Trump has a busy day. He is currently at Trump Tower in NY. A- Trump jumps

More information

Dynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i

Dynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i Dynamic equilibrium: object moves with constant velocity in a straight line. We note that F net a s are both vector quantities, so in terms of their components, (F net ) x = i (F i ) x = 0, a x = i (a

More information

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) 121 Textbook Reference: Knight, Chapter 13.1-3, 6. SYNOPSIS In

More information

Physics 201 Lecture 16

Physics 201 Lecture 16 Physics 01 Lecture 16 Agenda: l Review for exam Lecture 16 Newton s Laws Three blocks are connected on the table as shown. The table has a coefficient of kinetic friction of 0.350, the masses are m 1 =

More information

Consider the case of a 100 N. mass on a horizontal surface as shown below:

Consider the case of a 100 N. mass on a horizontal surface as shown below: 1.9.1 Introduction The study of friction is called: The force of friction is defined as: The force of friction acting between two surfaces has three properties: i) ii) iii) Consider the case of a 100 N.

More information

1. Given the apparatus in front of you, What are the forces acting on the paper clip?

1. Given the apparatus in front of you, What are the forces acting on the paper clip? Forces and Static Equilibrium - Worksheet 1. Given the apparatus in front of you, What are the forces acting on the paper clip? 2. Draw a free body diagram of the paper clip and plot all the forces acting

More information

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that moving objects eventually stop only because of a force

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In the diagram shown, the unknown vector is 1) Diagram 1 A) B - A. B) A - B. C) A + B.

More information

Circular Motion.

Circular Motion. 1 Circular Motion www.njctl.org 2 Topics of Uniform Circular Motion (UCM) Kinematics of UCM Click on the topic to go to that section Period, Frequency, and Rotational Velocity Dynamics of UCM Vertical

More information

Physics 12. Unit 5 Circular Motion and Gravitation Part 1

Physics 12. Unit 5 Circular Motion and Gravitation Part 1 Physics 12 Unit 5 Circular Motion and Gravitation Part 1 1. Nonlinear motions According to the Newton s first law, an object remains its tendency of motion as long as there is no external force acting

More information

Name: Class: Date: p 1 = p 2. Given m = 0.15 kg v i = 5.0 m/s v f = 3.0 m/s Solution

Name: Class: Date: p 1 = p 2. Given m = 0.15 kg v i = 5.0 m/s v f = 3.0 m/s Solution Assessment Chapter Test A Teacher Notes and Answers Momentum and Collisions CHAPTER TEST A (GENERAL) 1. c 2. c 3. b 4. c 5. a p i = 4.0 kg m/s p f = 4.0 kg m/s p = p f p i = ( 4.0 kg m/s) 4.0 kg m/s =

More information

Physics 8 Wednesday, October 11, 2017

Physics 8 Wednesday, October 11, 2017 Physics 8 Wednesday, October 11, 2017 HW5 due Friday. It s really Friday this week! Homework study/help sessions (optional): Bill will be in DRL 2C6 Wednesdays from 4 6pm (today). Grace will be in DRL

More information

Module VII: Work. Background/Support Information

Module VII: Work. Background/Support Information Background/Support Information NAME: DATE: Module VII: Work OBJECTIVES/PURPOSE Students will: define the concept of work as force times distance distinguish the relation of work to energy apply the concept

More information

Physics 201, Lecture 10

Physics 201, Lecture 10 Physics 201, Lecture 10 Today s Topics n Circular Motion and Newton s Law (Sect. 6.1,6.2) n Centripetal Force in Uniform Circular Motion n Examples n n Motion in Accelerated Frame (sec. 6.3, conceptual

More information

Energy Conservation Examples (KE and GPE)

Energy Conservation Examples (KE and GPE) Name: Date: Energy onservation Examples ( and ) stunt man (m=60. kg) falls off a tower toward an airbag 50. m below.. What is the major force acting on the stunt man? Describe the work done on the stunt

