Determining Probabilities. Product Rule for Ordered Pairs/k-Tuples:

Size: px
Start display at page:

Download "Determining Probabilities. Product Rule for Ordered Pairs/k-Tuples:"

Transcription

1 Determining Probabilities Product Rule for Ordered Pairs/k-Tuples:

2 Determining Probabilities Product Rule for Ordered Pairs/k-Tuples: Proposition If the first element of object of an ordered pair can be selected in n 1 ways, and for each of these n 1 ways the second element of the pair can be selected in n 2 ways, then the number of pairs is n 1 n 2.

3 Determining Probabilities Product Rule for Ordered Pairs/k-Tuples: Proposition If the first element of object of an ordered pair can be selected in n 1 ways, and for each of these n 1 ways the second element of the pair can be selected in n 2 ways, then the number of pairs is n 1 n 2. Proposition Suppose a set consists of ordered collections of k elements (k-tuples) and that there are n 1 possible choices for the first element; for each choice of the first element, there n 2 possible choices of the second element;... ; for each possible choice of the first k 1 elements, there are n k choices of the k th element. Then there are n 1 n 2 n k possible k-tuples.

4 Determining Probabilities Proposition P k:n = n (n 1) (n (k 1)) = where k! = k (k 1) 2 1 is the k factorial. n! (n k)!

5 Determining Probabilities Proposition P k:n = n (n 1) (n (k 1)) = where k! = k (k 1) 2 1 is the k factorial. Proposition ( ) n = P k:n k k! = n! k!(n k)! where k! = k (k 1) 2 1 is the k factorial. n! (n k)!

6 Conditional Probability

7 Conditional Probability Definition For any two events A and B with P(B) > 0, the conditional probability of A given that B has occurred is defined by P(A B) = P(A B) P(B)

8 Conditional Probability Definition For any two events A and B with P(B) > 0, the conditional probability of A given that B has occurred is defined by P(A B) = P(A B) P(B) Event B is the prior knowledge. Due to the presence of event B, the probability for event A to happen changed.

9 Conditional Probability Definition For any two events A and B with P(B) > 0, the conditional probability of A given that B has occurred is defined by P(A B) = P(A B) P(B) Event B is the prior knowledge. Due to the presence of event B, the probability for event A to happen changed. The Multiplication Rule P(A B) = P(A B) P(B)

10 Conditional Probability

11 Conditional Probability Example 2.29 A chain of video stores sells three different brands of DVD players. Of its DVD player sales, 50% are brand 1, 30% are brand 2, and 20% are brand 3. Each manufacturer offers a 1-year warranty on parts and labor. It is known that 25% of brand 1 s DVD players require warranty on parts and labor, whereas the corresponding percentages for brands 2 and 3 are 20% and 10%, respectively. 1. What is the probability that a randomly selected purchaser has bought a brand 1 DVD player that will need repair while under warranty? 2. What is the probability that a randomly selected purchaser has a DVD player that will need repair while under warranty?

12 Conditional Probability Example 2.29 A chain of video stores sells three different brands of DVD players. Of its DVD player sales, 50% are brand 1, 30% are brand 2, and 20% are brand 3. Each manufacturer offers a 1-year warranty on parts and labor. It is known that 25% of brand 1 s DVD players require warranty on parts and labor, whereas the corresponding percentages for brands 2 and 3 are 20% and 10%, respectively. 1. What is the probability that a randomly selected purchaser has bought a brand 1 DVD player that will need repair while under warranty? 2. What is the probability that a randomly selected purchaser has a DVD player that will need repair while under warranty? 3. If a customer returns to the store with a DVD player that needs warranty work, what is the probability that it is a brand 1 DVD player? A brand 2 DVD player? A brand 3 DVD player?

13 Conditional Probability

14 Conditional Probability The Law of Total Probability Let A 1, A 2,..., A k be mutually exclusive and exhaustive events. Then for any other event B, P(B) = P(B A 1 ) P(A 1 ) + P(B A 2 ) P(A 2 ) + + P(B A k ) P(A k ) k = P(B A i ) P(A i ) i=1 where exhaustive means A 1 A 2 A k = S.

15 Conditional Probability The Law of Total Probability Let A 1, A 2,..., A k be mutually exclusive and exhaustive events. Then for any other event B, P(B) = P(B A 1 ) P(A 1 ) + P(B A 2 ) P(A 2 ) + + P(B A k ) P(A k ) k = P(B A i ) P(A i ) i=1 where exhaustive means A 1 A 2 A k = S.

16 Conditional Probability

17 Conditional Probability Bayes Theorem Let A 1, A 2,..., A k be a collection of k mutually exclusive and exhaustive events with prior probabilities P(A i )(i = 1, 2,..., k). Then for any other event B with P(B) > 0, the posterior probability of A j given that B has occurred is P(A j B) = P(A j B) P(B) = P(B A j ) P(A j ) k i=1 P(B A i) P(A i ) j = 1, 2,... k

18 Conditional Probability

19 Conditional Probability Application of Bayes Theorem Example 2.30 Incidence of a rare disease Only 1 in 1000 adults is afflicted with a rare disease for which a diagnostic test has been developed. The test is such that when an individual actually has the disease, a positive result will occur 99% of the time, whereas an individual without the disease will show a positive test result only 2% of the time. If a randomly selected individual is tested and the result is positive, what is the probability that the individual has the disease?

