Quasi-Phase-Matched Gallium Arsenide for Mid Infrared Frequency Conversion

Size: px
Start display at page:

Download "Quasi-Phase-Matched Gallium Arsenide for Mid Infrared Frequency Conversion"

Transcription

1 Quasi-Phase-Matched Gallium Arsenide for Mid Infrared Frequency Conversion E. Lallier, A. Grisard Research & Technology Thales Research & Technology, France B. Gerard Alcatel-Thales 3-5 Lab, France

2 2 Mid-IR sources requirements and OPOs Military Environment Medical Industrial Tunability, multi-spectral t l Mid-IR laser sources High energy /peak power CW to short pulses Narrow or broad linewidth Optical Parametric Oscillator (OPO) Pump Multi-wavelength capability NL Cristal χ (2) Wide tunability Suitable MIR nonlinear crystal?

3 3 MWIR quasi-phase-matched crystal Desirable properties for the NL crystal: High nonlinear coefficient Low absorption loss High laser damage threshold Low thermal lensing Non-critical phase matching Transmission (µm) Nonlinear Coefficient (pm/v) PPLN ZGP GaAs QPM vs BPM: High nonlinearities Non-critical interactions Engineering flexibility Thermal Conductivity (W/m.K) α (cm -1 ) (> 2 µm) ,025 0,02 PPLN-like crystal for the mid-ir?

4 Quasi-Phasematching (QPM) in GaAs Periods under 100 µm for near-infrared pump lasers OP-GaAs 60 µm OP-GaAs 50 µm d eff -d eff d eff -d eff d eff Λ = 2π / Δk wavelength (nm) OP-GaAs 40 µm OP-GaAs 30 µm Output The informatio PPLN 30 µm Pump wavelength (nm)

5 5 Quasi-Phasematching (QPM) in GaAs Following Armstrong et al. (1962) π + χ (2) - χ (2) + χ (2) (19 GaAs plates) [110] [-110] [110] ( p ) π π Boyd et al. (1966) Thompson et al. (1976) 0,5 mm (95 GaAs plates) - χ (2) - χ (2) - χ (2) + χ (2) + χ (2) + χ (2) + χ (2) 8 mm kg 9 mm 7 mm GaAs substrate Gordon et al. (1993) Thales/ Stanford (1999)

6 Thales prior written approval. THALES Template trtp 6 Fabrication of Thick Orientation-Patterned GaAs 1) [001] + [001] 2) [001] 0.1 µm [001] 2 GaAs wafer 2 GaAs wafer + etch-stop layer µm GaAs layer regrowth Crystallographic inversion by wafer bonding process 5) - χ (2) 4) 3) - χ (2) [00-1] [001] Lc [00-1] - χ (2) + χ (2) - χ (2) - χ (2) + χ (2) - χ (2) >500 µm - χ (2) - χ (2) - χ (2) + χ (2) + χ (2) 0,1 µm HVPE regrowth Gratings defined by photolithographic process Mechanical & chemical etching

7 7 Growth techniques on QPM GaAs samples 100 µm 100 µm DB GaAs DB GaAs CSVT growth on 212 µm DB-GaAs sample HVPE growth on 212 µm DB-GaAs sample 500 µm 500 µm OP-GaAs template OP-GaAs template HVPE growth on 60 µm 2 OP-GaAs template (Thales) HVPE growth on 60 µm OP-GaAs sample (Stanford/Thales)

8 Hydride Vapour Phase Epitaxy (HVPE) Physics of GaAs growth : GaCl g + ¼ As 4g + ½ H 2g GaAs + HCl g Oven HCl + H 2 H 2 + HCl add AsH 3 Quartz HCl GaCl HCl Gallium source As 2 / As 4 H 2 GaAs substrate Growth Characteristics : Perfect growth selectivity (preserve initial orientations) GaAs growth with low impurity concentration (residual cm 3 ) High frequency desorption of As/GaCl precursors on surface Growth rate up to 35 µm/h 8

9 9 Influences of HVPE growth parameters Examples of HVPE growth anisotropy of GaAs crystal: III/V= 9, T=760 C T= 780 C, III/V = 3 GaAs band // [-110] III/V = 3 T= 760 C GaAs band // [110], III/V = 3,T= 760 C Due to χ (2) /-χ (2) orientations on OP-GaAs template: OP-GaAs template Apparition of a morphology conflict during HVPE regrowth

10 10 HVPE regrowth on OP-GaAs template (1) Gratings period ~30 µm HVPE film 380 µm 100 µm L C OP-GaAs 30 µm Gratings period ~ 60 µm HVPE film 380 µm 200 µm L C OP-GaAs 60 µm Gratings period ~ 212 µm HVPE film 380 µm L C OP-GaAs L C 212 µm

11 11 HVPE regrowth on the OP-GaAs (2) HVPE regrowth on an OP-GaAs template with intentional Si doping : Gratings period: 60 µm zoom OP-GaAs GA 30 µm [001] [00-1] [001] [00-1] [001] [00-1] [001] [00-1] [001] V(113) V(-112) Intentional GaAs doping OP-GaAs 30 µm L C No GaAs doping The informatio Growth parameters verify the condition: v(113) * sin 55 = v(-112) * sin 65

