Lecture 8: Igneous Petrogenesis. Igneous rock classification Phase relations Mantle melting Trace element geochemistry

Size: px
Start display at page:

Download "Lecture 8: Igneous Petrogenesis. Igneous rock classification Phase relations Mantle melting Trace element geochemistry"

Transcription

1 Lecture 8: Igneous Petrogenesis Igneous rock classification Phase relations Mantle melting Trace element geochemistry

2 >70% of Earth s annual volcanic budget is erupted in the oceans.

3 Igneous Rock Classification: Texture The first distinction is between volcanic and plutonic rocks. Volcanic rocks are erupted at the Earth s surface and cool very quickly. There is insufficient time to grow large crystals. This leads to formation of glass or very fine-grained rocks, or to phenocrysts (crystals that grew before eruption) in a fine groundmass. Plutonic rocks crystallize at some depth, and therefore lose heat relatively slowly. Crystals have time to grow after nucleation, and the resulting rocks generally have individual crystals large enough to see unaided. Rocks of exactly the same composition and mineralogy get different names in their volcanic and plutonic forms, because they look different.

4 Basalt Gabbro 5 mm 5 mm

5 Aphanitic: mineral grains or groundmass that are smaller than mm (need microscope or hand lens to see). Porphyritic: larger mineral grains within an aphanitic or phaneritic matrix. Phaneritic: mineral grains easily seen with naked eye >3 mm.

6 Mineral groups ) Silicates (SiO 4 ) make up 96% of minerals, e.g., olivine 2) Carbonates (CO 3 ): e.g, calcite CaCO 3 3) Oxides: metal and oxygen (e.g., hematite, magnetite) 4) Sulfides: element + S 2 (pyrite FeS) 5) Sulfates: element + SO 4 (gypsum CaSO 4 2H 2 O) 6) Halides: element + halide (salt - NaCl) 7) Native elements: e.g., Cu, Au, Ag Key minerals in mafic igneous rocks: Olivine: (Mg,Fe) 2 SiO 4 -- Forsterite (Mg), Fayalite (Fe) Pyroxene: (Mg,Fe,Ca) 2 Si 2 O 6 -- Mg-, Fe-, Ca-, (Clinopyroxene); Na-, Al- (Orthopyroxene) Feldspar: (K,Na,Ca)AlSi 3 O 8 -- Albite (Na-),Anorthite (Ca-), Plagioclase (Na+Ca), Alkali (K-) gypsum

7 Igneous Rock Classification: Mineralogy The standard classification scheme uses the mineralogy of the rock (how much quartz, how much plagioclase, etc.) There is one important twist for volcanic rocks you usually cannot measure the actual minerals present (or it may be a glass and there are no minerals present). In this case, instead of the actual minerals, you classify based on normative mineralogy The norm is a calculation based on the bulk composition of a volcanic rock, for what minerals would be present if it were fully crystallized. The standard norm calculation is called the CIPW norm, after Cross, Iddings, Pirsson, and Washington (902).

8 Quartz: SiO 2 Orthoclase: KAlSi 3 O 8 Plagioclase: NaAlSi 3 O 8 Feldspathoid: feldspar with Al:Si =.

9

10 peridotite pyroxenite Dunite Lherzolite Pyroxenite

11 Wt.% Al2O3. Ophiolites 2. Dredge samples from oceanic fracture zones 3. Xenoliths in basalts 4. Kimberlites Tholeiitic basalt 5 l tia r Pa ing % lt 20 Me 5 Lherzolite Harzburgite Residuum Dunite 0.2 Dunite 0.4 Wt.% TiO Lherzolite Pyroxenite

12 By silica percentage: Other igneous rock classifications %SiO 2 Designation %Dark Minerals Designation Examples >66 Acid <40 Felsic Granite, rhyolite Intermediate Intermediate Diorite, andesite Basic Mafic Gabbro, basalt <45 Ultrabasic >90 Ultramafic Dunite, komatiite By alumina saturation (which dark minerals show up): Chemistry Designation %Dark Minerals Al 2 O 3 >Na 2 O+K 2 O+CaO Na 2 O+K 2 O+CaO>Al 2 O 3 & Al 2 O 3 > Na 2 O+K 2 O Peraluminous Metaluminous Muscovite, biotite, topaz, corundum, garnet, tourmaline Melilite, biotite, pyroxene, hornblende, epidote Al 2 O 3 ~ Na 2 O+K2O Subaluminous Olivine, pyroxenes Al 2 O 3 < Na 2 O + K 2 O Peralkaline Sodic pyroxenes & amphiboles

13 Total alkalis + silica (TAS) classification Rhyolite Basalt

14 Geodynamic setting of igneous rocks Igneous rocks are formed today at plate margins or in continental or oceanic plate interiors (but most of the action is at plate boundaries).

15 Mantle melting terminology Geotherm Vertical temperature profile in the earth Solidus Temperature at which a rock will first start to melt Liquidus Temperature at which a rock will be fully molten. Adiabat A packet of the mantle that moves up/down without gaining or losing heat.

16 Another explanation of the adiabat Imagine the Earth with its present distribution of material but without gravity. The material is uncompressed and there is no pressure increase with depth. Set the initial temperature everywhere to the Earth's surface temperature. Now turn gravity back on. The gravitational pressure causes the material to contract, with material compressing more at greater depths because of the greater pressure. The temperature will also increase because of the compression. If this is done such that no heat is gained or lost by any given piece of the material, the temperature increase for any parcel of matter will be adiabatic, and the temperature increase with depth will thus be adiabatic. Temperature Depth No gravity, isothermal Gravity turned on, adiabatic

17 Another explanation of the adiabat Another way to achieve an approximate adiabatic temperature distribution is to have material convect heat from the hotter interior to the cooler exterior. The heat is carried upwards by the upwards movement or flow of material, while material cooled near the surface descends. If the temperature gradient (increase of temperature with depth) is adiabatic, then upwards movement of a parcel of material will not result in a temperature difference of the parcel with respect to the surrounding material. However, if the temperature gradient is greater than adiabatic (super-adiabatic), the temperature of an upwards moving parcel will only decrease by the adiabatic gradient, and so will be greater than that of its surroundings. Temp. excess of parcel at shallower depth Adiabatic gradient Depth In situ geotherm (super-adiabatic temperature gradient) Upward movement of material along adiabatic gradient