20

21 Example: A fair die is tossed and we want to guess the outcome. The outcomes will be 1, 2, 3, 4, 5, 6 with equal probability 1 6 each. If we are interested in getting the following results: A = {1, 3, 5}, B = {1, 2, 3} and C = {3, 4, 5, 6}, then we can calculate the probability for each event: P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3.

22 Example: A fair die is tossed and we want to guess the outcome. The outcomes will be 1, 2, 3, 4, 5, 6 with equal probability 1 6 each. If we are interested in getting the following results: A = {1, 3, 5}, B = {1, 2, 3} and C = {3, 4, 5, 6}, then we can calculate the probability for each event: P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3. If someone tell you that after one toss, event C happened, i.e. the outcome is one of {3, 4, 5, 6}, then what is the probability for event A to happen and what for B? P(A C) = P(A C) P(C) = = 1 P(B C) ; P(B C) = = 2 P(C) = 1 4.

23 Example: A fair die is tossed and we want to guess the outcome. The outcomes will be 1, 2, 3, 4, 5, 6 with equal probability 1 6 each. If we are interested in getting the following results: A = {1, 3, 5}, B = {1, 2, 3} and C = {3, 4, 5, 6}, then we can calculate the probability for each event: P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3. If someone tell you that after one toss, event C happened, i.e. the outcome is one of {3, 4, 5, 6}, then what is the probability for event A to happen and what for B? P(A C) = P(A C) P(C) = = 1 P(B C) ; P(B C) = = 2 P(C) = 1 4. P(A C) = P(A) while P(B C) P(B)

24

25 Definition Two events A and B are independent if P(A B) = P(A), and are dependent otherwise.

26 Definition Two events A and B are independent if P(A B) = P(A), and are dependent otherwise. Remark:

27 Definition Two events A and B are independent if P(A B) = P(A), and are dependent otherwise. Remark: 1. P(A B) = P(A) P(B A) = P(B). This is natural since the definition for independent should be symmetric.

28 Definition Two events A and B are independent if P(A B) = P(A), and are dependent otherwise. Remark: 1. P(A B) = P(A) P(B A) = P(B). This is natural since the definition for independent should be symmetric. P(B A) = P(A B) P(A) = P(A B) P(B) P(A)

29

30 Remark:

31 Remark: 2. If events A and B are mutually disjoint, then they can not be independent. Intuitively, if we know event A happens, we then know that B does not happen, since A B =. Mathmatically, P(A B) = P(A B) P(B) = P( ) P(B) = 0 P(A), unless P(A) = 0 which is trivial.

32 Remark: 2. If events A and B are mutually disjoint, then they can not be independent. Intuitively, if we know event A happens, we then know that B does not happen, since A B =. Mathmatically, P(A B) = P(A B) P(B) = P( ) P(B) = 0 P(A), unless P(A) = 0 which is trivial. e.g. for the die tossing example, if A = {1, 3, 5} and B = {2, 4, 6}, then P(A B) = P( ) = 0, therefore P(A B) = 0. However, P(A) = 0.5.

33

34 The Multiplication Rule for Independent Events

35 The Multiplication Rule for Independent Events The general multiplication rule tells us P(A B) = P(A B) P(B).

36 The Multiplication Rule for Independent Events The general multiplication rule tells us P(A B) = P(A B) P(B). However, if A and B are independent, then the above equation would be P(A B) = P(A) P(B) since P(A B) = P(A).

37 The Multiplication Rule for Independent Events The general multiplication rule tells us P(A B) = P(A B) P(B). However, if A and B are independent, then the above equation would be P(A B) = P(A) P(B) since P(A B) = P(A). Furthermore, we have the following Proposition Events A and B are independent if and only if P(A B) = P(A) P(B)

38 The Multiplication Rule for Independent Events The general multiplication rule tells us P(A B) = P(A B) P(B). However, if A and B are independent, then the above equation would be P(A B) = P(A) P(B) since P(A B) = P(A). Furthermore, we have the following Proposition Events A and B are independent if and only if P(A B) = P(A) P(B) In words, events A and B are independent iff (if and only if) the probability that the both occur (A B) is the product of the two individual probabilities.

39

40 In real life, we often use this multiplication rule without noticing it.

41 In real life, we often use this multiplication rule without noticing it. The probability for getting {HH} when you toss a fair coin twice is 1 4, which is obtained by ;

42 In real life, we often use this multiplication rule without noticing it. The probability for getting {HH} when you toss a fair coin twice is 1 4, which is obtained by ; The probability for getting {6,5,4,3,2,1} when you toss a fair die six times is ( 1 6 )6, which is simply obtained by ;

43 In real life, we often use this multiplication rule without noticing it. The probability for getting {HH} when you toss a fair coin twice is 1 4, which is obtained by ; The probability for getting {6,5,4,3,2,1} when you toss a fair die six times is ( 1 6 )6, which is simply obtained by ; The probability for getting { } when you draw three cards from a deck of well-shuffled cards with replacement is 1 64, which is simply obtained by