More information

Uniform Circular Motion. Uniform Circular Motion

Uniform Circular Motion. Uniform Circular Motion Uniform Circular Motion Uniform Circular Motion Uniform Circular Motion An object that moves at uniform speed in a circle of constant radius is said to be in uniform circular motion. Question: Why is uniform

More information

Coefficient of Friction Lab

Coefficient of Friction Lab Name Date Period Coefficient of Friction Lab The purpose of this lab is to determine the relationship between a) the force of static friction and the normal force and b) the force of kinetic friction and

More information

Preparing for Six Flags Physics Concepts

Preparing for Six Flags Physics Concepts Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given

More information

Physics 101. Hour Exam I Spring Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

Physics 101. Hour Exam I Spring Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Calculators may not be shared. Please keep your calculator on your own desk.

More information

Circular Orbits. Slide Pearson Education, Inc.

Circular Orbits. Slide Pearson Education, Inc. Circular Orbits The figure shows a perfectly smooth, spherical, airless planet with one tower of height h. A projectile is launched parallel to the ground with speed v 0. If v 0 is very small, as in trajectory

More information

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/ AP Physics C Summer Assignment 2017 1. Complete the problem set that is online, entitled, AP C Physics C Summer Assignment 2017. I also gave you a copy of the problem set. You may work in groups as a matter

More information

Introductory Energy & Motion Lab P4-1350

Introductory Energy & Motion Lab P4-1350 WWW.ARBORSCI.COM Introductory Energy & Motion Lab P4-1350 BACKGROUND: Students love to get to work fast, rather than spending lab time setting up and this complete motion lab lets them quickly get to the

More information

Physics 211 Week 5. Work and Kinetic Energy: Block on Ramp

Physics 211 Week 5. Work and Kinetic Energy: Block on Ramp Physics 211 Week 5 Work and Kinetic Energy: Block on Ramp A block starts with a speed of 15 m/s at the bottom of a ramp that is inclined at an angle of 30 o with the horizontal. The coefficient of kinetic

More information

Chapter 4 Force and Motion

Chapter 4 Force and Motion Chapter 4 Force and Motion Units of Chapter 4 The Concepts of Force and Net Force Inertia and Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion More on Newton s Laws:

More information

AP Physics 1 Lesson 9 Homework Outcomes. Name

AP Physics 1 Lesson 9 Homework Outcomes. Name AP Physics 1 Lesson 9 Homework Outcomes Name Date 1. Define uniform circular motion. 2. Determine the tangential velocity of an object moving with uniform circular motion. 3. Determine the centripetal

More information

Week 14 The Simple Pendulum

Week 14 The Simple Pendulum Week 14 The Simple Pendulum 1. Scope 1.1 Goal Conduct experiment to study the simple harmonic motion of an oscillatory pendulum and analyze and interpret the data 1.2 Units of measurement to use United

More information

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

More information

Why Do Birds of Prey Fly in Circles? Does the Eagle Make It? p. 1/3

Why Do Birds of Prey Fly in Circles? Does the Eagle Make It? p. 1/3 Why Do Birds of Prey Fly in Circles? Does the Eagle Make It? p. 1/3 Does the Eagle Make It? p. 1/3 Why Do Birds of Prey Fly in Circles? To find food. Does the Eagle Make It? p. 1/3 Why Do Birds of Prey

More information

ΣF=ma SECOND LAW. Make a freebody diagram for EVERY problem!

ΣF=ma SECOND LAW. Make a freebody diagram for EVERY problem! PHYSICS HOMEWORK #31 SECOND LAW ΣF=ma NEWTON S LAWS Newton s Second Law of Motion The acceleration of an object is directly proportional to the force applied, inversely proportional to the mass of the

More information

Lab 8: Centripetal Acceleration

Lab 8: Centripetal Acceleration PHYS 211 Lab 8 1 Lab 8: Centripetal Acceleration Introduction: In this lab you will confirm Newton s Second Law of Motion by examining the dynamic and static force exerted on a mass by a spring. The dynamic

More information

Chapter 6. Force and Motion-II (Friction, Drag, Circular Motion)