12 12 Full wafer growth 2 multigrating 500 µm thick OP-GaAs 500 µm Growth characteristics: Growth rates: v(113)= 33 µm/h v(-112)= 30 µm/h 4 growth interruptions P=63.8 µm 500 µm 0 16,6 mm 500 µm 33,3 mm Cross section of a 3 cm-long OP-GaAs sample (63 µm grating period)

13 13 Towards thicker samples Old growth conditions with shorts cycles: 0.5 mm thickness (prior art) 0.8 mm thickness (summer 2009) 1.3 mm thickness (summer 2010) New growth conditions with long cycles: Thickness is limited it by parasitic nucleation Thicker samples will require a new reactor 1.5 mm thickness (winter 2011)

14 Optical transmission 1,2 1 Air 0,8 Transmission (mw) 0,6 Probe 0,4 HVPE Substrate 1 2 λ =1.5 µm ω 0 =50 µm 0,2 0 1cm ,08 Déplacement vertical (µm) 0, ,06 0,05 0,04 0, α < 0.03 cm -1 pertes cm-1 The informatio 0,02 0, Lowest loss measured cm -1 at 2 µm (in resonant cavity)

15 15 Optical Parametric Oscillation First demonstration of GaAs OPO (2004): Stanford University & Thales (K.L Vodopyanov et al., Optics Letters, Vol 29, 16 (2004)) 500 µm HVPE film OP-GaAs sample length: 13 mm HVPE layer thickness: 500 µm PPLN OPO pump

16 Difference Frequency Generation DFG at around 7.8 µm from Er and Tm CW fiber lasers : UoDusseldorf (S. Vasilyev et al., Opt. Lett., 33, 13, 2008, pp ) 33 mm GaAs optional Isolator Er source l th 1.55 μ m 10 W mid-ir detector wavelength measurement and control optional λ/2 mid-ir DFG output Theorical fit Tm source μ 1.93 m 0.25 W Isolator λ/2 L1 Λ= 38.6 μm t= O C L2 L3 DM OP-GaAs Beam separation DFG output, % The informatio Theorical fit X, mm

17 17 High power OPO High power GaAs OPO (2008): Institut t St. Louis (ISL) (C. Kieleck et al., Optics Letters, Vol 34, 3 (2009)) 2.09 µm high rep.rate Ho:YAG pump, 3-5 µm emission. Up to 60% slope efficiency and 2.85 W output Efficiency comparable to ZnGeP mm OP-GaAs 20 mm long 200 µm pump diameter 50% OC (s+i)

18 18 DIRCM module 20 W Tm fiber laser 10 W Q-switched Ho:YAG 3.0 W MWIR at 40 khz M 2 = 1.4 Portable demo A. Grisard et al., Proc SPIE (2010)

19 Parametric amplification of a DFB QCL 3 mw 4.5 µm CW DFB QCL 2.09 µm Ho:YAG 30 ns pulsed pump p at 20 khz 53 db gain with 41 mm long GaAs crystal 600 W peak power M 2 = 1.3, Δλ < 0.5 nm (instr. limited) mm GaAs Tm Fiber Pump Stage 1.9µm AO Ho:YAG 450 µm OP-GaAs Signal Gain (db) The informatio 19 DFB-QCL 4.5µm 2.09µm Pump : 2.09µm Idler : 3.9µm mm GaAs OP-GaAs Signal : 4.5µm Average Pump Power (W) G. Bloom et al., Optics Letters, Vol.35, N 4, (2010).

20 20 Recent results using OP-GaAs 7.7 W average power ns OPO (ISL) Fiber laser pumped ns OPO (ISL) Intracavity ps DFG for THz generation (Stanford) Fs MIR frequency comb (Stanford) CW OPO (BAE US) CLEO 2012

21 21 Aknowledgments C. Kieleck, M. Eichhorn, and A. Hildenbrand (ISL) S. Vasilyev and S. Shiller (UoDusseldorf) Part of this work was supported by the French MoD DGA/UM-TER/CGN Part of this work was/is supported by the European Comission: i VILLAGE ( MIRSURG ( IMPROV (

Periodic Poling of Stoichiometric Lithium Tantalate for High-Average Power Frequency Conversion

Periodic Poling of Stoichiometric Lithium Tantalate for High-Average Power Frequency Conversion VG04-123 Periodic Poling of Stoichiometric Lithium Tantalate for High-Average Power Frequency Conversion Douglas J. Bamford, David J. Cook, and Scott J. Sharpe Physical Sciences Inc. Jeffrey Korn and Peter

More information

THz QCL sources based on intracavity difference-frequency mixing

THz QCL sources based on intracavity difference-frequency mixing THz QCL sources based on intracavity difference-frequency mixing Mikhail Belkin Department of Electrical and Computer Engineering The University of Texas at Austin IQCLSW, Sept. 3, 218 Problems with traditional

More information

Oscillateur paramétrique optique en

Oscillateur paramétrique optique en C. Ozanam 1, X. Lafosse 2, I. Favero 1, S. Ducci 1, G. Leo 1 1 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire MPQ, CNRS-UMR 7162, Paris, France, 2 Laboratoire de Photonique et Nanostructures,

More information

Measurement of thermal lensing in GaAs induced by 100-W Tm:fier laser

Measurement of thermal lensing in GaAs induced by 100-W Tm:fier laser Measurement of thermal lensing in GaAs induced by 100-W Tm:fier laser Joshua Bradford 1, Konstantin Vodopyanov 1, Peter Schunemann 2, Lawrence Shah* 1, and Martin Richardson 1 1 Townes Laser Institute,

