EnM Probability and Random Processes

Size: px
Start display at page:

Download "EnM Probability and Random Processes"

Transcription

1 Historical Note: EnM Probability and Random Processes Probability has its roots in games of chance, which have been played since prehistoric time. Games and equipment have been found in Egyptian tombs and Romans had to establish laws to repudiate gaming activities. However, in general, the formal study of probability was provided in the 1600 s by the Chevalier de Mere in a question posed to Pascal: Two people, A and B, agree to play a series of fair games until one person has won six games. They each have wagered the same amount of money, the intention being that the winner will be awarded the entire pot. But suppose, for whatever reason, the series is prematurely terminated, at which point A has won five games and B has won three games. How should the stakes be divided? Pascal posed the problem in probabilistic terms and engaged in extensive correspondence with the French mathematician, Fermat. This began the formal mathematical development of probability theory. The correct answer is that A should receive seven-eights of the total amount wagered. For example, suppose the contest were resumed. The scenarios that lead to A being the first person to win six games are: A wins sixth trial; A loses ninth trial and wins the tenth trial; A loses the ninthe and tenth trial but wins the eleventh trial. The game must end here, since if A loses one more, that means that B has won six games and takes the pot.. So 2 p+ qp+ q p = Prob{A wins game given he won 5 trial when game stopped} = + + = Bernoulli and De Moivre continued the development in the first century, followed by Gauss and La Place in the nineteenth century. In the twentieth century, probability became a major branch of mathematical research and has spread to every corner of scientific research. The role of probability and statistics is extremely prominent in the practice of all phases of engineering and business. Engineers are becoming more concerned with the deviation of practical situations from the hard lined theory. It is the job of the Science of Probability and Statistics not to replace engineering judgement, but to provide the engineer with the best mathematical and logical methods for using his experience and judgment in the solution of complex decision problems. The field of Probability and Statistics includes the following: Ι Theory of Probability ΙΙ Statistical Analysis ΙΙΙ Statistical Decision Theory

2 All three have much in common, but each occupies its own place in the science. The general relationship can be illustrated by considering the following chart:

3 Probability & Statistics Probability Theory Statistical Analysis Statistical Decision Theory Mathematical Probability Models Analysis of Data Making Decisions Under Uncertainty Event Relationships Distributions of Random Variables Continuous Random Variables Normal Log Normal Extreme Value Discrete Random Variables Bernoulli Poisson Stochastic Processes Estimation of Parameters Fitting of Distributions Hypothesis Testing Design of Experiments Bayesian Theory & The Decision Tree Prior Probability Pre-posterior Probability Posterior Probability Value Concepts Personal Probability

4 MEANING OF PROBABILITY: The theory of probability deals mainly with averages of mass phenomenon, occurring sequentially or simultaneously. Such as occurs in the fields of: games of chance polling insurance heredity quality control statistical mechanics queuing theory noise It has been observed that in these and other fields, certain averages approach a constant value or the number of observations increase. This value remains the same if averages are evaluated over a selected sequence or a specific subsequence, i.e. in a coin experiment, the ratio of heads to total tosses approaches ½, or some other constant, and the same ratio is obtained if one considers, say, every 4 th toss. Students are often skeptical about the validity of probabilistic statements. They have been taught that the world evolves according to physical laws that specify exactly its future (determinism) and that probabilistic descriptions are used only for random or chance phenomena, the initial conditions of which are unknown. This deep rooted skepticism about the truth of probabilistic results can be overcome by proper interpretation of the meaning of probability. We will attempt to learn that, like all other scientific discipline, probability is an exact science and all conclusions follow logically from the axioms. It is of course true that the correspondence between theoretical results and the real world is imprecise, however this is characteristic not only of probabilistic conclusion but of all scientific statements. In probabilistic investigations the following steps must be clearly distinguished: Step 1 - (Physical) We determine, by a process that is not and cannot be made exact, the probabilities P(A i ) of various physical events, A i. Step 2 - (Conceptual) We assume that the numbers, P(A i ) satisfy certain axioms, and by deductive logic we determine the probabilities P(B i ) of other events, B i. Step 3 -(Physical). We make physical predictions concerning the events B i based on the number P(B i ) so obtained. Steps 1 and 3 deal with the real world and all statements as inexact. Step 2 deals with the abstract model. This is depicted in the following diagram: S t e p 1 P h y s i c a l S t e p 2 C o n c e p t u a l S t e p 3 P h y s i c a l

