CS626 Data Analysis and Simulation

Size: px
Start display at page:

Download "CS626 Data Analysis and Simulation"

Transcription

1 CS626 Data Analysis and Simulation Instructor: Peter Kemper R 104A, phone , kemper@cs.wm.edu Today: Probability Primer Quick Reference: Sheldon Ross: Introduction to Probability Models 9th Edition, AP, Ch. 1, Berthold, Hand: Intelligent Data Analysis, Springer 99, Chapter 2 by Feelders, Statistics Concepts. 1

2 Today Sample space and events Probabilities defined on events Kolmogorov s Axioms Conditional probabilities Independent events Excursion on Reliability of Series-Parallel Systems Bayes Formula 2

3 Today s topics what it is good for Probabilities are introduced in an axiomatic manner: Helps to achieve a sound theory Helps to clarify What assumptions are necessary to make theory apply What needs to be determined to be able to obtain results Clarification of terminology is necessary to Be able to be precise Avoid misunderstandings based on ambiguity of our language Conditional Probability and Bayes Formula are fundamental for many applications, basis of statistical method (Bayesian procedure). 3

4 Experiment and Sample Space Definition: (Random) Experiment Procedure that has a number of possible outcomes and it is not certain which one will occur Definition: Sample Space The set of all possible outcomes of an experiment is called sample space (denoted by S). Definition A subset E S is called event. Set operations on events: union, intersection 4

5 Algebra of Events Algebra of events defined by 5 laws, where A, B, C are arbitrary sets (of events) Commutative laws Associative laws Distributive laws Identity laws Complementation laws 5

6 Some useful relations based on those axioms Idempotent laws Domination laws Absorption laws De Morgan s laws 6

7 Graphics for Events Venn diagrams S A B Tree diagrams of sequential sample spaces Throw coin twice H T H T H T (H,H) (H,T) (T,H) (T,T) 7

8 Frequency Definition of Probability If our experiment is repeated over and over again then the proportion of time that event E occurs will just be P(E). Frequency Definition of Probability: P(E) = lim m(e) / m where m(e) is the number of times event E occurs, Note: m m is the number of trials Random experiment can be repeated under identical conditions if repeated indefinitely, relative frequency of occurrence of an event converges to a constant Law of large numbers states that limit does exist. For small m, m(e) can show strong fluctuations. 8

9 Axiomatic Definition of Probability Definition For each event E of the sample S, we assume that a number P(E) is defined that satisfies Kolmogorov s axioms: 9

10 Some useful relations derived from axioms What is the probability that E does NOT occur? What is the probability of the impossible event? 10

11 More relations What is the probability of a UNION of events? What is the probability of a union of a set of events? Is there a better way to calculate this? Sum of disjoint products (SDP) formula 11

12 Probability space, probability system So far ok for discrete S, but in general we need to be more careful with events E to be able to assign probabilities to events. A probability space is a triple (S,F,P) With sample space S With σ field F of subsets of S to select events from With P being a probability measure defined on F that satisfies Kolmogorov s axioms F is a collection of subsets of S that is closed under countable unions and complementation. Elements of F are called measurable. 12

13 Outline on Problem Solving (Goodman & Hedetniemi 77) Identify sample space S All elements must be mutually exclusive, collectively exhaustive. All possible outcomes of experiment should be listed separately. (Root of tricky problems: often ambiguity, inexact formulation of the model of a physical situation) Assign probabilities To all elements of S, consistent with Kolmogorov s axioms. (In practice: estimates based on experience, analysis or common assumptions) Identify events of interest Recast statements as subsets of S. Use laws (algebra of events) for simplifications Use visualizations for clarification Compute desired probabilities Use axioms, laws, often helpful: express event of interest as union of mutually exclusive events and sum up probabilities 13

14 Conditional Probabilities E EF F given F happens EF F Definition The conditional probability of E given F is if P(F) > 0 and it is undefined otherwise. Interpretation: Given F has happened, only events in EF are still possible for E, so original probability P(EF) is scaled by 1/P(F). Multiplication rule: 14

15 Two examples Family with two children. What is the probability that both children are boys, given that at least one of them is a boy? Given a sample space S where all outcomes are equally likely: Bev can take a computer science course and get an A with 1/2 probability or a chemistry course and get an A with 1/3 probability. If she flips a fair coin to decide what is the probability that Bev will get an A in chemistry? Let C be the event that Bev takes chemistry and A be the event that she receives an A in whatever she takes 15

16 Using conditional probabilities is trivial? A variation of a classic example: Professional gambler invites you for a game for $50: He has 3 little cups and one little ball, the ball goes under one of the cups and he mixes the cups. You pick a cup. It does not matter if you are right or wrong, the gambler will reveal one of the other cups that has not the little ball (equally likely if you picked the right one and he has a choice of two). It is your choice: To stick with your first guess. To change your mind and switch to the other remaining cup. Then: If you guess the right cup you win $50, Two questions: If you fail you loose $50 to him. What alternative is better according to probability theory? Why do you loose in practice but your neighbor has more luck? 16

