High power and single frequency quantum cascade lasers for chemical sensing

Size: px
Start display at page:

Download "High power and single frequency quantum cascade lasers for chemical sensing"

Transcription

1 High power and single frequency quantum cascade lasers for chemical sensing Stéphane Blaser final version: Page 1 of 51 Collaborators Yargo Bonetti Lubos Hvozdara Antoine Muller Guillaume Vandeputte Hege Andersen This work was done in collaboration with the University of Neuchâtel Marcella Giovannini Nicolas Hoyler Mattias Beck Jérome Faist Page 2 of 51

2 Outline Company profile Introduction - state of the art High power Fabry-Pérot devices Applications Distributed-feedback lasers High power pulsed DFB devices >77K operating continuous-wave DFB devices Reliability Production Page 3 of 51 Company profile Founded August 1998 as a spin-off company from the University of Neuchâtel incorporated as a SA under swiss law with a capital of 1 kchf) Founders Jérôme Faist Antoine Muller Mattias Beck Employees (September 23) 8 persons (6 full-time) Installed at Maximilien-de-Meuron 1-3, 2 Neuchâtel since April 22 Page 4 of 51

3 Company profile > 3 man-years experience 7 patents on QCL technologies > 15 devices sold > 5 customers turnover 23: > 1.3 MCHF average growth rate: 1% / year Page 5 of 51 Quantum cascade lasers Page 6 of 51

4 Interband vs intersubband E E E f E 12 E 12 E f k k Interband transition - bipolar - photon energy limited by bandgap E g of material - Telecom, CD, DVD, Intersubband transition - unipolar, narrow gain - photon energy depends on layer thickness and can be tailored Page 7 of 51 Quantum cascade lasers Cascade - each e- emits N photons Active region / injector - active region population inversion which must be engineered - injector avoid fields domains and cools down the electrons MBE - growth of thin layers - sharp interfaces T e >>T l 3 τ 32 τ 32 > τ τ 21 T e ~T l active region relaxation / injection Page 8 of 51

5 State of the art: QCL performances Atmospheric windows Temperature [K] LN 2 Reststrahlen band Peltier Wavelength [μm] CW pulsed CW pulsed InP GaAs - Good Mid-IR coverage - Terahertz promising Data: MIR FIR Uni Neuchâtel NEST Pisa Alpes Lasers MIT Bell Labs Uni Neuchâtel Thales TU Vienna Northwestern Uni W. Schottky/TU Munich Page 9 of 51 Designs Double-phonon resonance: (patent n wo 2/23686A1) 4QW active region with 3 coupled lower state lower states separated by one phonon energy each keeps good injection efficiency of the 3QW design Hofstetter et al. APL 78, 396 (21). Bound-to-continuum: (patent n wo 2/19485A1) transition from a bound state to a miniband combines injection and extraction efficiency broad gain curve -> good long-wavelength and high temperature operation J. Faist et al. APL 78, 147 (21). Double optical phonon resonance Bound-to-continuum Page 1 of 51

6 Two-phonon structure at 8 m Based on two-phonon resonances design injection barrier arrow QW/barrier pair extraction barrier InGaAs/InAlAs-based heterostructure with E c =.52eV Grown by MBE on InP substrate 35 periods n-doped 4 QW active region one period 41, 16, 8, 53, 1, 52, 11, 45, 21, 29, 15, 28, 16, 28, 17, 27, 18, 25, 21, 25, 26, 24, 29, 24 Page 11 of 51 High average power FP QCL RT-HP-FP Voltage [V] K, 6% K, 2% mm-long μm-wide back-facet coated Current [A] Average power [W] Characteristics λ = 7.9 Average power: P = 15 mw threshold current: I th = 2.1A (j th =3. ka/cm 2 : P =.82 W (6% dc) I th =.51A (j th =.75 ka/cm 2 ) CW: P = 3mW (j th =.78 ka/cm 2 ) Page 12 of 51

7 Array of lasers DUAL-RT-HP-FP DC voltage fed to LDD [V] T = -25 C duty-cycle = 1% laser up laser dn array of 2 lasers Current [A] Average power [mw] Characteristics both lasers: 1.5 mm-long, 28 μm-wide λ 7.9 μm T = -25 C, duty-cyle = 1% laser Average power I th [A] j th [ka/cm 2 ] up 25.4 mw dn 22.6 mw array 44.9 mw Total power 9% (P 1 +P 2 ) Total threshold current I 1 +I 2 Page 13 of 51 Applications Page 14 of 51

8 Applications: telecom Telecommunications Free-space optical data transmission for the last mile (high speed with no need for licence and better operation in fog, compared to = 1.55 m) Bandwidth 1 Gbps 4 Gbps 1 Gbps 1 Gbps 622 Mbps 4 to 7 years 1 to 4 years Present 155 Mbps 1 Mbps Local Network Last Mile Metro Backbone Long-Haul Backbone R. Martini et al., IEE Elect. Lett. 37 (11), p. 129, 21. S. Blaser et al., IEE Elect. Lett. 37 (12), p. 778, 21. Page 15 of 51 Main application: chemical sensing by optical spectroscopy Detection techniques already demonstrated using QCL: photo-acoustic B. Paldus et al., Opt. Lett. 24 (3), p.178, D. Hofstetter et al., Opt. Lett. 26 (12), p. 887, 21. M. Nägele et al., Analytical Sciences 17 (4), p. 497, 21. TILDAS Some needs: M. Zahniser et al. (Aerodyne Research), TDLS 3. cavity ringdown high-power laser B. Paldus et al., Opt. Lett. 25 (9), p. 666, 2. absorption spectroscopy single mode A. Kosterev et al., Appl. Phys. B 75 (2-3), p. 351, 22. continuous-wave heterodyne detection scheme D. Weidmann et al., Opt. Lett. 29 (9), p. 74, 23. cavity enhanced spectroscopy D. Bear et al. (Los Gatos Research), TDLS 3. Page 16 of 51

9 Application fields Chemical sensing or trace gas measurements process development environmental science forensic science process gas control liquid detection spectroscopy Medical diagnostics breath analyzer glucose dosage Remote sensing leak detection exhaust plume measurement combat gas detection Page 17 of 51 Simultaneous 3-gas measurements with dual-laser QCL instrument 8 NH 3 (5 ppb) LASER 1: 967 cm N 2 O (31 ppb) LASER 2: 1271 cm -1 CH 4 (18 ppb) TRACTOR EXHAUST PLUME Two QC-lasers from Alpes: 2 to 6 gases (CH 4, N 2 O, NH 3 ) 56 m cell path length Detector options :45 PM 8/13/23 12:5 PM 12:55 PM 1: PM time M. Zahniser et al., Aerodyne Research Inc., Billerica (USA) Page 18 of 51