5 The term probability has four interpretations: Axiomatic definition (mode concept) Relative Frequency (empirical) Classical (equally likely) Subjective (measure of belief) In our studies we will use only the axiomatic definition as basis of the theory (Step 2). The other three will be used in determination of probabilistic data of real experiments, (Step 1), and application of theoretical results to real experiments, (Step 3). Let us now begin to examine the basic principles of mathematical probabililty Theory of Probability The theory of probability deals with averages and other parameters of mass phenomenon, occurring sequentially or simultaneously. For example: Electron emissions Arrival time for services Noise levels in a network Load levels on a structure It has been observed that these averages approach a constant value as the number of observations increase. The probability of an event, A, can be interpreted in the following sense: Let n = number of times an experiment is performed n a = number of times event A occurs Then the fraction of favorable events is na n = Fraction of favorable events Therefore, P(A) = Probability that event A will occur = lim n na n To present a more formal definition we must understand the concepts of Experiments, Events, and certain element of Set Theory. The number of sample outcomes associated with an experiment need not be finite. Suppose that a coin is tossed until the first tail appears. If the first toss is itself a tail, the outcome of the experiment is T; if the first tail occurs on the second toss, the outcome is HT; and so on. Theoretically, of course, the first tail may never occur, and the infinite nature of S is really apparent: S={T,HT,HHT,HHHT, }

6 We can define: Random Experiment Non-repeatable experiment with more than one outcome. Set - Collection of objects or elements i.e. Heads and tails An apple A vehicle A stress or load level A Number or function, for example {x x 2 +-3x 1 20 =0} set of real numbers φ = empty set {f / f(x) dx < } {φ } = set of empty sets Subset A subset, B, is a set A, is another set whose elements are also elements of A (belongs to A) Field - I - Set of all subsets in S Space, or Universe- S The largest set containing all possible outcomes of a random experiment. Example Consider the following experiment which involves the tossing of a fair die. The Universe is Space = S = {f 1, f 2, f 3,, f 6 } The number of subsets possible are calculated to be 2 6 = 64, namely. 0,{f 1 },{f 2 },.(f 1 f 2 } {f 1 f 2 f 3 }..S Example A woman has her purse stolen by two thieves. She is then shown a police line-up consisting of 5 suspects, including the two perpetuators 1) What is the sample space associated with the experiment Woman picks two suspects out of the line-up? 2) Which outcomes are in the event, A, that she males at least one correct identification? Solution, Let S i = ith suspect, I=1,2,3 T i = ith guilty suspect, I = 1,2 Then, S={(S 1 S 2 )(S 1 S 3 )(S 2 S 3 )(S 1 T 1 )(S 1 T 2 )(S 2 T 1 )(S 2 T 2 )(S 3 T 1 )(S 3 T 2 )(T 1 T 2 )} S = (5 x 4) / 2=10 A = {(S 1 T 1 )(S 1 T 2 )(S 2 T 1 )(S 2 T 2 )(S 3 T 1 )(S 3 T 2 )(T 1 T 2 )} A = 3 x x 1 = 7

7 Set Theory Beginning our review of a few principles of the Set theory, it is convenient to represent sets by closed plane figures called Venn Diagrams S B S = Space or universe A, B, C = Sets f 1, f 2,... = Elements of the sets Subset Notation and Operations Sums (Union) D B - D is a subset of B f i B - f i is an element of B or belongs to B A B - All elements of A, or B, or both. D C A A+ B AB B Note: A + B = B + A (Commutative) (A + B) + C = A + (B + C) (Associative) Products (or Intersection) A B = C = All elements in A and B AB

8 AB = BA (Commutative) (AB)C = A(BC) (Associative) A(B + C) = AB + AC (Distributive) Example Let S = {1, 2, 3, 4, 5} and A = {even} = {2, 4} B = {less than 5} = {1, 2, 3, 4} AB = {even} {less than 5} = {even, less than 5} = {2, 4} Note: Two sets are MUTUALLY exclusive if A B = φ i.e. Complement: = Complement of A = all elements of S that are not in A S A A Note: _ S = φ = null set = empty set = impossible event Difference: A-B = all elements in A but not in B

9 A - B = A = A - AB Also: But: (A-B) + B+ A = A + B (A + A) - A = φ A + (A - A) = A Does not obey associative or commutative law.

Introduction to Probability

Introduction to Probability Introduction to Probability Gambling at its core 16th century Cardano: Books on Games of Chance First systematic treatment of probability 17th century Chevalier de Mere posed a problem to his friend Pascal.

More information

Lecture notes for probability. Math 124

Lecture notes for probability. Math 124 Lecture notes for probability Math 124 What is probability? Probabilities are ratios, expressed as fractions, decimals, or percents, determined by considering results or outcomes of experiments whose result

More information

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc. Chapter 14 From Randomness to Probability Copyright 2012, 2008, 2005 Pearson Education, Inc. Dealing with Random Phenomena A random phenomenon is a situation in which we know what outcomes could happen,

More information

STT When trying to evaluate the likelihood of random events we are using following wording.