More information

Potassium Titanyl Phosphate(KTiOPO 4, KTP)

Potassium Titanyl Phosphate(KTiOPO 4, KTP) Potassium Titanyl Phosphate(KTiOPO 4, KTP) Introduction Potassium Titanyl Phosphate (KTiOPO 4 or KTP) is widely used in both commercial and military lasers including laboratory and medical systems, range-finders,

More information

Quadratic nonlinear interaction

Quadratic nonlinear interaction Nonlinear second order χ () interactions in III-V semiconductors 1. Generalities : III-V semiconductors & nd ordre nonlinear optics. The strategies for phase-matching 3. Photonic crystals for nd ordre

More information

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland Chapter 4b: χ (2) -nonlinearities with ultrashort pulses.

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland  Chapter 4b: χ (2) -nonlinearities with ultrashort pulses. Ultrafast Laser Physics Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 4b: χ (2) -nonlinearities with ultrashort pulses Ultrafast Laser Physics ETH Zurich Contents Second

More information

THz Electron Gun Development. Emilio Nanni 3/30/2016

THz Electron Gun Development. Emilio Nanni 3/30/2016 THz Electron Gun Development Emilio Nanni 3/30/2016 Outline Motivation Experimental Demonstration of THz Acceleration THz Generation Accelerating Structure and Results Moving Forward Parametric THz Amplifiers

More information

Idler-efficiency-enhanced long-wave infrared beam generation using aperiodic orientation-patterned GaAs gratings

Idler-efficiency-enhanced long-wave infrared beam generation using aperiodic orientation-patterned GaAs gratings 244 Vol. 55, No. 9 / March 2 216 / Applied Optics Research Article Idler-efficiency-enhanced long-wave infrared beam generation using aperiodic orientation-patterned GaAs gratings ZIYA GÜRKAN FIGEN, 1

More information

3.5x10 8 s/cm (c axis, 22 C, 1KHz) α x =11x10-6 / C, α y =9x10-6 / C, α z =0.6x10-6 / C

3.5x10 8 s/cm (c axis, 22 C, 1KHz) α x =11x10-6 / C, α y =9x10-6 / C, α z =0.6x10-6 / C Potassium Titanyl Phosphate (KTiOPO 4 or KTP) KTP (or KTiOPO 4 ) crystal is a nonlinear optical crystal, which possesses excellent nonlinear and electro-optic properties. It has large nonlinear optical

More information

Characterizing Optical Loss in Orientation Patterned III-V Materials Using Laser Calorimetry

Characterizing Optical Loss in Orientation Patterned III-V Materials Using Laser Calorimetry Air Force Institute of Technology AFIT Scholar Theses and Dissertations 3-14-2014 Characterizing Optical Loss in Orientation Patterned III-V Materials Using Laser Calorimetry Dushyant A. Sadhwani Follow

More information

Laser Spectroscopy of HeH + 施宙聰 2011 AMO TALK 2011/9/26

Laser Spectroscopy of HeH + 施宙聰 2011 AMO TALK 2011/9/26 Laser Spectroscopy of HeH + 施宙聰 2011 AMO TALK 2011/9/26 Outline Introduction Previous experimental results Saturation spectroscopy Conclusions and future works Diatomic Molecules Total energy=electronic

More information

Fabrication and characterization of Teflonbonded periodic GaAs structures for THz generation

Fabrication and characterization of Teflonbonded periodic GaAs structures for THz generation Fabrication and characterization of Teflonbonded periodic GaAs structures for THz generation Sarah E. Trubnick, Sergei Ya. Tochitsky, and Chandrashekhar Joshi Department of Electrical Engineering, University

More information

Singly resonant optical parametric oscillator for mid infrared

Singly resonant optical parametric oscillator for mid infrared Singly resonant optical parametric oscillator for mid infrared S Das, S Gangopadhyay, C Ghosh and G C Bhar, Laser Laboratory, Physics Department Burdwan University, Burdwan 713 104, India FAX: +91 342

More information

Simultaneous optical parametric oscillation and intracavity second-harmonic generation based on a hexagonally poled lithium tantalate

Simultaneous optical parametric oscillation and intracavity second-harmonic generation based on a hexagonally poled lithium tantalate Simultaneous optical parametric oscillation and intracavity second-harmonic generation based on a hexagonally poled lithium tantalate P. Xu *, J. F. Wang, C. Li, Z. D. Xie, X. J. Lv, H. Y. Leng, J. S.

More information

AIR FORCE INSTITUTE OF TECHNOLOGY

AIR FORCE INSTITUTE OF TECHNOLOGY OPTICAL CHARACTERIZATION OF THICK GROWTH ORIENTATION-PATTERNED GALLIUM ARSENIDE THESIS Joshua W. Meyer, Captain, USAF AFIT/GAP/ENP/06-10 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF

More information

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. Electron energy levels in an hydrogen atom n=5 n=4 - + n=3 n=2 13.6 = [ev]

More information

Optical Materials 34 (2012) Contents lists available at ScienceDirect. Optical Materials. journal homepage:

Optical Materials 34 (2012) Contents lists available at ScienceDirect. Optical Materials. journal homepage: Optical Materials 34 (2012) 536 554 Contents lists available at ScienceDirect Optical Materials journal homepage: www.elsevier.com/locate/optmat Parametric down-conversion devices: The coverage of the