10 Spectrum covered by Alpes Lasers dfb QCLs radio 1 cm 1 cm 1 mm 1 μm 1 μm infrared.8 μm.4 μm UV RADAR NH 3 maser.1 THz QCL p-ge laser 1 THz CO 2 laser Wavelength [μm] CCl 2 O 2 C 2 H 4 O NH 3 F 4 Si O 3 N 2 O CH 4 C 2 H 4 C 5 H 1 O CCl 2 O CO N 2 O CO Wavenumber [cm -1 ] Page 19 of 51 Single-mode operation: distributed-feedback QCLs Page 2 of 51

11 How does a DFB work? Fabry-Pérot laser: gain Amplified light bounces in the cavity DFB: periodic grating => waves coupling => high wavelength selectivity gain Intensity [a.u.] Wavelength [μm] stopband Δν = 1.19 cm K 2 K complex-coupled DFB: lasing mode closest to the stopband stopband coupling strength Frequency [cm-1] 22 K Page 21 of 51 Distributed-feedback technologies D. Hofstetter et al., Appl. Phys. Lett., vol. 75, p.665, 1999) C. Gmachl et al. IEEE Photon. Technol. Lett., vol. 9, p.19, 1997) Grating on the surface (open-top) one MBE run (no MOCVD) high peak power (large stripes) but low average power optical losses due to metalization Grating close to active region lower thermal resistance (high duty / high temperature) high average power higher overlap, smaller losses jct dn mounting possible needs MOCVD regrowth Page 22 of 51

12 High average power DFB QCL RT-HP-DFB-2-12 Distributed feedback QC laser at 8.35 m with InP top cladding Voltage [V] C 4 2 C 3 C Current [A] Average power [mw] Characteristics 3mm-long, 28μm-wide laser λ 8.35 C: Average power (2% dc): P = 32 mw (1.6 W peak power) threshold current: I th = 2.44 A (j th = 2.9 ka/cm 2 C : P = 25 mw (1.25W peak power) I th = 3.2 A (j th = 3.8 ka/cm 2 ) Page 23 of 51 High average power DFB QCL RT-HP-DFB-2-12 Voltage [V] C C 6 3 C Current [A] Average power [mw] 1 Characteristics Entire tuning range: Δν = 5.7 cm -1 at 1197 cm -1 (.47%) ( cm -1 (8.367 μm) at 3 C to 12.9 cm -1 (8.327 μm) at -3 C) C 3 C C, 14V 3 C, 12V 15 C, 14V 15 C, 12V C, 14V C, 12V 4 db (limited by the grating spectrometer) Wavelength [μm] Page 24 of 51

13 Long-wavelength ( 16.4 m) B2C DFB QCL RT-P-DFB-1-68 Laser based on a bound to continuum design, 16.4 m Rochat et al., APL 79, 4271 (21) DC voltage fed to LDD [V] C -15 C C 15 C 3 C 4 C 5 C Current [A] Average power [mw] Characteristics 3 mm-long, 44μm-wide laser λ 16.4 C: Average power (1.5% dc): P = 1.5 mw (1 mw peak power) Threshold current: Ith = 7.1 A (j th =5.4 ka/cm 2 C : P =.5 mw (33 mw peak power) Ith = 1.4 A (j th =7.9 ka/cm 2 ) Page 25 of 51 Long-wavelength ( 16.4 m) B2C DFB QCL RT-P-DFB-1-68 Normalized intensity Wavelength [μm] C, 21V -3 C, 27V -15 C, 21V -15 C, 27V C, 23V C, 28V 15 C, 24V 15 C, 29V 3 C, 26V 3 C, 3V 4 C, 27V 4 C, 32V 5 C, 28V 5 C, 32V Characteristics 3mm-long, 44μm-wide laser λ 16.4 μm Single-mode emission: Side Mode Suppression Ratio > 25 db (limited by the resolution of the FTIR) Tuning range: Δν = 4.5 cm -1 at 68 cm -1 (.7%) (65.76 cm -1 (16.51 μm) at 5 C to 61.3 cm -1 (16.38 μm) at -3 C) Wavenumbers [cm-1] Page 26 of 51

14 How does a DFB tune? Page 27 of 51 How does a DFB tune? Tuning always due to thermal drift (carrier effects can be neglected!) T act wavelength selection : λ = 2 n eff Λ grating n eff =n eff (T) T sub dλ λ = dn eff n eff Page 28 of 51

15 How does a DFB tune? T act Active region heating: T = T + I U δ R act sub th +I U R DC DC th ( ) T sub ΔT = T act T sub If T = 1 C 1% chance of laser-destruction (thermal stress) = 6 C depends of mounting / laser -> dangerous = 3 C OK substrate temperature additional bias current Different possibilities of thermal tuning: pulse length (chirping) pulse current {duty-cycle Page 29 of 51 Tuning by changing T sub (heatsink temperature) T act I T sub1 T sub2 t 1 t 2 I.5-5 A T sub t tuning coefficient : 1 Δλ = 1 Δn eff [ 6 7] 1 5 K 1 λ ΔT sub ΔT sub n eff L t 1 t 2 I T 6 C => Page 3 of 51

16 Tuning by DC bias-induced heating by DC bias-induced heating by changing T sub I t 2 T sub cst t 1 I.5-5 A I T sub1 T sub2 t 1 t 2 I DC ( 1-2 ma) I.5-5 A t t L ΔT R th = V device I DC L t 1 t 2 t 1 P opt cst I t 2 I T 3 C => >1kHz T 6 C => Page 31 of 51 Thermal chirping during pulse Intensity [arb. units] K I = 3.14 A gate width = 3 ns peak power = 5 mw + 8 ns + 2 ns + 1 ns drift with time:.3 cm -1 /ns (high dissipated power) 2 K temperature increase of during a 1-ns-long pulse Wavenumbers [cm -1 ] Faist et al., Appl. Phys. Lett. 7, p.267 (1997) Page 32 of 51

17 Pulse length dependence of linewidth Linewidth [cm-1] Aerodyne measurements (diff. device!) FTIR spectrometer grating spectrometer calculation Pulse length [ns] Need for a good compromise: too long: limited by thermal chirping too short: limited by the time evolution of the lasing mode fundamental limits for narrower linewidth: cw operation Hofstetter et al., Opt. Lett. 26, p.887 (21) Page 33 of 51 CW operation at 6.73 m LN2-CW-DFB Characteristics Voltage [V] K 13K 12K 1K 8K Average power [W] 1.5 mm-long, 23 μm-wide laser CW operation at λ 6.73 K: Average power P =.2 W Threshold current: Ith =.35 A (j th = 1. ka/cm 2 ) I op <.8 A U op < 9 V Current [A] Page 34 of 51