STT When trying to evaluate the likelihood of random events we are using following wording. Introduction to Chapter 2. Probability. When trying to evaluate the likelihood of random events we are using following wording. Provide your own corresponding examples. Subjective probability. An individual

More information

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com Gujarati D. Basic Econometrics, Appendix

More information

Probability Theory and Applications

Probability Theory and Applications Probability Theory and Applications Videos of the topics covered in this manual are available at the following links: Lesson 4 Probability I http://faculty.citadel.edu/silver/ba205/online course/lesson

More information

CIVL Why are we studying probability and statistics? Learning Objectives. Basic Laws and Axioms of Probability

CIVL Why are we studying probability and statistics? Learning Objectives. Basic Laws and Axioms of Probability CIVL 3103 Basic Laws and Axioms of Probability Why are we studying probability and statistics? How can we quantify risks of decisions based on samples from a population? How should samples be selected

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 Introduction One of the key properties of coin flips is independence: if you flip a fair coin ten times and get ten

More information

Probabilistic models

Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became the definitive formulation

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 3: Probability, Bayes Theorem, and Bayes Classification Peter Belhumeur Computer Science Columbia University Probability Should you play this game? Game: A fair

More information

Probabilistic models

Probabilistic models Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

STA Module 4 Probability Concepts. Rev.F08 1

STA Module 4 Probability Concepts. Rev.F08 1 STA 2023 Module 4 Probability Concepts Rev.F08 1 Learning Objectives Upon completing this module, you should be able to: 1. Compute probabilities for experiments having equally likely outcomes. 2. Interpret

More information

Lecture 3 Probability Basics

Lecture 3 Probability Basics Lecture 3 Probability Basics Thais Paiva STA 111 - Summer 2013 Term II July 3, 2013 Lecture Plan 1 Definitions of probability 2 Rules of probability 3 Conditional probability What is Probability? Probability

More information

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Applications Elementary Set Theory Random

More information

Basic Probabilistic Reasoning SEG

Basic Probabilistic Reasoning SEG Basic Probabilistic Reasoning SEG 7450 1 Introduction Reasoning under uncertainty using probability theory Dealing with uncertainty is one of the main advantages of an expert system over a simple decision

More information

Review Basic Probability Concept

Review Basic Probability Concept Economic Risk and Decision Analysis for Oil and Gas Industry CE81.9008 School of Engineering and Technology Asian Institute of Technology January Semester Presented by Dr. Thitisak Boonpramote Department

More information

CS626 Data Analysis and Simulation

CS626 Data Analysis and Simulation CS626 Data Analysis and Simulation Instructor: Peter Kemper R 104A, phone 221-3462, email:kemper@cs.wm.edu Today: Probability Primer Quick Reference: Sheldon Ross: Introduction to Probability Models 9th

More information

STAT 430/510 Probability

STAT 430/510 Probability STAT 430/510 Probability Hui Nie Lecture 3 May 28th, 2009 Review We have discussed counting techniques in Chapter 1. Introduce the concept of the probability of an event. Compute probabilities in certain

More information

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability What is Probability? the chance of an event occuring eg 1classical probability 2empirical probability 3subjective probability Section 2 - Probability (1) Probability - Terminology random (probability)

More information

Venn Diagrams; Probability Laws. Notes. Set Operations and Relations. Venn Diagram 2.1. Venn Diagrams; Probability Laws. Notes

Venn Diagrams; Probability Laws. Notes. Set Operations and Relations. Venn Diagram 2.1. Venn Diagrams; Probability Laws. Notes Lecture 2 s; Text: A Course in Probability by Weiss 2.4 STAT 225 Introduction to Probability Models January 8, 2014 s; Whitney Huang Purdue University 2.1 Agenda s; 1 2 2.2 Intersection: the intersection

More information

Origins of Probability Theory

Origins of Probability Theory 1 16.584: INTRODUCTION Theory and Tools of Probability required to analyze and design systems subject to uncertain outcomes/unpredictability/randomness. Such systems more generally referred to as Experiments.

More information

Probability COMP 245 STATISTICS. Dr N A Heard. 1 Sample Spaces and Events Sample Spaces Events Combinations of Events...

Probability COMP 245 STATISTICS. Dr N A Heard. 1 Sample Spaces and Events Sample Spaces Events Combinations of Events... Probability COMP 245 STATISTICS Dr N A Heard Contents Sample Spaces and Events. Sample Spaces........................................2 Events........................................... 2.3 Combinations

More information

Chance, too, which seems to rush along with slack reins, is bridled and governed by law (Boethius, ).