17 Gambling with professionals S = { A, B, C } Initial probabilities, all equal: P(A)=P(B)=P(C)=1/3 Assume you pick A, and C is lifted subsequently as empty P(A) = 1/3, P(A c )=2/3 Now if the one empty cup (say C) is lifted given C is wrong A B C A B So chances for P(B or C) are 2/3 and you can get this with B! Conditional probabilities seem to tell a different story: P(A C c ) = P(AC c ) / P(C c ) = P(A) / P(C c ) = 1/3 / 2/3 = 1/2 P(A c C c ) = P(A c C c ) / P(C c ) = P(B) / P(C c ) = 1/3 / 2/3 = 1/2 What is right? 17

18 Independent events Definition Two events E and F are independent if: This also means: In English, E and F are independent Notes: if knowledge that F has occurred does not affect the probability that E occurs. if E, F independent then also E,F c and E c,f and E c,f c Generalizes from 2 to n events e.g. n=3 every subset independent Mutually exclusive vs independent 18

19 Example Tossing two fair dice, let E 1 be the event that the sum of the dice is six and F be the event that the first die is a four Thus E 1 and F are not independent Same experiment, except let E 2 be the event that the sum of the dice is seven Thus E 2 and F are independent 19

20 Joint and pairwise independence A ball is drawn from an urn containing four balls numbered 1, 2, 3, 4. Then we have: They are pairwise independent, but not jointly independent A sequence of experiments results in either a success or a failure where E i, i >= 1 denotes a success. If for all i 1, i 2,, i n : we say the sequence of experiments consists of independent trials 20

21 Excursion: Reliability Analysis with Reliability Block Diagrams Reliability of series-parallel systems Motivation: Illustrate how probabilities can be applied Illustrate how powerful independence assumption is We consider a set of components with index i=1,2, Event A i = component i is functioning properly Reliability R i of i is the probability P(A i ) Series system: Entire system fails if any of its components fails Parallel system: Entire system fails if all of its components fail Key assumption: Failures of components are independent. For now. R is a probability, later R will be a function of time t 21

22 Reliability Analysis (if component failures are independent) Reliability of a series system (Product law of reliabilities) Based on the assumption of series connections. Note how quickly R s degrades for n = 1,2, Reliability of a parallel system Let F i = 1-R i be the unreliability of a component, F p = 1-R p of a parallel system Then (Product law of unreliabilities) Note: also law of diminishing returns (rate of increase in reliability decreases rapidly as n increases) Reliability of a series-parallel system Of n serial stages, at stage i have n i identical components (in parallel) 22

23 Reliability Block Diagrams Series parallel RBD of a network R1 R2 R3 R3 R3 R4 R4 R5 Other representations: Fault trees Limits: more general dependencies Structure Function Inclusion/exclusion formula (or SDP) Approach with Binary decision diagrams (BDD), Zang 99 (in Trivedi Ch1) Factoring/Conditioning More techniques for more general settings 23

24 Bayes Formula Let E and F be events, we may express E as: Because EF and EF c are mutually exclusive we can say: In English: Event E is a weighted average of the conditional probability of E given that F has occurred and the conditional probability of E given that F has not occurred. 24

25 Example: Student solves a multiple choice test. Let: p : probability that he/she knows the answer 1-p: probability that he/she guesses. Assume: guessing has success probability 1/m, where m is the number of multiple choice alternatives. What is the conditional probability that a student knew the answer to the question that he/she answered correctly? Let C: event that student answers correctly Let K: event that student actually knew the answer. Then we have: Known: P(K)=p P(K c )=1-p P(C K c )=1/m P(C K)=1 25

26 Another example: Laboratory blood test Test: Question: 95% effective in detecting a certain disease when it is existent. 1% error rate of saying that a healthy person has the disease. If 0.5% of the population has the disease, what is the probability that a person has the disease given that the test result is positive? Let D be the event that the tested person has the disease, Let E be the event that the test result is positive. Known: P(E D)=.95 P(E D c )=.01 P(D)=.005 P(D c )=

27 Bayes Formula Let F 1, F 2,, F n be events of S, all mutually exclusive and collectively exhaustive. Theorem of total probability (also Rule of Elimination) Bayes Formula helps us to determine which F j happened given we observed E 27