44 In real life, we often use this multiplication rule without noticing it. The probability for getting {HH} when you toss a fair coin twice is 1 4, which is obtained by ; The probability for getting {6,5,4,3,2,1} when you toss a fair die six times is ( 1 6 )6, which is simply obtained by ; The probability for getting { } when you draw three cards from a deck of well-shuffled cards with replacement is 1 64, which is simply obtained by However, if you draw the cards without replacement, then the multiplication rule for independent events fails since the event {the first card is } is no longer independent of the event {the second card is }. In fact, P({the second card is the first card is }) =

45

46 Example: Exercise 89 Suppose identical tags are placed on both the left ear and the right ear of a fox. The fox is then let loose for a period of time. Consider the two events C 1 ={left ear tag is lost} and C 2 = {right ear tag is lost}. Let π = P(C 1 ) = P(C 2 ), and assume C 1 and C 2 are independent events. Derive an expression (involving π) for the probability that exactly one tag is lost given that at most one is lost.

47 Example: Exercise 89 Suppose identical tags are placed on both the left ear and the right ear of a fox. The fox is then let loose for a period of time. Consider the two events C 1 ={left ear tag is lost} and C 2 = {right ear tag is lost}. Let π = P(C 1 ) = P(C 2 ), and assume C 1 and C 2 are independent events. Derive an expression (involving π) for the probability that exactly one tag is lost given that at most one is lost.

48

49 Remark:

50 Remark: 1. If events A and B are independent, then so are events A and B, events A and B as well as events A and B. P(A B) = P(A B) P(B) = P(B) P(A B) P(B) = 1 P(A B) = 1 P(A) = P(A ) = 1 P(A B) P(B)

51 Remark: 1. If events A and B are independent, then so are events A and B, events A and B as well as events A and B. P(A B) = P(A B) P(B) = P(B) P(A B) P(B) = 1 P(A B) = 1 P(A) = P(A ) = 1 P(A B) P(B) 2. We can use the condition P(A B) = P(A) P(B) to define the independence of the two events A and B.

52

53 Independence of More Than Two Events Definition Events A 1, A 2,..., A n are mutually independent if for every k (k = 2, 3,..., n) and every subset of indices i 1, i 2,..., i k, P(A i1 A i2 A ik ) = P(A ii ) P(A i2 ) P(A ik ).

54 Independence of More Than Two Events Definition Events A 1, A 2,..., A n are mutually independent if for every k (k = 2, 3,..., n) and every subset of indices i 1, i 2,..., i k, P(A i1 A i2 A ik ) = P(A ii ) P(A i2 ) P(A ik ). In words, n events are mutually independent if the probability of the intersection of any subset of the n events is equal to the product of the individual probabilities.

55

56 An very interesting example: Exercise 113 A box contains the following four slips of paper, each having exactly the same dimensions: (1) win prize 1; (2) win prize 2; (3) win prize 3; and (4) win prize 1, 2 and 3. One slip will be randomly selected. Let A 1 = {win prize 1}, A 2 = {win prize 2}, and A 3 = {win prize 3}. Are these three events mutually independent?

57

58 Example: Consider a system of seven identical components connected as following. For the system to work properly, the current must be able to go through the system from the left end to the right end. If components work independently of one another and P(component works)=0.9, then what is the probability for the system to work?

59 Example: Consider a system of seven identical components connected as following. For the system to work properly, the current must be able to go through the system from the left end to the right end. If components work independently of one another and P(component works)=0.9, then what is the probability for the system to work? Let A = {the system works} and A i = {component i works}. Then A = (A 1 A 2 ) ((A 3 A 4 ) (A 5 A 6 )) A 7.

Independence. P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3.

Independence. P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3. Example: A fair die is tossed and we want to guess the outcome. The outcomes will be 1, 2, 3, 4, 5, 6 with equal probability 1 6 each. If we are interested in getting the following results: A = {1, 3,

More information

Conditional Probability

Conditional Probability Example 2.24 Complex components are assembled in a plant that uses two different assembly lines, A and B. Line A uses older equipment than B, so it is somewhat slower and less reliable. Suppose on a given

More information

STAT 516: Basic Probability and its Applications

STAT 516: Basic Probability and its Applications Lecture 3: Conditional Probability and Independence Prof. Michael September 29, 2015 Motivating Example Experiment ξ consists of rolling a fair die twice; A = { the first roll is 6 } amd B = { the sum

More information

Announcements. Topics: To Do:

Announcements. Topics: To Do: Announcements Topics: In the Probability and Statistics module: - Sections 1 + 2: Introduction to Stochastic Models - Section 3: Basics of Probability Theory - Section 4: Conditional Probability; Law of

More information

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability What is Probability? the chance of an event occuring eg 1classical probability 2empirical probability 3subjective probability Section 2 - Probability (1) Probability - Terminology random (probability)

More information

Outline Conditional Probability The Law of Total Probability and Bayes Theorem Independent Events. Week 4 Classical Probability, Part II

Outline Conditional Probability The Law of Total Probability and Bayes Theorem Independent Events. Week 4 Classical Probability, Part II Week 4 Classical Probability, Part II Week 4 Objectives This week we continue covering topics from classical probability. The notion of conditional probability is presented first. Important results/tools