Chance, too, which seems to rush along with slack reins, is bridled and governed by law (Boethius, ). Chapter 2 Probability Chance, too, which seems to rush along with slack reins, is bridled and governed by law (Boethius, 480-524). Blaise Pascal (1623-1662) Pierre de Fermat (1601-1665) Abraham de Moivre

More information

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail}

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail} Random Experiment In random experiments, the result is unpredictable, unknown prior to its conduct, and can be one of several choices. Examples: The Experiment of tossing a coin (head, tail) The Experiment

More information

Single Maths B: Introduction to Probability

Single Maths B: Introduction to Probability Single Maths B: Introduction to Probability Overview Lecturer Email Office Homework Webpage Dr Jonathan Cumming j.a.cumming@durham.ac.uk CM233 None! http://maths.dur.ac.uk/stats/people/jac/singleb/ 1 Introduction

More information

Notes 1 Autumn Sample space, events. S is the number of elements in the set S.)

Notes 1 Autumn Sample space, events. S is the number of elements in the set S.) MAS 108 Probability I Notes 1 Autumn 2005 Sample space, events The general setting is: We perform an experiment which can have a number of different outcomes. The sample space is the set of all possible

More information

Statistical Theory 1

Statistical Theory 1 Statistical Theory 1 Set Theory and Probability Paolo Bautista September 12, 2017 Set Theory We start by defining terms in Set Theory which will be used in the following sections. Definition 1 A set is

More information

STAT Chapter 3: Probability

STAT Chapter 3: Probability Basic Definitions STAT 515 --- Chapter 3: Probability Experiment: A process which leads to a single outcome (called a sample point) that cannot be predicted with certainty. Sample Space (of an experiment):

More information

What is the probability of getting a heads when flipping a coin

What is the probability of getting a heads when flipping a coin Chapter 2 Probability Probability theory is a branch of mathematics dealing with chance phenomena. The origins of the subject date back to the Italian mathematician Cardano about 1550, and French mathematicians

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 3 Probability Contents 1. Events, Sample Spaces, and Probability 2. Unions and Intersections 3. Complementary Events 4. The Additive Rule and Mutually Exclusive

More information

Probability Dr. Manjula Gunarathna 1

Probability Dr. Manjula Gunarathna 1 Probability Dr. Manjula Gunarathna Probability Dr. Manjula Gunarathna 1 Introduction Probability theory was originated from gambling theory Probability Dr. Manjula Gunarathna 2 History of Probability Galileo

More information

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary)

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary) Chapter 14 From Randomness to Probability How to measure a likelihood of an event? How likely is it to answer correctly one out of two true-false questions on a quiz? Is it more, less, or equally likely

More information

Probability Theory and Simulation Methods

Probability Theory and Simulation Methods Feb 28th, 2018 Lecture 10: Random variables Countdown to midterm (March 21st): 28 days Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters

More information

Axioms of Probability

Axioms of Probability Sample Space (denoted by S) The set of all possible outcomes of a random experiment is called the Sample Space of the experiment, and is denoted by S. Example 1.10 If the experiment consists of tossing

More information

Chapter 4 - Introduction to Probability

Chapter 4 - Introduction to Probability Chapter 4 - Introduction to Probability Probability is a numerical measure of the likelihood that an event will occur. Probability values are always assigned on a scale from 0 to 1. A probability near

More information

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events LECTURE 1 1 Introduction The first part of our adventure is a highly selective review of probability theory, focusing especially on things that are most useful in statistics. 1.1 Sample spaces and events

More information

3 PROBABILITY TOPICS

3 PROBABILITY TOPICS Chapter 3 Probability Topics 135 3 PROBABILITY TOPICS Figure 3.1 Meteor showers are rare, but the probability of them occurring can be calculated. (credit: Navicore/flickr) Introduction It is often necessary

More information

A survey of Probability concepts. Chapter 5

A survey of Probability concepts. Chapter 5 A survey of Probability concepts Chapter 5 Learning Objectives Define probability. Explain the terms experiment, event, outcome. Define the terms conditional probability and joint probability. Calculate

More information

Introduction to Probability

Introduction to Probability Introduction to Probability Content Experiments, Counting Rules, and Assigning Probabilities Events and Their Probability Some Basic Relationships of Probability Conditional Probability Bayes Theorem 2

More information

Announcements. Topics: To Do:

Announcements. Topics: To Do: Announcements Topics: In the Probability and Statistics module: - Sections 1 + 2: Introduction to Stochastic Models - Section 3: Basics of Probability Theory - Section 4: Conditional Probability; Law of

