Airflow and sand transport variations within a backshore parabolic dune plain complex: NE Graham Island, British Columbia, Canada

Size: px
Start display at page:

Download "Airflow and sand transport variations within a backshore parabolic dune plain complex: NE Graham Island, British Columbia, Canada"

Transcription

1 Geomorphology 77 (2006) Airflow and sand transport variations within a backshore parabolic dune plain complex: NE Graham Island, British Columbia, Canada Jeffrey L. Anderson, Ian J. Walker Boundary Layer Airflow and Sediment Transport (BLAST) Laboratory, Department of Geography, University of Victoria, PO Box 3050, Station CSC, Victoria, British Columbia, Canada, V8W 3P5 Received 17 December 2004; received in revised form 12 December 2005; accepted 22 December 2005 Available online 27 January 2006 Abstract Onshore aeolian sand transport beyond the beach and foredune is often overlooked in the morphodynamics and sediment budgets of sandy coastal systems. This study provides detailed measurements of airflow, sand transport (via saltation and modified suspension), vegetation density, and surface elevation changes over an extensive ( m) swath of a backshore foredune parabolic dune plain complex. Near-surface (30 cm) wind speeds on the backshore ranged from 4.3 to 7.3 m s 1, gusting to 14.0 m s 1. Oblique onshore flow is steered alongshore near the incipient foredune then landward into a trough blowout where streamline compression, flow acceleration to 1.8 times the incident speed, and increasing steadiness occur. Highest saltation rates occur in steady, topographically accelerated flow within the blowout. As such, the blowout acts as a conduit to channel flow and sand through the foredune into the foredune plain. Beyond the blowout, flow expands, vegetation roughness increases, and flow decelerates. Over the foredune plain, localized flow steering and acceleration to 1.6 times the incident speed occurs followed by a drop to 40% of incident flow speed in a densely vegetated zone upwind of an active parabolic dune at 250 m from the foredune. Sediment properties reflect variations in near-surface flow and transport processes. Well-sorted, fine skewed backshore sands become more poorly sorted and coarse skewed in the blowout due to winnowing of fines. Sorting improves and sands become fine skewed over the foredune plain toward the parabolic dune due to grainfall of finer sands winnowed from the beach and foredune. During the fall winter season, significant amounts of sand (up to 110 kg m 2 ) are transported via modified suspension and deposited as grainfall up to 300 m landward of the foredune. No distinct trend in grainfall was found, although most fell on the depositional lobe of the blowout and at 200 m near an isolated, active parabolic dune. Grainfall amounts may reflect several transporting events over the measurement period and the transport process is likely via localized, modified suspension from the crest of the foredune and other compound dune features in the foredune plain. This evidence suggests that the process of grainfall delivery, though often overlooked in coastal research, may be a key process in maintaining active dunes hundreds of metres from the shoreline in a densely vegetated foredune plain. The effectiveness of this process is controlled by seasonal changes in vegetation cover and wind strength as well as shorter term (e.g., tidally controlled) variations in sand availability from the beach Elsevier B.V. All rights reserved. Keywords: Aeolian; Dune; Grainfall; Saltation; Foredune; Parabolic dune; Coastal swath; Driftwood Corresponding author. Tel.: ; fax: address: ijwalker@uvic.ca (I.J. Walker) X/$ - see front matter 2006 Elsevier B.V. All rights reserved. doi: /j.geomorph

2 18 J.L. Anderson, I.J. Walker / Geomorphology 77 (2006) Introduction Aeolian processes play a key role in the geomorphology of most sandy coastal systems by transporting sand delivered to the beach via littoral processes into the backshore. This sand is then stored within incipient and established dune systems and occasionally cycled back to the littoral system via coastal erosion and storm surges. Research on coastal aeolian dynamics to date has focused largely on several key areas including: (i) the influence of vegetation type and density on sediment entrainment and deposition (e.g., Hesp, 1981, 1983, 1984, 1989, 2002; Buckley, 1987; Sarre, 1989; Arens, 1996a; Arens et al., 2001a; Davidson-Arnott et al., 2003); (ii) incident wind angle and resultant beach fetch effect and sediment supply to coastal dunes (e.g., Jungerius et al., 1981; Nordstrom and Jackson, 1993; Arens et al., 1995; Davidson-Arnott, 1996; Davidson- Arnott and Law, 1996; van der Wal, 1998; Jackson and Cooper, 1999; Bauer and Davidson-Arnott, 2003); (iii) topographic influences on near-surface wind speed and direction (e.g., Svasek and Terwindt, 1974; Rasmussen, 1989; Hesp and Hyde, 1996; Hesp and Pringle, 2001; Hesp et al., 2005; Walker et al., in press); and (iv) the effects of moisture content on rates of sand transport on beaches (e.g., Belly, 1964; Sarre, 1989; Kocurek et al., 1992; Namikas and Sherman, 1995; Arens, 1996b; van Dijk et al., 1996; Jackson and Nordstrom, 1997; Sherman et al., 1998; Wiggs et al., 2004). The influences of these factors on beach dune sediment transport have been well documented, although largely independent of one another. However, with the exception of remotely sensed, GPR or topographic survey-based characterizations of morphological changes in coastal dune systems (e.g., Brown and Arbogast, 1999; Bristow et al., 2000; Andrews et al., 2002) and empirical and/or conceptual models of barrier island and beach dune evolution and sediment balance (e.g., Armon and McCann, 1979; Hesp, 2002), relatively little research has been conducted on the process-response dynamics and controls of beach dune systems at the meso scale (i.e., morphological responses at the landform assemblage scale over periods of hours to years) (Psuty, 2004; Sherman, 1995). Furthermore, sediment delivery well into the backshore (e.g., 10s to 100s of metres beyond the foredune) via suspended grainfall has received little attention in coastal research. To address this, the purpose of this study is to examine the influence of variations in vegetation and topography on airflow and sediment transport over a spatially extensive swath of a backshore foredune parabolic dune plain complex. The study site includes several distinct geomorphic units of driftwood jammed backshore, foredune, trough blowout and parabolic dune. Albeit limited in temporal scope, this study describes a typical onshore SE wind event representative of the formative winds in the study area. In addition, seasonal measurements of sediment deposition via suspended grainfall are presented, and implications for net sediment transport and dune maintenance are discussed. 2. Physical setting The study site is located 15 km south of Rose Spit on East Beach in Naikoon Provincial Park, NE Graham Island, Queen Charlotte Islands (Haida Gwaii) 80 km offshore of the central coast of British Columbia, Canada (54 N, 131 W, Fig. 1). The Naikoon Peninsula consists of a low plain of unconsolidated Quaternary glaciofluvial sediments (Clague et al., 1982) that, during a marine regression over the late Holocene, has been reworked by energetic littoral and aeolian processes (Barrie and Conway, 2002; Walker and Barrie, in press), leaving a series of relict shorelines and prograding foredune ridges (Fig. 2). Over the twentieth century, relative sea level has risen at a rate of +1.6 mm a 1 (Abeysirigunawardena and Walker, unpublished data) and the coastline of East Beach has retreated at 1 to 3 m a 1 (Barrie and Conway, 2002) while the shores of North Beach have prograded at 0.3 to 0.6 m a 1 (Harper, 1980). Littoral sediments are moved onshore by a highly competent wind regime dominated by strong SE winds in fall through winter and W NW winds in summer (see wind rose in Fig. 1). Annual average wind speed is 8.5 ms 1 with b1% calm conditions. For the period , winds above the accepted sand transport threshold of 6 m s 1 (Fryberger, 1979) occurred 67% of the time (Walker and Barrie, in press). Potential aeolian activity is high in the region with a total sand drift potential (DP) (per Fryberger, 1979) of 4566 vector units (VU) (Pearce, 2005). This is well above those documented for desert regions (80 489; Fryberger, 1979) and for parabolic dunes in the Canadian prairies ( ; Wolfe and Lemmen, 1999). The resultant drift potential vector (RDP) is 2967 VU aligned NW (316 ), reflecting the dominant SE winds in the study area (Pearce, 2005). Despite a moist maritime (Cfb) climate and dense vegetation and forest cover, the high onshore sand supply in this wind regime maintains active parabolic dunes and foredunes (Figs. 2 and 3). East Beach is subject to semi-diurnal mixed tides ranging 5 7 m with HHWMT exceeding 7 m. Annual

3 J.L. Anderson, I.J. Walker / Geomorphology 77 (2006) Fig. 1. Study site location on East Beach, Naikoon Provincial Park, NE Graham Island, Queen Charlotte Islands (Haida Gwaii), British Columbia. Wind rose (inset, upper right) derived from Environment Canada data from Rose Spit station ( ) shows strong bimodal wind regime. Annual drift rose (inset, lower right) derived from the same data shows directional potential drift (DP) vectors and large resultant drift potential (RDP) vector toward the NW resulting from dominant, strong SE winds. significant wave height (H s ) is 1.8 m and the peak period is 10 s. Higher values of H s to 3.5 m occur in the shallower waters of Dogfish Banks along East Beach and prevail for 20 30% of the time during winter months (Eid et al., 1993; Thomson, 1981). Beaches in the study region are of the intermediate class (Masselink and Short, 1993) and are wave-tide-dominated (Anthony and Orford, 2002). Multiple, transverse nearshore bars occasionally weld to the shoreline (Figs. 2 and 3) and provide enhanced localized sand supply to the backshore (c.f., Anthony, 2000; Aagard et al., 2004). At low tide, as much as 250 m of exposed beach fetch that increases significantly to 500 m under oblique onshore SE winds (Fig. 3A). The study site is a 325 m deep 30 m wide swath of the coastal landscape of East Beach. The site begins as a driftwood jammed backshore that extends 50 to 70 m landward from a 0.5-m high storm-cut scarp on the beach to a low 0.3-m sparsely vegetated incipient foredune backed by a 5-m established foredune ridge (Figs. 3B and 5A). A 2.5-m deep trough blowout extends through the foredune for 30 m and adjoins a depositional lobe that continues 40 m onto a hummocky backshore foredune plain. An isolated, partly vegetated parabolic dune exists 175 m landward of the foredune with an approximate surface area of 0.2 ha. Vegetation cover in the study site ranges from 0% to 95% density and is dominated by three species of vegetation: Largeheaded sedge (Carex macrocephala), dune grass (Elymus mollis), and Pacific alkali grass (Puccinellia nutkaensis). Density of cover for these species is seasonally variable during the growth season from late April to late November. Tree species present include Sitka spruce (Picea sitchensis) and red alder (Alnus rubra). To date, few studies have considered the meso scale suite of geomorphic features and surface