Chapter 6. Force and Motion-II (Friction, Drag, Circular Motion) Chapter 6 Force and Motion-II (Friction, Drag, Circular Motion) 6.2 Frictional Force: Motion of a crate with applied forces There is no attempt at sliding. Thus, no friction and no motion. NO FRICTION

More information

Uniform Circular Motion

Uniform Circular Motion Slide 1 / 112 Uniform Circular Motion 2009 by Goodman & Zavorotniy Slide 2 / 112 Topics of Uniform Circular Motion (UCM) Kinematics of UCM Click on the topic to go to that section Period, Frequency, and

More information

SPH4U UNIVERSITY PHYSICS

SPH4U UNIVERSITY PHYSICS SPH4U UNIVERSITY PHYSICS ENERGY & MOMENTUM L Conservation of Energy (P.184-191) Energy Transformations & The Law of Scientists have studied energy and energy transformations and have arrived at some important

More information

Introductory Physics PHYS101

Introductory Physics PHYS101 Introductory Physics PHYS101 Dr Richard H. Cyburt Office Hours Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu TRF 9:30-11:00am

More information

1 of 5 10/4/2009 8:45 PM

1 of 5 10/4/2009 8:45 PM http://sessionmasteringphysicscom/myct/assignmentprint?assignmentid= 1 of 5 10/4/2009 8:45 PM Chapter 8 Homework Due: 9:00am on Wednesday October 7 2009 Note: To understand how points are awarded read

More information

Physics 1021 Experiment 1. Introduction to Simple Harmonic Motion

Physics 1021 Experiment 1. Introduction to Simple Harmonic Motion 1 Physics 1021 Introduction to Simple Harmonic Motion 2 Introduction to SHM Objectives In this experiment you will determine the force constant of a spring. You will measure the period of simple harmonic

More information

UbD Unit. Unit Cover Page. Key Words: Newton s Laws, friction, impulse, momentum, rotational loads, centripetal force

UbD Unit. Unit Cover Page. Key Words: Newton s Laws, friction, impulse, momentum, rotational loads, centripetal force UbD Unit Unit Cover Page Unit Title: Laws of Motion Grade Level: 12th Subject/Topic: Laws of Motion Key Words: Newton s Laws, friction, impulse, momentum, rotational loads, centripetal force Standards/Indicators:

More information

Physics 1020 Experiment 6. Equilibrium of a Rigid Body

Physics 1020 Experiment 6. Equilibrium of a Rigid Body 1 2 Introduction Static equilibrium is defined as a state where an object is not moving in any way. The two conditions for the equilibrium of a rigid body (such as a meter stick) are 1. the vector sum

More information

Physics 8 Monday, October 12, 2015

Physics 8 Monday, October 12, 2015 Physics 8 Monday, October 12, 2015 HW5 will be due Friday. (HW5 is just Ch9 and Ch10 problems.) You re reading Chapter 12 ( torque ) this week, even though in class we re just finishing Ch10 / starting

More information

Lab 12 - Conservation of Momentum And Energy in Collisions

Lab 12 - Conservation of Momentum And Energy in Collisions Lab 12 - Conservation of Momentum And Energy in Collisions Name Partner s Name I. Introduction/Theory Momentum is conserved during collisions. The momentum of an object is the product of its mass and its

More information

Chapter: Motion, Acceleration, and Forces

Chapter: Motion, Acceleration, and Forces Table of Contents Chapter: Motion, Acceleration, and Forces Section 1: Describing Motion Section 2: Acceleration Section 3: Motion and Forces 1 Motion Are distance and time important in describing running

More information

Contents. Objectives IAI motion w/o force motion with force F=ma third law work and energy circular motion Final Exam mechanics questions Recap IAI

Contents. Objectives IAI motion w/o force motion with force F=ma third law work and energy circular motion Final Exam mechanics questions Recap IAI Physics 121 for Majors Section 1 IAI Review 4 Review for IAI and Final Exam Exam Details In the Testing Center Friday - Wednesday Wed. is a late day with a $5 fee Hours: 8 am 9 pm Friday 10 am 3 pm Saturday

More information

Lab/Demo 4 Circular Motion and Energy PHYS 1800

Lab/Demo 4 Circular Motion and Energy PHYS 1800 Lab/Demo 4 Circular Motion and Energy PHYS 1800 Objectives: Demonstrate the dependence of centripetal force on mass, velocity and radius. Learn to use these dependencies to predict circular motion Demonstrate

More information

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

More information

Section 2. Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down. What Do You See? What Do You Think?