18 Mantle Plumes Mantle melts between ~ ºC due to: Increase in temperature Decrease in pressure Addition of volatile phases

19 Mid-Ocean Ridges (and Plumes) Mantle melts between ~ ºC due to: Increase in temperature Decrease in pressure Addition of volatile phases

20 Subduction Zones Mantle melts between ~ ºC due to: Increase in temperature Decrease in pressure Addition of volatile phases

21 Percentage of melting (F) The pressure (or depth) versus temperature (P-T) path of upwelling mantle beneath a mid-ocean ridge leads to a maximum of ~25% melt.

22 Phase Diagrams A phase diagram is common way to represent the system state at specific pressure (P) and temperature (T) conditions. Lines on the diagram represent conditions under which a phase change is at equilibrium. At a point on a line, it is possible for two or more phases to coexist at equilibrium. In other regions, only one phase exists at equilibrium. Phase diagram for water Triple point: where 3 phases coexist

23 Phase diagram for Olivine solid solution Forsterite (Fo) Fayallite (Fa) Solidus: the temperature below which the substance is stable in the solid state Liquidus: the temperature above which the substance is stable in the liquid state Lever Rule: to determine quantitatively the relative composition of a mixture in a two-phase region in a phase diagram

24 Equilibrium Melting Equilibrium melting occurs when the solid and liquid phases are kept together as melting progresses.

25 Lever Rule S solid composition L liquid composition A system composition We can write fraction x of solid as xs + (-x)l = A which can also be written as x (A S) = (-x)(l-a) We can solve the above equations to get the proportion of solid x = (A L) / (S L)

26 Fractional Melting Fractional melting occurs if the liquid is immediately removed from the solid as the solid melts.

27 Equilibrium Solidification Equilibrium solidification occurs when the solid and liquid phases are kept together as solidifications progresses.

28 Fractional Solidification Fractional solidification occurs if the solid is immediately removed from the liquid as it crystallizes.

29 Diopside (Clinopyroxene) Anorthite (Plagioclase) Diopside (CaMgSi2O6) Dark mineral Gabbro (coarse grained equivalent of basalt) Oceanic Crust Anorthite (CaAl2Si2O8) Light mineral

30 Diopside-Anorthite phase diagram 600 liquidus Liquid 500 Temperature, C Di + liquid eutectic An + liquid 200 Diopside + Anorthite solidus CaMgSi (Diopside) Anorthite content, mol% CaAl 2 Si (Anorthite) Eutectic: mixture that has the lowest freezing point (composition/ temperature of the last solids formed when freezing, first melt formed)

31 Diopside-Anorthite phase diagram 600 liquidus Liquid 500 Temperature, C Di + liquid eutectic An + liquid 200 Diopside + Anorthite solidus CaMgSi (Diopside) Anorthite content, mol% CaAl 2 Si (Anorthite) batch melting

32 Diopside-Anorthite phase diagram 600 liquidus Liquid 500 Temperature, C Di + liquid eutectic An + liquid 200 Diopside + Anorthite solidus CaMgSi (Diopside) Anorthite content, mol% CaAl 2 Si (Anorthite) fractional melting

33 Back to mantle melting Gar OL Cpx Opx OL Olivine Gar Cpx Opx O OL Incr. melt G OL C O OL G O OL C O OL OL OL OL OL Melting of garnet lherzolite begins at opx-cpx-garnet triple junctions (eutectic) in response to a reduction in pressure. Olivine is not involved in melting at early stages. As the extent of melting (F) increases, melt migrates along grain boundaries forming an interconnected network that allows the melt to segregate from the unmelted crystal residue.

34 Wenlu Zhu Melting of garnet lherzolite begins at opx-cpx-garnet triple junctions (eutectic) in response to a reduction in pressure. Olivine is not involved in melting at early stages. As the extent of melting (F) increases, melt migrates along grain boundaries forming an interconnected network that allows the melt to segregate from the unmelted crystal residue.

35 Trace elements in mantle melting Incompatible elements: preferentially partition into the melt phase (D<) Compatible elements: preferentially partition into the solid phase (D>) Partition or distribution coefficient (D) = C solid /C liquid Concentrations normalized to bulk earth, C chondrites, or primitive mantle Most incompatible Less incompatible

36 Partition coefficients Partition coefficients are determined for an element between a unique mineral phase in a unique lattice site and melt, and are determined by three primary factors Size (ionic radius) is fairly intuitive control, since the substituting ion needs to fit into a mineral lattice: Too big or too small a won't be energetically stable. Charge (ionic charge) is also intuitive, since charge must be balance within a lattice and if a charge imbalance is generated by a substitution, a second substitution must occur to correct for this. Electronegativity is harder to visualize, but the disruption to the mineral lattice of replacing a greedy element with a giving element or vice versa is too much for a lattice to take.