4 20 J.L. Anderson, I.J. Walker / Geomorphology 77 (2006) Fig. 2. Airphoto showing location of the study site on East Beach in the Naikoon Peninsula region of NE Graham Island, Haida Gwaii (Source: 1980 National Airphoto Library, photo #A ). characteristics encountered by onshore airflow and sediment in transport well into the backshore. This study examines flow and sand transport responses over a broader landform assemblage (i.e., a coastal swath) of dune form, surface roughness, and vegetation at both event-based and seasonal temporal scales. 3. Methods 3.1. Airflow properties Airflow properties were measured throughout the study site using two methods: (i) high frequency measurements from ultrasonic anemometers, and (ii) time-averaged flow vectors from precise handheld anemometers. High frequency wind speed and direction was measured from a transect of four Gill Windsonic anemometers at 30 cm above the surface (u 0.3 ) sampled at 1 Hz. Co-located with each was a SAFIRE-type saltation probe (Baas, 2003), a Guelph-Trent wedge total flux trap (Nickling and McKenna Neuman, 1997), a surface elevation pin, and a suspended sediment grainfall trap (Fig. 4). Stations were installed in the beach backshore, foredune trough, depositional lobe, and foredune plain locations (Fig. 5B). Incident flow conditions are referenced to the backshore instrument station. Windspeed data from each ultrasonic station were normalized by measurements at the backshore station using U 0:3 ¼ u 0:3 station x =u 0:3 station 1 ð1þ where x is station location 1 to 4. As such, normalized U 0.3 wind speeds provide a relative measure of flow acceleration and deceleration relative to incident flow conditions in the backshore. In addition, flow steadiness factor, F s was derived for each station using the coefficient of variation F s ¼ u 0:3r =u 0:3 mean ð2þ where u 0.3σ is the standard deviation of the wind speed dataset. As such, lower F s values represent steadier flows.

5 J.L. Anderson, I.J. Walker / Geomorphology 77 (2006) Fig. 3. Oblique airphotos of the study site showing the extent of the backshore and driftwood jam (A) and a closer view showing an outline of the study swath within the backshore foredune parabolic dune plain complex (B). Time-averaged velocity vectors were measured at 50 cm (u 0.5 ) at 39 locations over the study site (Fig. 5B) using Kestrel 1000 handheld anemometers. Average and maximum wind speeds (u 0.5 mean and u 0.5 max, respectively) were recorded from the instrument over a 20-s interval. Normalized U 0.5 values for all locations were produced using Eq. (1) and u 0.5 values. In that additional wind speed statistics were not available from the handheld instruments (e.g., σ), a flow gust factor (F g ) was calculated for each location using F g ¼ u 0:5 mean =u 0:5 max ð3þ As such, lower values of F g represent gustier flow conditions. Flow vector direction was measured over the same interval from the alignment of flow streamers (flagging tape) attached to surface elevation pins at 50 cm using a Silva 2 surveying compass. Incident flow direction remained essentially constant (varying by only 5 ) during this period. Given the relatively short measurement interval, not all frequencies of gusts may be captured in the gust factor. However, longer test intervals to 2 min at select locations revealed little difference in u 0.5 values. Measurements were collected twice at all locations over the 5 h experiment and compared for representativeness.

6 22 J.L. Anderson, I.J. Walker / Geomorphology 77 (2006) Fig. 4. Instrument stations showing SAFIRE style saltation sensors, grainfall trap, surface elevation pin, Guelph-Trent Wedge style total flux trap, and Gill Windsonic ultrasonic anemometer Sediment transport Two modes of sediment transport were measured in this study. First, quasi-instantaneous saltation intensity was measured using four SAFIRE-type saltation impact sensors (Baas, 2003), each inset 5 cm above the surface and co-located with an ultrasonic anemometer and total flux trap (Fig. 4). Saltation intensity was measured at the same frequency as wind speed (1 Hz). Second, grainfall of sediments in suspension was measured on staggered transects every 5 m inland from the foredune at 39 locations. Grainfall traps consisted of 10-cm sections of 10-cm I.D. PVC tubing attached to steel rods that also served as surface elevation monitoring pins (Figs. 4 and 5B). Traps were situated 1 m above the surface to exclude significant saltation inputs and a plastic sample bag was attached to the bottom of each trap to collect sediment. No grainfall was observed during the transport experiment in July, so traps were left in the field and were checked at 2 months (18 September 2003) and 7 months (15 February 2004). Only a very small amount of sediment (1 to 5 g) was observed in September at some locations, and traps were emptied in February. Amounts of sand captured in the m 2 sampling area were proportionally extrapolated to, and assumed to be representative of, the surrounding 1 m 2 of surface surrounding each trap over this period. Grainfall samples were dried at 130 C for 72 h then weighed. Total dry weights were then converted to quantities of kilograms per square metre Vegetation density Vegetation density was measured at 61 plots within the study site, each 50 m 2 (5 10 m) (Fig. 5B). For each plot, vegetation height, species and cover density were estimated. The cover of all species in each plot was to determine total density (i.e., vegetation cover by plant type was not distinguished) Surface elevation change A network of 61 surface elevation monitoring pins was installed within the study area, in three separate and staggered transects, each 5 m apart (Fig. 5B). Pins consisted of a 1.5-m piece of 1/2 steel rod with a zero mark set flush with the initial surface. Surface change after the 5-h experiment was measured from this line with a tape measure to a precision of 1 mm. A map of surface elevation change was produced initially using Surfer's default inverse distance interpolation algorithm and then was modified manually in graphics software using point data to refine the map.

7 J.L. Anderson, I.J. Walker / Geomorphology 77 (2006) Fig. 5. Digital elevation model of study site (A) showing distinct geomorphic regions within the study swath as well as sampling and instrument deployment layout (B) Grain size variations Eight surface sediment grab samples were collected along the central axis of the study site in each geomorphic region from the backshore to the parabolic dune (Fig. 5B). Samples were dried at 130 C for 72 h then sieved at 1/4 ϕ intervals from 1.0 to 4 ϕ. Grain size statistics (mean grain size, sorting, and

8 24 J.L. Anderson, I.J. Walker / Geomorphology 77 (2006) skewness) were calculated from the frequency distribution of each sample in a spreadsheet program using the method of moments. 4. Results This study presents 5 h of airflow and sediment transport data measured during a SE storm on 19 July During this event, regional wind speed recorded at 5 m from the nearby BLAST02 met station ( 1 km north of the study site) was 5 to 10 m s 1 (18 to 36 km h 1 ) from the SE (125 to 130 ). Near-surface wind speed measured at 30 cm on the beach backshore ranged from 4.3 to 7.3 m s 1, gusting up to 14.0 m s 1. Rain fell consistently during the experiment and measured amounts at the met station (11.8 mm total) are likely an underestimate because of under sampling of the rain gauge during high winds. Despite this, aeolian sediment transport was observed at some locations in the study site Near-surface flow vectors Normalized flow vectors (U 0.3 and U 0.5 ) throughout the study site are shown in Fig. 6A. Incident flow conditions averaged 5 to 10 m s 1 from 125 to 130 during the study period. Backshore flow vectors show slight topographic acceleration (U 0.5 approaching 1.1) and steering in the alongshore direction (N) in the vicinity of the incipient foredune. A minor deceleration occurs upwind of the established foredune to 0.9. After entering the trough blowout, flow accelerates from 1.3 to 1.8 times that of the incident flow at station 1, and flow vectors steer slightly up the north wall of the blowout. Beyond the blowout, flow decelerates to 0.6 due to flow expansion in the lee of the depositional lobe then accelerates gradually down the lobe to 1.1. Throughout the foredune plain, localized positive slope effects on a NE slope at 160 to 250 m cause slight northward topographic steering and acceleration from U 0.5 =1.1 to 1.6. As flow encounters the densely vegetated region upwind of the parabolic dune (40% to 95%, Fig. 6C) from 250 to 275 m, U 0.5 values drop from 1.0 to 0.4. On the parabolic dune, U 0.3 increases slightly to 0.6 on the stoss slope Flow gustiness (F g ) During the study period, incident wind speed on the backshore (u 0.3 station 1 ) averaged 4.3 to 7.3 m s 1 with gusts up to 14.0 m s 1. An interpolated contour map of F g derived from u 0.5 values using Eq. (3) is presented in Fig. 6B. Flow is slightly gusty at the dune toe (F g =0.78) and becomes steadier over the incipient foredune (0.88) and through the blowout (from 0.84 to 0.89). Flow becomes slightly gustier (0.80) at the break in slope from the blowout trough to the depositional lobe leeward of the foredune. Flow is gustier above the more densely vegetated surface of the foredune plain (0.80 to 0.72) while positive slope effects on the NE slope serve to increase steadiness (0.83 to 0.91). On the parabolic dune, flow is moderately gusty with F g values from 0.79 to Vegetation density Vegetation density in the backshore ranges from 2% to 10% and increases to 20% on the incipient foredune (Fig. 6C). Vegetation cover on the established foredune increases from 20% to 30% at the toe to 50% at the crest. In contrast, vegetation density was low ( 2%) in the trough blowout. Both the depositional lobe and lower regions of the foredune plain within 50 m of the foredune crest have low vegetation cover (5% to 10%). Vegetation on the foredune plain generally increases in density from 25% downwind of the depositional lobe to a noticeable transition to N40% at 175 m. Higher hummocks and the NE slope in the foredune plain show higher vegetation densities from 30% to 60%. From 225 to 255 m, another distinct increase in vegetation cover occurs from 70 to 95, followed by a distinct drop in density toward the bare surface of the parabolic dune. The windward edge of the parabolic dune is bordered by several sparsely spaced Sitka spruce ranging 2 to 4 m high, while the lee side of the dune head is flanked by a dense (i.e., N85%) stand of Red alder (Figs. 3B and 7A). Spruce trees show significant abrasion damage and crown flagging by dominant transporting winds. Alder stands are sculpted on the parabolic dune head into a streamlined profile by abrading near-surface winds (Fig. 7B). Although not explored in this study, a distinct interaction exists between near-surface airflow and tree stands that exert some control on the morphodynamics of this parabolic dune Sediment transport and grainfall deposition Sand transport recorded from saltation sensors is plotted with normalized wind speed (U 0.3 ) and flow steadiness (F s ) in Fig. 8. Over the period of the experiment, no saltation was recorded at stations 1 (backshore) or 4 (vegetated foredune plain). Station 2 at the mouth of the blowout recorded over 13,000 counts,

9 J.L. Anderson, I.J. Walker / Geomorphology 77 (2006) Fig. 6. Normalized flow vectors throughout the study area (A), flow gust factor (F g ) derived from 50-cm wind speed measurements (B), and vegetation density map (C). and station 3 had 2896 counts. Total flux traps captured insignificant amounts of transport, perhaps because of rainfall and the relatively small width of the trap opening. Topographic forcing effects are evident in the nearsurface wind speed, flow steadiness, and sediment transport data. In general, an inverse relationship exists between wind speed and flow steadiness, and more