More information

Lecture Lecture 5

Lecture Lecture 5 Lecture 4 --- Lecture 5 A. Basic Concepts (4.1-4.2) 1. Experiment: A process of observing a phenomenon that has variation in its outcome. Examples: (E1). Rolling a die, (E2). Drawing a card form a shuffled

More information

tossing a coin selecting a card from a deck measuring the commuting time on a particular morning

tossing a coin selecting a card from a deck measuring the commuting time on a particular morning 2 Probability Experiment An experiment or random variable is any activity whose outcome is unknown or random upfront: tossing a coin selecting a card from a deck measuring the commuting time on a particular

More information

2.4. Conditional Probability

2.4. Conditional Probability 2.4. Conditional Probability Objectives. Definition of conditional probability and multiplication rule Total probability Bayes Theorem Example 2.4.1. (#46 p.80 textbook) Suppose an individual is randomly

More information

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events LECTURE 1 1 Introduction The first part of our adventure is a highly selective review of probability theory, focusing especially on things that are most useful in statistics. 1.1 Sample spaces and events

More information

Conditional Probability

Conditional Probability Conditional Probability When we obtain additional information about a probability experiment, we want to use the additional information to reassess the probabilities of events given the new information.

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 3 Probability Contents 1. Events, Sample Spaces, and Probability 2. Unions and Intersections 3. Complementary Events 4. The Additive Rule and Mutually Exclusive

More information

Properties of Probability

Properties of Probability Econ 325 Notes on Probability 1 By Hiro Kasahara Properties of Probability In statistics, we consider random experiments, experiments for which the outcome is random, i.e., cannot be predicted with certainty.

More information

Lecture 8: Conditional probability I: definition, independence, the tree method, sampling, chain rule for independent events

Lecture 8: Conditional probability I: definition, independence, the tree method, sampling, chain rule for independent events Lecture 8: Conditional probability I: definition, independence, the tree method, sampling, chain rule for independent events Discrete Structures II (Summer 2018) Rutgers University Instructor: Abhishek

More information

Chapter 3 : Conditional Probability and Independence

Chapter 3 : Conditional Probability and Independence STAT/MATH 394 A - PROBABILITY I UW Autumn Quarter 2016 Néhémy Lim Chapter 3 : Conditional Probability and Independence 1 Conditional Probabilities How should we modify the probability of an event when

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 Introduction One of the key properties of coin flips is independence: if you flip a fair coin ten times and get ten

More information

Chapter 2 Class Notes

Chapter 2 Class Notes Chapter 2 Class Notes Probability can be thought of in many ways, for example as a relative frequency of a long series of trials (e.g. flips of a coin or die) Another approach is to let an expert (such

More information

Conditional Probability. CS231 Dianna Xu

Conditional Probability. CS231 Dianna Xu Conditional Probability CS231 Dianna Xu 1 Boy or Girl? A couple has two children, one of them is a girl. What is the probability that the other one is also a girl? Assuming 50/50 chances of conceiving

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Lecture 2 Probability Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 3-1 3.1 Definition Random Experiment a process leading to an uncertain

More information

Chapter 6. Probability

Chapter 6. Probability Chapter 6 robability Suppose two six-sided die is rolled and they both land on sixes. Or a coin is flipped and it lands on heads. Or record the color of the next 20 cars to pass an intersection. These

More information

Conditional Probability & Independence. Conditional Probabilities

Conditional Probability & Independence. Conditional Probabilities Conditional Probability & Independence Conditional Probabilities Question: How should we modify P(E) if we learn that event F has occurred? Definition: the conditional probability of E given F is P(E F

More information

Conditional Probability

Conditional Probability Conditional Probability Conditional Probability The Law of Total Probability Let A 1, A 2,..., A k be mutually exclusive and exhaustive events. Then for any other event B, P(B) = P(B A 1 ) P(A 1 ) + P(B

More information

The probability of an event is viewed as a numerical measure of the chance that the event will occur.

The probability of an event is viewed as a numerical measure of the chance that the event will occur. Chapter 5 This chapter introduces probability to quantify randomness. Section 5.1: How Can Probability Quantify Randomness? The probability of an event is viewed as a numerical measure of the chance that

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter One Jesse Crawford Department of Mathematics Tarleton State University (Tarleton State University) Chapter One Notes 1 / 71 Outline 1 A Sketch of Probability and

More information

Week 2: Probability: Counting, Sets, and Bayes

Week 2: Probability: Counting, Sets, and Bayes Statistical Methods APPM 4570/5570, STAT 4000/5000 21 Probability Introduction to EDA Week 2: Probability: Counting, Sets, and Bayes Random variable Random variable is a measurable quantity whose outcome

More information

Event A: at least one tail observed A:

Event A: at least one tail observed A: Chapter 3 Probability 3.1 Events, sample space, and probability Basic definitions: An is an act of observation that leads to a single outcome that cannot be predicted with certainty. A (or simple event)

More information

3.2 Probability Rules

3.2 Probability Rules 3.2 Probability Rules The idea of probability rests on the fact that chance behavior is predictable in the long run. In the last section, we used simulation to imitate chance behavior. Do we always need

More information

P (A B) P ((B C) A) P (B A) = P (B A) + P (C A) P (A) = P (B A) + P (C A) = Q(A) + Q(B).