37 Partition coefficients Rock Type Mineral Z Elem Value Kd Type Reference Basalt Garnet 4 Nb Experimental Jenner et al. 994 Basalt Garnet 4 Nb 0.0 Phenocryst-Matrix, Keleman & Dunn 992 Basalt Ilmenite 4 Nb 0.8 Experimental Experimental McCallum & Charette 978 Basalt Low Calcium 4 Nb Phenocryst-Matrix, Keleman & Dunn 992 Basalt Pyroxene Magnetite 4 Nb Experimental Calculated Nielsen 992 Basalt Olivine 4 Nb 0.0 Calculated McKenzie & O'Nions 99 Basalt Plagioclase 4 Nb 0.0 Calculated McKenzie & O'Nions 99 Basalt Plagioclase 4 Nb Experimental McCallum & Charette 978 Basalt Plagioclase 4 Nb Experimental Bindeman et al. 998 Basalt Plagioclase 4 Nb Experimental Aignertorres et al Basalt Rutile 4 Nb 6 Experimental McCallum & Charette 978 Basalt Rutile 4 Nb 36 Experimental Foley et al

38 Trace Elements in mantle melting Incompatible elements: preferentially partition into the melt phase (D<) Compatible elements: preferentially partition into the solid phase (D>) Partition or distribution coefficient (D) = C solid /C liquid

39 Relating trace element concentrations to melt fraction (F) - batch (equilibrium) melting!!"#$! =!!"#!! +!!!!!!"#!! =!!!!"#!! +!!! 0 Melts 0 Solids D=0.0 5!!"#$!!!"# !!"#!!!"# F F F

40 Relating trace element concentrations to melt fraction (F) - fractional melting!!"#$! =!!!!!!!!!!!"#!!"#! =!!!!!!!!!"# 0 Instantaneous Melt Fraction 0 Solid!!"#$!!!"# !!"#!!!"# D= F F

41 Relating trace element concentrations to melt fraction (F) - fractional melting!!"#$!!!"# 0!!"#$ =!!!!!!!!!"# Aggregate Melt F!!"#!!!"# !!"#! =!!!!!!!!!"# 0. F 0.5 Solid 5

42 0 Aggregate Melt 0 Solid!!"#$!!!"# !!"#!!!"# Fractional 0 Equilibrium 0 Melts 0 Solids!!"#$!!!"# D=0.0!!"#!!!"# F F F 0.0

43 Trace element partitioning evidence for differentiation of the Earth D Rb (olivine) = ~0.003 D Rb (pyroxene) = ~0.002 D Rb (garnet) = ~ Continetal Crust Rb K Ba Sr 0 Ca La Y RE E Th Mn Lu U 80 V Li Fe Co Sc Hf Mg 0.2 Ni 60 Cr Ga Zr Ta, N b > Ti 0.0 P Be Ionic Charge Figure 7.. Ionic radius (picometers) vs. ionic charge contoured for clinopyroxene/liquid partition coefficients. Cations normally present in clinopyroxene are Ca, Mg, and Fe, shown by symbols. Elements whose charge and ionic radius most closely match that of the major elements have the highest partition coefficients. modified from White, Geochemistry Pb 87 Sr/ 86 Sr Bulk Earth Billion yrs Depleted Earth s Mantle Time Oceanic Crust Pres

44 00 0 Cont. Crust Plume Melts and crust normalized to primitive mantle MORB Cs Rb Ba Th U Nb La Ce Pr Sr Nd Zr Hf Sm Gd Tb Dy Ho Y Er Yb Lu

45 00 0 Cont. Crust Plume Melts and crust normalized to primitive mantle MORB Cs Rb Ba Th U Nb La Ce Pr Sr Nd Zr Hf Sm Gd Tb Dy Ho Y Er Yb Lu

46 00 0 Cont. Crust Plume Melts and crust normalized to primitive mantle MORB Cs Rb Ba Th U Nb La Ce Pr Sr Nd Zr Hf Sm Gd Tb Dy Ho Y Er Yb Lu

47 Reading for next class OCEANOGRAPHY Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations D. C. Lund, * P. D. Asimow, 2 K. A. Farley, 2 T. O. Rooney, 3 E. Seeley, E. W. Jackson, 4 Z. M. Durham 4 Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges.

Lecture 36. Igneous geochemistry

Lecture 36. Igneous geochemistry Lecture 36 Igneous geochemistry Reading - White Chapter 7 Today 1. Overview 2. solid-melt distribution coefficients Igneous geochemistry The chemistry of igneous systems provides clues to a number of important

More information

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10 GEOL 2312 Igneous and Metamorphic Petrology Name KEY Spring 2016 Score / 58 Midterm 1 Chapters 1-10 1) Name two things that petrologists want to know about magmas (1 pt) Formation, source, composition,

More information

A Rock is a solid aggregate of minerals.

A Rock is a solid aggregate of minerals. Quartz A Rock is a solid aggregate of minerals. Orthoclase Feldspar Plagioclase Feldspar Biotite Four different minerals are obvious in this piece of Granite. The average automobile contains: Minerals

More information

Effect of tectonic setting on chemistry of mantle-derived melts

Effect of tectonic setting on chemistry of mantle-derived melts Effect of tectonic setting on chemistry of mantle-derived melts Lherzolite Basalt Factors controlling magma composition Composition of the source Partial melting process Fractional crystallization Crustal

More information

Trace Elements. Today s lecture

Trace Elements. Today s lecture Trace Elements 300 Ni 200 ppm 100 0 300 Zr 200 100 0 40 50 60 70 80 SiO 2 wt. % Updates: M&M due date: Tuesday Today s lecture Topics: Trace element compositions Trace element behavior Partitioning Spider(

More information

Classification of Igneous Rocks

Classification of Igneous Rocks Classification of Igneous Rocks Textures: Glassy- no crystals formed Aphanitic- crystals too small to see by eye Phaneritic- can see the constituent minerals Fine grained- < 1 mm diameter Medium grained-

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Igneous Rocks and Intrusive Activity Chapter 3 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois College Characteristics

More information

Imagine the first rock and the cycles that it has been through.