28 Gambling with professionals revisited S = { A, B, C } Initial probabilities, all equal: P(A)=P(B)=P(C)=1/3 Assume you pick A, and C is lifted subsequently as empty P(A) = 1/3, P(A c )=2/3 Now if the one empty cup (say C) is lifted given C is wrong A B C A B So chances for P(B or C) are 2/3 and you can get this with B! Conditional probabilities seem to tell a different story: P(A C c ) = P(AC c ) / P(C c ) = P(A) / P(C c ) = 1/3 / 2/3 = 1/2 P(A c C c ) = P(A c C c ) / P(C c ) = P(B) / P(C c ) = 1/3 / 2/3 = 1/2 What is right? 28

29 Gambling with professionals... Bayes Theorem Scenario: you pick cup A, gambler opens cup C Question: Success probability of switching P(B Gc) S = { A, B, C} for Ball is under A, B, or C S = {Ga, Gb, Gc} for Gambler opens A, B, or C Probabilities: P(A)=P(B)=P(C)=1/3 P(Gc A) = 1/2 P(Gc A)P(A)=1/2*1/3=1/6 P(Gc B) = 1 implies P(Gc B)P(B)=1 *1/3=1/3 P(Gc C) = 0 P(Gc C)P(C)=0 *1/3 =0 Bayes Theorem applied: P(B Gc) = P(Gc B) P(B) / X where X = P(Gc A)P(A) + P(Gc B)P(B) + P(Gc C)P(C) such that P(B Gc)= (1 * 1/3) / (1/6 + 1/3 + 0) = 1/3 / 3/6 = 2/3 29

30 Summary Sample space and events Probabilities defined on events Kolmogorov s Axioms Conditional probabilities Independent events Bayes Formula 30

Statistical Inference

Statistical Inference Statistical Inference Lecture 1: Probability Theory MING GAO DASE @ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 11, 2018 Outline Introduction Set Theory Basics of Probability Theory

More information

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Applications Elementary Set Theory Random

More information

Probabilistic models

Probabilistic models Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became

More information

Probabilistic models

Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became the definitive formulation

More information

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability What is Probability? the chance of an event occuring eg 1classical probability 2empirical probability 3subjective probability Section 2 - Probability (1) Probability - Terminology random (probability)

More information

Lecture 3 Probability Basics

Lecture 3 Probability Basics Lecture 3 Probability Basics Thais Paiva STA 111 - Summer 2013 Term II July 3, 2013 Lecture Plan 1 Definitions of probability 2 Rules of probability 3 Conditional probability What is Probability? Probability

More information

Statistical Theory 1

Statistical Theory 1 Statistical Theory 1 Set Theory and Probability Paolo Bautista September 12, 2017 Set Theory We start by defining terms in Set Theory which will be used in the following sections. Definition 1 A set is

More information

the time it takes until a radioactive substance undergoes a decay

the time it takes until a radioactive substance undergoes a decay 1 Probabilities 1.1 Experiments with randomness Wewillusethetermexperimentinaverygeneralwaytorefertosomeprocess that produces a random outcome. Examples: (Ask class for some first) Here are some discrete

More information

STAT:5100 (22S:193) Statistical Inference I

STAT:5100 (22S:193) Statistical Inference I STAT:5100 (22S:193) Statistical Inference I Week 3 Luke Tierney University of Iowa Fall 2015 Luke Tierney (U Iowa) STAT:5100 (22S:193) Statistical Inference I Fall 2015 1 Recap Matching problem Generalized

More information

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability Chapter 2 Conditional Probability and Independence 2.1 Conditional Probability Probability assigns a likelihood to results of experiments that have not yet been conducted. Suppose that the experiment has

More information

4. Probability of an event A for equally likely outcomes:

4. Probability of an event A for equally likely outcomes: University of California, Los Angeles Department of Statistics Statistics 110A Instructor: Nicolas Christou Probability Probability: A measure of the chance that something will occur. 1. Random experiment:

More information

With Question/Answer Animations. Chapter 7

With Question/Answer Animations. Chapter 7 With Question/Answer Animations Chapter 7 Chapter Summary Introduction to Discrete Probability Probability Theory Bayes Theorem Section 7.1 Section Summary Finite Probability Probabilities of Complements

More information

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com Gujarati D. Basic Econometrics, Appendix

More information

Mean, Median and Mode. Lecture 3 - Axioms of Probability. Where do they come from? Graphically. We start with a set of 21 numbers, Sta102 / BME102

Mean, Median and Mode. Lecture 3 - Axioms of Probability. Where do they come from? Graphically. We start with a set of 21 numbers, Sta102 / BME102 Mean, Median and Mode Lecture 3 - Axioms of Probability Sta102 / BME102 Colin Rundel September 1, 2014 We start with a set of 21 numbers, ## [1] -2.2-1.6-1.0-0.5-0.4-0.3-0.2 0.1 0.1 0.2 0.4 ## [12] 0.4