10 26 J.L. Anderson, I.J. Walker / Geomorphology 77 (2006) Fig. 7. Oblique airphoto of vegetation associations with the parabolic dune including stands of Sitka spruce (Picea sitchensis) on the windward flanks and red alder (Alnus rubra) leeward of the head (A). Red alder stand on the head of the parabolic dune moves landward with the dune as saltation abrades the windward side of the stand (B), whilst avalanching and grainfall within the stand provide favourable conditions for growth on the leeward side. sediment is moved in faster, steadier flows. For instance, as flow is forced toward and accelerates into the blowout at station 2, wind speed increases from U 0.3 of 1.0 (station 1) to 1.6, flow becomes steadier (from F s 0.3 to 0.22), and moves the most sediment. Downwind of the depositional lobe, flow at station 3 is slower and moderately gusty (F s 0.27). Flow at station 4 is slower, but similar in gustiness to that on the backshore (F s 0.29). No grainfall was observed during the experiment in July and only a very small amount (1 to 5 g) was observed in September at some locations. This suggests that the majority of grainfall at the site occurs during the fall winter storm season. Between September 2003 and February 2004, at least two major storms occurred in Haida Gwaii one in November 2003 and the second on 24 December 2003 with SE winds approaching 110 km h 1. In this wind regime, winds approaching 100 km h 1 are relatively frequent and occur in most months on record (Walker and Barrie, in press) and are capable of transporting sand in suspension. Given the long duration of sampling and inability to identify the occurrence of transporting events, grainfall data are not normalized over a shorter time interval. Grainfall data are shown as an interpolated contour map in kilograms per square metre (Fig. 9B). Grainfall occurred only landward of the foredune, varying by two orders of magnitude from 1 to 110 kg m 2 with an average of kg m 2. In general, no observable trend was found in grainfall deposition with distance from the foredune, though most sediment fell in two

11 J.L. Anderson, I.J. Walker / Geomorphology 77 (2006) Fig. 8. Flow steadiness (F s ), normalized wind speed (U 0.3 ), and saltation intensity (total impact counts) plotted against distance from the shoreline at stations 1 to 4. locations. First, 108 kg m 2 sediment fell in the immediate lee of the trough blowout (at the head of the depositional lobe) with quantities dropping rapidly to 11 kg m 2 within 50 m of the foredune ridge. Only small amounts (3 to 5 kg m 2 ) fell in the foredune plain region from 170 to 250 m. Second, nearing the parabolic dune (i.e., beyond 250 m) grainfall increases rapidly from 15 to 110 kg m 2 between the arms of the dune just upwind of a small stand of Sitka spruce. On the exposed parabolic dune itself, grainfall was low (1 to 2kgm 2 ) and increased considerably to 84 kg m 2 on the lee side slip-face within the Red alder stand Surface elevation change Changes in surface elevation were measured after the experiment at 61 monitoring pin locations that were initially set flush to the surface. An interpolated, spatially averaged contour plot of resulting areas of erosion ( values) and deposition (+ values) is shown in Fig. 9A. Quantities ranged from +9 to 11 mm over the study area. In the backshore region, an average of 8 mm of deposition occurred, with slight erosion ( 2 mm) on the windward slope of the incipient foredune. In the lee of the incipient foredune, 8 mm of deposition occurred near the toe of the established foredune. Though little change in surface elevation occurred at the entry of the blowout, most of the trough surface was erosional to a maximum of 11 mm toward the head. On the depositional lobe, +4 to +6 mm of deposition occurred to a distance of 50 m downwind of the blowout head. No measurable deposition was noted in the seaward region of the foredune plain from 160 to 200 m. In the densely vegetated region upwind of the parabolic dune (from 210 to 275 m), the surface was generally depositional although localized in amount. The southern (left) side of this zone experienced little change (± 1 mm), while the sloping north side showed +9 mm at 210 mto 8 mm on the stoss slope of a small dune feature with +4 mm of deposition in the lee. Much of this surface change and deposition in this region is manifested in small (0.15 to 0.30 m high) shadow dune features (Fig. 10). At the toe of the parabolic dune slight erosion ( 2 mm) then deposition occurred on the upper stoss slope (+7 mm), erosion of 5 mm at the crest, and deposition of +8 mm in the immediate lee Sediment properties Mean grain size (ϕ), sorting (σ ϕ ), and skewness (sk) values from eight surface samples along the central axis of the study site are shown in Fig. 11. The upper beach sample is a poorly sorted (σ φ =1.367), fine skewed (sk=0.212) medium sand (0.102 ϕ or mm). All

12 28 J.L. Anderson, I.J. Walker / Geomorphology 77 (2006) Fig. 9. Surface elevation change map derived from surface elevation pin data following the experiment (A) and spatially averaged grainfall derived from 7 months of collection during the fall winter season (B). aeolian sands, from the backshore to the parabolic dune, are medium in size (1.427 to ϕ or to mm) and moderately well to well sorted (σ ϕ from to 0.653). In general, as mean grain size increases, sorting (in ϕ units) becomes poorer. Sorting declines from the backshore sample 2 (σ ϕ =0.484) into the

13 J.L. Anderson, I.J. Walker / Geomorphology 77 (2006) Fig. 10. Small shadow dune features (0.15 to 0.30 m high) found in the densely vegetated backshore 225 m from the shoreline. blowout throat (σ ϕ = 0.517) then improves slightly toward the parabolic dune, then declines to moderately well-sorted on the dune head. Skewness values progress from fine (positively) skewed on the beach to coarse (negatively) skewed in the foredune trough blowout region perhaps from progressive winnowing of finer sands in this region. On the foredune plain, sediments change from coarse skewed (σ ϕ = 0.163) to symmetrical (σ ϕ = 0.052) then fine skewed on the parabolic dune (σ ϕ = 0.177). This shift to symmetrical and fine skewed with distance from the foredune may reflect grain fall deposits of finer sediments selectively winnowed and transported in modified suspension from the beach and foredune region. Fig. 11. Variation in sediment properties with distance from the beach to the parabolic dune. A dashed line is provided to indicate 0 skewness (symmetrical).

14 30 J.L. Anderson, I.J. Walker / Geomorphology 77 (2006) Discussion 5.1. Backshore The driftwood-laden backshore of East Beach poses an abrupt roughness on boundary layer airflow that extracts momentum and sediment during dominant oblique onshore SE winds. As such, driftwood jams act as a sink for coastal sediments in the backshore (Komar, 1976; Hesp, 1983, 1989; Walker and Barrie, in press). On the beach, wind action on typically coarser, poorly sorted sands winnows the finer (medium sand) fraction, which produces well-sorted backshore deposits. Aside from common supply- and transport-limiting factors that control the aeolian transport process (e.g., moisture content, vegetation cover), the rate of infilling of the driftwood matrix is also dependent on (i) the presence of shore-attached intertidal bars (Figs. 2 and 3A) that provide enhanced sediment supply (Anthony, 2000; Aagard et al., 2004) and (ii) tide stage during transporting events that controls effective fetch and potential sand transport (Wal and McManus, 1993; Jackson and Nordstrom, 1998; Hesp, 2002; Bauer and Davidson-Arnott, 2003). Although the rate of infilling is unknown, a considerable amount of sediment was transported into the backshore over the 7 months of the grainfall observations, completely filling some areas of the driftwood matrix. During this 7-month period, the storm cut scarp also retreated by 1 m in response to one of the highest storm surges on record (0.7 m) on 24 December 2003 (Abeysirigunawardena and Walker, unpublished data). This event occurred just after low tide, and the extent of wave runup at the site is unknown. Remnant scarps in the established foredune indicate that complete erosion of backshore driftwood jams by wave attack occurs on a longer timescale than our observations. Subsequently, driftwood and flotsam return, the roughness matrix rebuilds (in some areas nearing 2 to 3 m deep) and promotes the trapping of aeolian sediments. The erosion and rebuilding of sediment-laden driftwood jams is similar to Hesp's (1983, 1999) observations of incipient foredune rebuilding, although on a much larger scale; and in this case, vegetation is not required for dune growth within the matrix. This process is believed to be important for incipient dune formation, sediment cycling and storage on similar beaches in the NE Pacific (Walker and Barrie, in press). Such sediment stores may also serve as an important buffer against erosive winter storms and gradual sea-level rise. Airflow over the incipient foredune shows slight topographic forcing and acceleration. Nearing the established foredune, flow is steered alongshore and decelerates in response to increasing vegetation cover (from 2% to 20%) and possible flow stagnation upwind of the established foredune. This promotes sediment deposition and growth of the incipient foredune as shown by net positive surface elevation changes and confirms other accounts from settings with little to no driftwood (e.g., Hesp, 1983, 1989; Rasmussen, 1989; Sarre, 1989; Arens, 1996b; Arens et al., 1995, 2001a) Foredune trough blowout As flow enters the blowout, it accelerates by as much as 1.8 times that of incident flow on the beach and is steered up to the wall of the blowout. Once flow enters the blowout, it becomes steadier and faster and promotes increasing saltation. This confirms similar observations by Hesp and Hyde (1996), Hesp and Pringle (2001) and suggests that blowouts act as transport conduits that channel flow and sediment from a variety of incident flow angles through the foredune into the foredune plain. In addition, flow speed in this region is inversely related to flow steadiness, which confirms Walker and Nickling's (2003) wind tunnel observations of accelerated flow toward the crest of an artificial dune. Furthermore, in the narrowest reach of the blowout where streamlines are most constricted, flow steadiness, speed, and surface deflation are greatest. These effects are reflected in the more poorly sorted, coarser (winnowed) sands in this region. Under drier conditions, enhanced sand transport toward the head of the blowout would occur, promoting continued erosion of the trough and increased sand delivery into the foredune plain Vegetated foredune plain Based on observations of as much as a 1000-fold decrease in near-surface wind speed, Arens (1996a) concluded that negligible amounts of sediment move beyond the crest of vegetated foredunes via saltation. However, the influence of vegetation on sand transport is clearly contingent upon plant density, distribution, morphology, and height as well as timing during the growth season (Hesp, 1989, 2002). In essence, the higher and denser the vegetation canopy, the greater the reduction in sediment transport. This study suggests however, that during the fall winter season when vegetation density is lowest and storm winds are more frequent, significant amounts of sand are transported as far as 300 m beyond the foredune. It is unlikely that this results from full suspension of grains from the foredune crest over this distance. Rather, it is likely that grains are