Imagine the first rock and the cycles that it has been through. A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one type of rocky material gets transformed into another The Rock Cycle Representation

More information

Chapter 9: Trace Elements

Chapter 9: Trace Elements Lecture 13 Introduction to Trace Elements Wednesday, March 9, 2005 Chapter 9: Trace Elements Note magnitude of major element changes Figure 8-2. Harker variation diagram for 310 analyzed volcanic rocks

More information

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Ray Rector - Instructor Major Concepts 1) Igneous rocks form directly from the crystallization of a magma or lava 2)

More information

Chapter 4 Rocks & Igneous Rocks

Chapter 4 Rocks & Igneous Rocks Chapter 4 Rocks & Igneous Rocks Rock Definition A naturally occurring consolidated mixture of one or more minerals e.g, marble, granite, sandstone, limestone Rock Definition Must naturally occur in nature,

More information

Engineering Geology ECIV 2204

Engineering Geology ECIV 2204 Engineering Geology ECIV 2204 Instructor : Dr. Jehad Hamad 2017-2016 Chapter (3) Igneous Rocks Chapter 3: Rocks: Materials of the Solid Earth Igneous Rocks Chapter 3: Rocks: Materials of the Solid Earth

More information

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar Rocks A naturally occurring aggregate of one or more minerals (e.g., granite), or a body of non-crystalline material (e.g., obsidian glass), or of solid organic material (e.g., coal). Rock Cycle A sequence

More information

Common non-silicate planetary minerals

Common non-silicate planetary minerals Common non-silicate planetary minerals Many of the non-silicate minerals are simple oxides. Corundum Al2O3 Al2+3 O3-2 Rutile Ti2O3 Ti2+3 O3-2 Ilmenite FeTiO3 Fe+3Ti+3O3-2 Hematite Fe2O3 Fe2+3 O3-2 Families

More information

Worked Example of Batch Melting: Rb and Sr

Worked Example of Batch Melting: Rb and Sr Worked Example of Batch Melting: Rb and Sr Basalt with the mode: Table 9.2. Conversion from mode to weight percent Mineral Mode Density Wt prop Wt% ol 15 3.6 54 0.18 cpx 33 3.4 112.2 0.37 plag 51 2.7 137.7

More information

The Nature of Igneous Rocks

The Nature of Igneous Rocks The Nature of Igneous Rocks Form from Magma Hot, partially molten mixture of solid liquid and gas Mineral crystals form in the magma making a crystal slush Gases - H 2 O, CO 2, etc. - are dissolved in

More information

Chapter 9: Trace Elements

Chapter 9: Trace Elements Chapter 9: Trace Elements Note magnitude of major element changes Figure 8.2. Harker variation diagram for 310 analyzed volcanic rocks from Crater Lake (Mt. Mazama), Oregon Cascades. Data compiled by Rick

More information

Chapter 4 8/27/2013. Igneous Rocks. and Intrusive Igneous Activity. Introduction. The Properties and Behavior of Magma and Lava

Chapter 4 8/27/2013. Igneous Rocks. and Intrusive Igneous Activity. Introduction. The Properties and Behavior of Magma and Lava Introduction Chapter 4 Igneous rocks form by the cooling of magma (or lava). Large parts of the continents and all the oceanic crust are composed of. and Intrusive Igneous Activity The Properties and Behavior

More information

GLY 155 Introduction to Physical Geology, W. Altermann

GLY 155 Introduction to Physical Geology, W. Altermann Earth Materials Systematic subdivision of magmatic rocks Subdivision of magmatic rocks according to their mineral components: Content of quartz SiO 2 ( free quartz presence) Quartz with conchoidal breakage

More information

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013 Igneous and Metamorphic Rock Forming Minerals Department of Geology Mr. Victor Tibane 1 SGM 210_2013 Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011

More information

Plate tectonics, rock cycle

Plate tectonics, rock cycle Dikes, Antarctica Rock Cycle Plate tectonics, rock cycle The Rock Cycle A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one

More information

The mantle metasomatism: diversity and impact What the mantle xenoliths tell us?

The mantle metasomatism: diversity and impact What the mantle xenoliths tell us? The mantle metasomatism: diversity and impact What the mantle xenoliths tell us? Mantle metasomatism Physical and chemical processes that are implemented during the flow of magmas and / or fluids within

More information

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011 by W. H. Freeman and Company Chapter 4: Igneous Rocks: Solids from Melts 1 About Igneous Rocks Igneous

More information

Lab 3 - Identification of Igneous Rocks

Lab 3 - Identification of Igneous Rocks Lab 3 - Identification of Igneous Rocks Page - 1 Introduction A rock is a substance made up of one or more different minerals. Thus an essential part of rock identification is the ability to correctly

More information

Origin of Basaltic Magma. Geology 346- Petrology

Origin of Basaltic Magma. Geology 346- Petrology Origin of Basaltic Magma Geology 346- Petrology 2 principal types of basalt in the ocean basins Tholeiitic Basalt and Alkaline Basalt Table 10-1 Common petrographic differences between tholeiitic and alkaline

More information

How 2 nd half labs will work

How 2 nd half labs will work How 2 nd half labs will work Continue to use your mineral identification skills Learn to describe, classify, interpret rock hand samples: Igneous sedimentary metamorphic volcanic plutonic (1 week) (1 wk)

More information

Lab 4 - Identification of Igneous Rocks

Lab 4 - Identification of Igneous Rocks Lab 4 - Identification of Igneous Rocks Page - Introduction A rock is a substance made up of one or more different minerals. Thus an essential part of rock identification is the ability to correctly recognize

More information

Block: Igneous Rocks. From this list, select the terms which answer the following questions.

Block: Igneous Rocks. From this list, select the terms which answer the following questions. Geology 12 Name: Mix and Match: Igneous Rocks Refer to the following list. Block: porphyritic volatiles mafic glassy magma mixing concordant discontinuous reaction series igneous vesicular partial melting

More information

amphibole PART 3 Pyroxene: augite CHAIN SILICATES

amphibole PART 3 Pyroxene: augite CHAIN SILICATES amphibole PART 3 Pyroxene: augite CHAIN SILICATES CHAIN SILICATES = INOSILICATES inos = chains Basic structural group: Si 2 O 6 (each tetrahedra shared two corners) Simple or double chains linked by cations

More information

Rocks: Materials of the Solid Earth

Rocks: Materials of the Solid Earth 1 Rocks: Materials of the Solid Earth Presentation modified from: Instructor Resource Center on CD-ROM, Foundations of Earth Science,, 4 th Edition, Lutgens/Tarbuck, Rock Cycle Igneous Rocks Today 2 Rock

More information

Student Name: College: Grade:

Student Name: College: Grade: Student Name: College: Grade: Physical Geology Laboratory IGNEOUS MINERALS AND ROCKS IDENTIFICATION - INTRODUCTION & PURPOSE: In this lab you will learn to identify igneous rocks in hand samples from their

More information

12 Chemistry (Mg,Fe) 2 SiO 4 Olivine is forms what is called an isomorphous solid solution series that ranges between two end members: Forsterite Mg

12 Chemistry (Mg,Fe) 2 SiO 4 Olivine is forms what is called an isomorphous solid solution series that ranges between two end members: Forsterite Mg 11 Olivine Structure Olivine is a common green or brown rock forming minerals which consists of a solid-solution series between Forsterite (Fo) and Fayalite (Fa). It is an orthorhombic orthosilicate with

More information

IGNEOUS ROCKS. SECTION 5.1 What are igneous rocks?