P (A B) P ((B C) A) P (B A) = P (B A) + P (C A) P (A) = P (B A) + P (C A) = Q(A) + Q(B). Lectures 7-8 jacques@ucsdedu 41 Conditional Probability Let (Ω, F, P ) be a probability space Suppose that we have prior information which leads us to conclude that an event A F occurs Based on this information,

More information

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability Lecture Notes 1 Basic Probability Set Theory Elements of Probability Conditional probability Sequential Calculation of Probability Total Probability and Bayes Rule Independence Counting EE 178/278A: Basic

More information

STAT Chapter 3: Probability

STAT Chapter 3: Probability Basic Definitions STAT 515 --- Chapter 3: Probability Experiment: A process which leads to a single outcome (called a sample point) that cannot be predicted with certainty. Sample Space (of an experiment):

More information

Elementary Discrete Probability

Elementary Discrete Probability Elementary Discrete Probability MATH 472 Financial Mathematics J Robert Buchanan 2018 Objectives In this lesson we will learn: the terminology of elementary probability, elementary rules of probability,

More information

Chapter 7 Wednesday, May 26th

Chapter 7 Wednesday, May 26th Chapter 7 Wednesday, May 26 th Random event A random event is an event that the outcome is unpredictable. Example: There are 45 students in this class. What is the probability that if I select one student,

More information

Conditional probability

Conditional probability CHAPTER 4 Conditional probability 4.1. Introduction Suppose there are 200 men, of which 100 are smokers, and 100 women, of which 20 are smokers. What is the probability that a person chosen at random will

More information

Example. What is the sample space for flipping a fair coin? Rolling a 6-sided die? Find the event E where E = {x x has exactly one head}

Example. What is the sample space for flipping a fair coin? Rolling a 6-sided die? Find the event E where E = {x x has exactly one head} Chapter 7 Notes 1 (c) Epstein, 2013 CHAPTER 7: PROBABILITY 7.1: Experiments, Sample Spaces and Events Chapter 7 Notes 2 (c) Epstein, 2013 What is the sample space for flipping a fair coin three times?

More information

AP Statistics Ch 6 Probability: The Study of Randomness

AP Statistics Ch 6 Probability: The Study of Randomness Ch 6.1 The Idea of Probability Chance behavior is unpredictable in the short run but has a regular and predictable pattern in the long run. We call a phenomenon random if individual outcomes are uncertain

More information

Chance, too, which seems to rush along with slack reins, is bridled and governed by law (Boethius, ).

Chance, too, which seems to rush along with slack reins, is bridled and governed by law (Boethius, ). Chapter 2 Probability Chance, too, which seems to rush along with slack reins, is bridled and governed by law (Boethius, 480-524). Blaise Pascal (1623-1662) Pierre de Fermat (1601-1665) Abraham de Moivre

More information

2. AXIOMATIC PROBABILITY

2. AXIOMATIC PROBABILITY IA Probability Lent Term 2. AXIOMATIC PROBABILITY 2. The axioms The formulation for classical probability in which all outcomes or points in the sample space are equally likely is too restrictive to develop

More information

STAT:5100 (22S:193) Statistical Inference I

STAT:5100 (22S:193) Statistical Inference I STAT:5100 (22S:193) Statistical Inference I Week 3 Luke Tierney University of Iowa Fall 2015 Luke Tierney (U Iowa) STAT:5100 (22S:193) Statistical Inference I Fall 2015 1 Recap Matching problem Generalized

More information

Lecture 4 : Conditional Probability and Bayes Theorem 0/ 26

Lecture 4 : Conditional Probability and Bayes Theorem 0/ 26 0/ 26 The conditional sample space Motivating examples 1. Roll a fair die once 1 2 3 S = 4 5 6 Let A = 6 appears B = an even number appears So P(A) = 1 6 P(B) = 1 2 1/ 26 Now what about P ( 6 appears given

More information

Today we ll discuss ways to learn how to think about events that are influenced by chance.

Today we ll discuss ways to learn how to think about events that are influenced by chance. Overview Today we ll discuss ways to learn how to think about events that are influenced by chance. Basic probability: cards, coins and dice Definitions and rules: mutually exclusive events and independent

More information

CS626 Data Analysis and Simulation

CS626 Data Analysis and Simulation CS626 Data Analysis and Simulation Instructor: Peter Kemper R 104A, phone 221-3462, email:kemper@cs.wm.edu Today: Probability Primer Quick Reference: Sheldon Ross: Introduction to Probability Models 9th

More information

What is Probability? Probability. Sample Spaces and Events. Simple Event

What is Probability? Probability. Sample Spaces and Events. Simple Event What is Probability? Probability Peter Lo Probability is the numerical measure of likelihood that the event will occur. Simple Event Joint Event Compound Event Lies between 0 & 1 Sum of events is 1 1.5

More information

Intermediate Math Circles November 8, 2017 Probability II

Intermediate Math Circles November 8, 2017 Probability II Intersection of Events and Independence Consider two groups of pairs of events Intermediate Math Circles November 8, 017 Probability II Group 1 (Dependent Events) A = {a sales associate has training} B