More information

Lecture 3 - Axioms of Probability

Lecture 3 - Axioms of Probability Lecture 3 - Axioms of Probability Sta102 / BME102 January 25, 2016 Colin Rundel Axioms of Probability What does it mean to say that: The probability of flipping a coin and getting heads is 1/2? 3 What

More information

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability Chapter 2 Conditional Probability and Independence 2.1 Conditional Probability Example: Two dice are tossed. What is the probability that the sum is 8? This is an easy exercise: we have a sample space

More information

Monty Hall Puzzle. Draw a tree diagram of possible choices (a possibility tree ) One for each strategy switch or no-switch

Monty Hall Puzzle. Draw a tree diagram of possible choices (a possibility tree ) One for each strategy switch or no-switch Monty Hall Puzzle Example: You are asked to select one of the three doors to open. There is a large prize behind one of the doors and if you select that door, you win the prize. After you select a door,

More information

BASICS OF PROBABILITY CHAPTER-1 CS6015-LINEAR ALGEBRA AND RANDOM PROCESSES

BASICS OF PROBABILITY CHAPTER-1 CS6015-LINEAR ALGEBRA AND RANDOM PROCESSES BASICS OF PROBABILITY CHAPTER-1 CS6015-LINEAR ALGEBRA AND RANDOM PROCESSES COMMON TERMS RELATED TO PROBABILITY Probability is the measure of the likelihood that an event will occur Probability values are

More information

Independence. P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3.

Independence. P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3. Example: A fair die is tossed and we want to guess the outcome. The outcomes will be 1, 2, 3, 4, 5, 6 with equal probability 1 6 each. If we are interested in getting the following results: A = {1, 3,

More information

Axioms of Probability

Axioms of Probability Sample Space (denoted by S) The set of all possible outcomes of a random experiment is called the Sample Space of the experiment, and is denoted by S. Example 1.10 If the experiment consists of tossing

More information

The probability of an event is viewed as a numerical measure of the chance that the event will occur.

The probability of an event is viewed as a numerical measure of the chance that the event will occur. Chapter 5 This chapter introduces probability to quantify randomness. Section 5.1: How Can Probability Quantify Randomness? The probability of an event is viewed as a numerical measure of the chance that

More information

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability Lecture Notes 1 Basic Probability Set Theory Elements of Probability Conditional probability Sequential Calculation of Probability Total Probability and Bayes Rule Independence Counting EE 178/278A: Basic

More information

Conditional probability

Conditional probability CHAPTER 4 Conditional probability 4.1. Introduction Suppose there are 200 men, of which 100 are smokers, and 100 women, of which 20 are smokers. What is the probability that a person chosen at random will

More information

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Topic -2 Probability Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Probability Experiments Experiment : An experiment is an act that can be repeated under given condition. Rolling a

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Lecture 2 Probability Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 3-1 3.1 Definition Random Experiment a process leading to an uncertain

More information

Probability Notes (A) , Fall 2010

Probability Notes (A) , Fall 2010 Probability Notes (A) 18.310, Fall 2010 We are going to be spending around four lectures on probability theory this year. These notes cover approximately the first three lectures on it. Probability theory

More information

CSC Discrete Math I, Spring Discrete Probability

CSC Discrete Math I, Spring Discrete Probability CSC 125 - Discrete Math I, Spring 2017 Discrete Probability Probability of an Event Pierre-Simon Laplace s classical theory of probability: Definition of terms: An experiment is a procedure that yields

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 3 Probability Contents 1. Events, Sample Spaces, and Probability 2. Unions and Intersections 3. Complementary Events 4. The Additive Rule and Mutually Exclusive

More information

Origins of Probability Theory

Origins of Probability Theory 1 16.584: INTRODUCTION Theory and Tools of Probability required to analyze and design systems subject to uncertain outcomes/unpredictability/randomness. Such systems more generally referred to as Experiments.

More information

Tutorial 3: Random Processes

Tutorial 3: Random Processes August 18 Semester 2018-II Tutorial 3: Random Processes Lecturer: Utpal Mukherji/ Parimal Parag Prepared by: Prathamesh Mayekar Note: LaTeX template courtesy of UC Berkeley EECS dept. 3.1 Conditional Probability

More information

Introduction and basic definitions

Introduction and basic definitions Chapter 1 Introduction and basic definitions 1.1 Sample space, events, elementary probability Exercise 1.1 Prove that P( ) = 0. Solution of Exercise 1.1 : Events S (where S is the sample space) and are

More information

Introduction to Probability Theory

Introduction to Probability Theory Introduction to Probability Theory 1 1.1. Introduction Any realistic model of a real-world phenomenon must take into account the possibility of randomness. That is, more often than not, the quantities

More information

Probability, Random Processes and Inference

Probability, Random Processes and Inference INSTITUTO POLITÉCNICO NACIONAL CENTRO DE INVESTIGACION EN COMPUTACION Laboratorio de Ciberseguridad Probability, Random Processes and Inference Dr. Ponciano Jorge Escamilla Ambrosio pescamilla@cic.ipn.mx

More information

Presentation on Theo e ry r y o f P r P o r bab a il i i l t i y

Presentation on Theo e ry r y o f P r P o r bab a il i i l t i y Presentation on Theory of Probability Meaning of Probability: Chance of occurrence of any event In practical life we come across situation where the result are uncertain Theory of probability was originated

More information

Compound Events. The event E = E c (the complement of E) is the event consisting of those outcomes which are not in E.