IGNEOUS ROCKS. SECTION 5.1 What are igneous rocks? Date Period Name IGNEOUS ROCKS SECTION.1 What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. basaltic

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Igneous Rocks What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. extrusive igneous rock intrusive

More information

Lecture 6 - Igneous Rocks and Volcanoes

Lecture 6 - Igneous Rocks and Volcanoes Lecture 6 - Igneous Rocks and Volcanoes Learning objectives Understand and be able to predict where and why magma will be forming at different tectonic settings Understand the factors controlling magma

More information

PLATE TECTONICS, VOLCANISM AND IGNEOUS ROCKS

PLATE TECTONICS, VOLCANISM AND IGNEOUS ROCKS PLATE TECTONICS, VOLCANISM AND IGNEOUS ROCKS PLATE TECTONICS TO IGNEOUS ROCKS Internal Heat Seafloor Spreading/Plate Tectonics Volcanism Plate Boundary Intra-plate (hot spot) Divergent Convergent Igneous

More information

About Earth Materials

About Earth Materials Grotzinger Jordan Understanding Earth Sixth Edition Chapter 3: EARTH MATERIALS Minerals and Rocks 2011 by W. H. Freeman and Company About Earth Materials All Earth materials are composed of atoms bound

More information

DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER

DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER Geol 2312 Igneous and Metamorphic Petrology Spring 2009 Name DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER Objective: This exercise is intended to improve understanding

More information

Differentiation of Magmas By Fractional Crystallization

Differentiation of Magmas By Fractional Crystallization Wirth Magmatic Differentiation Using M&M s 1 HANDOUT Differentiation of Magmas By Fractional Crystallization Objective The objective of this exercise is to gain first-hand knowledge of the process of magmatic

More information

EARTH SCIENCE. Geology, the Environment and the Universe. Chapter 5: Igneous Rocks

EARTH SCIENCE. Geology, the Environment and the Universe. Chapter 5: Igneous Rocks EARTH SCIENCE Geology, the Environment and the Universe Chapter 5: Igneous Rocks CHAPTER 5 Igneous Rocks Section 5.1 What are igneous rocks? Section 5.2 Classification of Igneous Rocks Click a hyperlink

More information

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification:

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks

More information

Igneous Rocks. Definition of Igneous Rocks. Igneous rocks form from cooling and crystallization of molten rock- magma

Igneous Rocks. Definition of Igneous Rocks. Igneous rocks form from cooling and crystallization of molten rock- magma Igneous Rocks Definition of Igneous Rocks Igneous rocks form from cooling and crystallization of molten rock- magma Magma molten rock within the Earth Lava molten rock on the Earth s s surface Igneous

More information

CHAPTER ROCK WERE FORMED

CHAPTER ROCK WERE FORMED HOW CHAPTER 3 ROCK WERE FORMED 1 I. Modern geology- 1795 A. James Hutton- 1. uniformitarianism- "the present is the key to the past" a. b. the geologic processes now at work were also active in the past

More information

EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4

EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4 Name: EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4 Introduction In the previous lab, we learned about mineral characteristics, properties and identities as well as the three basic rock

More information

Earth Science 11: Minerals

Earth Science 11: Minerals lname: Date: Earth Science 11: Minerals Purpose: Text Pages: I can identify and classify minerals using their physical and chemical properties 90-111 *This is recommended reading! Matter and Atoms (5.1)

More information

Sphene (Titanite) Plane polarized light. Honey brown/orange Wedge-shaped crystals

Sphene (Titanite) Plane polarized light. Honey brown/orange Wedge-shaped crystals Sphene (Titanite) Plane polarized light Honey brown/orange Wedge-shaped crystals Sphene (Titanite) Crossed nicols High-order, washedout interference colors (light orange) #1 Rule for (Heavy) Radiogenic

More information

THE MONTE MAGGIORE PERIDOTITE (CORSICA)

THE MONTE MAGGIORE PERIDOTITE (CORSICA) MONTE MAGGIORE CAPO CORSO CORSICA Giovanni B. Piccardo THE MONTE MAGGIORE PERIDOTITE (CORSICA) FIELD RELATIONSHIPS MORB Gabbro Spinel (ex-garnet) pyroxenites L ESCURSIONE A MONTE MAGGIORE The Monte Maggiore

More information

CHAPTER ROCK WERE FORMED

CHAPTER ROCK WERE FORMED HOW CHAPTER 5 ROCK WERE FORMED 1 I. Modern geology- 1795 A. James Hutton- 1. uniformitarianism- "the present is the key to the past" a. b. the geologic processes now at work were also active in the past

More information

Igneous Rock. Magma Chamber Large pool of magma in the lithosphere

Igneous Rock. Magma Chamber Large pool of magma in the lithosphere Igneous Rock Magma Molten rock under the surface Temperature = 600 o 1400 o C Magma Chamber Large pool of magma in the lithosphere Magma chamber - most all magma consists of silicon and oxygen (silicate)

More information

Rocks. Types of Rocks

Rocks. Types of Rocks Rocks Rocks are the most common material on Earth. They are naturally occurring aggregates of one or more minerals. 1 Igneous rocks, Types of Rocks Sedimentary rocks and Metamorphic rocks. 2 1 3 4 2 IGNEOUS