18 CW operation at 6.73 m LN2-CW-DFB Wavelength [μm] Characteristics Normalized intensity K, 5mA 1K, 65mA 1K, 55mA 1K, 45mA 8K, 6mA 8K, 5mA 8K, 4mA 1.5 mm-long, 23 μm-wide laser CW operation at λ 6.73 μm Single-mode emission: Side Mode Suppression Ratio > 3 db (limited by the resolution of the FTIR) Tuning range: Δν = 4.9 cm -1 at 1485 cm -1 (.33%) Wavenumbers [cm -1 ] ( cm -1 (6.744 μm) at 12K to cm -1 (6.722 μm) at 8K) Page 35 of 51 CW operation at 4.6 m LN2-CW-DFB Voltage [V] K 9K 1K Average power [mw] Characteristics 1.5 mm-long, 21 μm-wide laser CW operation at λ 4.6 K: Average power P = 12 mw Threshold current density: Ith =.54 A (j th = 1.7 ka/cm 2 ) I op < 1.1 A U op < 8 V Current [A] Page 36 of 51

19 CW operation at 4.6 m LN2-CW-DFB Normalized intensity Wavelength [μm] K, 55mA 8K, 65mA 8K, 75mA 8K, 85mA 8K, 95mA 8K, 1.5A 9K, 1.A 9K, 1.1A Wavenumbers [cm-1] Characteristics 1.5 mm-long, 21 μm-wide laser CW operation at λ 4.6 μm Single-mode emission: Side Mode Suppression Ratio > 25 db (limited by the resolution of the FTIR) Tuning range: Δν = 8 cm -1 at 2171 cm -1 (.37%) ( cm -1 (4.613 μm) at 9K to cm -1 (4.596 μm) at 8K) Page 37 of 51 Future: continuous-wave and single-mode operation at room-temperature terahertz sources Page 38 of 51

20 Continuous-wave FP QCL on Peltier RT-CW-FP-5-18 Voltage [V] mm-long, 13 μm-wide λ 9.2 μm j th (-3 C) = 4.5 ka/cm 2-3 C -25 C -2 C -15 C -1 C -5 C C Current [A] Average power [W] I op < 1.2 A U op < 6 V Page 39 of 51 BH distributed-feedback QCLs grating Wavele ength [ μm] mA 23K 5mA n- InP i-inp 1 n-inp top cladding diamond Ti / Au 1.1 InGaAs waveguide layer Frequency [cm -1 ] Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler: T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J.Faist, and E. Gini, Appl. Phys. Lett. 83, p.1929, 23. Page 4 of 51

21 THz applications New sources: R. Köhler et al., Nature 417, p.156, 22. M. Rochat et al., Appl. Phys. Lett. 81 (8), p.1381, 22. Terahertz applications: Astronomy Medical imaging Chemical detection Telecommunications for local area network (LAN) Page 41 of 51 Terahertz sources THz QC laser based on a bound to continuum design, 87 m Structure grown at University of Neuchâtel (G. Scalari, L. Ajili, M. Beck and M. Giovannini) j [A/cm 2 ] k 15 Characteristics Voltage [V] Emission energy [mev] 5k 7k 78k 1 5 Peak power [mw] THz QC laser: λ 87 μm 2.7mm-long, 2μm-wide laser back-facet K: Peak power (2.5% dc): P = 14 mw threshold current density: j th = 267 A/cm Current[A] pulsed operation up to 78K CW operation up to 3 K Page 42 of 51

22 Reliability of the devices Page 43 of 51 Reliability of the devices: ageing T measure = 3 C Pulser QCL 1 QCL 2 Voltage [V] 3 C Current [A] Power [mw] Temperature controller QCL 3 T ageing = 13 C 1 Detectors 1 Slots Page 44 of 51

23 Ageing: theory Conversion of lifetime using Arrhenius type relation: t ~ exp[e/(kt)] where: t is lifetime T temperature E=.7 ev activation energy [H. Ishikawa et al., J. Appl. Phys. 5, 1979] (needs to be evaluated for QCL) The room temperature lifetime t 1 (at T 1 = 2 C and 7% of initial power) can be extrapolated by : E k t 1 = t e 1 1 T 1 T with t is the measured lifetime at the ageing temperature T (here 13 C = 43K). (using 1 C for example it will take 5 times longer) 8 C 17 Page 45 of 51 Ageing at 13 C: results Normalized output power (measured at 3 C) Extrapolated 2 C lifetime t 1 [years] (HR) c1 (HR) c11 (HR) c13 c14 c Ageing Time at 13 C [hours] (cooling and heating time needed for measurement (cycles of about 2h) already subtracted) Page 46 of 51

24 Production Page 47 of 51 Production line Delivery time - 2 weeks 1-4 weeks 2-5 months 4-6 months 5-9 months Stocks in stock fully tested in stock need mounting and/or testing growth in stock need gratings and process design done need growth completely new wavelength asked need design Operations laser cleaving laser mounting facet coating laser testing mounting / testing DFB gratings regrowth MOCVD SiO PECVD/RIE mesa etching λ MBE growth X-Ray measure wafer cleaning growth design lateral regrowth MOCVD top contact process re-fabrication / feedback thinning back contact Page 48 of 51

25 Production - lasers off the shelf Possible Need customization process Multimodes off the shelf DFB off the shelf Wavelength [μm] Wavenumber [cm -1 ] for an up to date wavelength listing, contact us at: Page 49 of 51 List of products - prices Type Dutycycle Operating temp. Product name Power Linewidth Tunability Off the shelf Built to order 1+ DFB pulsed RT RT-HP-DFB-2-X > 2 mw < 33 MHz.4% 11 keur 28 keur RT-HP-DFB-5-X > 5 mw 13.5 keur cw LN2 LN2-CW-DFB-2-X > 2 mw < 3.5 MHz.4% 23.5 keur 5 keur cw RT RT-CW-DFB-2-X > 2 mw < 3.5 MHz.4% available end 24 FP pulsed RT RT-HP-FP-1-X > 1 mw 1-4 % N/A 6 keur pulsed LN2 LN2-HP-FP-15-X > 15 mw 1-4 % N/A 2 keur cw RT RT-CW-FP-5-X (only at 9.1 μm) > 5 mw 1-4 % N/A 17 keur Page 5 of 51

26 Conclusion / outlook Available products pulsed DFB QCL on Peltier cooler in the range of 4.3 m to 16.5 m LN 2 continuous-wave DFB QCL in the range of 4.6 m to 1 m continuous-wave FP on Peltier cooler at 9.1 m Soon available THz sources (LN 2 ) Available end 24 continuous-wave DFB on Peltier cooler (already demonstrated: T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J.Faist, and E. Gini, Appl. Phys. Lett. 83, p.1929, 23) Page 51 of 51

High power and single frequency quantum cascade lasers for chemical sensing

High power and single frequency quantum cascade lasers for chemical sensing High power and single frequency quantum cascade lasers for chemical sensing Stéphane Blaser final version: http://www.alpeslasers.ch/conference-papers/qclworkshop03.pdf Collaborators Yargo Bonetti Lubos

More information

Recent progress on single-mode quantum cascade lasers

Recent progress on single-mode quantum cascade lasers Recent progress on single-mode quantum cascade lasers B. Hinkov 1,*, P. Jouy 1, A. Hugi 1, A. Bismuto 1,2, M. Beck 1, S. Blaser 2 and J. Faist 1 * bhinkov@phys.ethz.ch 1 Institute of Quantum Electronics,