Compound Events. The event E = E c (the complement of E) is the event consisting of those outcomes which are not in E. Compound Events Because we are using the framework of set theory to analyze probability, we can use unions, intersections and complements to break complex events into compositions of events for which it

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 Introduction One of the key properties of coin flips is independence: if you flip a fair coin ten times and get ten

More information

Lectures Conditional Probability and Independence

Lectures Conditional Probability and Independence Lectures 5 11 Conditional Probability and Independence Purpose: Calculate probabilities under restrictions, conditions or partial information on the random experiment. Break down complex probabilistic

More information

Announcements. Topics: To Do:

Announcements. Topics: To Do: Announcements Topics: In the Probability and Statistics module: - Sections 1 + 2: Introduction to Stochastic Models - Section 3: Basics of Probability Theory - Section 4: Conditional Probability; Law of

More information

Conditional Probability

Conditional Probability Conditional Probability When we obtain additional information about a probability experiment, we want to use the additional information to reassess the probabilities of events given the new information.

More information

Dept. of Linguistics, Indiana University Fall 2015

Dept. of Linguistics, Indiana University Fall 2015 L645 Dept. of Linguistics, Indiana University Fall 2015 1 / 34 To start out the course, we need to know something about statistics and This is only an introduction; for a fuller understanding, you would

More information

Chapter Learning Objectives. Random Experiments Dfiii Definition: Dfiii Definition:

Chapter Learning Objectives. Random Experiments Dfiii Definition: Dfiii Definition: Chapter 2: Probability 2-1 Sample Spaces & Events 2-1.1 Random Experiments 2-1.2 Sample Spaces 2-1.3 Events 2-1 1.4 Counting Techniques 2-2 Interpretations & Axioms of Probability 2-3 Addition Rules 2-4

More information

EE 178 Lecture Notes 0 Course Introduction. About EE178. About Probability. Course Goals. Course Topics. Lecture Notes EE 178

EE 178 Lecture Notes 0 Course Introduction. About EE178. About Probability. Course Goals. Course Topics. Lecture Notes EE 178 EE 178 Lecture Notes 0 Course Introduction About EE178 About Probability Course Goals Course Topics Lecture Notes EE 178: Course Introduction Page 0 1 EE 178 EE 178 provides an introduction to probabilistic

More information

(6, 1), (5, 2), (4, 3), (3, 4), (2, 5), (1, 6)

(6, 1), (5, 2), (4, 3), (3, 4), (2, 5), (1, 6) Section 7.3: Compound Events Because we are using the framework of set theory to analyze probability, we can use unions, intersections and complements to break complex events into compositions of events

More information

Probability (Devore Chapter Two)

Probability (Devore Chapter Two) Probability (Devore Chapter Two) 1016-345-01: Probability and Statistics for Engineers Fall 2012 Contents 0 Administrata 2 0.1 Outline....................................... 3 1 Axiomatic Probability 3

More information

Event A: at least one tail observed A:

Event A: at least one tail observed A: Chapter 3 Probability 3.1 Events, sample space, and probability Basic definitions: An is an act of observation that leads to a single outcome that cannot be predicted with certainty. A (or simple event)

More information

Mathematical Foundations of Computer Science Lecture Outline October 18, 2018

Mathematical Foundations of Computer Science Lecture Outline October 18, 2018 Mathematical Foundations of Computer Science Lecture Outline October 18, 2018 The Total Probability Theorem. Consider events E and F. Consider a sample point ω E. Observe that ω belongs to either F or

More information

Determining Probabilities. Product Rule for Ordered Pairs/k-Tuples:

Determining Probabilities. Product Rule for Ordered Pairs/k-Tuples: Determining Probabilities Product Rule for Ordered Pairs/k-Tuples: Determining Probabilities Product Rule for Ordered Pairs/k-Tuples: Proposition If the first element of object of an ordered pair can be

More information

Module 1. Probability

Module 1. Probability Module 1 Probability 1. Introduction In our daily life we come across many processes whose nature cannot be predicted in advance. Such processes are referred to as random processes. The only way to derive

More information

Probability COMP 245 STATISTICS. Dr N A Heard. 1 Sample Spaces and Events Sample Spaces Events Combinations of Events...