More information

ENGI 3423 Introduction to Probability; Sets & Venn Diagrams Page 3-01

ENGI 3423 Introduction to Probability; Sets & Venn Diagrams Page 3-01 ENGI 3423 Introduction to Probability; Sets & Venn Diagrams Page 3-01 Probability Decision trees θ 1 u 1 α 1 θ 2 u 2 Decision α 2 θ 1 u 3 Actions Chance nodes States of nature θ 2 u 4 Consequences; utility

More information

Fundamentals of Probability CE 311S

Fundamentals of Probability CE 311S Fundamentals of Probability CE 311S OUTLINE Review Elementary set theory Probability fundamentals: outcomes, sample spaces, events Outline ELEMENTARY SET THEORY Basic probability concepts can be cast in

More information

Notes Week 2 Chapter 3 Probability WEEK 2 page 1

Notes Week 2 Chapter 3 Probability WEEK 2 page 1 Notes Week 2 Chapter 3 Probability WEEK 2 page 1 The sample space of an experiment, sometimes denoted S or in probability theory, is the set that consists of all possible elementary outcomes of that experiment

More information

Topic 3: Introduction to Probability

Topic 3: Introduction to Probability Topic 3: Introduction to Probability 1 Contents 1. Introduction 2. Simple Definitions 3. Types of Probability 4. Theorems of Probability 5. Probabilities under conditions of statistically independent events

More information

Binomial Probability. Permutations and Combinations. Review. History Note. Discuss Quizzes/Answer Questions. 9.0 Lesson Plan

Binomial Probability. Permutations and Combinations. Review. History Note. Discuss Quizzes/Answer Questions. 9.0 Lesson Plan 9.0 Lesson Plan Discuss Quizzes/Answer Questions History Note Review Permutations and Combinations Binomial Probability 1 9.1 History Note Pascal and Fermat laid out the basic rules of probability in a

More information

What is Probability? Probability. Sample Spaces and Events. Simple Event

What is Probability? Probability. Sample Spaces and Events. Simple Event What is Probability? Probability Peter Lo Probability is the numerical measure of likelihood that the event will occur. Simple Event Joint Event Compound Event Lies between 0 & 1 Sum of events is 1 1.5

More information

The probability of an event is viewed as a numerical measure of the chance that the event will occur.

The probability of an event is viewed as a numerical measure of the chance that the event will occur. Chapter 5 This chapter introduces probability to quantify randomness. Section 5.1: How Can Probability Quantify Randomness? The probability of an event is viewed as a numerical measure of the chance that

More information

F71SM STATISTICAL METHODS

F71SM STATISTICAL METHODS F71SM STATISTICAL METHODS RJG SUMMARY NOTES 2 PROBABILITY 2.1 Introduction A random experiment is an experiment which is repeatable under identical conditions, and for which, at each repetition, the outcome

More information

Lecture 8: Probability

Lecture 8: Probability Lecture 8: Probability The idea of probability is well-known The flipping of a balanced coin can produce one of two outcomes: T (tail) and H (head) and the symmetry between the two outcomes means, of course,

More information

Senior Math Circles November 19, 2008 Probability II

Senior Math Circles November 19, 2008 Probability II University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Senior Math Circles November 9, 2008 Probability II Probability Counting There are many situations where

More information

4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio

4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio 4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio Wrong is right. Thelonious Monk 4.1 Three Definitions of

More information

Chapter 1 Axioms of Probability. Wen-Guey Tzeng Computer Science Department National Chiao University

Chapter 1 Axioms of Probability. Wen-Guey Tzeng Computer Science Department National Chiao University Chapter 1 Axioms of Probability Wen-Guey Tzeng Computer Science Department National Chiao University What is probability? A branch of mathematics that deals with calculating the likelihood of a given event

More information

Chapter 6: Probability The Study of Randomness

Chapter 6: Probability The Study of Randomness Chapter 6: Probability The Study of Randomness 6.1 The Idea of Probability 6.2 Probability Models 6.3 General Probability Rules 1 Simple Question: If tossing a coin, what is the probability of the coin

More information

Chapter 1 Axioms of Probability. Wen-Guey Tzeng Computer Science Department National Chiao University

Chapter 1 Axioms of Probability. Wen-Guey Tzeng Computer Science Department National Chiao University Chapter 1 Axioms of Probability Wen-Guey Tzeng Computer Science Department National Chiao University Introduction Luca Paccioli(1445-1514), Studies of chances of events Niccolo Tartaglia(1499-1557) Girolamo

More information

Probability- describes the pattern of chance outcomes

Probability- describes the pattern of chance outcomes Chapter 6 Probability the study of randomness Probability- describes the pattern of chance outcomes Chance behavior is unpredictable in the short run, but has a regular and predictable pattern in the long