More information

Name. GEOL.3250 Geology for Engineers Igneous Rocks

Name. GEOL.3250 Geology for Engineers Igneous Rocks Name GEOL.3250 Geology for Engineers Igneous Rocks I. Introduction The bulk of the earth's crust is composed of relatively few minerals. These can be mixed together, however, to give an endless variety

More information

Chapter 4 Up from the Inferno: Magma and Igneous Rocks

Chapter 4 Up from the Inferno: Magma and Igneous Rocks Chapter 4 Up from the Inferno: Magma and Igneous Rocks Up from the Inferno: Magma and Igneous Rocks Updated by: Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts

More information

Composition of the Earth and its reservoirs: Geochemical observables

Composition of the Earth and its reservoirs: Geochemical observables Composition of the Earth and its reservoirs: Geochemical observables Cin-Ty A. Lee Rice University MYRES-I 2004 The Earth is dynamic and heterogeneous Atmosphere Midocean Ridge Plume Ocean Crust Oceanic

More information

1. Which mineral is mined for its iron content? A) hematite B) fluorite C) galena D) talc

1. Which mineral is mined for its iron content? A) hematite B) fluorite C) galena D) talc 1. Which mineral is mined for its iron content? A) hematite B) fluorite C) galena D) talc 2. Which material is made mostly of the mineral quartz? A) sulfuric acid B) pencil lead C) plaster of paris D)

More information

Engineering Geology. Igneous rocks. Hussien Al - deeky

Engineering Geology. Igneous rocks. Hussien Al - deeky Igneous rocks Hussien Al - deeky 1 The Geology Definition of Rocks In Geology Rock is defined as the solid material forming the outer rocky shell or crust of the earth. There are three major groups of

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Igneous Rocks What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. extrusive igneous rock intrusive

More information

Igneous Rocks. Igneous Rocks. Genetic Classification of

Igneous Rocks. Igneous Rocks. Genetic Classification of Igneous Rocks Fig. 5.1 Genetic Classification of Igneous Rocks Intrusive: crystallized from slowly cooling magma intruded within the Earth s crust; e.g. granite, gabbro 1 Fig. 5.2 Genetic Classification

More information

Pyroxenes (Mg, Fe 2+ ) 2 Si 2 O 6 (monoclinic) and. MgSiO 3 FeSiO 3 (orthorhombic) Structure (Figure 2 of handout)

Pyroxenes (Mg, Fe 2+ ) 2 Si 2 O 6 (monoclinic) and. MgSiO 3 FeSiO 3 (orthorhombic) Structure (Figure 2 of handout) Pyroxenes (Mg, Fe 2+ ) 2 Si 2 O 6 (monoclinic) and 20 MgSiO 3 FeSiO 3 (orthorhombic) Structure (Figure 2 of handout) Chain silicate eg Diopside Mg and Fe ions link SiO 3 chains The chain runs up and down

More information

TWO COMPONENT (BINARY) PHASE DIAGRAMS. Experimental Determination of 2-Component Phase Diagrams

TWO COMPONENT (BINARY) PHASE DIAGRAMS. Experimental Determination of 2-Component Phase Diagrams Page 1 of 12 EENS 211 Earth Materials Tulane University Prof. Stephen A. Nelson TWO COMPONENT (BINARY) PHASE DIAGRAMS This document last updated on 08-Oct-2003 Experimental Determination of 2-Component

More information

Evolution of the Earth

Evolution of the Earth Evolution of the Earth http://static.newworldencyclopedia.org/f/fe/geologic_clock.jpg Evolution of the Earth Solar system, 4.6 byr Collapse of a nebula Star forms as gravity concentrates material at center

More information

GEOL 2312 Igneous and Metamorphic Petrology Spring 2009 Sc ore / 40

GEOL 2312 Igneous and Metamorphic Petrology Spring 2009 Sc ore / 40 GEOL 2312 Igneous and Metamorphic Petrology Name Spring 2009 Sc ore / 40 QUIZ 3 1) Name two geologic features that provide physical evidence for the mineralogy of the earth s mantle (2 pts) Ophiolites,

More information

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements.

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. CHAPTER 5 Igneous Rocks SECTION 5.1 What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. basaltic

More information

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks Chapter 3.0: Weathering & soils Chapter 4.0: Geological

More information

Physical Geology 101 Laboratory MINERALS II Silicate and Carbonate Rock-Forming Minerals

Physical Geology 101 Laboratory MINERALS II Silicate and Carbonate Rock-Forming Minerals Student Name: College: Grade: Physical Geology 101 Laboratory MINERALS II Silicate and Carbonate Rock-Forming Minerals I. INTRODUCTION: The purpose of this lab is you will improve your mineral identification

More information

Introduction. Volcano a vent where molten rock comes out of Earth

Introduction. Volcano a vent where molten rock comes out of Earth Introduction Volcano a vent where molten rock comes out of Earth Example: Kilauea Volcano, Hawaii Hot (~1,200 o C) lava pools around the volcanic vent. Hot, syrupy lava runs downhill as a lava flow. The

More information

Earth Science 232 Petrography

Earth Science 232 Petrography Earth Science 232 Petrography Course notes by Shaun Frape and Alec Blyth Winter 2002 1 Petrology - Introduction Some Definitions Petra Greek for rock Logos Greek for disclosure or explanation Petrology

More information

Lecture 25 Subduction Related Magmatism

Lecture 25 Subduction Related Magmatism Lecture 25 Subduction Related Magmatism Monday, May 2 nd 2005 Subduction Related Magmatism Activity along arcuate volcanic chains along subduction zones Distinctly different from the mainly basaltic provinces

More information

LAB 6: COMMON MINERALS IN IGNEOUS ROCKS

LAB 6: COMMON MINERALS IN IGNEOUS ROCKS GEOLOGY 17.01: Mineralogy LAB 6: COMMON MINERALS IN IGNEOUS ROCKS Part 2: Minerals in Gabbroic Rocks Learning Objectives: Students will be able to identify the most common silicate minerals in gabbroic