Probability COMP 245 STATISTICS. Dr N A Heard. 1 Sample Spaces and Events Sample Spaces Events Combinations of Events... Probability COMP 245 STATISTICS Dr N A Heard Contents Sample Spaces and Events. Sample Spaces........................................2 Events........................................... 2.3 Combinations

More information

Probability: Sets, Sample Spaces, Events

Probability: Sets, Sample Spaces, Events Probability: Sets, Sample Spaces, Events Engineering Statistics Section 2.1 Josh Engwer TTU 01 February 2016 Josh Engwer (TTU) Probability: Sets, Sample Spaces, Events 01 February 2016 1 / 29 The Need

More information

Lecture 1. Chapter 1. (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 ( ). 1. What is Statistics?

Lecture 1. Chapter 1. (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 ( ). 1. What is Statistics? Lecture 1 (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 (2.1 --- 2.6). Chapter 1 1. What is Statistics? 2. Two definitions. (1). Population (2). Sample 3. The objective of statistics.

More information

CIVL 7012/8012. Basic Laws and Axioms of Probability

CIVL 7012/8012. Basic Laws and Axioms of Probability CIVL 7012/8012 Basic Laws and Axioms of Probability Why are we studying probability and statistics? How can we quantify risks of decisions based on samples from a population? How should samples be selected

More information

Fundamentals of Probability CE 311S

Fundamentals of Probability CE 311S Fundamentals of Probability CE 311S OUTLINE Review Elementary set theory Probability fundamentals: outcomes, sample spaces, events Outline ELEMENTARY SET THEORY Basic probability concepts can be cast in

More information

Axiomatic Foundations of Probability. Definition: Probability Function

Axiomatic Foundations of Probability. Definition: Probability Function Chapter 1 sections We will SKIP a number of sections Set theory SKIP Real number uncountability Definition of probability Finite sample spaces Counting methods Combinatorial methods SKIP tennis tournament

More information

Basic Statistics and Probability Chapter 3: Probability

Basic Statistics and Probability Chapter 3: Probability Basic Statistics and Probability Chapter 3: Probability Events, Sample Spaces and Probability Unions and Intersections Complementary Events Additive Rule. Mutually Exclusive Events Conditional Probability

More information

Conditional Probability

Conditional Probability Chapter 3 Conditional Probability 3.1 Definition of conditional probability In spite of our misgivings, let us persist with the frequency definition of probability. Consider an experiment conducted N times

More information

Chapter 6: Probability The Study of Randomness

Chapter 6: Probability The Study of Randomness Chapter 6: Probability The Study of Randomness 6.1 The Idea of Probability 6.2 Probability Models 6.3 General Probability Rules 1 Simple Question: If tossing a coin, what is the probability of the coin

More information

F71SM STATISTICAL METHODS

F71SM STATISTICAL METHODS F71SM STATISTICAL METHODS RJG SUMMARY NOTES 2 PROBABILITY 2.1 Introduction A random experiment is an experiment which is repeatable under identical conditions, and for which, at each repetition, the outcome

More information

ECE 450 Lecture 2. Recall: Pr(A B) = Pr(A) + Pr(B) Pr(A B) in general = Pr(A) + Pr(B) if A and B are m.e. Lecture Overview

ECE 450 Lecture 2. Recall: Pr(A B) = Pr(A) + Pr(B) Pr(A B) in general = Pr(A) + Pr(B) if A and B are m.e. Lecture Overview ECE 450 Lecture 2 Recall: Pr(A B) = Pr(A) + Pr(B) Pr(A B) in general = Pr(A) + Pr(B) if A and B are m.e. Lecture Overview Conditional Probability, Pr(A B) Total Probability Bayes Theorem Independent Events

More information

Chapter 1 (Basic Probability)

Chapter 1 (Basic Probability) Chapter 1 (Basic Probability) What is probability? Consider the following experiments: 1. Count the number of arrival requests to a web server in a day. 2. Determine the execution time of a program. 3.

More information

Chapter 2 Class Notes

Chapter 2 Class Notes Chapter 2 Class Notes Probability can be thought of in many ways, for example as a relative frequency of a long series of trials (e.g. flips of a coin or die) Another approach is to let an expert (such

More information

Review of Basic Probability

Review of Basic Probability Review of Basic Probability Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA 01003 September 16, 2009 Abstract This document reviews basic discrete

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

Topic 3: Introduction to Probability

Topic 3: Introduction to Probability Topic 3: Introduction to Probability 1 Contents 1. Introduction 2. Simple Definitions 3. Types of Probability 4. Theorems of Probability 5. Probabilities under conditions of statistically independent events