More information

THz QCL sources based on intracavity difference-frequency mixing

THz QCL sources based on intracavity difference-frequency mixing THz QCL sources based on intracavity difference-frequency mixing Mikhail Belkin Department of Electrical and Computer Engineering The University of Texas at Austin IQCLSW, Sept. 3, 218 Problems with traditional

More information

Infrared Quantum Cascade Laser

Infrared Quantum Cascade Laser Infrared Quantum Cascade Laser W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, E. Gornik, and G. Strasser Institut für Festkörperelektronik, Technische Universität Wien Floragasse 7, 1040 Wien, Austria

More information

Quantum-cascade lasers without injector regions

Quantum-cascade lasers without injector regions Invited Paper Quantum-cascade lasers without injector regions A. Friedrich* and M.-C. Amann Walter Schottky Institute, Technical University of Munich, D-878 Garching, Germany ABSTRACT We present the status

More information

InGaAs-AlAsSb quantum cascade lasers

InGaAs-AlAsSb quantum cascade lasers InGaAs-AlAsSb quantum cascade lasers D.G.Revin, L.R.Wilson, E.A.Zibik, R.P.Green, J.W.Cockburn Department of Physics and Astronomy, University of Sheffield, UK M.J.Steer, R.J.Airey EPSRC National Centre

More information

3-1-1 GaAs-based Quantum Cascade Lasers

3-1-1 GaAs-based Quantum Cascade Lasers 3 Devices 3-1 Oscillator 3-1-1 GaAs-based Quantum Cascade Lasers Quantum cascade lasers (QCLs) have different structures and characteristics from those of conventional semiconductor lasers commonly used

More information

Nonlinear optics with quantum-engineered intersubband metamaterials

Nonlinear optics with quantum-engineered intersubband metamaterials Nonlinear optics with quantum-engineered intersubband metamaterials Mikhail Belkin Department of Electrical and Computer Engineering The University of Texas at Austin 1 Mid-infrared and THz photonics Electronics

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

High performance THz quantum cascade lasers

High performance THz quantum cascade lasers High performance THz quantum cascade lasers Karl Unterrainer M. Kainz, S. Schönhuber, C. Deutsch, D. Bachmann, J. Darmo, H. Detz, A.M. Andrews, W. Schrenk, G. Strasser THz QCL performance High output power

More information

Gain competition in dual wavelength quantum cascade lasers

Gain competition in dual wavelength quantum cascade lasers Gain competition in dual wavelength quantum cascade lasers Markus Geiser, 1, 4 Christian Pflügl, 1,* Alexey Belyanin, 2 Qi Jie Wang, 1 Nanfang Yu, 1 Tadanaka Edamura, 3 Masamichi Yamanishi, 3 Hirofumi

More information

Emission Spectra of the typical DH laser

Emission Spectra of the typical DH laser Emission Spectra of the typical DH laser Emission spectra of a perfect laser above the threshold, the laser may approach near-perfect monochromatic emission with a spectra width in the order of 1 to 10

More information

THz QCL sources for operation above cryogenic temperatures Mikhail Belkin

THz QCL sources for operation above cryogenic temperatures Mikhail Belkin THz QCL sources for operation above cryogenic temperatures Mikhail Belkin Department of Electrical and Computer Engineering University of Texas at Austin IQCLSW, Monte Verita, Switzerland 008 Need for

More information

Sample Grating Distributed Feedback Quantum Cascade Laser Array

Sample Grating Distributed Feedback Quantum Cascade Laser Array Yan et al. Nanoscale Research Letters (2015) 10:406 DOI 10.1186/s11671-015-1115-9 NANO EXPRESS Open Access Sample Grating Distributed Feedback Quantum Cascade Laser Array FL Yan, JC Zhang *, CW Liu, N.

More information

Unlike the near-infrared and visible spectral ranges, where diode lasers provide compact and reliable sources,

Unlike the near-infrared and visible spectral ranges, where diode lasers provide compact and reliable sources, PS Feature Array of Tiny Quantum Cascade Lasers Provides Tunable Mid-IR Output The microchip has advantages over a conventional FTIR spectrometer. by Benjamin G. Lee, Dr. Mikhail A. Belkin and Dr. Federico

More information

Quantum Cascade laser for biophotonics

Quantum Cascade laser for biophotonics Quantum Cascade laser for biophotonics Jérôme Faist Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group Context and motivations Gas sensing Control of air quality in

More information

Multi-wavelength operation and vertical emission in THz quantum-cascade lasers*

Multi-wavelength operation and vertical emission in THz quantum-cascade lasers* JOURNAL OF APPLIED PHYSICS 101, 081726 2007 Multi-wavelength operation and vertical emission in THz quantum-cascade lasers* Giacomo Scalari, a Lorenzo Sirigu, b Romain Terazzi, Christoph Walther, Maria

More information

Quantum Dot Lasers. Andrea Fiore. Ecole Polytechnique Fédérale de Lausanne

Quantum Dot Lasers. Andrea Fiore. Ecole Polytechnique Fédérale de Lausanne Quantum Dot Lasers Ecole Polytechnique Fédérale de Lausanne Outline: Quantum-confined active regions Self-assembled quantum dots Laser applications Electronic states in semiconductors Schrödinger eq.:

More information

Lecture 2. Electron states and optical properties of semiconductor nanostructures

Lecture 2. Electron states and optical properties of semiconductor nanostructures Lecture Electron states and optical properties of semiconductor nanostructures Bulk semiconductors Band gap E g Band-gap slavery: only light with photon energy equal to band gap can be generated. Very

More information

Broadband Quantum-Dot/Dash Lasers

Broadband Quantum-Dot/Dash Lasers Broadband Quantum-Dot/Dash Lasers Boon S. Ooi, Electrical & Computer Eng. Lehigh University Tel: 610-758 2606, email:bsooi@lehigh.edu ACKNOWDLEDGEMENT Students and Postdoc: Hery S. Djie, Yang Wang, Clara

More information

Thermal and electronic analysis of GaInAs/AlInAs mid-ir

Thermal and electronic analysis of GaInAs/AlInAs mid-ir Thermal and electronic analysis of GaInAs/AlInAs mid-ir QCLs Gaetano Scamarcio Miriam S. Vitiello, Vincenzo Spagnolo, Antonia Lops oratory LIT 3, CNR - INFM Physics Dept.,University of Bari, Italy T. Gresch,

More information

Temperature dependence of the frequency noise in a mid-ir DFB quantum cascade laser from cryogenic to room temperature

Temperature dependence of the frequency noise in a mid-ir DFB quantum cascade laser from cryogenic to room temperature 1 Temperature dependence of the frequency noise in a mid-ir DFB quantum cascade laser from cryogenic to room temperature Lionel Tombez,* Stéphane Schilt, Joab Di Francesco, Pierre Thomann, and Daniel Hofstetter

More information

High Power Diode Lasers

High Power Diode Lasers Lecture 10/1 High Power Diode Lasers Low Power Lasers (below tenth of mw) - Laser as a telecom transmitter; - Laser as a spectroscopic sensor; - Laser as a medical diagnostic tool; - Laser as a write-read

More information

Workshop on optical gas sensing

Workshop on optical gas sensing Workshop on optical gas sensing 15.01.2015 1 Intensity (a.u.) The QCL frequency comb A laser emitting many wavelengths at the same time. Covering a broad spectral range of tens to a few 100 wavenumbers.