15 J.L. Anderson, I.J. Walker / Geomorphology 77 (2006) transported via localized, modified suspension from the crest of the foredune and other compound dune features further landward in the foredune plain. This evidence suggests that modified suspension at the landscape scale may play a key role in maintaining active dune forms on the foredune plain distant from the shoreline. Sediment channeled through the blowout is deposited initially on a sparsely vegetated depositional lobe downwind of the trough as flow expands and decelerates (Hesp and Hyde, 1996) to 60% of the incident flow. With distance down the depositional lobe, flow then gradually accelerates into the foredune plain. Local positive slope effects (e.g., the NE slope at 160 to 250 m) promote slight (northward) topographic steering and further acceleration of flow along the slope. Despite moderate to dense vegetation cover, sediment erosion and deposition occur causing surface elevation changes in some areas of the foredune plain in response to these topographically induced flow patterns. Localized jetting and erosion around vegetated dunes also occurs (see Fig. 3B) (c.f., Hesp, 2002) in the hummocky area between stations 3 and 4. Otherwise, as vegetation density increases from 40% to 95% deep into the foredune plain (beyond 200 m from the foredune), surface roughness increases thereby reducing near-surface windspeeds and sheltering the surface from wind action Parabolic dune In coastal environments, parabolic dunes often develop from the migration of depositional lobes of blowouts (Hesp, 1999, 2002). However, no evidence exists to suggest that this is the case for the parabolic dune at the study site. This dune appears to be maintained by sediment delivered via grainfall 150 to 200 m downwind of the foredune during highmagnitude events of moderate (seasonal) frequency. Its shape is partly controlled by a bio-geomorphic interaction between woody vegetation on the flanks and head of the dune that alters near-surface airflow and traps sediment on the dune (Fig. 7). In turn, the dune provides a distinct micro-environment with a different disturbance regime (i.e., wind and sand abrasion) and hydrology from that of the surrounding coastal plain Grainfall delivery Sediment transport via saltation has been researched extensively in beach and backshore settings over the past two decades (e.g., Hesp, 1983, 2002, 2003; Hesp and Hyde, 1996; Hesp and Pringle, 2001; Davidson-Arnott and Law, 1990, 1996; Arens, 1996a,b, 1997; Arens et al., 2001a,b, 2002; Jackson and Nordstrom, 1998; Davidson-Arnott et al., 2003). In contrast, sand delivery via grainfall in dune systems has received comparatively less attention, particularly in coastal research. Over transverse desert dunes, Hunter (1985) observed that the rate of decay in grainfall leeward of the crest could be described by a power function. Further work by Anderson (1988) found an exponential decay with deposition concentrated at 0.2 and 0.4 m from the brink on the lee slope. More recently, Nickling et al. (2002) also observed an exponential decline in grainfall deposition where up to 99% of total grainfall was deposited within 2 m of the crest for a variety of dune sizes and aspect ratios. Nickling et al. (2002) found, however, that Anderson's (1988) model, based on saltation trajectories, under-predicted grainfall rates by more than an order of magnitude. This was attributed to vertical lift and modified turbulent suspension of grains by secondary flows in the wake region that cause longer transport paths than those of true saltation, as observed by McDonald and Anderson (1995). Detailed wind tunnel measurements by Walker and Nickling (2002) confirm the presence of vertical lift and balanced vertical mixing in the immediate lee of transverse dunes. These recent observations indicate that saltation is not the sole mechanism for sediment delivery over and beyond dunes and that secondary lee-side airflow patterns (e.g., flow separation and reversal cells) have a significant effect on dune sedimentary dynamics. To date, very little research exists to document such effects over coastal dunes. No trend in grainfall deposition was found inland from the foredune, although these data reflect the influence of several transporting events over the period of study. For instance, large quantities farther inland may be the product of a few, less frequent storms, whilst high quantities in the lee of the foredune and blowout may reflect more frequent grainfall during lower magnitude events. McKenna Neuman et al. (2000) concluded that dune morphology is a product of the frequency and distribution of wind speeds above threshold as well as the nature of the regional wind regime. In this study, grainfall driven by higher magnitude (and relatively frequent) SE storm wind events contributes a great deal to sediment delivery and, thus, to dune maintenance throughout the foredune plain. During these events, nearsurface flow may separate from the foredune crest and from other compound dune features in the foredune plain to transport grains in modified suspension for hundreds of metres beyond the beach an order of magnitude farther than Arens' (1996a,b) observations along the Dutch coast. In this environment, the amount of

16 32 J.L. Anderson, I.J. Walker / Geomorphology 77 (2006) sediment delivered by this mechanism is appreciable and in the order of 10 to 100 kg m 2 over a few months of the typically stormy fall winter season. As the parabolic dune is located near a zone of high grainfall, it seems that modified suspension, coupled with flow vegetation interactions (e.g., bluff body stagnation effects and sand trapping on the flanks of the dune), may be responsible for maintaining active dunes hundreds of metres from the shoreline in an otherwise vegetated foredune plain. 6. Conclusions This study presents extensive measurements of airflow vectors, vegetation density, sand transport, and seasonal grainfall delivery and surface elevation changes over a m swath of a topographically complex backshore foredune plain complex. The results indicate a clear need to consider onshore aeolian sediment transport well beyond the beach and foredune as potentially significant in the morphodynamics of sandy coastal systems. Key findings include: (i) Flow vectors are topographically steered and forced. Oblique onshore flow is steered alongshore over an incipient foredune, landward at the established foredune, and into a trough blowout. In the blowout, flow acceleration to 1.8 times the incident flow and increasing flow steadiness occur. Beyond the depositional lobe of the blowout, flow expands, vegetation roughness increases, and flow decelerates to 0.6 times the incident flow. Over the foredune plain, flow steering and acceleration to 1.6 times slight occur (due to positive slope effects) followed by a drop to 0.4 in a densely vegetated zone upwind of an active parabolic dune. (ii) Topographic forcing influences the relations between near-surface wind speed (U 0.3 ), flow steadiness (F s ), and sand transport. High-frequency wind speed and transport intensity from saltation probes reveal an inverse relationship between U 0.3 and F s. More sediment is moved in faster, steadier flows within the trough blowout and, via topographic steering and flow acceleration, the blowout channels flow and sediment through the foredune into, and beyond, the foredune plain. (iii) Sediment properties (sorting and skewness) are influenced by topographic forcing and the mechanisms of sand transport. Well-sorted medium sands in the backshore become more poorly sorted in the blowout throat, better sorted over the foredune plain, then more poorly sorted at the parabolic dune. Sands are fine (positively) skewed on the beach to coarse (negatively) skewed in the foredune blowout region due to progressive winnowing of fines. On the foredune plain, sands are coarse skewed to symmetrical and progress to fine skewed toward the parabolic dune, perhaps because of increasing deposition of fines transported in modified suspension. (iv) Significant amounts of sand are transported in modified suspension and deposited (up to 110 kg m 2 ) as far as 300 m beyond the foredune during the fall winter season when vegetation density is low and storm winds are frequent. Although no observable trend in grainfall was found, most was deposited in two locations: (a) in the immediate lee of the foredune blowout and (b) upwind of an isolated, active parabolic dune 200 m landward of the foredune. This distribution may reflect the influence of several transporting events over the period of study and/ or localized separation and modified suspension from compound dune forms on the foredune plain. Thus, sand delivery via modified suspesion and grainfall coupled may be significant in maintaining active dunes hundreds of metres landward of the shoreline. Acknowledgements Thanks are extended to Kim Pearce for field assistance and to Dr. S.A. Wolfe for helpful contributions on research design and interpretation. Gratitude is also extended to the Council of the Haida Nation and to Naikoon Provincial Park staff Dan Bates and Lucy Stefanyk for access and logistical support. Support funding was provided by an NSERC operating grant and a Canadian Foundation for Innovation New Opportunities grant to IJW. Thorough reviews by Drs. Bernard Bauer and Karl Nordstrom also substantially improved this manuscript. References Aagard, T., Davidson-Arnott, R.G., Greenwood, B., Nielsen, J., Sediment supply from shoreface to dunes: linking sediment transport measurements and long-term morphological evolution. Geomorphology 60, Abeysirigunawardena, D.S. and Walker, I.J., unpublished data. Sea level responses to climate variability and change in northern British Columbia, Canada. Manuscript in preparation. Anderson, R.S., The pattern of grainfall deposition in the lee of aeolian dunes. Sedimentology 35 (2),