More information

Crystals NLO Crystals LBO

Crystals NLO Crystals LBO Crystals NLO Crystals LBO Introduction Lithium triborate (LiB 3 O 5 or LBO) has the following exceptional properties that make it a very important nonlinear crystal: LBO has following advance: absorption:

More information

Emission Spectra of the typical DH laser

Emission Spectra of the typical DH laser Emission Spectra of the typical DH laser Emission spectra of a perfect laser above the threshold, the laser may approach near-perfect monochromatic emission with a spectra width in the order of 1 to 10

More information

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Performance Limits of Delay Lines Based on Slow Light. Robert W. Boyd Performance Limits of Delay Lines Based on "Slow" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester Representing the DARPA Slow-Light-in-Fibers Team:

More information

Temperature Tuning Characteristics of Periodically Poled Lithium Niobate for Second Harmonic Generation at 490 nm

Temperature Tuning Characteristics of Periodically Poled Lithium Niobate for Second Harmonic Generation at 490 nm Temperature Tuning Characteristics of Periodically Poled Lithium Niobate for Second Harmonic Generation at 490 nm Movva Sai Krishna *a, U.S. Tripathi a, Ashok Kaul a, K. Thyagarajan b, M.R. Shenoy b a

More information

Optical Parametric Generation

Optical Parametric Generation x (2) Parametric Processes 27 Optical Parametric Generation Spontaneous parametric down-conversion occurs when a pump photon at v P spontaneously splits into two photons called the signal at v S, and the

More information

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology Highlights of 2004 Micronova Department of Electrical and Communications Engineering Micronova Seminar 3 December 2004 Group Leader: Hanne Ludvigsen Postdoctoral researcher: Goëry Genty Postgraduate students:

More information

Signal regeneration - optical amplifiers

Signal regeneration - optical amplifiers Signal regeneration - optical amplifiers In any atom or solid, the state of the electrons can change by: 1) Stimulated absorption - in the presence of a light wave, a photon is absorbed, the electron is

More information

Lasers and Optics 05 MAR Howard Schlossberg Program Officer AFOSR/RTB Air Force Research Laboratory. Integrity Service Excellence

Lasers and Optics 05 MAR Howard Schlossberg Program Officer AFOSR/RTB Air Force Research Laboratory. Integrity Service Excellence Lasers and Optics 05 MAR 2013 Integrity Service Excellence Howard Schlossberg Program Officer AFOSR/RTB Air Force Research Laboratory 15 February 2013 1 Report Documentation Page Form Approved OMB No.

More information

Nonlinear ultrafast fiber optic devices based on Carbon Nanotubes

Nonlinear ultrafast fiber optic devices based on Carbon Nanotubes Nonlinear ultrafast fiber optic devices based on Carbon Nanotubes Guillermo E. Villanueva, Claudio J. Oton Michael B. Jakubinek, Benoit Simard,, Jaques Albert, Pere Pérez-Millán Outline Introduction CNT-coated

More information

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Self-Phase Modulation in Optical Fiber Communications: Good or Bad? 1/100 Self-Phase Modulation in Optical Fiber Communications: Good or Bad? Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Historical Introduction

More information

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators 9.10 Passive CEP-stabilization in parametric amplifiers 9.10.1 Active versus passive

More information

Nonlinear optics with quantum-engineered intersubband metamaterials

Nonlinear optics with quantum-engineered intersubband metamaterials Nonlinear optics with quantum-engineered intersubband metamaterials Mikhail Belkin Department of Electrical and Computer Engineering The University of Texas at Austin 1 Mid-infrared and THz photonics Electronics

More information

Broadband Nonlinear Frequency Conversion

Broadband Nonlinear Frequency Conversion Broadband Nonlinear Frequency Conversion Haim Suchowski, Barry D. Bruner, Ady Arie and Yaron Silberberg 36 OPN Optics & Photonics News 1047-6938/10/09/0036/6-$15.00 OSA www.osa-opn.org There is growing

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

Improved dispersion relations for GaAs and applications to nonlinear optics

Improved dispersion relations for GaAs and applications to nonlinear optics JOURNAL OF APPLIED PHYSICS VOLUME 94, NUMBER 10 15 NOVEMBER 2003 Improved dispersion relations for GaAs and applications to nonlinear optics T. Skauli, a) P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O.

More information

New Concept of DPSSL

New Concept of DPSSL New Concept of DPSSL - Tuning laser parameters by controlling temperature - Junji Kawanaka Contributors ILS/UEC Tokyo S. Tokita, T. Norimatsu, N. Miyanaga, Y. Izawa H. Nishioka, K. Ueda M. Fujita Institute

More information

12. Nonlinear optics I

12. Nonlinear optics I 1. Nonlinear optics I What are nonlinear-optical effects and why do they occur? Maxwell's equations in a medium Nonlinear-optical media Second-harmonic generation Conservation laws for photons ("Phasematching")

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

Implementation of ALOHA up-conversion interferometer at 3.39µm (L band) 1/20

Implementation of ALOHA up-conversion interferometer at 3.39µm (L band) 1/20 Implementation of ALOHA up-conversion interferometer at 3.39µm (L band) Ludovic SZEMENDERA - Xlim Photonics PhD supervisors : F. REYNAUD and L. GROSSARD Monday 14 th march 016 Implementation of ALOHA up-conversion