More information

Statistical Inference

Statistical Inference Statistical Inference Lecture 1: Probability Theory MING GAO DASE @ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 11, 2018 Outline Introduction Set Theory Basics of Probability Theory

More information

Chapter 7: Section 7-1 Probability Theory and Counting Principles

Chapter 7: Section 7-1 Probability Theory and Counting Principles Chapter 7: Section 7-1 Probability Theory and Counting Principles D. S. Malik Creighton University, Omaha, NE D. S. Malik Creighton University, Omaha, NE Chapter () 7: Section 7-1 Probability Theory and

More information

Conditional Probability and Independence

Conditional Probability and Independence Conditional Probability and Independence September 3, 2009 1 Restricting the Sample Space - Conditional Probability How do we modify the probability of an event in light of the fact that something is known?

More information

Slide 1 Math 1520, Lecture 21

Slide 1 Math 1520, Lecture 21 Slide 1 Math 1520, Lecture 21 This lecture is concerned with a posteriori probability, which is the probability that a previous event had occurred given the outcome of a later event. Slide 2 Conditional

More information

1 Preliminaries Sample Space and Events Interpretation of Probability... 13

1 Preliminaries Sample Space and Events Interpretation of Probability... 13 Summer 2017 UAkron Dept. of Stats [3470 : 461/561] Applied Statistics Ch 2: Probability Contents 1 Preliminaries 3 1.1 Sample Space and Events...........................................................

More information

CHAPTER - 16 PROBABILITY Random Experiment : If an experiment has more than one possible out come and it is not possible to predict the outcome in advance then experiment is called random experiment. Sample

More information

CMPSCI 240: Reasoning about Uncertainty

CMPSCI 240: Reasoning about Uncertainty CMPSCI 240: Reasoning about Uncertainty Lecture 2: Sets and Events Andrew McGregor University of Massachusetts Last Compiled: January 27, 2017 Outline 1 Recap 2 Experiments and Events 3 Probabilistic Models

More information

Lecture 2: Probability. Readings: Sections Statistical Inference: drawing conclusions about the population based on a sample

Lecture 2: Probability. Readings: Sections Statistical Inference: drawing conclusions about the population based on a sample Lecture 2: Probability Readings: Sections 5.1-5.3 1 Introduction Statistical Inference: drawing conclusions about the population based on a sample Parameter: a number that describes the population a fixed

More information

Conditional Probability & Independence. Conditional Probabilities

Conditional Probability & Independence. Conditional Probabilities Conditional Probability & Independence Conditional Probabilities Question: How should we modify P(E) if we learn that event F has occurred? Definition: the conditional probability of E given F is P(E F

More information

(i) Given that a student is female, what is the probability of having a GPA of at least 3.0?

(i) Given that a student is female, what is the probability of having a GPA of at least 3.0? MATH 382 Conditional Probability Dr. Neal, WKU We now shall consider probabilities of events that are restricted within a subset that is smaller than the entire sample space Ω. For example, let Ω be the

More information

Probability the chance that an uncertain event will occur (always between 0 and 1)

Probability the chance that an uncertain event will occur (always between 0 and 1) Quantitative Methods 2013 1 Probability as a Numerical Measure of the Likelihood of Occurrence Probability the chance that an uncertain event will occur (always between 0 and 1) Increasing Likelihood of

More information

Introduction and basic definitions

Introduction and basic definitions Chapter 1 Introduction and basic definitions 1.1 Sample space, events, elementary probability Exercise 1.1 Prove that P( ) = 0. Solution of Exercise 1.1 : Events S (where S is the sample space) and are

More information

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2 Probability Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application. However, probability models underlie

More information

Chapter 2.5 Random Variables and Probability The Modern View (cont.)

Chapter 2.5 Random Variables and Probability The Modern View (cont.) Chapter 2.5 Random Variables and Probability The Modern View (cont.) I. Statistical Independence A crucially important idea in probability and statistics is the concept of statistical independence. Suppose

More information

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability Chapter 2 Conditional Probability and Independence 2.1 Conditional Probability Example: Two dice are tossed. What is the probability that the sum is 8? This is an easy exercise: we have a sample space

More information

Lecture 3 Probability Basics

Lecture 3 Probability Basics Lecture 3 Probability Basics Thais Paiva STA 111 - Summer 2013 Term II July 3, 2013 Lecture Plan 1 Definitions of probability 2 Rules of probability 3 Conditional probability What is Probability? Probability

More information

Lecture 1 : The Mathematical Theory of Probability

Lecture 1 : The Mathematical Theory of Probability Lecture 1 : The Mathematical Theory of Probability 0/ 30 1. Introduction Today we will do 2.1 and 2.2. We will skip Chapter 1. We all have an intuitive notion of probability. Let s see. What is the probability

More information

PERMUTATIONS, COMBINATIONS AND DISCRETE PROBABILITY

PERMUTATIONS, COMBINATIONS AND DISCRETE PROBABILITY Friends, we continue the discussion with fundamentals of discrete probability in the second session of third chapter of our course in Discrete Mathematics. The conditional probability and Baye s theorem