17 J.L. Anderson, I.J. Walker / Geomorphology 77 (2006) Andrews, B.D., Gares, P.A., Colby, J.D., Techniques for GIS modeling of coastal dunes. Geomorphology 48 (1 3), Anthony, E.J., Marine sand supply and Holocene coastal sedimentation in northern France between the Seine estuary and Belgium. In: Pye, K., Allen, J.R.L. (Eds.), Coastal and Estuarine Environments Sedimentology, Geomorphology and Geoarchaeology. Special Publications of the Geological Society of London. Geological Society of London, London, pp Anthony, E.J., Orford, J.D., Between wave- and tide-dominated coasts: the middle ground revisited. Journal of Coastal Research Special Issue 36, 8 15 (ICS 2002 Proceedings). Arens, S.M., 1996a. Patterns of sand transport on vegetated foredunes. Geomorphology 17, Arens, S.M., 1996b. Rates of aeolian transport on a beach in a temperate humid climate. Geomorphology 17, Arens, S.M., Transport rates and volume changes in a coastal foredune on a Dutch Wadden island. Journal of Coastal Conservation 3, Arens, S.M., van Kaam-Peters, H.M.E., van Boxel, J.H., Airflow over foredunes and implications for sand transport. Earth Surface Processes and Landforms 20 (4), Arens, S.M., Baas, A.C.W., van Boxel, J.H., Kalkman, C., 2001a. Influence of reed stem density on foredune development. Earth Surface Processes and Landforms 26, Arens, S.M., Jungerius, P.D., van Der Meulen, F., 2001b. Coastal dunes. In: Warren, A., French, J.R. (Eds.), Habitat Conservation: Managing the Physical Environment. John Wiley and Sons Ltd., Toronto, ON, pp Arens, S.M., van Boxel, J.H., Abuodha, J.O.Z., Changes in grain size of sand in transport over a foredune. Earth Surface Processes and Landforms 27, Armon, J.W., McCann, S.B., Morphology and landward sediment transfer in a transgressive barrier island system, southern Gulf of St. Lawrence, Canada. Marine Geology 31, Baas, A.C.W., Evaluation of saltation flux impact responders (Safires) for measuring instantaneous aeolian sand transport intensity. Geomorphology 59 (1 4), Barrie, J.V., Conway, K., Rapid sea level change and coastal evolution on the Pacific margin of Canada. Sedimentary Geology 150, Bauer, B.O., Davidson-Arnott, R.G.D., A general framework for modeling sediment supply to coastal dunes including wind angle, beach geometry, and fetch effects. Geomorphology 49 (1 2), Belly, P.Y., Sand movement by wind. Technical memo 1, United States Army Corps of Engineers, Coastal Engineering Research Center, Washington, DC, 80 pp. Bristow, C.S., Chroston, P.N., Bailey, S.D., The structure and development of foredunes on a locally prograding coast: insights from ground-penetrating radar surveys, Norfolk, UK. Sedimentology 47 (5), Brown, D.G., Arbogast, A.F., Digital photogrammetric change analysis as applied to active coastal dunes in Michigan. Photogrammetric Engineering and Remote Sensing 65 (4), Buckley, R., The effect of sparse vegetation cover on the transport of dune sand by wind. Nature 325 (6103), Clague, J.J., Mathewes, R.W., Warner, B.G., Late Quaternary geology of eastern Graham Island, Queen Charlotte Islands, British Columbia. Canadian Journal of Earth Sciences 19, Davidson-Arnott, R.G.D., Measurement and prediction of longterm sediment supply to coastal foredunes. Journal of Coastal Research 13 (3), Davidson-Arnott, R.G., Law, M.N., Seasonal patterns and controls on sediment supply to coastal foredunes, Long Point, Lake Erie. In: Nordstrom, K.F., Psuty, N.P., Carter, R.W.G. (Eds.), Coastal Dunes: Form and Process. John Wiley and Sons, Toronto, ON, pp Davidson-Arnott, R.G., Law, M.N., Measurement and prediction of long-term sediment supply to coastal foredunes. Journal of Coastal Research 13 (3), Davidson-Arnott, R.G., Ollerhead, J., Walker, I.J. and Hesp, P.A., Spatial and temporal variability in intensity of aeolian transport on a beach and foredune. In: R.A. Davis and P. Howd (Editors), Coastal Sediments '03. The Proceedings of The Fifth International Symposium on Coastal Engineering and Science of Coastal Sediment Processes, 2003, Sheraton Sand Key Resort, Clearwater Beach Florida. World Scientific Publishing Corp. and East Meets West Productions, Corpus Christi, Texas, USA. CDROM-ISBN Eid, B., Calnan, C., Henschel, M., McGrath, B., Wind and wave climate atlas volume IV: the west coast of CanadaTransport Canada (Report no. TP 10820E), Halifax, NS. Fryberger, S.G., Dune forms and wind regime. In: McKee, E. D. (Ed.), A Study of Global Sand Seas. USGS Professional Paper, vol United States Geological Survey, Washington, DC, pp Harper, J.R., Coastal Processes on Graham Island, Queen Charlotte Islands, British Columbia, Current Research, Part A. Paper 80-1A. Geological Survey of Canada, Ottawa, ON, pp Hesp, P.A., The formation of shadow dunes. Journal of Sedimentary Petrology 51 (1), Hesp, P.A., Morphodynamics of the incipient foredunes in New South Wales, Australia. In: Brookfield, M.E., Ahlbrandt, T.S. (Eds.), Eolian Sediments and Processes. Developments in Sedimentology. Elsevier, Amsterdam, The Netherlands, pp Hesp, P.A., The formation of sand beach ridges and foredunes. Search 15 (9 10), Hesp, P.A., A review of biological and geomorphological processes involved in the initiation and development of incipient foredunes. Proceedings of the Royal Society of Edinburgh 96B, Hesp, P.A., The beach backshore and beyond. In: Short, A.D. (Ed.), Handbook of Beach Shoreface Morphodynamics. John Wiley and Sons Ltd., Toronto, ON, pp Hesp, P.A., Foredunes and blowouts: initiation, geomorphology and dynamics. Geomorphology 48, Hesp, P.A., ENSO and parabolic dune dynamics in the roaring forties, Manawatu coast, New Zealand. In: W. Kamphuis (Ed.), Proceedings of the Canadian Coastal Conference 2003, Queen's University, Kingston, ON, on CDROM. Hesp, P.A., Hyde, R., Flow dynamics and geomorphology of a trough blowout. Sedimentology 43, Hesp, P.A., Pringle, A., Wind flow and topographic steering within a tough blowout. Journal of Coastal Research, Special Issue 34, Hesp, P.A., Walker, I.J., Davidson-Arnott, R.G., Ollerhead, J., Flow dynamics over a vegetated foredune at Prince Edward Island, Canada. Geomorphology 65, Hunter, R.E., A kinematic model for the structure of lee-side deposits. Sedimentology 32,

Patrick Hesp. Department of Geography and Anthropology, Louisiana State University

Patrick Hesp. Department of Geography and Anthropology, Louisiana State University Patrick Hesp Department of Geography and Anthropology, Louisiana State University Incipient ( embryo ) Foredunes - new, or developing foredunes formed by aeolian sand deposition within pioneer plant communities

More information

Dunes Growth Estimation for Coastal Protection

Dunes Growth Estimation for Coastal Protection Dunes Growth Estimation for Coastal Protection Muhammad Zikra Department of Ocean Engineering, Faculty of Marine Technology, ITS, Kampus ITS Keputih Sukolilo, Surabaya 60111 Abstract: This paper describes

More information

Surfzone-Beach-Dune interactions: Flow and Sediment Transport across the Intertidal Beach and Backshore

Surfzone-Beach-Dune interactions: Flow and Sediment Transport across the Intertidal Beach and Backshore Journal of Coastal Research SI 7 8- Coconut Creek, Florida Surfzone-Beach-Dune interactions: Flow and Sediment Transport across the Intertidal Beach and Backshore Patrick A. Hesp and Thomas A.G. Smyth

More information

Geomorphology of Dune Blowouts, Cape Cod National Seashore, MA. Alexander B. Smith. August, 2013

Geomorphology of Dune Blowouts, Cape Cod National Seashore, MA. Alexander B. Smith. August, 2013 Geomorphology of Dune Blowouts, Cape Cod National Seashore, MA by Alexander B. Smith August, 2013 Director of Thesis: Paul Gares Major Department: Geography Dune blowouts are common erosional features

More information

Identifying Forcing Conditions Responsible for Foredune Erosion on the Northern Coast of France

Identifying Forcing Conditions Responsible for Foredune Erosion on the Northern Coast of France Journal of Coastal Research SI 56 356-360 ICS2009 (Proceedings) Portugal ISSN 0749-0258 Identifying Forcing Conditions Responsible for Foredune Erosion on the Northern Coast of France M-H. Ruz, A. Héquette

More information

Factors Controlling the Development of Foredunes along the Łeba Barrier on the South Baltic Coast of Poland

Factors Controlling the Development of Foredunes along the Łeba Barrier on the South Baltic Coast of Poland Journal of Coastal Research SI 64 308-313 ICS2011 (Proceedings) Poland ISSN 0749-0208 Factors Controlling the Development of Foredunes along the Łeba Barrier on the South Baltic Coast of Poland J. Rotnicka

More information

Quantifying Coastal Evolution using Remote Sensing Approaches

Quantifying Coastal Evolution using Remote Sensing Approaches Quantifying Coastal Evolution using Remote Sensing Approaches Sojan Mathew, Linh Truong Hong, Xavier Pellicer*, Colman Gallagher University College Dublin Geological Survey of Ireland* INFOMAR SEMINAR,

More information

GLY Coastal Geomorphology Notes

GLY Coastal Geomorphology Notes GLY 4734 - Coastal Geomorphology Notes Dr. Peter N. Adams Spring 2011 2 Coastal Classification In this lecture, we discuss some successful classification schemes of the coastal landscape, and pay particular

More information

SHORELINE AND BEACH PROCESSES: PART 2. Implications for Coastal Engineering

SHORELINE AND BEACH PROCESSES: PART 2. Implications for Coastal Engineering SHORELINE AND BEACH PROCESSES: PART 2 Implications for Coastal Engineering Objectives of the lecture: Part 2 Show examples of coastal engineering Discuss the practical difficulties of ocean engineering

More information

ENGINEERING WITH NATURE: NEARSHORE BERM PLACEMENTS AT FORT MYERS BEACH AND PERDIDO KEY, FLORIDA, USA

ENGINEERING WITH NATURE: NEARSHORE BERM PLACEMENTS AT FORT MYERS BEACH AND PERDIDO KEY, FLORIDA, USA 1 ENGINEERING WITH NATURE: NEARSHORE BERM PLACEMENTS AT FORT MYERS BEACH AND PERDIDO KEY, FLORIDA, USA KATHERINE E. BRUTSCHÉ 1, PING WANG 2, JULIE D. ROSATI 1, CHERYL E. POLLOCK 1 1. U.S. Army Engineer

More information

Holderness Erosion and Evolution of the Spurn Peninsula

Holderness Erosion and Evolution of the Spurn Peninsula Holderness Erosion and Evolution of the Spurn Peninsula Prof. Ken Pye and Dr. Simon Blott Kenneth Pye Associates Ltd. Outline of the Presentation Overview of historical erosion trends Effects of coast

More information

B-1. Attachment B-1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling

B-1. Attachment B-1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling Attachment B-1 Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling 1 October 2012 Lower Susquehanna River Watershed Assessment Evaluation of AdH Model Simplifications

More information

PROCESS-BASED MODELING OF COASTAL DUNE DEVELOPMENT

PROCESS-BASED MODELING OF COASTAL DUNE DEVELOPMENT PROCESS-BASED MODELING OF COASTAL DUNE DEVELOPMENT Martijn Muller 1, Dano Roelvink 23, Arjen Luijendijk 12, Sierd de Vries 1 and Jaap van Thiel de Vries 12 In this paper, the aeolian transport model DUNE

More information

2.2.7 Backbarrier flats

2.2.7 Backbarrier flats FIGURE 24. VERTICAL PHOTOGRAPH SHOWING THE DEVELOPMENT OF SMALL PARABOLIC DUNES FROM BLOWOUTS IN A LARGE RELICT FOREDUNE NORTHWEST OF HUNTER'S CREEK. PHOTOGRAPH COURTESY OF CAR'T'ER HOLT HARVEY FORESTS

More information

Geomorphology 118 (2010) Contents lists available at ScienceDirect. Geomorphology. journal homepage:

Geomorphology 118 (2010) Contents lists available at ScienceDirect. Geomorphology. journal homepage: Geomorphology 118 (2010) 33 47 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Quantifying sand storage capacity of large woody debris on beaches

More information

Geol 117 Lecture 18 Beaches & Coastlines. I. Types of Coastlines A. Definition:

Geol 117 Lecture 18 Beaches & Coastlines. I. Types of Coastlines A. Definition: I. Types of Coastlines A. Definition: 1. Shore = narrow zone where ocean meets land (e.g. beach) 2. Coast is a broad area where both ocean and land processes act a. Includes onshore marshes, dunes, sea

More information

Sand Movement Patterns in Southern Iran

Sand Movement Patterns in Southern Iran DESERT DESERT Online at http://jdesert.ut.ac.ir DESERT 19-1 (214) 11-15 Sand Movement Patterns in Southern Iran T. Mesbahzadeh a*, H. Ahmadi b a Faculty of Natural Resources, University of Tehran, Karaj,

More information

Assessing aeolian beach-surface dynamics using a remote sensing

Assessing aeolian beach-surface dynamics using a remote sensing 1 2 Assessing aeolian beach-surface dynamics using a remote sensing approach 3 4 5 Irene Delgado-Fernandez 1*, Robin Davidson-Arnott 2, Bernard O.Bauer 3, Ian J. Walker 4, Jeff Ollerhead 5, Hosahng Rhew

More information

Coastal Processes and Shoreline Erosion on the Oregon Coast, Cascade Head to Cape Kiwanda

Coastal Processes and Shoreline Erosion on the Oregon Coast, Cascade Head to Cape Kiwanda State of Oregon Department of Geology and Mineral Industries Vicki S. McConnell, State Geologist Open File Report OFR O-04-11 Coastal Processes and Shoreline Erosion on the Oregon Coast, Cascade Head to

More information

Supplemental Slides. Shore: Junction of Land & Water. Junction of Land & Water. Sea Level Variations. Shore vs. Coast. Sea Level Variations

Supplemental Slides. Shore: Junction of Land & Water. Junction of Land & Water. Sea Level Variations. Shore vs. Coast. Sea Level Variations Shore: Junction of Land & Water Supplemental Slides Sediments come off land Most get dumped at the beach Sediment interacts with ocean waves and currents Junction of Land & Water Features: Breaking waves,

More information

Shore: Junction of Land & Water. Sediments come off land Most get dumped at the beach Sediment interacts with ocean waves and currents

Shore: Junction of Land & Water. Sediments come off land Most get dumped at the beach Sediment interacts with ocean waves and currents Shore: Junction of Land & Water Supplemental Slides Sediments come off land Most get dumped at the beach Sediment interacts with ocean waves and currents Junction of Land & Water Features: Breaking waves,

More information

QU: Where does sand do jail time? AIM: To explain the sediment cell concept as a system and what human and natural factors create/upset a dynamic

QU: Where does sand do jail time? AIM: To explain the sediment cell concept as a system and what human and natural factors create/upset a dynamic QU: Where does sand do jail time? AIM: To explain the sediment cell concept as a system and what human and natural factors create/upset a dynamic equilibrium. ST: On your copy draw and label future depositional

More information

L.O Students will learn about factors that influences the environment

L.O Students will learn about factors that influences the environment Name L.O Students will learn about factors that influences the environment Date 1. At the present time, glaciers occur mostly in areas of A) high latitude or high altitude B) low latitude or low altitude

More information

EOLIAN PROCESSES & LANDFORMS

EOLIAN PROCESSES & LANDFORMS EOLIAN PROCESSES & LANDFORMS Wind can be an effective geomorphic agent under conditions of sparse vegetation & abundant unconsolidated sediment egs. hot & cold deserts, beaches & coastal regions, glacial

More information

The Coast: Beaches and Shoreline Processes

The Coast: Beaches and Shoreline Processes 1 2 3 4 5 6 7 8 9 The Coast: es and Shoreline Processes Trujillo & Thurman, Chapter 10 Oceanography 101 Chapter Objectives Recognize the various landforms characteristic of beaches and coastal regions.

More information

MEMORANDUM FOR SWG

MEMORANDUM FOR SWG MEMORANDUM FOR SWG-2007-1623 Subject: Jurisdictional Determination (JD) for SWG-2007-1623 on Interdunal Wetlands Adjacent to Traditional Navigable Waters (TNWs) Summary The U.S. Environmental Protection

More information

The Coast: Beaches and Shoreline Processes Trujillo & Thurman, Chapter 10

The Coast: Beaches and Shoreline Processes Trujillo & Thurman, Chapter 10 The Coast: es and Shoreline Processes Trujillo & Thurman, Chapter 10 Oceanography 101 Chapter Objectives Recognize the various landforms characteristic of beaches and coastal regions. Identify seasonal

More information

GEOL 440 Sedimentology and stratigraphy: processes, environments and deposits. Lectures 17 & 18: Aeolian Facies

GEOL 440 Sedimentology and stratigraphy: processes, environments and deposits. Lectures 17 & 18: Aeolian Facies GEOL 440 Sedimentology and stratigraphy: processes, environments and deposits Lectures 17 & 18: Aeolian Facies Today: Processes air/water differences Deposits bedforms Facies a little on models and controls

More information

Aeolian Environments. And Controls on Sedimentation. John Luchok, Kyle Balling, Cristopher Alvarez

Aeolian Environments. And Controls on Sedimentation. John Luchok, Kyle Balling, Cristopher Alvarez Aeolian Environments And Controls on Sedimentation John Luchok, Kyle Balling, Cristopher Alvarez The Aeolian Environment Aeolian Processes - geologic activity with regards to wind Desert Environments (Hyper-Arid,

More information

Aim and objectives Components of vulnerability National Coastal Vulnerability Assessment 2

Aim and objectives Components of vulnerability National Coastal Vulnerability Assessment 2 ASSESSING THE UTILITY OF GEOMORPHIC SENSITIVITY MAPPING ON THE ILLAWARRA COAST Pamela Abuodha, Christina Baker, Chris Sharples, Darren Skene and Colin Woodroffe Geoquest Research Centre, University of

More information

Coastal Barrier Island Network (CBIN): Management strategies for the future

Coastal Barrier Island Network (CBIN): Management strategies for the future Coastal Barrier Island Network (CBIN): Management strategies for the future Heather Joesting*, Amy Williams**, Rusty Feagin**, and William K. Smith* *Department of Biology, Wake Forest University, Winston

More information

BYPASS IN GROYNE FIELDS: CASE STUDY ALONG THE LOBITO SPIT

BYPASS IN GROYNE FIELDS: CASE STUDY ALONG THE LOBITO SPIT BYPASS IN GROYNE FIELDS: CASE STUDY ALONG THE LOBITO SPIT Sten Esbjørn Kristensen 1, Nils Drønen 2, Rolf Deigaard 3, Berry Elfrink 4 Abstract The Lobito spit, in Angola, is fronted by a groyne field along

More information

Phillip Island Nature Parks Coastal Process Study 8 October 2014

Phillip Island Nature Parks Coastal Process Study 8 October 2014 Phillip Island Nature Parks Coastal Process Study 8 October 2014 Project Overview Coastal Geology Basaltic and fragmented lavas, granite at Pyramid Rock and Cape Woolamai Weathered basalt (>10m thick)

More information

Caspian Rapid Sea Level Changing Impact on Estuaries Morphodynamic Deformation

Caspian Rapid Sea Level Changing Impact on Estuaries Morphodynamic Deformation 2013, TextRoad Publication ISSN 2090-4304 Journal of Basic and Applied Scientific Research www.textroad.com Caspian Rapid Sea Level Changing Impact on Estuaries Morphodynamic Deformation Naser Ebadati

More information

Appendix G.19 Hatch Report Pacific NorthWest LNG Lelu Island LNG Maintenance Dredging at the Materials Offloading Facility

Appendix G.19 Hatch Report Pacific NorthWest LNG Lelu Island LNG Maintenance Dredging at the Materials Offloading Facility Appendix G.19 Hatch Report Pacific NorthWest LNG Lelu Island LNG Maintenance Dredging at the Materials Offloading Facility Project Memo H345670 To: Capt. David Kyle From: O. Sayao/L. Absalonsen December

More information

Coastal Systems and Landscapes 3 days

Coastal Systems and Landscapes 3 days AS Level Geography WJEC Coastal Systems and Landscapes 3 days This course is for Welsh schools. This in-depth course prepares students for the physical fieldwork focusing on the Coastal option, for Section

More information

EROSIONAL RATES IN THE POINT AUX CHENES BAY AREA, MISSISSIPPI: Kathleen P. Wacker G. Alan Criss INTRODUCTION

EROSIONAL RATES IN THE POINT AUX CHENES BAY AREA, MISSISSIPPI: Kathleen P. Wacker G. Alan Criss INTRODUCTION Summary of a Paper Presented at the: Sixtieth Annual Meeting of the Mississippi Academy of Sciences in Jackson, Mississippi February 22, 1996 ===============================================================

More information

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B)

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B) 1. When snow cover on the land melts, the water will most likely become surface runoff if the land surface is A) frozen B) porous C) grass covered D) unconsolidated gravel Base your answers to questions

More information

Students will work in small groups to collect detailed data about a variety of living things in the study area.

Students will work in small groups to collect detailed data about a variety of living things in the study area. TEACHER BOOKLET Sampling along a transect Name BIOLOGY Students will work in small groups to collect detailed data about a variety of living things in the study area. Students will need: 10 metre long

More information

Weathering of Rocks. Weathering - Breakdown of rocks into pieces (sediment) 2 main types of weathering to rocks

Weathering of Rocks. Weathering - Breakdown of rocks into pieces (sediment) 2 main types of weathering to rocks Weathering of Rocks Weathering - Breakdown of rocks into pieces (sediment) 2 main types of weathering to rocks Mechanical weathering requires physical forces to break rocks into smaller pieces. Chemical

More information

Morphology, Vegetation and Sand Fence Influence on Sand Mobility of the Foredune System of Atlântida Sul Beach, Rio Grande do Sul, Brazil

Morphology, Vegetation and Sand Fence Influence on Sand Mobility of the Foredune System of Atlântida Sul Beach, Rio Grande do Sul, Brazil Journal of Coastal Research SI 39 616-621 ICS 2004 (Proceedings) Brazil ISSN 0749-0208 Morphology, Vegetation and Sand Fence Influence on Sand Mobility of the Foredune System of Atlântida Sul Beach, Rio

More information

Developing a Seabed Resurvey Strategy: A GIS approach to modelling seabed changes and resurvey risk

Developing a Seabed Resurvey Strategy: A GIS approach to modelling seabed changes and resurvey risk Developing a Seabed Resurvey Strategy: A GIS approach to modelling seabed changes and resurvey risk A. M. Bakare, J. G. Morley, R. R. Simons Department of Geomatic Engineering, University College London,

More information

Annual transport rates at two locations on the fore-slope.