More information

MATH MW Elementary Probability Course Notes Part I: Models and Counting

MATH MW Elementary Probability Course Notes Part I: Models and Counting MATH 2030 3.00MW Elementary Probability Course Notes Part I: Models and Counting Tom Salisbury salt@yorku.ca York University Winter 2010 Introduction [Jan 5] Probability: the mathematics used for Statistics

More information

Recap of Basic Probability Theory

Recap of Basic Probability Theory 02407 Stochastic Processes Recap of Basic Probability Theory Uffe Høgsbro Thygesen Informatics and Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby Denmark Email: uht@imm.dtu.dk

More information

Intro to Stats Lecture 11

Intro to Stats Lecture 11 Outliers and influential points Intro to Stats Lecture 11 Collect data this week! Midterm is coming! Terms X outliers: observations outlying the overall pattern of the X- variable Y outliers: observations

More information

Recap of Basic Probability Theory

Recap of Basic Probability Theory 02407 Stochastic Processes? Recap of Basic Probability Theory Uffe Høgsbro Thygesen Informatics and Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby Denmark Email: uht@imm.dtu.dk

More information

tossing a coin selecting a card from a deck measuring the commuting time on a particular morning

tossing a coin selecting a card from a deck measuring the commuting time on a particular morning 2 Probability Experiment An experiment or random variable is any activity whose outcome is unknown or random upfront: tossing a coin selecting a card from a deck measuring the commuting time on a particular

More information

ENGI 4421 Introduction to Probability; Sets & Venn Diagrams Page α 2 θ 1 u 3. wear coat. θ 2 = warm u 2 = sweaty! θ 1 = cold u 3 = brrr!

ENGI 4421 Introduction to Probability; Sets & Venn Diagrams Page α 2 θ 1 u 3. wear coat. θ 2 = warm u 2 = sweaty! θ 1 = cold u 3 = brrr! ENGI 4421 Introduction to Probability; Sets & Venn Diagrams Page 2-01 Probability Decision trees u 1 u 2 α 2 θ 1 u 3 θ 2 u 4 Example 2.01 θ 1 = cold u 1 = snug! α 1 wear coat θ 2 = warm u 2 = sweaty! θ

More information

With Question/Answer Animations. Chapter 7

With Question/Answer Animations. Chapter 7 With Question/Answer Animations Chapter 7 Chapter Summary Introduction to Discrete Probability Probability Theory Bayes Theorem Section 7.1 Section Summary Finite Probability Probabilities of Complements

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Lecture 2 Probability Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 3-1 3.1 Definition Random Experiment a process leading to an uncertain

More information

Lecture 1. Chapter 1. (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 ( ). 1. What is Statistics?

Lecture 1. Chapter 1. (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 ( ). 1. What is Statistics? Lecture 1 (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 (2.1 --- 2.6). Chapter 1 1. What is Statistics? 2. Two definitions. (1). Population (2). Sample 3. The objective of statistics.

More information

A Problem Involving Games. Paccioli s Solution. Problems for Paccioli: Small Samples. n / (n + m) m / (n + m)

A Problem Involving Games. Paccioli s Solution. Problems for Paccioli: Small Samples. n / (n + m) m / (n + m) Class #10: Introduction to Probability Theory Artificial Intelligence (CS 452/552): M. Allen, 27 Sept. 17 A Problem Involving Games } Two players put money in on a game of chance } First one to certain

More information

EE126: Probability and Random Processes

EE126: Probability and Random Processes EE126: Probability and Random Processes Lecture 1: Probability Models Abhay Parekh UC Berkeley January 18, 2011 1 Logistics 2 Introduction 3 Model 4 Examples What is this course about? Most real-world

More information

Statistical Inference

Statistical Inference Statistical Inference Lecture 1: Probability Theory MING GAO DASE @ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 11, 2018 Outline Introduction Set Theory Basics of Probability Theory

More information

Quantum Probability in Cognition. Ryan Weiss 11/28/2018

Quantum Probability in Cognition. Ryan Weiss 11/28/2018 Quantum Probability in Cognition Ryan Weiss 11/28/2018 Overview Introduction Classical vs Quantum Probability Brain Information Processing Decision Making Conclusion Introduction Quantum probability in

More information

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ).

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ). CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 8 Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According to clinical trials,

More information

Lecture 1 : The Mathematical Theory of Probability

Lecture 1 : The Mathematical Theory of Probability Lecture 1 : The Mathematical Theory of Probability 0/ 30 1. Introduction Today we will do 2.1 and 2.2. We will skip Chapter 1. We all have an intuitive notion of probability. Let s see. What is the probability

More information

P (A B) P ((B C) A) P (B A) = P (B A) + P (C A) P (A) = P (B A) + P (C A) = Q(A) + Q(B).