More information

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail}

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail} Random Experiment In random experiments, the result is unpredictable, unknown prior to its conduct, and can be one of several choices. Examples: The Experiment of tossing a coin (head, tail) The Experiment

More information

Denker FALL Probability- Assignment 6

Denker FALL Probability- Assignment 6 Denker FALL 2010 418 Probability- Assignment 6 Due Date: Thursday, Oct. 7, 2010 Write the final answer to the problems on this assignment attach the worked out solutions! Problem 1: A box contains n +

More information

MATH 556: PROBABILITY PRIMER

MATH 556: PROBABILITY PRIMER MATH 6: PROBABILITY PRIMER 1 DEFINITIONS, TERMINOLOGY, NOTATION 1.1 EVENTS AND THE SAMPLE SPACE Definition 1.1 An experiment is a one-off or repeatable process or procedure for which (a there is a well-defined

More information

Introduction to Probability

Introduction to Probability Introduction to Probability Gambling at its core 16th century Cardano: Books on Games of Chance First systematic treatment of probability 17th century Chevalier de Mere posed a problem to his friend Pascal.

More information

Discrete Probability. Mark Huiskes, LIACS Probability and Statistics, Mark Huiskes, LIACS, Lecture 2

Discrete Probability. Mark Huiskes, LIACS Probability and Statistics, Mark Huiskes, LIACS, Lecture 2 Discrete Probability Mark Huiskes, LIACS mark.huiskes@liacs.nl Probability: Basic Definitions In probability theory we consider experiments whose outcome depends on chance or are uncertain. How do we model

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Outline Conditional Probability The Law of Total Probability and Bayes Theorem Independent Events. Week 4 Classical Probability, Part II

Outline Conditional Probability The Law of Total Probability and Bayes Theorem Independent Events. Week 4 Classical Probability, Part II Week 4 Classical Probability, Part II Week 4 Objectives This week we continue covering topics from classical probability. The notion of conditional probability is presented first. Important results/tools

More information

Probability 1 (MATH 11300) lecture slides

Probability 1 (MATH 11300) lecture slides Probability 1 (MATH 11300) lecture slides Márton Balázs School of Mathematics University of Bristol Autumn, 2015 December 16, 2015 To know... http://www.maths.bris.ac.uk/ mb13434/prob1/ m.balazs@bristol.ac.uk

More information

2. AXIOMATIC PROBABILITY

2. AXIOMATIC PROBABILITY IA Probability Lent Term 2. AXIOMATIC PROBABILITY 2. The axioms The formulation for classical probability in which all outcomes or points in the sample space are equally likely is too restrictive to develop

More information

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ).

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ). CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 8 Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According to clinical trials,

More information

Conditional Probability. CS231 Dianna Xu

Conditional Probability. CS231 Dianna Xu Conditional Probability CS231 Dianna Xu 1 Boy or Girl? A couple has two children, one of them is a girl. What is the probability that the other one is also a girl? Assuming 50/50 chances of conceiving

More information

2. Conditional Probability

2. Conditional Probability ENGG 2430 / ESTR 2004: Probability and Statistics Spring 2019 2. Conditional Probability Andrej Bogdanov Coins game Toss 3 coins. You win if at least two come out heads. S = { HHH, HHT, HTH, HTT, THH,

More information

7.1 What is it and why should we care?

7.1 What is it and why should we care? Chapter 7 Probability In this section, we go over some simple concepts from probability theory. We integrate these with ideas from formal language theory in the next chapter. 7.1 What is it and why should

More information

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2 Probability Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application. However, probability models underlie

More information

EnM Probability and Random Processes

EnM Probability and Random Processes Historical Note: EnM 503 - Probability and Random Processes Probability has its roots in games of chance, which have been played since prehistoric time. Games and equipment have been found in Egyptian

More information

Probability- describes the pattern of chance outcomes

Probability- describes the pattern of chance outcomes Chapter 6 Probability the study of randomness Probability- describes the pattern of chance outcomes Chance behavior is unpredictable in the short run, but has a regular and predictable pattern in the long

More information

STT When trying to evaluate the likelihood of random events we are using following wording.

STT When trying to evaluate the likelihood of random events we are using following wording. Introduction to Chapter 2. Probability. When trying to evaluate the likelihood of random events we are using following wording. Provide your own corresponding examples. Subjective probability. An individual

More information

Mutually Exclusive Events

Mutually Exclusive Events 172 CHAPTER 3 PROBABILITY TOPICS c. QS, 7D, 6D, KS Mutually Exclusive Events A and B are mutually exclusive events if they cannot occur at the same time. This means that A and B do not share any outcomes

More information

ELEG 3143 Probability & Stochastic Process Ch. 1 Experiments, Models, and Probabilities

ELEG 3143 Probability & Stochastic Process Ch. 1 Experiments, Models, and Probabilities Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 1 Experiments, Models, and Probabilities Dr. Jing Yang jingyang@uark.edu OUTLINE 2 Applications