More information

Minerals Give Clues To Their Environment Of Formation. Also. Rocks: Mixtures of Minerals

Minerals Give Clues To Their Environment Of Formation. Also. Rocks: Mixtures of Minerals Minerals Give Clues To Their Environment Of Formation!!Can be a unique set of conditions to form a particular mineral or rock!!temperature and pressure determine conditions to form diamond or graphite

More information

Overview of the KAHT system. Ian E.M. Smith, School of Environment, University of Auckland

Overview of the KAHT system. Ian E.M. Smith, School of Environment, University of Auckland Overview of the KAHT system Ian E.M. Smith, School of Environment, University of Auckland Tonga-Kermadec-New Zealand Arc Developed on the Pacific - Australian convergent margin Mainly intraoceanic except

More information

Partial melting of mantle peridotite

Partial melting of mantle peridotite Partial melting of mantle peridotite 1100 1200 1300 1400 1500 (TºC) Depth (km) 50 100 150 Plag lherzolite (ol-opx-cpx-pl) Spinel lherzolite (Ol-opx-cpx-sp) Garnet lherzolite (Ol-opx-cpx-gar) Graphite Diamond

More information

Igneous Rocks. Igneous Rocks - 1. Environment of Formation - Magma - Plutonic - rock that formed within the Earth. Intrusive - Earth s crust.

Igneous Rocks. Igneous Rocks - 1. Environment of Formation - Magma - Plutonic - rock that formed within the Earth. Intrusive - Earth s crust. Name: Date: Period: Minerals and Rocks The Physical Setting: Earth Science CLASS NOTES - Methods to classify igneous rocks: 1. Environment of Formation - Magma - Plutonic - rock that formed within the

More information

Shortcuts to mineral formulae

Shortcuts to mineral formulae Silicates JD Price Silicate Structure Silicate Structure (SiO2) Shortcuts to mineral formulae W cations with 8- (Ca 2+, Fe 2+, Mn 2+, Na + ) to 12-fold coordination (K +, Ba 2+ ) X divalent cations in

More information

Most mafic magmas come from the upper mantle and lower crust. This handout will address five questions:

Most mafic magmas come from the upper mantle and lower crust. This handout will address five questions: Geology 101 Origin of Magma From our discussions of the structure of the interior of the Earth, it is clear that the upper parts of the Earth (crust and mantle) are mostly solid because s-waves penetrate

More information

The 3 types of rocks:

The 3 types of rocks: Igneous Rocks and Intrusive Igneous Activity The 3 types of rocks:! Sedimentary! Igneous! Metamorphic Marble 1 10/7/15 SEDIMENTARY ROCKS Come from rocks sediments (rock fragments, sand, silt, etc.) Fossils

More information

Silicates. The most common group of minerals forming the silicate Earth

Silicates. The most common group of minerals forming the silicate Earth Silicates The most common group of minerals forming the silicate Earth 25% of all minerals (~1000) 40% of rock forming minerals 90% of earth s crust i.e those minerals you are likely to find ~100 of earth

More information

Name Petrology Spring 2006 Igneous rocks lab Part II Hand samples of igneous rocks Due Tuesday 3/7

Name Petrology Spring 2006 Igneous rocks lab Part II Hand samples of igneous rocks Due Tuesday 3/7 Igneous rocks lab Part II Hand samples of igneous rocks Due Tuesday 3/7 1. Use the color index and density of the rock to establish whether it is felsic, intermediate, mafic, or ultramafic. 2. Determine

More information

Ultramafic rocks. Types of Ultramafic Rocks. Spinel lherzolite xenolith

Ultramafic rocks. Types of Ultramafic Rocks. Spinel lherzolite xenolith Ultramafic rocks Definition: Color Index > 90, i.e., less than 10% felsic minerals. Not to be confused with Ultrabasic Rocks which are rocks with

More information

Lecture part 60% Tests: 1st: Topic 1-3 (20%) 2nd: Topic 4-9 (20%) 3rd: Topic (20%) Final: all

Lecture part 60% Tests: 1st: Topic 1-3 (20%) 2nd: Topic 4-9 (20%) 3rd: Topic (20%) Final: all Igneous and metamorphic petrology 1. Fundamentals 2. Classification 3. Thermodynamics and kinetics Igneous 4. Silicate melts and fluids 5. Crystal melt equilibria 6. Chemical dynamics of melts and crystals

More information

Differentiation of Magmas By Fractional Crystallization Modified from Karl Wirth, rev. July 2011

Differentiation of Magmas By Fractional Crystallization Modified from Karl Wirth, rev. July 2011 M&M s Magma Chamber 1 Differentiation of Magmas By Fractional Crystallization Modified from Karl Wirth, rev. July 2011 Objective The objective of this exercise is to gain first-hand knowledge of the process

More information

Quartz. ! Naturally occurring - formed by nature. ! Solid - not liquid or gas. Liquid water is not a mineral

Quartz. ! Naturally occurring - formed by nature. ! Solid - not liquid or gas. Liquid water is not a mineral GEOL 110 - Minerals, Igneous Rocks Minerals Diamond Azurite Quartz Why Study Minerals?! Rocks = aggregates of minerals! Importance to Society?! Importance to Geology? 5 part definition, must satisfy all

More information

What is going on here?

What is going on here? Major Digression! Atoms? Elements? Compounds? Minerals? Rocks? What is going on here? Source:SERC @ Carleton College http://www.brocku.ca/earthsciences/people/gfinn/petrology/periodic.gif http://www.meta-synthesis.com/webbook/35_pt/pt_database.php?pt_id=335

More information

1 - C Systems. The system H 2 O. Heat an ice at 1 atm from-5 to 120 o C. Heat vs. Temperature

1 - C Systems. The system H 2 O. Heat an ice at 1 atm from-5 to 120 o C. Heat vs. Temperature 1 - C Systems The system H 2 O Heat an ice at 1 atm from-5 to 120 o C Heat vs. Temperature Fig. 6.7. After Bridgman (1911) Proc. Amer. Acad. Arts and Sci., 5, 441-513; (1936) J. Chem. Phys., 3, 597-605;

More information

Review - Unit 2 - Rocks and Minerals

Review - Unit 2 - Rocks and Minerals Review - Unit 2 - Rocks and Minerals Base your answers to questions 1 and 2 on the diagram below, which shows the results of three different physical tests, A, B, and C, that were performed on a mineral.