More information

Spectroscopic study of transparency current in mid-infrared quantum cascade lasers

Spectroscopic study of transparency current in mid-infrared quantum cascade lasers Spectroscopic study of transparency current in mid-infrared quantum cascade lasers Dmitry G. Revin, 1,* Randa S. Hassan, 1,4 Andrey B. Krysa, 2 Yongrui Wang, 3 Alexey Belyanin, 3 Kenneth Kennedy, 2 Chris

More information

Performance Evaluation of Quantum Cascaded Lasers through VisSim Modeling

Performance Evaluation of Quantum Cascaded Lasers through VisSim Modeling Performance Evaluation of Quantum Cascaded Lasers through VisSim Modeling Mohamed B. El_Mashade (a), Imbaby I. Mahamoud (b), & Mohamed S. El_Tokhy (b) (a) Electrical Engineering Dept., Al Azhar University,

More information

Spectroscopic Applications of Quantum Cascade Lasers

Spectroscopic Applications of Quantum Cascade Lasers Spectroscopic Applications of Quantum Cascade Lasers F.K. Tittel, A. Kosterev, and R.F. Curl Rice University Houston, USA OUTLINE fkt@rice.edu http://www.ruf.rice.edu/~lasersci/ PQE 2000 Snowbird, UT Motivation

More information

Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA.

Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA. Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA. Abstract: By electrically segmenting, and series-connecting

More information

3-1-2 GaSb Quantum Cascade Laser

3-1-2 GaSb Quantum Cascade Laser 3-1-2 GaSb Quantum Cascade Laser A terahertz quantum cascade laser (THz-QCL) using a resonant longitudinal optical (LO) phonon depopulation scheme was successfully demonstrated from a GaSb/AlSb material

More information

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission. Lecture 10 Stimulated Emission Devices Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

Quasi-Phase-Matched Gallium Arsenide for Mid Infrared Frequency Conversion

Quasi-Phase-Matched Gallium Arsenide for Mid Infrared Frequency Conversion Quasi-Phase-Matched Gallium Arsenide for Mid Infrared Frequency Conversion E. Lallier, A. Grisard Research & Technology Thales Research & Technology, France B. Gerard Alcatel-Thales 3-5 Lab, France 2 Mid-IR

More information

Short wavelength and strain compensated InGaAs-AlAsSb. AlAsSb quantum cascade lasers. D.Revin, S.Zhang, J.Cockburn, L.Wilson, S.

Short wavelength and strain compensated InGaAs-AlAsSb. AlAsSb quantum cascade lasers. D.Revin, S.Zhang, J.Cockburn, L.Wilson, S. Short wavelength and strain compensated InGaAs-AlAsSb AlAsSb quantum cascade lasers D.Revin, S.Zhang, J.Cockburn, L.Wilson, S.Menzel, Department of Physics and Astronomy, University of Sheffield, United

More information

Far IR (FIR) Gas Lasers microns wavelengths, THz frequency Called Terahertz lasers or FIR lasers At this wavelength behaves more like

Far IR (FIR) Gas Lasers microns wavelengths, THz frequency Called Terahertz lasers or FIR lasers At this wavelength behaves more like Far IR (FIR) Gas Lasers 10-1500 microns wavelengths, 300 10 THz frequency Called Terahertz lasers or FIR lasers At this wavelength behaves more like microwave signal than light Created by Molecular vibronic

More information

Nonlinear Dynamics of Quantum Cascade Laser in Ring Cavity

Nonlinear Dynamics of Quantum Cascade Laser in Ring Cavity Nonlinear Dynamics of Quantum Cascade Laser in Ring Cavity A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY HADI MADANIAN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

Optical Nonlinearities in Quantum Wells

Optical Nonlinearities in Quantum Wells Harald Schneider Institute of Ion-Beam Physics and Materials Research Semiconductor Spectroscopy Division Rosencher s Optoelectronic Day Onéra 4.05.011 Optical Nonlinearities in Quantum Wells Harald Schneider

More information

Terahertz Lasers Based on Intersubband Transitions

Terahertz Lasers Based on Intersubband Transitions Terahertz Lasers Based on Intersubband Transitions Personnel B. Williams, H. Callebaut, S. Kumar, and Q. Hu, in collaboration with J. Reno Sponsorship NSF, ARO, AFOSR,and NASA Semiconductor quantum wells

More information

Quantum cascade lasers with an integrated polarization mode converter

Quantum cascade lasers with an integrated polarization mode converter Quantum cascade lasers with an integrated polarization mode converter D. Dhirhe, 1,* T. J. Slight, 2 B. M. Holmes, 1 D. C. Hutchings, 1 and C. N. Ironside 1 1 School of Engineering, University of Glasgow,

More information

White Rose Research Online URL for this paper:

White Rose Research Online URL for this paper: This is a repository copy of Self-consistent solutions to the intersubband rate equations in quantum cascade lasers: Analysis of a GaAs/AlxGa1-xAs device. White Rose Research Online URL for this paper:

More information

External cavity terahertz quantum cascade laser sources based on intra-cavity frequency

External cavity terahertz quantum cascade laser sources based on intra-cavity frequency Home Search Collections Journals About Contact us My IOPscience External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2 5.9 THz tuning range This content

More information

1300nm-Range GaInNAs-Based Quantum Well Lasers with High Characteristic Temperature

1300nm-Range GaInNAs-Based Quantum Well Lasers with High Characteristic Temperature 3nm-Range GaInNAs-Based Quantum Well Lasers with High Characteristic Temperature by Hitoshi Shimizu *, Kouji Kumada *, Seiji Uchiyama * and Akihiko Kasukawa * Long wavelength- SQW lasers that include a

More information

Signal regeneration - optical amplifiers

Signal regeneration - optical amplifiers Signal regeneration - optical amplifiers In any atom or solid, the state of the electrons can change by: 1) Stimulated absorption - in the presence of a light wave, a photon is absorbed, the electron is

More information

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. Electron energy levels in an hydrogen atom n=5 n=4 - + n=3 n=2 13.6 = [ev]

More information

Stimulated Emission Devices: LASERS

Stimulated Emission Devices: LASERS Stimulated Emission Devices: LASERS 1. Stimulated Emission and Photon Amplification E 2 E 2 E 2 hυ hυ hυ In hυ Out hυ E 1 E 1 E 1 (a) Absorption (b) Spontaneous emission (c) Stimulated emission The Principle

More information

Quantum Dot Lasers. Jose Mayen ECE 355

Quantum Dot Lasers. Jose Mayen ECE 355 Quantum Dot Lasers Jose Mayen ECE 355 Overview of Presentation Quantum Dots Operation Principles Fabrication of Q-dot lasers Advantages over other lasers Characteristics of Q-dot laser Types of Q-dot lasers