More information

Semiconductor Disk Laser on Microchannel Cooler

Semiconductor Disk Laser on Microchannel Cooler Semiconductor Disk Laser on Microchannel Cooler Eckart Gerster An optically pumped semiconductor disk laser with a double-band Bragg reflector mirror is presented. This mirror not only reflects the laser

More information

BaGa 4 S 7 : wide-bandgap phase-matchable nonlinear crystal for the mid-infrared

BaGa 4 S 7 : wide-bandgap phase-matchable nonlinear crystal for the mid-infrared BaGa 4 S 7 : wide-bandgap phase-matchable nonlinear crystal for the mid-infrared Valeriy Badikov, 1 Dmitrii Badikov, 1 Galina Shevyrdyaeva, 1 Aleksey Tyazhev, 2 Georgi Marchev, 2 Vladimir Panyutin, 2 Frank

More information

LASERS. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam

LASERS. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam LASERS Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam General Objective To understand the principle, characteristics and types

More information

Dmitriy Churin. Designing high power single frequency fiber lasers

Dmitriy Churin. Designing high power single frequency fiber lasers Dmitriy Churin Tutorial for: Designing high power single frequency fiber lasers Single frequency lasers with narrow linewidth have long coherence length and this is an essential property for many applications

More information

SECOND HARMONIC GENERATION IN PERIODICALLY POLED NONLINEAR CRYSTALS WITH 1064 nm GAUSSIAN LASER PULSES

SECOND HARMONIC GENERATION IN PERIODICALLY POLED NONLINEAR CRYSTALS WITH 1064 nm GAUSSIAN LASER PULSES SECOND HARMONIC GENERATION IN PERIODICALLY POLED NONLINEAR CRYSTALS WITH 1064 nm GAUSSIAN LASER PULSES LIVIU NEAGU National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG-36, 077125, Bucharest,

More information

Generation of ultrafast mid-infrared laser by DFG between two actively synchronized picosecond lasers in a MgO:PPLN crystal

Generation of ultrafast mid-infrared laser by DFG between two actively synchronized picosecond lasers in a MgO:PPLN crystal Appl Phys B (2012) 108:571 575 DOI 10.1007/s00340-012-5045-2 Generation of ultrafast mid-infrared laser by DFG between two actively synchronized picosecond lasers in a MgO:PPLN crystal H. Xuan Y. Zou S.

More information

ORIENTATION-PATTERNED GALLIUM ARSENIDE FOR QUASI-PHASEMATCHED INFRARED NONLINEAR OPTICS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF APPLIED PHYSICS

ORIENTATION-PATTERNED GALLIUM ARSENIDE FOR QUASI-PHASEMATCHED INFRARED NONLINEAR OPTICS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF APPLIED PHYSICS ORIENTATION-PATTERNED GALLIUM ARSENIDE FOR QUASI-PHASEMATCHED INFRARED NONLINEAR OPTICS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF APPLIED PHYSICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY

More information

Rapid hyperspectral, vibrationally resonant sum-frequency generation microscopy

Rapid hyperspectral, vibrationally resonant sum-frequency generation microscopy Rapid hyperspectral, vibrationally resonant sum-frequency generation microscopy Adam M. Hanninen a and Eric O. Potma b a Department of Astronomy and Physics, University of California, Irvine, CA 92697,

More information

LASER & PHOTONICS REVIEWS

LASER & PHOTONICS REVIEWS LASER & PHOTONICS REVIEWS Optical THz-wave generation with periodically-inverted GaAs Konstantin L. Vodopyanov Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA Received 23 October

More information

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Nonlinear Effects in Optical Fiber Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Fiber Nonlinearities The response of any dielectric material to the light becomes nonlinear for intense electromagnetic

More information

Multi-cycle THz pulse generation in poled lithium niobate crystals

Multi-cycle THz pulse generation in poled lithium niobate crystals Laser Focus World April 2005 issue (pp. 67-72). Multi-cycle THz pulse generation in poled lithium niobate crystals Yun-Shik Lee and Theodore B. Norris Yun-Shik Lee is an assistant professor of physics

More information

THz experiments at the UCSB FELs and the THz Science and Technology Network.

THz experiments at the UCSB FELs and the THz Science and Technology Network. THz experiments at the UCSB FELs and the THz Science and Technology Network. Mark Sherwin UCSB Physics Department and Institute for Quantum and Complex Dynamics UCSB Center for Terahertz Science and Technology

More information

Efficient Generation of Second Harmonic Wave with Periodically. Poled MgO:LiNbO 3

Efficient Generation of Second Harmonic Wave with Periodically. Poled MgO:LiNbO 3 ISSN 2186-6570 Efficient Generation of Second Harmonic Wave with Periodically Poled MgO:LiNbO 3 Genta Masada Quantum ICT Research Institute, Tamagawa University 6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610,

More information

THz QCL sources for operation above cryogenic temperatures Mikhail Belkin

THz QCL sources for operation above cryogenic temperatures Mikhail Belkin THz QCL sources for operation above cryogenic temperatures Mikhail Belkin Department of Electrical and Computer Engineering University of Texas at Austin IQCLSW, Monte Verita, Switzerland 008 Need for

More information

Broadly tunable terahertz differencefrequency generation in quantum cascade lasers on silicon