More information

A survey of Probability concepts. Chapter 5

A survey of Probability concepts. Chapter 5 A survey of Probability concepts Chapter 5 Learning Objectives Define probability. Explain the terms experiment, event, outcome. Define the terms conditional probability and joint probability. Calculate

More information

If S = {O 1, O 2,, O n }, where O i is the i th elementary outcome, and p i is the probability of the i th elementary outcome, then

If S = {O 1, O 2,, O n }, where O i is the i th elementary outcome, and p i is the probability of the i th elementary outcome, then 1.1 Probabilities Def n: A random experiment is a process that, when performed, results in one and only one of many observations (or outcomes). The sample space S is the set of all elementary outcomes

More information

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability Chapter 2 Conditional Probability and Independence 2.1 Conditional Probability Probability assigns a likelihood to results of experiments that have not yet been conducted. Suppose that the experiment has

More information

Ismor Fischer, 2/27/2018 Solutions / 3.5-1

Ismor Fischer, 2/27/2018 Solutions / 3.5-1 Ismor Fischer, 2/27/2018 Solutions / 3.5-1 3.5 1. Let events A = Live to age 60, B = Live to age 70, C = Live to age 80 ; note that event C is a subset of B, and that B is a subset of A, i.e., they are

More information

AMS7: WEEK 2. CLASS 2

AMS7: WEEK 2. CLASS 2 AMS7: WEEK 2. CLASS 2 Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio Friday April 10, 2015 Probability: Introduction Probability:

More information

With Question/Answer Animations. Chapter 7

With Question/Answer Animations. Chapter 7 With Question/Answer Animations Chapter 7 Chapter Summary Introduction to Discrete Probability Probability Theory Bayes Theorem Section 7.1 Section Summary Finite Probability Probabilities of Complements

More information

PROBABILITY.

PROBABILITY. PROBABILITY PROBABILITY(Basic Terminology) Random Experiment: If in each trial of an experiment conducted under identical conditions, the outcome is not unique, but may be any one of the possible outcomes,

More information

Basic Statistics and Probability Chapter 3: Probability

Basic Statistics and Probability Chapter 3: Probability Basic Statistics and Probability Chapter 3: Probability Events, Sample Spaces and Probability Unions and Intersections Complementary Events Additive Rule. Mutually Exclusive Events Conditional Probability

More information

Lecture 2: Probability

Lecture 2: Probability Lecture 2: Probability MSU-STT-351-Sum-17B (P. Vellaisamy: MSU-STT-351-Sum-17B) Probability & Statistics for Engineers 1 / 39 Chance Experiment We discuss in this lecture 1 Random Experiments 2 Sample

More information

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Applications Elementary Set Theory Random

More information

TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM

TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM Topic Concepts Degree of Importance References NCERT Book Vol. II Probability (i) Conditional Probability *** Article 1.2 and 1.2.1 Solved Examples 1 to 6 Q. Nos

More information

Relative Risks (RR) and Odds Ratios (OR) 20

Relative Risks (RR) and Odds Ratios (OR) 20 BSTT523: Pagano & Gavreau, Chapter 6 1 Chapter 6: Probability slide: Definitions (6.1 in P&G) 2 Experiments; trials; probabilities Event operations 4 Intersection; Union; Complement Venn diagrams Conditional

More information

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM. SOLUTIONS

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM. SOLUTIONS 6.0/6.3 Spring 009 Quiz Wednesday, March, 7:30-9:30 PM. SOLUTIONS Name: Recitation Instructor: Question Part Score Out of 0 all 0 a 5 b c 5 d 5 e 5 f 5 3 a b c d 5 e 5 f 5 g 5 h 5 Total 00 Write your solutions

More information

STT When trying to evaluate the likelihood of random events we are using following wording.

STT When trying to evaluate the likelihood of random events we are using following wording. Introduction to Chapter 2. Probability. When trying to evaluate the likelihood of random events we are using following wording. Provide your own corresponding examples. Subjective probability. An individual

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 3: Probability, Bayes Theorem, and Bayes Classification Peter Belhumeur Computer Science Columbia University Probability Should you play this game? Game: A fair

More information

(6, 1), (5, 2), (4, 3), (3, 4), (2, 5), (1, 6)

(6, 1), (5, 2), (4, 3), (3, 4), (2, 5), (1, 6) Section 7.3: Compound Events Because we are using the framework of set theory to analyze probability, we can use unions, intersections and complements to break complex events into compositions of events

More information

Statistical Theory 1

Statistical Theory 1 Statistical Theory 1 Set Theory and Probability Paolo Bautista September 12, 2017 Set Theory We start by defining terms in Set Theory which will be used in the following sections. Definition 1 A set is

More information

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail}

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail} Random Experiment In random experiments, the result is unpredictable, unknown prior to its conduct, and can be one of several choices. Examples: The Experiment of tossing a coin (head, tail) The Experiment

More information

Lecture 4. Selected material from: Ch. 6 Probability

Lecture 4. Selected material from: Ch. 6 Probability Lecture 4 Selected material from: Ch. 6 Probability Example: Music preferences F M Suppose you want to know what types of CD s males and females are more likely to buy. The CD s are classified as Classical,