Annual transport rates at two locations on the fore-slope. Sediment Transport by Currents Fore-slope Sediment transport rates and sediment concentrations were computed from the hydrodynamic model runs as well as from direct measurements of current velocities at

More information

Storms. 3. Storm types 4. Coastal Sectors 5. Sorm Location and Seasonality 6. Storm Severity 7. Storm Frequency and grouping 8. The design storm event

Storms. 3. Storm types 4. Coastal Sectors 5. Sorm Location and Seasonality 6. Storm Severity 7. Storm Frequency and grouping 8. The design storm event 1. Introduction Storms 2. The Impact of Storms on the coast 3. Storm types 4. Coastal Sectors 5. Sorm Location and Seasonality 6. Storm Severity 7. Storm Frequency and grouping 8. The design storm event

More information

Mapping of Future Coastal Hazards. for Southern California. January 7th, David Revell, Ph.D. E.

Mapping of Future Coastal Hazards. for Southern California. January 7th, David Revell, Ph.D. E. Mapping of Future Coastal Hazards for Southern California January 7th, 2014 David Revell, Ph.D. drevell@esassoc.com E. Vandebroek, 2012 Outline Coastal erosion hazard zones Flood hazard zones: Coastal

More information

ON THE EVOLUTION OF A HOLOCENE BARRIER COAST

ON THE EVOLUTION OF A HOLOCENE BARRIER COAST ON THE EVOLUTION OF A HOLOCENE BARRIER COAST Response to sea-level change and sediment supply DANCORE Seminar 2014 COADAPT - Danish Coasts and Climate Adaptation Flooding Risk and Coastal Protection Mikkel

More information

Chapter 7 Case study. Sand dune coastal environment: Studland Bay

Chapter 7 Case study. Sand dune coastal environment: Studland Bay Sand dune coastal environment: Studland Bay Sand dunes are common features of low-lying stretches of coastline in the UK and elsewhere in the world. They form in places where there is a plentiful supply

More information

L7/ Historical Perspec=ve, Deltas

L7/ Historical Perspec=ve, Deltas Colin Woodroffe (2002) Coasts: Form, Process and Evolu=on, Outline of Chapter 7: L7/1 L7/2 7.1. Historical Perspec=ve, 7.1.1. Deltas Herodotus (450, B.C.) delta = Shape of Nile River Delta = Δ Gilbert

More information

Environment Bay of Plenty Ohope Beach system

Environment Bay of Plenty Ohope Beach system Environment Bay of Plenty 7 5. Ohope Beach system Environmental Publication 27/ NERMN Beach Profile Monitoring Environment Bay of Plenty 5..1 Ohope Spit (CCS 9) Discussion The site is located 2m to the

More information

TECHNIQUES FOR ASSESSING COASTAL HAZARD AREAS FOR THE GISBORNE DISTRICT COAST

TECHNIQUES FOR ASSESSING COASTAL HAZARD AREAS FOR THE GISBORNE DISTRICT COAST TECHNIQUES FOR ASSESSING COASTAL HAZARD AREAS FOR THE GISBORNE DISTRICT COAST July 1994 C.R. 1994/12 Jeremy G Gibb 2009 All rights reserved. This work is entitled to the full protection given by the Copyright

More information

Chapter 6, Part Colonizers arriving in North America found extremely landscapes. It looked different to region showing great.

Chapter 6, Part Colonizers arriving in North America found extremely landscapes. It looked different to region showing great. Social Studies 9 Unit 1 Worksheet Chapter 6, Part 1. 1. Colonizers arriving in North America found extremely landscapes. It looked different to region showing great. 2. The Earth is years old and is composed

More information

STUDY AREA AND METHODOLOGY

STUDY AREA AND METHODOLOGY . CHAPTER 2 STUDY AREA AND METHODOLOGY 26 CHAPTER 2 STUDY AREA AND METHODOLOGY Kundalika is a major river in konkan region of Maharashtra. River originates in Western Ghats at an altitude of 820 m ASL

More information

Modelling Aeolian Agro-Environmental Landscape Dynamics

Modelling Aeolian Agro-Environmental Landscape Dynamics Innovation of Models across Agro-Environmental Scales: Modelling Aeolian Agro-Environmental Landscape Dynamics Andreas Baas Department of Geography King s College London thanks to: Aeolian Agro-Environmental

More information

Jasper Beach, Machiasport, Maine

Jasper Beach, Machiasport, Maine Maine Geologic Facts and Localities June, 2000 Jasper Beach, Machiasport, Maine 44 o 38 30.28 N, 67 o 22 31.96 W Text by Joesph T. Kelley, Department of Agriculture, Conservation & Forestry 1 Map by USGS

More information

Transformation of barchans into parabolic dunes under the influence of vegetation

Transformation of barchans into parabolic dunes under the influence of vegetation Transformation of barchans into parabolic dunes under the influence of vegetation arxiv:cond-mat/0504621 v1 25 Apr 2005 Abstract O. Durán, V. Schatz, H. J. Herrmann Institute for Computer Physics, Universität

More information

Elwha River response to dam removals through four years and a big flood:

Elwha River response to dam removals through four years and a big flood: Elwha River response to dam removals through four years and a big flood: Lessons learned, channel response, and sediment effects from the world s largest engineered dam removal Andy Ritchie NPS Elwha Restoration

More information

Field characterization of three-dimensional lee-side airflow patterns under offshore winds at a beach-dune system

Field characterization of three-dimensional lee-side airflow patterns under offshore winds at a beach-dune system JOURNAL OF GEOPHYSICAL RESEARCH: EARTH SURFACE, VOL. 118, 1 16, doi:1.12/jgrf.236, 213 Field characterization of three-dimensional lee-side airflow patterns under offshore winds at a beach- system Irene

More information

The Impact of Changing Winds on Estuarine Evolution, Copano Bay, TX

The Impact of Changing Winds on Estuarine Evolution, Copano Bay, TX The Impact of Changing Winds on Estuarine Evolution, Copano Bay, TX Purpose: The fulfillment of partial requirements for the Degree of Master of Science in Geology Oklahoma State University, Stillwater

More information

8.1 Attachment 1: Ambient Weather Conditions at Jervoise Bay, Cockburn Sound

8.1 Attachment 1: Ambient Weather Conditions at Jervoise Bay, Cockburn Sound 8.1 Attachment 1: Ambient Weather Conditions at Jervoise Bay, Cockburn Sound Cockburn Sound is 20km south of the Perth-Fremantle area and has two features that are unique along Perth s metropolitan coast

More information

Australian Coastal Councils Conference

Australian Coastal Councils Conference Australian Coastal Councils Conference 11 March 2015 Estimating Future Coastal Inundation and Erosion Hazards Dr Andrew McCowan Dr Christine Lauchlan-Arrowsmith Warwick Bishop Background Victorian Future

More information

Sediment and Sedimentary rock

Sediment and Sedimentary rock Sediment and Sedimentary rock Sediment: An accumulation of loose mineral grains, such as boulders, pebbles, sand, silt or mud, which are not cemented together. Mechanical and chemical weathering produces

More information

TIME-DEPENDENT EFFECTS OF NOURISHMENTS ON SHOREFACE BAR BEHAVIOUR. Abstract

TIME-DEPENDENT EFFECTS OF NOURISHMENTS ON SHOREFACE BAR BEHAVIOUR. Abstract TIME-DEPENDENT EFFECTS OF NOURISHMENTS ON SHOREFACE BAR BEHAVIOUR Tommer Vermaas 1, Edwin Elias 2, Ad van der Spek 3 and Rena Hoogland 4 Abstract In 2011/2012 a shoreface nourishment was placed at Heemskerk,

More information

Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa

Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa Weather Patterns and Severe Weather Foundations, 6e - Chapter 14 Stan Hatfield Southwestern Illinois College Air masses Characteristics Large body

More information

Appendix O. Sediment Transport Modelling Technical Memorandum

Appendix O. Sediment Transport Modelling Technical Memorandum Appendix O Sediment Transport Modelling Technical Memorandum w w w. b a i r d. c o m Baird o c e a n s engineering l a k e s design r i v e r s science w a t e r s h e d s construction Final Report Don

More information

Active Coastal Processes in the Lubec Embayment

Active Coastal Processes in the Lubec Embayment The Lubec Embayment Maine Geologic Facts and Localities August, 1998 Active Coastal Processes in the Lubec Embayment 44 49 50.51 N, 66 59 34.16 W Text by Joseph T. Kelley, Department of Agriculture, Conservation

More information

COASTAL DYNAMICS VIRTUAL FIELD TRIP, NORTHEAST FLORIDA. Joann Mossa Department of Geography University of Florida

COASTAL DYNAMICS VIRTUAL FIELD TRIP, NORTHEAST FLORIDA. Joann Mossa Department of Geography University of Florida COASTAL DYNAMICS VIRTUAL FIELD TRIP, NORTHEAST FLORIDA Joann Mossa Department of Geography University of Florida WHERE ARE WE GOING? In NE Florida (Flagler and St. Johns County, south of St. Augustine),

More information

SEA BOTTOM MORPHOLOGY AND SEDIMENT DISTRIBUTION OF KUALA BESAR KELANTAN RIVER DELTA AND ITS OFFSHORE AREAS

SEA BOTTOM MORPHOLOGY AND SEDIMENT DISTRIBUTION OF KUALA BESAR KELANTAN RIVER DELTA AND ITS OFFSHORE AREAS BORNEO SCIENCE 35: SEPTEMBER 2014 SEA BOTTOM MORPHOLOGY AND SEDIMENT DISTRIBUTION OF KUALA BESAR KELANTAN RIVER DELTA AND ITS OFFSHORE AREAS Nurul Afifah Mohd Radzir* 1, Che Aziz Ali 1, Kamal Roslan Mohamed

More information

The problem of the use of ambiguous terms in Tasmanian coastal planning policy documents for defining appropriate coastal development zones

The problem of the use of ambiguous terms in Tasmanian coastal planning policy documents for defining appropriate coastal development zones The problem of the use of ambiguous terms in Tasmanian coastal planning policy documents for defining appropriate coastal development zones Chris Sharples, May 2012 Introduction Coastal planning and policy

More information

Weather Related Factors of the Adelaide floods ; 7 th to 8 th November 2005

Weather Related Factors of the Adelaide floods ; 7 th to 8 th November 2005 Weather Related Factors of the Adelaide floods ; th to th November 2005 Extended Abstract Andrew Watson Regional Director Bureau of Meteorology, South Australian Region 1. Antecedent Weather 1.1 Rainfall

More information

DUNE EROSION NEAR SEA WALLS: MODEL-DATA COMPARISON

DUNE EROSION NEAR SEA WALLS: MODEL-DATA COMPARISON DUNE EROSION NEAR SEA WALLS: MODEL-DATA COMPARISON Pieter van Geer 1, Bram de Vries 2, Ap van Dongeren 1 and Jaap van Thiel de Vries 1,2 This paper describes the validation of the dune erosion model XBeach

More information

GPR imaging of the internal structure of modern migrating dunes, Napeague, NY

GPR imaging of the internal structure of modern migrating dunes, Napeague, NY GPR imaging of the internal structure of modern migrating dunes, Napeague, NY James D. Girardi and Dan M. Davis, Dept. of Geosciences, SUNY Stony Stony Brook INTRODUCTION By using ground penetrating radar

More information

Using Weather and Climate Information for Landslide Prevention and Mitigation

Using Weather and Climate Information for Landslide Prevention and Mitigation Using Weather and Climate Information for Landslide Prevention and Mitigation Professor Roy C. Sidle Disaster Prevention Research Institute Kyoto University, Japan International Workshop on Climate and

More information

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures?