Broadly tunable terahertz differencefrequency generation in quantum cascade lasers on silicon Broadly tunable terahertz differencefrequency generation in quantum cascade lasers on silicon Seungyong Jung Jae Hyun Kim Yifan Jiang Karun Vijayraghavan Mikhail A. Belkin Seungyong Jung, Jae Hyun Kim,

More information

Fiber Lasers. Chapter Basic Concepts

Fiber Lasers. Chapter Basic Concepts Chapter 5 Fiber Lasers A fiber amplifier can be converted into a laser by placing it inside a cavity designed to provide optical feedback. Such lasers are called fiber lasers, and this chapter is devoted

More information

Multiple-color cw visible lasers by frequency sum-mixing in a cascading Raman fiber laser

Multiple-color cw visible lasers by frequency sum-mixing in a cascading Raman fiber laser Multiple-color cw visible lasers by frequency sum-mixing in a cascading Raman fiber laser Yan Feng, Shenghong Huang, Akira Shirakawa, and Ken-ichi Ueda Institute for Laser Science, University of Electro-Communications,

More information

Electrically Driven Polariton Devices

Electrically Driven Polariton Devices Electrically Driven Polariton Devices Pavlos Savvidis Dept of Materials Sci. & Tech University of Crete / FORTH Polariton LED Rome, March 18, 211 Outline Polariton LED device operating up to room temperature

More information

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering Chip-Based Optical Frequency Combs Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering KISS Frequency Comb Workshop Cal Tech, Nov. 2-5,

More information

High performance THz quantum cascade lasers

High performance THz quantum cascade lasers High performance THz quantum cascade lasers Karl Unterrainer M. Kainz, S. Schönhuber, C. Deutsch, D. Bachmann, J. Darmo, H. Detz, A.M. Andrews, W. Schrenk, G. Strasser THz QCL performance High output power

More information

Quantum Dot Lasers. Jose Mayen ECE 355

Quantum Dot Lasers. Jose Mayen ECE 355 Quantum Dot Lasers Jose Mayen ECE 355 Overview of Presentation Quantum Dots Operation Principles Fabrication of Q-dot lasers Advantages over other lasers Characteristics of Q-dot laser Types of Q-dot lasers

More information

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating L. M. Zhao 1*, C. Lu 1, H. Y. Tam 2, D. Y. Tang 3, L. Xia 3, and P. Shum 3 1 Department of Electronic and Information

More information

Frequency Doubling Ole Bjarlin Jensen

Frequency Doubling Ole Bjarlin Jensen Frequency Doubling Ole Bjarlin Jensen DTU Fotonik, Risø campus Technical University of Denmark, Denmark (email: ole.bjarlin.jensen@risoe.dk) Outline of the talk Quasi phase matching Schemes for frequency

More information

Far IR (FIR) Gas Lasers microns wavelengths, THz frequency Called Terahertz lasers or FIR lasers At this wavelength behaves more like

Far IR (FIR) Gas Lasers microns wavelengths, THz frequency Called Terahertz lasers or FIR lasers At this wavelength behaves more like Far IR (FIR) Gas Lasers 10-1500 microns wavelengths, 300 10 THz frequency Called Terahertz lasers or FIR lasers At this wavelength behaves more like microwave signal than light Created by Molecular vibronic

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

ESH Benign Processes for he Integration of Quantum Dots (QDs)

ESH Benign Processes for he Integration of Quantum Dots (QDs) ESH Benign Processes for he Integration of Quantum Dots (QDs) PIs: Karen K. Gleason, Department of Chemical Engineering, MIT Graduate Students: Chia-Hua Lee: PhD Candidate, Department of Material Science

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

3-1-2 GaSb Quantum Cascade Laser

3-1-2 GaSb Quantum Cascade Laser 3-1-2 GaSb Quantum Cascade Laser A terahertz quantum cascade laser (THz-QCL) using a resonant longitudinal optical (LO) phonon depopulation scheme was successfully demonstrated from a GaSb/AlSb material

More information

Highly Nonlinear Fibers and Their Applications

Highly Nonlinear Fibers and Their Applications 1/32 Highly Nonlinear Fibers and Their Applications Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Introduction Many nonlinear effects inside optical

More information

Ultra-Slow Light Propagation in Room Temperature Solids. Robert W. Boyd

Ultra-Slow Light Propagation in Room Temperature Solids. Robert W. Boyd Ultra-Slow Light Propagation in Room Temperature Solids Robert W. Boyd The Institute of Optics and Department of Physics and Astronomy University of Rochester, Rochester, NY USA http://www.optics.rochester.edu

More information

laser with Q-switching for generation of terahertz radiation Multiline CO 2 Journal of Physics: Conference Series PAPER OPEN ACCESS

laser with Q-switching for generation of terahertz radiation Multiline CO 2 Journal of Physics: Conference Series PAPER OPEN ACCESS Journal of Physics: Conference Series PAPER OPEN ACCESS Multiline CO 2 laser with Q-switching for generation of terahertz radiation To cite this article: A A Ionin et al 2017 J. Phys.: Conf. Ser. 941 012004

More information

AFRL-RX-WP-JA

AFRL-RX-WP-JA AFRL-RX-WP-JA-2018-0045 TEMPERATURE DEPENDENT SELLMEIER EQUATION FOR THE REFRACTIVE INDEX OF GAP (POSTPRINT) Jean Wei, Joel M. Murray, and Jacob O. Barnes UES, Inc. Shekhar Guha AFRL/RX Douglas M. Krein