More information

Probabilistic models

Probabilistic models Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became

More information

BASICS OF PROBABILITY CHAPTER-1 CS6015-LINEAR ALGEBRA AND RANDOM PROCESSES

BASICS OF PROBABILITY CHAPTER-1 CS6015-LINEAR ALGEBRA AND RANDOM PROCESSES BASICS OF PROBABILITY CHAPTER-1 CS6015-LINEAR ALGEBRA AND RANDOM PROCESSES COMMON TERMS RELATED TO PROBABILITY Probability is the measure of the likelihood that an event will occur Probability values are

More information

Chapter 6: Probability The Study of Randomness

Chapter 6: Probability The Study of Randomness Chapter 6: Probability The Study of Randomness 6.1 The Idea of Probability 6.2 Probability Models 6.3 General Probability Rules 1 Simple Question: If tossing a coin, what is the probability of the coin

More information

Topic 5 Basics of Probability

Topic 5 Basics of Probability Topic 5 Basics of Probability Equally Likely Outcomes and the Axioms of Probability 1 / 13 Outline Equally Likely Outcomes Axioms of Probability Consequences of the Axioms 2 / 13 Introduction A probability

More information

CHAPTER 4. Probability is used in inference statistics as a tool to make statement for population from sample information.

CHAPTER 4. Probability is used in inference statistics as a tool to make statement for population from sample information. CHAPTER 4 PROBABILITY Probability is used in inference statistics as a tool to make statement for population from sample information. Experiment is a process for generating observations Sample space is

More information

Compound Events. The event E = E c (the complement of E) is the event consisting of those outcomes which are not in E.

Compound Events. The event E = E c (the complement of E) is the event consisting of those outcomes which are not in E. Compound Events Because we are using the framework of set theory to analyze probability, we can use unions, intersections and complements to break complex events into compositions of events for which it

More information

Dynamic Programming Lecture #4

Dynamic Programming Lecture #4 Dynamic Programming Lecture #4 Outline: Probability Review Probability space Conditional probability Total probability Bayes rule Independent events Conditional independence Mutual independence Probability

More information

Probability (Devore Chapter Two)

Probability (Devore Chapter Two) Probability (Devore Chapter Two) 1016-345-01: Probability and Statistics for Engineers Fall 2012 Contents 0 Administrata 2 0.1 Outline....................................... 3 1 Axiomatic Probability 3

More information

Statistics for Managers Using Microsoft Excel (3 rd Edition)

Statistics for Managers Using Microsoft Excel (3 rd Edition) Statistics for Managers Using Microsoft Excel (3 rd Edition) Chapter 4 Basic Probability and Discrete Probability Distributions 2002 Prentice-Hall, Inc. Chap 4-1 Chapter Topics Basic probability concepts

More information

Week 2. Section Texas A& M University. Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019

Week 2. Section Texas A& M University. Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019 Week 2 Section 1.2-1.4 Texas A& M University Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week2 1

More information

Module 1. Probability

Module 1. Probability Module 1 Probability 1. Introduction In our daily life we come across many processes whose nature cannot be predicted in advance. Such processes are referred to as random processes. The only way to derive

More information

Probabilistic models

Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became the definitive formulation

More information

CHAPTER 3 PROBABILITY TOPICS

CHAPTER 3 PROBABILITY TOPICS CHAPTER 3 PROBABILITY TOPICS 1. Terminology In this chapter, we are interested in the probability of a particular event occurring when we conduct an experiment. The sample space of an experiment is the

More information

UNIT 5 ~ Probability: What Are the Chances? 1

UNIT 5 ~ Probability: What Are the Chances? 1 UNIT 5 ~ Probability: What Are the Chances? 1 6.1: Simulation Simulation: The of chance behavior, based on a that accurately reflects the phenomenon under consideration. (ex 1) Suppose we are interested

More information

Lecture notes for probability. Math 124

Lecture notes for probability. Math 124 Lecture notes for probability Math 124 What is probability? Probabilities are ratios, expressed as fractions, decimals, or percents, determined by considering results or outcomes of experiments whose result

More information

Introduction to Probability

Introduction to Probability Introduction to Probability Content Experiments, Counting Rules, and Assigning Probabilities Events and Their Probability Some Basic Relationships of Probability Conditional Probability Bayes Theorem 2

More information

Fundamentals of Probability CE 311S

Fundamentals of Probability CE 311S Fundamentals of Probability CE 311S OUTLINE Review Elementary set theory Probability fundamentals: outcomes, sample spaces, events Outline ELEMENTARY SET THEORY Basic probability concepts can be cast in

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Conditional Probability and Bayes

Conditional Probability and Bayes Conditional Probability and Bayes Chapter 2 Lecture 5 Yiren Ding Shanghai Qibao Dwight High School March 9, 2016 Yiren Ding Conditional Probability and Bayes 1 / 13 Outline 1 Independent Events Definition

More information

Mutually Exclusive Events

Mutually Exclusive Events 172 CHAPTER 3 PROBABILITY TOPICS c. QS, 7D, 6D, KS Mutually Exclusive Events A and B are mutually exclusive events if they cannot occur at the same time. This means that A and B do not share any outcomes

More information