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures? CHAPTER 17 1 What Is Climate? SECTION Climate BEFORE YOU READ After you read this section, you should be able to answer these questions: What is climate? What factors affect climate? How do climates differ

More information

The Agents of Erosion

The Agents of Erosion The Agents of Erosion 1. Erosion & Deposition 2. Water 3. Wind 4. Ice California Science Project 1 1. Erosion and Deposition Erosion is the physical removal and transport of material by mobile agents such

More information

Regional Climate Change: Current Impacts and Perspectives Greater Lake Nipissing Stewardship Council Annual Meeting Wednesday April 16, 2014

Regional Climate Change: Current Impacts and Perspectives Greater Lake Nipissing Stewardship Council Annual Meeting Wednesday April 16, 2014 Regional Climate Change: Current Impacts and Perspectives Greater Lake Nipissing Stewardship Council Annual Meeting Wednesday April 16, 2014 Speaker: Peter Bullock, Stantec Consulting Information Source:

More information

The Field Research Facility, Duck, NC Warming Ocean Observations and Forecast of Effects

The Field Research Facility, Duck, NC Warming Ocean Observations and Forecast of Effects The Field Research Facility, Duck, NC Warming Ocean Observations and Forecast of Effects A potential consequence of a warming ocean is more frequent and more intense wind events (Hurricanes & Typhoons)

More information

Chapter 9 Notes: Ice and Glaciers, Wind and Deserts

Chapter 9 Notes: Ice and Glaciers, Wind and Deserts Chapter 9 Notes: Ice and Glaciers, Wind and Deserts *Glaciers and Glacial Features glacier is a mass of ice that moves over land under its own weight through the action of gravity Glacier Formation must

More information

Morphology and sediment movement in a monsoon influenced open beach at Gangavali,near Gokarn (central west coast of India)

Morphology and sediment movement in a monsoon influenced open beach at Gangavali,near Gokarn (central west coast of India) Indian Journal of Marine Sciences Vol. 32(1), March 2003, pp. 31-36 Morphology and sediment movement in a monsoon influenced open beach at Gangavali,near Gokarn (central west coast of India) *M.S. Bhat,

More information

Appendix G.18 Hatch Report Pacific NorthWest LNG Lelu Island LNG Potential Impacts of the Marine Structures on the Hydrodynamics and Sedimentation

Appendix G.18 Hatch Report Pacific NorthWest LNG Lelu Island LNG Potential Impacts of the Marine Structures on the Hydrodynamics and Sedimentation Appendix G.18 Hatch Report Pacific NorthWest LNG Lelu Island LNG Potential Impacts of the Marine Structures on the Hydrodynamics and Sedimentation Patterns Project Memo H345670 To: Capt. David Kyle From:

More information

EARTH SURFACE PROCESSES AND SEDIMENTATION!

EARTH SURFACE PROCESSES AND SEDIMENTATION! Sed and Strat EARTH SURFACE PROCESSES AND SEDIMENTATION! 2/27 Lecture 7- Exposure: Weathering and the Sediment Factory 3/04 Lecture 8 - Rivers and Landscapes 3/06 Lecture 9 - Waves (not Tides) 3/11 Lecture

More information

THE DEPOSITS OF TSUNAMIS WESLEY PESANTEZ, CATHERINE NIELD, COLIN WINTER

THE DEPOSITS OF TSUNAMIS WESLEY PESANTEZ, CATHERINE NIELD, COLIN WINTER THE DEPOSITS OF TSUNAMIS WESLEY PESANTEZ, CATHERINE NIELD, COLIN WINTER AN OVERVIEW OF OUR SEMINAR WHAT IS A TSUNAMI WHY STUDY TSUNAMIS PROPERTIES OF TSUNAMIS TSUNAMI HYDRODYNAMICS IDEALIZED DEPOSITS SEDIMENT

More information

Great Lakes Update. Volume 194: 2015 Annual Summary

Great Lakes Update. Volume 194: 2015 Annual Summary Great Lakes Update Volume 194: 2015 Annual Summary Background The U.S. Army Corps of Engineers (USACE) tracks and forecasts the water levels of each of the Great Lakes. This report summarizes the hydrologic

More information

Lab 12 Coastal Geology

Lab 12 Coastal Geology Lab 12 Coastal Geology I. Fluvial Systems Hydrologic Cycle Runoff that flows into rivers = precipitation (rain and snowmelt) [infiltration (loss to groundwater) + evaporation (loss to atmosphere) + transpiration

More information

HAIDA GWAII CLIMATE ASSESSMENT 2010 Special Report for MIEDS Franc Pridoehl

HAIDA GWAII CLIMATE ASSESSMENT 2010 Special Report for MIEDS Franc Pridoehl HAIDA GWAII CLIMATE ASSESSMENT 2010 Special Report for MIEDS Franc Pridoehl INTRODUCTION Climatic conditions have varied considerably on Haida Gwaii over the past centuries and millennia (Hebda 2007).

More information

LONG-TERM PREDICTION OF BEACH PROFILE AND SEDIMENT GRAIN SIZE CHARACTERISTIC AT LOW ENERGY BEACH

LONG-TERM PREDICTION OF BEACH PROFILE AND SEDIMENT GRAIN SIZE CHARACTERISTIC AT LOW ENERGY BEACH LONG-TERM PREDICTION OF BEACH PROFILE AND SEDIMENT GRAIN SIZE CHARACTERISTIC AT LOW ENERGY BEACH Gozo Tsujimoto, Masahiro Tamai,Fumihiko Yamada 3 Artificial sandy beach profiles and vertical distributions

More information

Lake Levels and Climate Change in Maine and Eastern North America during the last 12,000 years

Lake Levels and Climate Change in Maine and Eastern North America during the last 12,000 years Maine Geologic Facts and Localities December, 2000 Lake Levels and Climate Change in Maine and Eastern North America during the last 12,000 years Text by Robert A. Johnston, Department of Agriculture,

More information

WIND DATA REPORT FOR THE YAKUTAT JULY 2004 APRIL 2005

WIND DATA REPORT FOR THE YAKUTAT JULY 2004 APRIL 2005 WIND DATA REPORT FOR THE YAKUTAT JULY 2004 APRIL 2005 Prepared on July 12, 2005 For Bob Lynette 212 Jamestown Beach Lane Sequim WA 98382 By John Wade Wind Consultant LLC 2575 NE 32 nd Ave Portland OR 97212

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 7 Glaciers, Desert, and Wind 7.1 Glaciers Types of Glaciers A glacier is a thick ice mass that forms above the snowline over hundreds or thousands of

More information

What are the different ways rocks can be weathered?

What are the different ways rocks can be weathered? Romano - 223 What are the different ways rocks can be weathered? Weathering - the breakdown of rocks and minerals at the Earth s surface 1. 2. PHYSICAL WEATHERING Rock is broken into smaller pieces with

More information

3) What is the difference between latitude and longitude and what is their affect on local and world weather and climate?

3) What is the difference between latitude and longitude and what is their affect on local and world weather and climate? www.discoveryeducation.com 1) Describe the difference between climate and weather citing an example of each. Describe how water (ocean, lake, river) has a local effect on weather and climate and provide

More information

Island Design. UMRS EMP Regional Workshop. Presentation for the

Island Design. UMRS EMP Regional Workshop. Presentation for the Island Design Presentation for the UMRS EMP Regional Workshop by Jon Hendrickson Hydraulic Engineer Regional Technical Specialist, Water Quality and Habitat Restoration August 17 19, 2005 Project Delivery

More information

Modeling Coastal Change Using GIS Technology

Modeling Coastal Change Using GIS Technology Emily Scott NRS 509 Final Report December 5, 2013 Modeling Coastal Change Using GIS Technology In the past few decades, coastal communities around the world are being threatened by accelerating rates of

More information

Everglades National Park

Everglades National Park National Park Service U.S. Department of the Interior Climate Variability and the Coastal Physical Environment (Florida Bay) Presented by: Erik Stabenau - National Park Service Contributions from: Christina

More information

Seasonal and Spatial Patterns of Rainfall Trends on the Canadian Prairie

Seasonal and Spatial Patterns of Rainfall Trends on the Canadian Prairie Seasonal and Spatial Patterns of Rainfall Trends on the Canadian Prairie H.W. Cutforth 1, O.O. Akinremi 2 and S.M. McGinn 3 1 SPARC, Box 1030, Swift Current, SK S9H 3X2 2 Department of Soil Science, University

More information

CHAPTER IV THE RELATIONSHIP BETWEEN OCEANOGRAPHY AND METEOROLOGY

CHAPTER IV THE RELATIONSHIP BETWEEN OCEANOGRAPHY AND METEOROLOGY CHAPTER IV THE RELATIONSHIP BETWEEN OCEANOGRAPHY AND METEOROLOGY THE relationship between oceanography and meteorology is of an order different from that between it and geology or biology, because meteorologic

More information

Aeolian Environments and Controls on Sedimentation. Alex Bryk, Ron Cash, Jacob Wikle, Rebecca Alberts

Aeolian Environments and Controls on Sedimentation. Alex Bryk, Ron Cash, Jacob Wikle, Rebecca Alberts Aeolian Environments and Controls on Sedimentation Alex Bryk, Ron Cash, Jacob Wikle, Rebecca Alberts Aeolian dunes develop in desert systems where there is an abundance of sand-grade material available

More information

Climate Change and Gravel-Beach Responses: Hawke s Bay, New Zealand

Climate Change and Gravel-Beach Responses: Hawke s Bay, New Zealand Conference Proceedings, 2015 Solutions of Coastal Disasters, Boston, MA COPRI, American Society of Civil Engineers Climate Change and Gravel-Beach Responses: Hawke s Bay, New Zealand Paul D. Komar 1 and

More information