More information

Design and modeling of semiconductor terahertz sources based on nonlinear difference-frequency mixing. Alireza Marandi. Master of Applied Science

Design and modeling of semiconductor terahertz sources based on nonlinear difference-frequency mixing. Alireza Marandi. Master of Applied Science Design and modeling of semiconductor terahertz sources based on nonlinear difference-frequency mixing by Alireza Marandi B.Sc., University of Tehran, 2006 A Thesis Submitted in Partial Fulfillment of the

More information

Wavelength Stabilized High-Power Quantum Dot Lasers

Wavelength Stabilized High-Power Quantum Dot Lasers Wavelength Stabilized High-Power Quantum Dot Lasers Johann Peter Reithmaier Technische Physik, Institute of Nanostructure Technologies & Analytics () Universität Kassel, Germany W. Kaiser, R. Debusmann,

More information

Nonlinear Fiber Optics and its Applications in Optical Signal Processing

Nonlinear Fiber Optics and its Applications in Optical Signal Processing 1/44 Nonlinear Fiber Optics and its Applications in Optical Signal Processing Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Introduction

More information

ECE 695 Numerical Simulations Lecture 35: Solar Hybrid Energy Conversion Systems. Prof. Peter Bermel April 12, 2017

ECE 695 Numerical Simulations Lecture 35: Solar Hybrid Energy Conversion Systems. Prof. Peter Bermel April 12, 2017 ECE 695 Numerical Simulations Lecture 35: Solar Hybrid Energy Conversion Systems Prof. Peter Bermel April 12, 2017 Ideal Selective Solar Absorber Efficiency Limits Ideal cut-off wavelength for a selective

More information

Tunable, high-energy, mid-infrared, picosecond optical parametric generator based on CdSiP 2

Tunable, high-energy, mid-infrared, picosecond optical parametric generator based on CdSiP 2 Tunable, high-energy, mid-infrared, picosecond optical parametric generator based on CdSiP 2 S. Chaitanya Kumar, 1,* M. Jelínek, 2 M. Baudisch, 1 K. T. Zawilski, 3 P. G. Schunemann, 3 V. Kubeček, 2 J.

More information

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission. Lecture 10 Stimulated Emission Devices Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

Frequency combs for ultrasensitive molecular detection

Frequency combs for ultrasensitive molecular detection Frequency combs for ultrasensitive molecular detection Konstantin Vodopyanov CREOL Ind. Affil Symp., CREOL, March 13, 2015 Konstantin Vodopyanov p. 1 What are frequency combs? Theodor W. Hänsch and John

More information

Evaluation of Second Order Nonlinearity in Periodically Poled

Evaluation of Second Order Nonlinearity in Periodically Poled ISSN 2186-6570 Evaluation of Second Order Nonlinearity in Periodically Poled KTiOPO 4 Crystal Using Boyd and Kleinman Theory Genta Masada Quantum ICT Research Institute, Tamagawa University 6-1-1 Tamagawa-gakuen,

More information

B 2 P 2, which implies that g B should be

B 2 P 2, which implies that g B should be Enhanced Summary of G.P. Agrawal Nonlinear Fiber Optics (3rd ed) Chapter 9 on SBS Stimulated Brillouin scattering is a nonlinear three-wave interaction between a forward-going laser pump beam P, a forward-going

More information

Continuous-wave mid-infrared laser sources based on difference frequency generation

Continuous-wave mid-infrared laser sources based on difference frequency generation JID:COMREN AID:2573 /SSU [m3sc+; v 1.78; Prn:5/11/2007; 14:44] P.1 (1-22) C. R. Physique ( ) http://france.elsevier.com/direct/comren/ Optical parametric sources for the infrared/sources optiques paramétriques

More information

Recent progress on single-mode quantum cascade lasers

Recent progress on single-mode quantum cascade lasers Recent progress on single-mode quantum cascade lasers B. Hinkov 1,*, P. Jouy 1, A. Hugi 1, A. Bismuto 1,2, M. Beck 1, S. Blaser 2 and J. Faist 1 * bhinkov@phys.ethz.ch 1 Institute of Quantum Electronics,

More information

Lasers and Electro-optics

Lasers and Electro-optics Lasers and Electro-optics Second Edition CHRISTOPHER C. DAVIS University of Maryland III ^0 CAMBRIDGE UNIVERSITY PRESS Preface to the Second Edition page xv 1 Electromagnetic waves, light, and lasers 1

More information

Simultaneous stimulated Raman scattering and second harmonic generation in periodically poled lithium niobate

Simultaneous stimulated Raman scattering and second harmonic generation in periodically poled lithium niobate Simultaneous stimulated Raman scattering and second harmonic generation in periodically poled lithium niobate Gail McConnell Centre for Biophotonics, Strathclyde Institute for Biomedical Sciences, University

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Engineering Medical Optics BME136/251 Winter 2017

Engineering Medical Optics BME136/251 Winter 2017 Engineering Medical Optics BME136/251 Winter 2017 Monday/Wednesday 2:00-3:20 p.m. Beckman Laser Institute Library, MSTB 214 (lab) Teaching Assistants (Office hours: Every Tuesday at 2pm outside of the

More information

γ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns

γ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns There is however one main difference in this chapter compared to many other chapters. All loss and gain coefficients are given for the intensity and not the amplitude and are therefore a factor of 2 larger!