More information

Design and simulation of deep-well GaAs-based quantum cascade lasers for 6.7 m room-temperature operation

Design and simulation of deep-well GaAs-based quantum cascade lasers for 6.7 m room-temperature operation JOURNAL OF APPLIED PHYSICS 102, 113107 2007 Design and simulation of deep-well GaAs-based quantum cascade lasers for 6.7 m room-temperature operation X. Gao, M. D Souza, D. Botez, and I. Knezevic a Department

More information

Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers

Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers Tillmann Kubis, Gerhard Klimeck Department of Electrical and Computer Engineering Purdue University, West Lafayette, Indiana

More information

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation Jahan M. Dawlaty, Farhan Rana and William J. Schaff Department of Electrical and Computer

More information

Far IR Gas Lasers microns wavelengths, THz frequency Called Terahertz lasers or FIR lasers At this wavelength behaves more like

Far IR Gas Lasers microns wavelengths, THz frequency Called Terahertz lasers or FIR lasers At this wavelength behaves more like Far IR Gas Lasers 10-1500 microns wavelengths, 300 10 THz frequency Called Terahertz lasers or FIR lasers At this wavelength behaves more like microwave signal than light Created by Molecular vibronic

More information

Semiconductor Quantum Dot Nanostructures and their Roles in the Future of Photonics

Semiconductor Quantum Dot Nanostructures and their Roles in the Future of Photonics 550 Brazilian Journal of Physics, vol. 34, no. 2B, June, 2004 Semiconductor Quantum Dot Nanostructures and their Roles in the Future of Photonics S. Fafard, K. Hinzer, and C. N. Allen Institute for Microstructural

More information

QUANTUM CASCADE LASERS: COMPACT WIDELY TAILORABLE LIGHT SOURCES FROM THE MID-INFRARED TO THE FAR INFRARED FEDERICO CAPASSO

QUANTUM CASCADE LASERS: COMPACT WIDELY TAILORABLE LIGHT SOURCES FROM THE MID-INFRARED TO THE FAR INFRARED FEDERICO CAPASSO QUANTUM CASCADE LASERS: COMPACT WIDELY TAILORABLE LIGHT SOURCES FROM THE MID-INFRARED TO THE FAR INFRARED FEDERICO CAPASSO School of Engineering and Applied Sciences Harvard University capasso@seas.harvard.edu

More information

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall Due on Nov 20, 2014 by 5:00 PM

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall Due on Nov 20, 2014 by 5:00 PM School of Electrical and Computer Engineering, Cornell University ECE 533: Semiconductor Optoelectronics Fall 14 Homewor 8 Due on Nov, 14 by 5: PM This is a long -wee homewor (start early). It will count

More information

Fabrication and Evaluation of In 0.52 Al 0.48 As/In 0.53 Ga 0.47 As/InP Quantum Cascade Lasers

Fabrication and Evaluation of In 0.52 Al 0.48 As/In 0.53 Ga 0.47 As/InP Quantum Cascade Lasers Fabrication and Evaluation of In 0.52 Al 0.48 As/In 0.53 Ga 0.47 As/InP Quantum Cascade Lasers Submitted for the degree of Doctor of Philosophy to the Faculty of Engineering, University of Glasgow by Corrie

More information

Oscillateur paramétrique optique en

Oscillateur paramétrique optique en C. Ozanam 1, X. Lafosse 2, I. Favero 1, S. Ducci 1, G. Leo 1 1 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire MPQ, CNRS-UMR 7162, Paris, France, 2 Laboratoire de Photonique et Nanostructures,

More information

EE 472 Solutions to some chapter 4 problems

EE 472 Solutions to some chapter 4 problems EE 472 Solutions to some chapter 4 problems 4.4. Erbium doped fiber amplifier An EDFA is pumped at 1480 nm. N1 and N2 are the concentrations of Er 3+ at the levels E 1 and E 2 respectively as shown in

More information

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a Matrix S. Kriechbaumer 1, T. Schwarzl 1, H. Groiss 1, W. Heiss 1, F. Schäffler 1,T. Wojtowicz 2, K. Koike 3,

More information

Electrically Driven Polariton Devices

Electrically Driven Polariton Devices Electrically Driven Polariton Devices Pavlos Savvidis Dept of Materials Sci. & Tech University of Crete / FORTH Polariton LED Rome, March 18, 211 Outline Polariton LED device operating up to room temperature

More information

Chapter 5. Semiconductor Laser

Chapter 5. Semiconductor Laser Chapter 5 Semiconductor Laser 5.0 Introduction Laser is an acronym for light amplification by stimulated emission of radiation. Albert Einstein in 1917 showed that the process of stimulated emission must

More information

Optoelectronics ELEC-E3210

Optoelectronics ELEC-E3210 Optoelectronics ELEC-E3210 Lecture 3 Spring 2017 Semiconductor lasers I Outline 1 Introduction 2 The Fabry-Pérot laser 3 Transparency and threshold current 4 Heterostructure laser 5 Power output and linewidth

More information

Towards Si-based Light Sources. Greg Sun University of Massachusetts Boston

Towards Si-based Light Sources. Greg Sun University of Massachusetts Boston Towards Si-based Light Sources Greg Sun University of Massachusetts Boston UMass System Amherst, Boston, Lowell, Dartmouth Worcester (Medical school) UMass Boston UMass Boston Established in 1964 Only

More information

Isotopic Ratio Measurements of Atmospheric Carbon Dioxide Using a 4.3 µm Pulsed QC Laser

Isotopic Ratio Measurements of Atmospheric Carbon Dioxide Using a 4.3 µm Pulsed QC Laser Isotopic Ratio Measurements of Atmospheric Carbon Dioxide Using a 4.3 µm Pulsed QC Laser David D. Nelson, J. Barry McManus, Scott C. Herndon and Mark S. Zahniser Aerodyne Research, Inc., 45 Manning Road,

More information

Broadly tunable terahertz differencefrequency generation in quantum cascade lasers on silicon

Broadly tunable terahertz differencefrequency generation in quantum cascade lasers on silicon Broadly tunable terahertz differencefrequency generation in quantum cascade lasers on silicon Seungyong Jung Jae Hyun Kim Yifan Jiang Karun Vijayraghavan Mikhail A. Belkin Seungyong Jung, Jae Hyun Kim,

More information

Carrier Loss Analysis for Ultraviolet Light-Emitting Diodes

Carrier Loss Analysis for Ultraviolet Light-Emitting Diodes Carrier Loss Analysis for Ultraviolet Light-Emitting Diodes Joachim Piprek, Thomas Katona, Stacia Keller, Steve DenBaars, and Shuji Nakamura Solid State Lighting and Display Center University of California

More information

Semiconductor Lasers II

Semiconductor Lasers II Semiconductor Lasers II Materials and Structures Edited by Eli Kapon Institute of Micro and Optoelectronics Department of Physics Swiss Federal Institute oftechnology, Lausanne OPTICS AND PHOTONICS ACADEMIC