More information

LAB 9: ULTRAMAFIC ROCKS, CUMULATES AND MELT SOURCES

LAB 9: ULTRAMAFIC ROCKS, CUMULATES AND MELT SOURCES Geology 316 (Petrology) (03/26/2012) Name LAB 9: ULTRAMAFIC ROCKS, CUMULATES AND MELT SOURCES INTRODUCTION Ultramafic rocks are igneous rocks containing less than 10% felsic minerals (quartz + feldspars

More information

Chapter 3: Igneous Rocks 3.2 IGNEOUS ROCK ORIGIN

Chapter 3: Igneous Rocks 3.2 IGNEOUS ROCK ORIGIN Chapter 3: Igneous Rocks Adapted by Lyndsay R. Hauber & Michael B. Cuggy (2018) University of Saskatchewan from Deline B, Harris R & Tefend K. (2015) "Laboratory Manual for Introductory Geology". First

More information

HP and UHP garnet peridotites and pyroxenites

HP and UHP garnet peridotites and pyroxenites HP and UHP garnet peridotites and pyroxenites Mantle wedge The least known piece of the subduction factory Mantle-wedge peridotites emplace within subducting continental crust (Brueckner, 998; van Roermund

More information

1. are most likely to study the images sent back from Mars. A. Astronomers B. Geologists C. Doctors D. Engineers

1. are most likely to study the images sent back from Mars. A. Astronomers B. Geologists C. Doctors D. Engineers 1. are most likely to study the images sent back from Mars. A. Astronomers B. Geologists C. Doctors D. Engineers 2. When did the Earth form? A. About 540 million years ago B. About 2.5 billion years ago

More information

LAB 2: SILICATE MINERALS

LAB 2: SILICATE MINERALS GEOLOGY 640: Geology through Global Arts and Artifacts LAB 2: SILICATE MINERALS FRAMEWORK SILICATES The framework silicates quartz and feldspar are the most common minerals in Earth s crust. Quartz (SiO

More information

High-T heating stage: application for igneous petrogenesis and mantle processes - melt inclusions as key tools -

High-T heating stage: application for igneous petrogenesis and mantle processes - melt inclusions as key tools - High-T heating stage: application for igneous petrogenesis and mantle processes - melt inclusions as key tools - SZABÓ, Csaba Lithosphere Fluid Research Lab (LRG), Department of Petrology and Geochemistry,

More information

Tectonic-Igneous Associations

Tectonic-Igneous Associations Tectonic-Igneous Associations Associations on a larger scale than the petrogenetic provinces An attempt to address global patterns of igneous activity by grouping provinces based upon similarities in occurrence

More information

Structure of the Earth and the Origin of Magmas

Structure of the Earth and the Origin of Magmas Page 1 of 12 EENS 2120 Petrology Tulane University Prof. Stephen A. Nelson Structure of the Earth and the Origin of Magmas This document last updated on 23-Jan-2015 Magmas do not form everywhere beneath

More information

This is how we classify minerals! Silicates and Non-Silicates

This is how we classify minerals! Silicates and Non-Silicates Why are some minerals harder than others? Their atomic structure and chemical formula. This is how we classify minerals! Silicates and Non-Silicates Part #1 - Silicates: Silicon and Oxygen make up 70%

More information

A. One component system (c = 1)

A. One component system (c = 1) A. One component system (c = 1) Example: SiO 2 system. Since all phases in this system have the same composition, there are no compositional variables to consider. Phase equilibria can be shown completely

More information

The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks

The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks Igneous rocks form as molten magma or lava cools and solidifies. Magma is completely or partly molten

More information

Classification and Origin of Granites. A Multi-faceted Question

Classification and Origin of Granites. A Multi-faceted Question Classification and Origin of Granites A Multi-faceted Question What is a granite? IUGS classification Based on Modal Mineralogy Plutonic rock with less than 90% mafic minerals Alkali Granite Granite Quartz

More information

10/20/2015. How is magma different from lava? Magma is molten rock below the Earth s surface. Lava is magma that flows out onto Earth s surface.

10/20/2015. How is magma different from lava? Magma is molten rock below the Earth s surface. Lava is magma that flows out onto Earth s surface. Chapter 5 What are igneous rocks? How do they form? Igneous rocks are rocks that form when molten material cools and crystallizes. Molten material can be either magma or lava. How is magma different from

More information

Lecture 38. Igneous geochemistry. Read White Chapter 7 if you haven t already

Lecture 38. Igneous geochemistry. Read White Chapter 7 if you haven t already Lecture 38 Igneous geochemistry Read White Chapter 7 if you haven t already Today. Magma mixing/afc 2. Spot light on using the Rare Earth Elements (REE) to constrain mantle sources and conditions of petrogenesis

More information

GEOL3313 Petrology of Igneous and Metamorphic Rocks G. Mattioli, Dept. of Geosciences, Univ. of Arkansas, Spring 2008

GEOL3313 Petrology of Igneous and Metamorphic Rocks G. Mattioli, Dept. of Geosciences, Univ. of Arkansas, Spring 2008 GEOL3313 Petrology of Igneous and Metamorphic Rocks G. Mattioli, Dept. of Geosciences, Univ. of Arkansas, Spring 2008 Homework Assignment 3 Calculation of CIPW Norm Due in Class February 13, 2008 Problem

More information

Igneous Rocks. Sedimentary Rocks. Metamorphic Rocks

Igneous Rocks. Sedimentary Rocks. Metamorphic Rocks Name: Date: Igneous Rocks Igneous rocks form from the solidification of magma either below (intrusive igneous rocks) or above (extrusive igneous rocks) the Earth s surface. For example, the igneous rock

More information