P (A B) P ((B C) A) P (B A) = P (B A) + P (C A) P (A) = P (B A) + P (C A) = Q(A) + Q(B). Lectures 7-8 jacques@ucsdedu 41 Conditional Probability Let (Ω, F, P ) be a probability space Suppose that we have prior information which leads us to conclude that an event A F occurs Based on this information,

More information

Week 2: Probability: Counting, Sets, and Bayes

Week 2: Probability: Counting, Sets, and Bayes Statistical Methods APPM 4570/5570, STAT 4000/5000 21 Probability Introduction to EDA Week 2: Probability: Counting, Sets, and Bayes Random variable Random variable is a measurable quantity whose outcome

More information

Chapter Six. Approaches to Assigning Probabilities

Chapter Six. Approaches to Assigning Probabilities Chapter Six Probability 6.1 Approaches to Assigning Probabilities There are three ways to assign a probability, P(O i ), to an outcome, O i, namely: Classical approach: based on equally likely events.

More information

2) There should be uncertainty as to which outcome will occur before the procedure takes place.

2) There should be uncertainty as to which outcome will occur before the procedure takes place. robability Numbers For many statisticians the concept of the probability that an event occurs is ultimately rooted in the interpretation of an event as an outcome of an experiment, others would interpret

More information

8. MORE PROBABILITY; INDEPENDENCE

8. MORE PROBABILITY; INDEPENDENCE 8. MORE PROBABILITY; INDEPENDENCE Combining Events: The union A B is the event consisting of all outcomes in A or in B or in both. The intersection A B is the event consisting of all outcomes in both A

More information

Math 1313 Experiments, Events and Sample Spaces

Math 1313 Experiments, Events and Sample Spaces Math 1313 Experiments, Events and Sample Spaces At the end of this recording, you should be able to define and use the basic terminology used in defining experiments. Terminology The next main topic in

More information

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM. SOLUTIONS

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM. SOLUTIONS 6.0/6.3 Spring 009 Quiz Wednesday, March, 7:30-9:30 PM. SOLUTIONS Name: Recitation Instructor: Question Part Score Out of 0 all 0 a 5 b c 5 d 5 e 5 f 5 3 a b c d 5 e 5 f 5 g 5 h 5 Total 00 Write your solutions

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 5 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 5 Spring 2006 Review problems UC Berkeley Department of Electrical Engineering and Computer Science EE 6: Probablity and Random Processes Solutions 5 Spring 006 Problem 5. On any given day your golf score is any integer

More information

Chapter 1 (Basic Probability)

Chapter 1 (Basic Probability) Chapter 1 (Basic Probability) What is probability? Consider the following experiments: 1. Count the number of arrival requests to a web server in a day. 2. Determine the execution time of a program. 3.

More information

2. AXIOMATIC PROBABILITY

2. AXIOMATIC PROBABILITY IA Probability Lent Term 2. AXIOMATIC PROBABILITY 2. The axioms The formulation for classical probability in which all outcomes or points in the sample space are equally likely is too restrictive to develop

More information

If S = {O 1, O 2,, O n }, where O i is the i th elementary outcome, and p i is the probability of the i th elementary outcome, then

If S = {O 1, O 2,, O n }, where O i is the i th elementary outcome, and p i is the probability of the i th elementary outcome, then 1.1 Probabilities Def n: A random experiment is a process that, when performed, results in one and only one of many observations (or outcomes). The sample space S is the set of all elementary outcomes

More information

Chapter 7: Section 7-1 Probability Theory and Counting Principles

Chapter 7: Section 7-1 Probability Theory and Counting Principles Chapter 7: Section 7-1 Probability Theory and Counting Principles D. S. Malik Creighton University, Omaha, NE D. S. Malik Creighton University, Omaha, NE Chapter () 7: Section 7-1 Probability Theory and

More information

UNIT 5 ~ Probability: What Are the Chances? 1

UNIT 5 ~ Probability: What Are the Chances? 1 UNIT 5 ~ Probability: What Are the Chances? 1 6.1: Simulation Simulation: The of chance behavior, based on a that accurately reflects the phenomenon under consideration. (ex 1) Suppose we are interested

More information

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability Lecture Notes 1 Basic Probability Set Theory Elements of Probability Conditional probability Sequential Calculation of Probability Total Probability and Bayes Rule Independence Counting EE 178/278A: Basic

More information

CHAPTER 15 PROBABILITY Introduction

CHAPTER 15 PROBABILITY Introduction PROBABILLITY 271 PROBABILITY CHAPTER 15 It is remarkable that a science, which began with the consideration of games of chance, should be elevated to the rank of the most important subject of human knowledge.