More information

Physics and Material Science of Semiconductor Nanostructures

Physics and Material Science of Semiconductor Nanostructures Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Email: omalis@purdue.edu Course website: http://www.physics.purdue.edu/academic_programs/courses/phys570p/ 1 Course

More information

Near-Infrared Spectroscopy of Nitride Heterostructures EMILY FINAN ADVISOR: DR. OANA MALIS PURDUE UNIVERSITY REU PROGRAM AUGUST 2, 2012

Near-Infrared Spectroscopy of Nitride Heterostructures EMILY FINAN ADVISOR: DR. OANA MALIS PURDUE UNIVERSITY REU PROGRAM AUGUST 2, 2012 Near-Infrared Spectroscopy of Nitride Heterostructures EMILY FINAN ADVISOR: DR. OANA MALIS PURDUE UNIVERSITY REU PROGRAM AUGUST 2, 2012 Introduction Experimental Condensed Matter Research Study of large

More information

Far IR (FIR) Gas Lasers microns wavelengths, THz frequency Called Terahertz lasers or FIR lasers At this wavelength behaves more like

Far IR (FIR) Gas Lasers microns wavelengths, THz frequency Called Terahertz lasers or FIR lasers At this wavelength behaves more like Far IR (FIR) Gas Lasers 10-1500 microns wavelengths, 300 10 THz frequency Called Terahertz lasers or FIR lasers At this wavelength behaves more like microwave signal than light Created by Molecular vibronic

More information

THz experiments at the UCSB FELs and the THz Science and Technology Network.

THz experiments at the UCSB FELs and the THz Science and Technology Network. THz experiments at the UCSB FELs and the THz Science and Technology Network. Mark Sherwin UCSB Physics Department and Institute for Quantum and Complex Dynamics UCSB Center for Terahertz Science and Technology

More information

Double-waveguide quantum cascade laser

Double-waveguide quantum cascade laser Double-waveguide quantum cascade laser Romain Blanchard, Cécile Grezes, Stefan Menzel, Christian Pflügl, Laurent Diehl et al. Citation: Appl. Phys. Lett. 100, 033502 (2012); doi: 10.1063/1.3678033 View

More information

Importance of the microscopic effects on the linewidth enhancement factor of quantum cascade lasers

Importance of the microscopic effects on the linewidth enhancement factor of quantum cascade lasers Importance of the microscopic effects on the linewih enhancement factor of quantum cascade lasers Tao Liu, 1 Kenneth E. Lee, 2 and Qi Jie Wang 1,3,* 1 NOVITAS, Nanoelectronics Centre of Excellence, School

More information

GaN-based Devices: Physics and Simulation

GaN-based Devices: Physics and Simulation GaN-based Devices: Physics and Simulation Joachim Piprek NUSOD Institute Collaborators Prof. Shuji Nakamura, UCSB Prof. Steve DenBaars, UCSB Dr. Stacia Keller, UCSB Dr. Tom Katona, now at S-ET Inc. Dr.

More information

IRSENS. Méthodes optiques pour l analyse des gaz et des liquides, e.g. détection de cocaïne dans la salive. Nano Tera.

IRSENS. Méthodes optiques pour l analyse des gaz et des liquides, e.g. détection de cocaïne dans la salive. Nano Tera. IRSENS Méthodes optiques pour l analyse des gaz et des liquides, e.g. détection de cocaïne dans la salive J. Faist, P. Jouy ETH Zurich Nano Tera.ch Info Day 2014 Sensing needs Gases fluids Environment

More information

THE terahertz (THz) region ( THz) of the electromagnetic

THE terahertz (THz) region ( THz) of the electromagnetic 952 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 15, NO. 3, MAY/JUNE 2009 High-Temperature Operation of Terahertz Quantum Cascade Laser Sources Mikhail A. Belkin, Member, IEEE, Qi Jie Wang,

More information

Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors

Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors M. Grydlik 1, P. Rauter 1, T. Fromherz 1, G. Bauer 1, L. Diehl 2, C. Falub 2, G. Dehlinger 2, H. Sigg 2, D. Grützmacher

More information

Theoretical investigation on intrinsic linewidth of quantum cascade lasers. Liu Tao

Theoretical investigation on intrinsic linewidth of quantum cascade lasers. Liu Tao Theoretical investigation on intrinsic linewidth of quantum cascade lasers Liu Tao School of Electrical and Electronic Engineering 014 Theoretical investigation on intrinsic linewidth of quantum cascade

More information

Semiconductor Lasers for Optical Communication

Semiconductor Lasers for Optical Communication Semiconductor Lasers for Optical Communication Claudio Coriasso Manager claudio.coriasso@avagotech.com Turin Technology Centre 10Gb/s DFB Laser MQW 1 Outline 1) Background and Motivation Communication

More information

High Sensitivity Gas Sensor Based on IR Spectroscopy Technology and Application

High Sensitivity Gas Sensor Based on IR Spectroscopy Technology and Application PHOTONIC SENSORS / Vol. 6, No. 2, 2016: 127 131 High Sensitivity Gas Sensor Based on IR Spectroscopy Technology and Application Hengyi LI Department of Electronic Information Engineering, Jincheng College

More information

Time-Resolved Investigations of Electronic Transport Dynamics in Quantum Cascade Lasers Based on Diagonal Lasing Transition

Time-Resolved Investigations of Electronic Transport Dynamics in Quantum Cascade Lasers Based on Diagonal Lasing Transition Time-Resolved Investigations of Electronic Transport Dynamics in Quantum Cascade Lasers Based on Diagonal Lasing Transition The Harvard community has made this article openly available. Please share how

More information

Quantum cascade (QC) lasers, invented in 1994 by J. Faist,

Quantum cascade (QC) lasers, invented in 1994 by J. Faist, REVIEW ARTICLES FOCUS PUBLISHED ONLINE: 8 JUNE 1 DOI: 1.138/NPHOTON.1.143 Mid-infrared quantum cascade lasers Yu Yao 1, Anthony J. Hoffman * and Claire F. Gmachl 3 Mid-infrared quantum cascade lasers are

More information

Nonlinear Electrodynamics and Optics of Graphene

Nonlinear Electrodynamics and Optics of Graphene Nonlinear Electrodynamics and Optics of Graphene S. A. Mikhailov and N. A. Savostianova University of Augsburg, Institute of Physics, Universitätsstr. 1, 86159 Augsburg, Germany E-mail: sergey.mikhailov@physik.uni-augsburg.de

More information

EE 6313 Homework Assignments

EE 6313 Homework Assignments EE 6313 Homework Assignments 1. Homework I: Chapter 1: 1.2, 1.5, 1.7, 1.10, 1.12 [Lattice constant only] (Due Sept. 1, 2009). 2. Homework II: Chapter 1, 2: 1.17, 2.1 (a, c) (k = π/a at zone edge), 2.3