Section 2. Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down. What Do You See? What Do You Think? Thrills and Chills Section Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down Florida Next Generation Sunshine State Standards: Additional Benchmarks met in Section SC.91.N..4

More information

Dynamics Test K/U 28 T/I 16 C 26 A 30

Dynamics Test K/U 28 T/I 16 C 26 A 30 Name: Dynamics Test K/U 28 T/I 16 C 26 A 30 A. True/False Indicate whether the sentence or statement is true or false. 1. The normal force that acts on an object is always equal in magnitude and opposite

More information

Name AP Physics2. Summer 2015 problems.

Name AP Physics2. Summer 2015 problems. Name AP Physics2. Summer 2015 problems. Each problem good for one bonus point on the First Day 50 point Multiple Choice Exam. All your steps must be documented in pencil with units in calculations. Answer

More information

i. Indicate on the figure the point P at which the maximum speed of the car is attained. ii. Calculate the value vmax of this maximum speed.

i. Indicate on the figure the point P at which the maximum speed of the car is attained. ii. Calculate the value vmax of this maximum speed. 1. A 0.20 kg object moves along a straight line. The net force acting on the object varies with the object's displacement as shown in the graph above. The object starts from rest at displacement x = 0

More information

Force, Mass, and Acceleration

Force, Mass, and Acceleration Introduction Force, Mass, and Acceleration At this point you append you knowledge of the geometry of motion (kinematics) to cover the forces and moments associated with any motion (kinetics). The relations

More information

Name St. Mary's HS AP Physics Circular Motion HW

Name St. Mary's HS AP Physics Circular Motion HW Name St. Mary's HS AP Physics Circular Motion HW Base your answers to questions 1 and 2 on the following situation. An object weighing 10 N swings at the end of a rope that is 0.72 m long as a simple pendulum.

More information

ACTIVITY 2: Motion with a Continuous Force

ACTIVITY 2: Motion with a Continuous Force CHAPTER 2 Developing Ideas ACTIVITY 2: Motion with a Continuous Force Purpose In Activity 1 you saw the effect that quick pushes had on the motion of a cart. This is like the situation in many sports,

More information

Lab 10: Ballistic Pendulum

Lab 10: Ballistic Pendulum Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Lab 10: Ballistic Pendulum Name: Partners: Pre-Lab You are required to finish this section before coming to the lab it will be checked

More information

LAB 6: WORK AND ENERGY

LAB 6: WORK AND ENERGY 93 Name Date Partners LAB 6: WORK AND ENERGY OBJECTIVES OVERVIEW Energy is the only life and is from the Body; and Reason is the bound or outward circumference of energy. Energy is eternal delight. William

More information

If you don t understand a question or how to answer it, read the lab write-up or your lab report to refresh your memory.

If you don t understand a question or how to answer it, read the lab write-up or your lab report to refresh your memory. Experiment IX The Culminating Lab What will happen in the culminating lab? For the Culminating Lab, you will be given 20 questions, which you have to answer. You will be allowed to bring a calculator and

More information

Chapter: Motion, Acceleration, and Forces

Chapter: Motion, Acceleration, and Forces Table of Contents Chapter: Motion, Acceleration, and Forces Section 1: Describing Motion Section 2: Acceleration Section 3: Motion and Forces 1 Motion Are distance and time important in describing running

More information

AP Physics C: Work, Energy, and Power Practice

AP Physics C: Work, Energy, and Power Practice AP Physics C: Work, Energy, and Power Practice 1981M2. A swing seat of mass M is connected to a fixed point P by a massless cord of length L. A child also of mass M sits on the seat and begins to swing

More information