More information

Noise Correlations in Dual Frequency VECSEL

Noise Correlations in Dual Frequency VECSEL Noise Correlations in Dual Frequency VECSEL S. De, A. El Amili, F. Bretenaker Laboratoire Aimé Cotton, CNRS, Orsay, France V. Pal, R. Ghosh Jawaharlal Nehru University, Delhi, India M. Alouini Institut

More information

Supplementary Information for Mid-Infrared Optical Frequency Combs at 2.5 µm based on Crystalline Microresonators

Supplementary Information for Mid-Infrared Optical Frequency Combs at 2.5 µm based on Crystalline Microresonators 1 Supplementary Information for Mid-Infrared Optical Frequency Combs at 2.5 µm based on Crystalline Microresonators C. Y. Wang 1,2,3,, T. Herr 1,2,, P. Del Haye 1,3,7, A. Schliesser 1,2, J. Hofer 1,6,

More information

Harmonic and supercontinuum generation in quadratic and cubic nonlinear optical media

Harmonic and supercontinuum generation in quadratic and cubic nonlinear optical media S. Wabnitz and V. V. Kozlov Vol. 27, No. 9/September 21/ J. Opt. Soc. Am. B 177 Harmonic and supercontinuum generation in quadratic and cubic nonlinear optical media S. Wabnitz* and V. V. Kozlov Dipartimento

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Probing and Driving Molecular Dynamics with Femtosecond Pulses

Probing and Driving Molecular Dynamics with Femtosecond Pulses Miroslav Kloz Probing and Driving Molecular Dynamics with Femtosecond Pulses (wavelengths above 200 nm, energies below mj) Why femtosecond lasers in biology? Scales of size and time are closely rerated!

More information

Broadband Quantum-Dot/Dash Lasers

Broadband Quantum-Dot/Dash Lasers Broadband Quantum-Dot/Dash Lasers Boon S. Ooi, Electrical & Computer Eng. Lehigh University Tel: 610-758 2606, email:bsooi@lehigh.edu ACKNOWDLEDGEMENT Students and Postdoc: Hery S. Djie, Yang Wang, Clara

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/331/6014/189/dc1 Supporting Online Material for Light-Induced Superconductivity in a Stripe-Ordered Cuprate D. Fausti,* R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M.

More information

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. Preface p. xiii Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. 4 Dual-Beam Holographic Technique p. 5

More information

System optimization of a long-range Brillouin-loss-based distributed fiber sensor

System optimization of a long-range Brillouin-loss-based distributed fiber sensor System optimization of a long-range Brillouin-loss-based distributed fiber sensor Yongkang Dong, 1,2 Liang Chen, 1 and Xiaoyi Bao 1, * 1 Fiber Optics Group, Department of Physics, University of Ottawa,

More information

DEVELOPMENT OF HIGH-POWER PICOSECOND FIBER-BASED ULTRAVIOLET SOURCE

DEVELOPMENT OF HIGH-POWER PICOSECOND FIBER-BASED ULTRAVIOLET SOURCE MSc in Photonics Universitat Politècnica de Catalunya (UPC) Universitat Autònoma de Barcelona (UAB) Universitat de Barcelona (UB) Institut de Ciències Fotòniques (ICFO) PHOTONICSBCN http://www.photonicsbcn.eu

More information

Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers

Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers S. M. K. Thiyagarajan, A. F. J. Levi, C. K. Lin, I. Kim, P. D. Dapkus, and S. J. Pearton + Department of Electrical

More information

Periodically Poled Lithium Niobate Waveguides for Quantum Frequency Conversion

Periodically Poled Lithium Niobate Waveguides for Quantum Frequency Conversion Periodically Poled Lithium Niobate Waveguides for Quantum Frequency Conversion J. E. Toney *, V. E. Stenger, A. Pollick, J. Retz, P. Pontius, S. Sriram SRICO, Inc. 2724 Sawbury Boulevard, Columbus, OH

More information

Investigation of Novel Applications of Nonlinear Optics: From Parametric Oscillation to Image Restoration

Investigation of Novel Applications of Nonlinear Optics: From Parametric Oscillation to Image Restoration Lehigh University Lehigh Preserve Theses and Dissertations 2015 Investigation of Novel Applications of Nonlinear Optics: From Parametric Oscillation to Image Restoration Pengda Hong Lehigh University Follow

More information

Singly-resonant optical parametric oscillator based on KTA crystal

Singly-resonant optical parametric oscillator based on KTA crystal PRAMANA c Indian Academy of Sciences Vol. 64, No. 1 journal of January 2005 physics pp. 67 74 Singly-resonant optical parametric oscillator based on KTA crystal S DAS, S GANGOPADHYAY, C GHOSH and G C BHAR

More information

AD-A REPORT DOCUMENT Pi AD-A )

AD-A REPORT DOCUMENT Pi AD-A ) AD-A276 389 REPORT DOCUMENT Pi AD-A276 389 2-89) ~ ~ mllamw4n ~ a I 1,&&WW Mes =II at" even 40o~= me~ eve-,-" 1. AGENCY USE ONLY (L~weboamW 12. REPOR- DATE 3. HIUI4HI I TtA ANI.4UA u1 t.,overed 13 JAN

More information