More information

Ballistic Electron Spectroscopy of Quantum Mechanical Anti-reflection Coatings for GaAs/AlGaAs Superlattices

Ballistic Electron Spectroscopy of Quantum Mechanical Anti-reflection Coatings for GaAs/AlGaAs Superlattices Ballistic Electron Spectroscopy of Quantum Mechanical Anti-reflection Coatings for GaAs/AlGaAs Superlattices C. Pacher, M. Kast, C. Coquelin, G. Fasching, G. Strasser, E. Gornik Institut für Festkörperelektronik,

More information

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour (Cu) All operate by vaporizing metal in container Helium

More information

Recent progress in development of mid-ir interband cascade lasers

Recent progress in development of mid-ir interband cascade lasers Recent progress in development of mid-ir interband cascade lasers Rui Q. Yang, Cory J. Hill, Chug M. Wong Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California ABSTRACT Type-I1

More information

Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography

Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography Ashim Kumar Saha (D3) Supervisor: Prof. Toshiaki Suhara Doctoral Thesis Defense Quantum Engineering Design Course Graduate

More information

Wavelength Stabilized High-Power Quantum Dot Lasers

Wavelength Stabilized High-Power Quantum Dot Lasers Wavelength Stabilized High-Power Quantum Dot Lasers Johann Peter Reithmaier Technische Physik, Institute of Nanostructure Technologies & Analytics () Universität Kassel, Germany W. Kaiser, R. Debusmann,

More information

Phys 2310 Fri. Dec. 12, 2014 Today s Topics. Begin Chapter 13: Lasers Reading for Next Time

Phys 2310 Fri. Dec. 12, 2014 Today s Topics. Begin Chapter 13: Lasers Reading for Next Time Phys 2310 Fri. Dec. 12, 2014 Today s Topics Begin Chapter 13: Lasers Reading for Next Time 1 Reading this Week By Fri.: Ch. 13 (13.1, 13.3) Lasers, Holography 2 Homework this Week No Homework this chapter.

More information

Design Optimization for 4.1-THZ Quantum Cascade Lasers

Design Optimization for 4.1-THZ Quantum Cascade Lasers Design Optimization for 4.1-THZ Quantum Cascade Lasers F. Esmailifard*, M. K. Moravvej-Farshi* and K. Saghafi** Abstract: We present an optimized design for GaAs/AlGaAs quantum cascade lasers operating

More information

High characteristic temperature of 1.3 #m crescent buried heterostructure laser diodes

High characteristic temperature of 1.3 #m crescent buried heterostructure laser diodes Bull. Mater. Sci., Vol. 11, No. 4, December 1988, pp. 291 295. Printed in India. High characteristic temperature of 1.3 #m crescent buried heterostructure laser diodes Y K SU and T L CHEN Institute of

More information

Vertically Emitting Microdisk Lasers

Vertically Emitting Microdisk Lasers Excerpt from the Proceedings of the COMSOL Conference 008 Hannover Vertically Emitting Microdisk Lasers Lukas Mahler *,1, Alessandro Tredicucci 1 and Fabio Beltram 1 1 NEST-INFM and Scuola Normale Superiore,

More information

Efficient Light Scattering in Mid-Infrared Detectors

Efficient Light Scattering in Mid-Infrared Detectors Efficient Light Scattering in Mid-Infrared Detectors Arvind P. Ravikumar, Deborah Sivco, and Claire Gmachl Department of Electrical Engineering, Princeton University, Princeton NJ 8544 MIRTHE Summer Symposium

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

Mid-infrared quantum cascade detectors for applications in spectroscopy and pyrometry

Mid-infrared quantum cascade detectors for applications in spectroscopy and pyrometry Published in Applied Physics B : Lasers and Optics 100, issue 2, 313-320, 2010 which should be used for any reference to this work 1 Mid-infrared quantum cascade detectors for applications in spectroscopy

More information

Barrier Photodetectors for High Sensitivity and High Operating Temperature Infrared Sensors

Barrier Photodetectors for High Sensitivity and High Operating Temperature Infrared Sensors Barrier Photodetectors for High Sensitivity and High Operating Temperature Infrared Sensors Philip Klipstein General Review of Barrier Detectors 1) Higher operating temperature, T OP 2) Higher signal to

More information

Terahertz sensing and imaging based on carbon nanotubes:

Terahertz sensing and imaging based on carbon nanotubes: Terahertz sensing and imaging based on carbon nanotubes: Frequency-selective detection and near-field imaging Yukio Kawano RIKEN, JST PRESTO ykawano@riken.jp http://www.riken.jp/lab-www/adv_device/kawano/index.html

More information

MONTE CARLO SIMULATION OF ELECTRON DYNAMICS IN QUANTUM CASCADE LASERS. Xujiao Gao

MONTE CARLO SIMULATION OF ELECTRON DYNAMICS IN QUANTUM CASCADE LASERS. Xujiao Gao MONTE CARLO SIMULATION OF ELECTRON DYNAMICS IN QUANTUM CASCADE LASERS by Xujiao Gao A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical

More information

MEASUREMENT of gain from amplified spontaneous

MEASUREMENT of gain from amplified spontaneous IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 40, NO. 2, FEBRUARY 2004 123 Fourier Series Expansion Method for Gain Measurement From Amplified Spontaneous Emission Spectra of Fabry Pérot Semiconductor Lasers

More information

Metal Vapour Lasers Use vapourized metal as a gain medium Developed by W. Silfvast (1966) Put metal in a cavity with a heater Vapourize metal, then

Metal Vapour Lasers Use vapourized metal as a gain medium Developed by W. Silfvast (1966) Put metal in a cavity with a heater Vapourize metal, then Metal Vapour Lasers Use vapourized metal as a gain medium Developed by W. Silfvast (1966) Put metal in a cavity with a heater Vapourize metal, then pump metal vapour with current Walter at TRG (1966) then

More information

GaInNAs: A new Material in the Race for Long Wavelength VCSELs. Outline

GaInNAs: A new Material in the Race for Long Wavelength VCSELs. Outline GaInNAs: A new Material in the Race for Long Wavelength VCSELs J. S. Harris S. Spruytte, C. Coldren, M. Larson, M. Wistey, V. Gambin, W. Ha Stanford University Agilent Seminar, Palo Alto, CA 14 February

More information

Semiconductor Quantum Dots: A Multifunctional Gain Material for Advanced Optoelectronics

Semiconductor Quantum Dots: A Multifunctional Gain Material for Advanced Optoelectronics Semiconductor Quantum Dots: A Multifunctional Gain Material for Advanced Optoelectronics Johann Peter Reithmaier Technische Physik, University of Würzburg, Germany Quantum Dots: A New Class of Gain Material

More information

EYP-DFB TOC03-000x

EYP-DFB TOC03-000x Version 0.93 2009-05-06 page 1 from 5 General Product Information Product Application 1083 nm DFB Laser with hermetic TO Housing Spectroscopy Monitor Diode, Thermoelectric Cooler and Thermistor He Polarization

More information