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter One Jesse Crawford Department of Mathematics Tarleton State University (Tarleton State University) Chapter One Notes 1 / 71 Outline 1 A Sketch of Probability and

More information

4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio

4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio 4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio Wrong is right. Thelonious Monk 4.1 Three Definitions of

More information

LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD

LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD .0 Introduction: The theory of probability has its origin in the games of chance related to gambling such as tossing of a coin, throwing of a die, drawing cards from a pack of cards etc. Jerame Cardon,

More information

Chapter Summary. 7.1 Discrete Probability 7.2 Probability Theory 7.3 Bayes Theorem 7.4 Expected value and Variance

Chapter Summary. 7.1 Discrete Probability 7.2 Probability Theory 7.3 Bayes Theorem 7.4 Expected value and Variance Chapter 7 Chapter Summary 7.1 Discrete Probability 7.2 Probability Theory 7.3 Bayes Theorem 7.4 Expected value and Variance Section 7.1 Introduction Probability theory dates back to 1526 when the Italian

More information

Statistics 251: Statistical Methods

Statistics 251: Statistical Methods Statistics 251: Statistical Methods Probability Module 3 2018 file:///volumes/users/r/renaes/documents/classes/lectures/251301/renae/markdown/master%20versions/module3.html#1 1/33 Terminology probability:

More information

TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM

TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM Topic Concepts Degree of Importance References NCERT Book Vol. II Probability (i) Conditional Probability *** Article 1.2 and 1.2.1 Solved Examples 1 to 6 Q. Nos

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 3: Probability, Bayes Theorem, and Bayes Classification Peter Belhumeur Computer Science Columbia University Probability Should you play this game? Game: A fair

More information

Single Maths B: Introduction to Probability

Single Maths B: Introduction to Probability Single Maths B: Introduction to Probability Overview Lecturer Email Office Homework Webpage Dr Jonathan Cumming j.a.cumming@durham.ac.uk CM233 None! http://maths.dur.ac.uk/stats/people/jac/singleb/ 1 Introduction

More information

Chapter 5 : Probability. Exercise Sheet. SHilal. 1 P a g e

Chapter 5 : Probability. Exercise Sheet. SHilal. 1 P a g e 1 P a g e experiment ( observing / measuring ) outcomes = results sample space = set of all outcomes events = subset of outcomes If we collect all outcomes we are forming a sample space If we collect some

More information

Chapter 2: Probability Part 1

Chapter 2: Probability Part 1 Engineering Probability & Statistics (AGE 1150) Chapter 2: Probability Part 1 Dr. O. Phillips Agboola Sample Space (S) Experiment: is some procedure (or process) that we do and it results in an outcome.

More information

Probability: Axioms, Properties, Interpretations

Probability: Axioms, Properties, Interpretations Probability: Axioms, Properties, Interpretations Engineering Statistics Section 2.2 Josh Engwer TTU 03 February 2016 Josh Engwer (TTU) Probability: Axioms, Properties, Interpretations 03 February 2016

More information

Probability the chance that an uncertain event will occur (always between 0 and 1)

Probability the chance that an uncertain event will occur (always between 0 and 1) Quantitative Methods 2013 1 Probability as a Numerical Measure of the Likelihood of Occurrence Probability the chance that an uncertain event will occur (always between 0 and 1) Increasing Likelihood of

More information

1 Preliminaries Sample Space and Events Interpretation of Probability... 13

1 Preliminaries Sample Space and Events Interpretation of Probability... 13 Summer 2017 UAkron Dept. of Stats [3470 : 461/561] Applied Statistics Ch 2: Probability Contents 1 Preliminaries 3 1.1 Sample Space and Events...........................................................

More information

Chapter 2 Random Variables

Chapter 2 Random Variables Stochastic Processes Chapter 2 Random Variables Prof. Jernan Juang Dept. of Engineering Science National Cheng Kung University Prof. Chun-Hung Liu Dept. of Electrical and Computer Eng. National Chiao Tung

More information

Lecture notes for probability. Math 124

Lecture notes for probability. Math 124 Lecture notes for probability Math 124 What is probability? Probabilities are ratios, expressed as fractions, decimals, or percents, determined by considering results or outcomes of experiments whose result

More information

EE126: Probability and Random Processes

EE126: Probability and Random Processes EE126: Probability and Random Processes Lecture 1: Probability Models Abhay Parekh UC Berkeley January 18, 2011 1 Logistics 2 Introduction 3 Model 4 Examples What is this course about? Most real-world

More information

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events LECTURE 1 1 Introduction The first part of our adventure is a highly selective review of probability theory, focusing especially on things that are most useful in statistics. 1.1 Sample spaces and events

More information