More information

Probability (Devore Chapter Two)

Probability (Devore Chapter Two) Probability (Devore Chapter Two) 1016-345-01: Probability and Statistics for Engineers Fall 2012 Contents 0 Administrata 2 0.1 Outline....................................... 3 1 Axiomatic Probability 3

More information

Probability: Sets, Sample Spaces, Events

Probability: Sets, Sample Spaces, Events Probability: Sets, Sample Spaces, Events Engineering Statistics Section 2.1 Josh Engwer TTU 01 February 2016 Josh Engwer (TTU) Probability: Sets, Sample Spaces, Events 01 February 2016 1 / 29 The Need

More information

Problems from Probability and Statistical Inference (9th ed.) by Hogg, Tanis and Zimmerman.

Problems from Probability and Statistical Inference (9th ed.) by Hogg, Tanis and Zimmerman. Math 224 Fall 2017 Homework 1 Drew Armstrong Problems from Probability and Statistical Inference (9th ed.) by Hogg, Tanis and Zimmerman. Section 1.1, Exercises 4,5,6,7,9,12. Solutions to Book Problems.

More information

MAT2377. Ali Karimnezhad. Version September 9, Ali Karimnezhad

MAT2377. Ali Karimnezhad. Version September 9, Ali Karimnezhad MAT2377 Ali Karimnezhad Version September 9, 2015 Ali Karimnezhad Comments These slides cover material from Chapter 1. In class, I may use a blackboard. I recommend reading these slides before you come

More information

Week 2. Section Texas A& M University. Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019

Week 2. Section Texas A& M University. Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019 Week 2 Section 1.2-1.4 Texas A& M University Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week2 1

More information

Probability. VCE Maths Methods - Unit 2 - Probability

Probability. VCE Maths Methods - Unit 2 - Probability Probability Probability Tree diagrams La ice diagrams Venn diagrams Karnough maps Probability tables Union & intersection rules Conditional probability Markov chains 1 Probability Probability is the mathematics

More information

Mathematics for Informatics 4a

Mathematics for Informatics 4a Mathematics for Informatics 4a José Figueroa-O Farrill Lecture 1 18 January 2012 José Figueroa-O Farrill mi4a (Probability) Lecture 1 1 / 23 Introduction Topic: Probability and random processes Lectures:

More information

CIVL Probability vs. Statistics. Why are we studying probability and statistics? Basic Laws and Axioms of Probability

CIVL Probability vs. Statistics. Why are we studying probability and statistics? Basic Laws and Axioms of Probability CIVL 3103 asic Laws and xioms of Probability Why are we studying probability and statistics? How can we quantify risks of decisions based on samples from a population? How should samples be selected to

More information

Example: Suppose we toss a quarter and observe whether it falls heads or tails, recording the result as 1 for heads and 0 for tails.

Example: Suppose we toss a quarter and observe whether it falls heads or tails, recording the result as 1 for heads and 0 for tails. Example: Suppose we toss a quarter and observe whether it falls heads or tails, recording the result as 1 for heads and 0 for tails. (In Mathematical language, the result of our toss is a random variable,

More information

Probability. Lecture Notes. Adolfo J. Rumbos

Probability. Lecture Notes. Adolfo J. Rumbos Probability Lecture Notes Adolfo J. Rumbos October 20, 204 2 Contents Introduction 5. An example from statistical inference................ 5 2 Probability Spaces 9 2. Sample Spaces and σ fields.....................

More information

1. Axioms of probability

1. Axioms of probability 1. Axioms of probability 1.1 Introduction Dice were believed to be invented in China during 7~10th AD. Luca Paccioli(1445-1514) Italian (studies of chances of events) Niccolo Tartaglia(1499-1557) Girolamo

More information

Statistics 251: Statistical Methods

Statistics 251: Statistical Methods Statistics 251: Statistical Methods Probability Module 3 2018 file:///volumes/users/r/renaes/documents/classes/lectures/251301/renae/markdown/master%20versions/module3.html#1 1/33 Terminology probability:

More information

Lecture 1: Basics of Probability

Lecture 1: Basics of Probability Lecture 1: Basics of Probability (Luise-Vitetta, Chapter 8) Why probability in data science? Data acquisition is noisy Sampling/quantization external factors: If you record your voice saying machine learning

More information

4. The Negative Binomial Distribution

4. The Negative Binomial Distribution 1 of 9 7/16/2009 6:40 AM Virtual Laboratories > 11. Bernoulli Trials > 1 2 3 4 5 6 4. The Negative Binomial Distribution Basic Theory Suppose again that our random experiment is to perform a sequence of

More information