CAINOZOIC VOLCANOES ON THE AUSTRALIAN PLATE Excursion designed and delivered by Patrice Rey

Size: px
Start display at page:

Download "CAINOZOIC VOLCANOES ON THE AUSTRALIAN PLATE Excursion designed and delivered by Patrice Rey"

Transcription

1 1 CAINOZOIC VOLCANOES ON THE AUSTRALIAN PLATE Excursion designed and delivered by Patrice Rey During the Cenozoic, eastern Australia experienced widespread volcanic activity that led to the formation of chains of volcanoes made of basalts, lesser amounts of intermediate rocks, and a variety of felsic extrusives and subvolcanic intrusives. From the border between Queensland and New South Wales to Bass Strait, the radiometric age of these volcanoes, and their counterparts in the adjoining Tasman Sea, display a progressive decrease from 28 to 10 million years. They are linked to a static, long-lasting, mantle plume that impinged on the base of the Australian Plate as it moved northwards away from Antartica (Wellman and McDougall, 1974; Johnson et al. 1989). Mount Canobolas, near the township of Orange, is an extinct volcano which last erupted 11 Ma ago. The eruptions took place from around 30 vents within 30 km of the current summit proudly standing at a breathtaking ca.1400m above sea level (taken at low tide). The main vent erupted over the entire life of the volcano while most of the other vents were only active for short periods. While the upper part of the volcanic structure has now been removed by erosion, the flanks of the shield can still be seen. The objective of the exercise is to document the local geology of Mount Canobolas Volcanoe. To achieve this aim, students will describe the various extrusive and intrusive making the Mount Canobolas and their spatial and temporal relationships. Students will work in groups of 3 and will be provided with a number of tasks to complete. At complete, students will be able to: Recognise and describe a number of igneous rocks (rhyolite, trachyte, basalt, andesite, tuffs). Recognise minerals in hand specimen (quartz, plagioclase, hornblende, feldspar). Say: As Sir Thomas Mitchell, I too climbed Mount Canobolas! NB1: ( NB stands for Nota bene, Latin expression which means Take Note ): Cainozoic and Cenozoic are two different yet equally valid spelling. NB2: Cainozoic is the Tertiary period of the Earth history spanning 54Ma to 8Ma. NB3: Ma stands for Million Years as an age. Myr is used for Million Years as a duration. Example: This Volcano is 20 Ma old. Its volcanic activity lasted for 5 Myr. NB4: Canobolas derives from an Aborigene world Coonoobooloo which means two shoulders.

2 2 Let s the game begin Thomas Livingstone Mitchell was born in Scotland in He joined the army and became a surveyor. A talented artist and writer, he was also a geologist and botanist. The books he wrote about his journeys were very popular. He married in 1818, and had 12 children, 6 girls and 6 boys. In 1837 Mitchell was knighted and became Sir Thomas Mitchell. In 1855 Lieutenant Colonel Sir Thomas Mitchell, as he had by then become, developed pneumonia and died in Sydney on the 5 October. In 1827, Major Thomas Mitchell arrived in Australia to become the Surveyor-General of the colony of New South Wales. He held the position for 27 years, and was responsible for the placement of roads, bridges and towns. Most considered him very arrogant and many suffered under his temper, which at times bordered on the explosive (just take a look at his picture pretty scary!). He led four expeditions of exploration and carried out most of the surveys of Eastern Australia, which led to new grazing lands being established in southern Victoria. Surveyor- General Mitchell explored northern and western New South Wales in 1831 and In 1835, he climbed Mount Canobolas and it is believed that he produced rough geological map of the area (Exercise 1). Unfortunately, the legend of the map was lost 170 years later here you are following in Sir Mitchell s footstep. Let s mark a pose and reflect on this historic moment. let s move on. Your mission, which is far from being impossible, consists to cruise around, observe, describe and ultimately provide a proper legends to Mitchell s geological maps.

3 3 Exercise 1: Sir Mitchell Challenge: Geological sketch of the Mount Canobolas summit. The triangle on the map bellow shows the location of the trigonometric station on Mount Canobolas. Four rock formations have been reported on Sir Mitchell s map. 1/ For 10 marks: Observe and describe the morphology of outcrops representative of each rock formation. Describe any relevant geometrical features (thickness of the beds, dikes and sills, cross cutting relationship if any), and describe any particular fabric (flow, jointing ) that can be seen. 2/ For 10 marks: At the scale of the hand specimen, and when necessary with the help of your hand lens, describe the color and texture of the rock, assess its grain-size and make an inventory of its mineralogy. Describe any fabrics and any other relevant features. 3/ For 5 marks: Give a name to each rock formation and justify your answer. 4/ For 5 marks: Check the stones used to build the wall around the trigonometric station. Describe the rock, (color, texture, mineralogy etc). Propose a name of that rock. Is this rock found around Old Man Canobolas?

4 4 Exercise 2: The cross-section controversy: Branagan/Packham vs NSW National Park. The geological cross-section, produced for the New South Wales National Park and Wildlife Service, on display at the Mount Canobolas information booth differs significantly from the one published in the 2000 edition of the the Branagan & Packham book Field Geology of New South Wales. 1/ For 5 marks: Analyse both x-sections and describe in what they differ. 2/ For 10 marks: Walk to Young Man Canobolas and describe the local geology in a brief report including sketches. 3/ For 15 marks: Now that you know the local geology of both Young and the Old Man Canobolas, draw your own cross-section and decide for yourself which of the above cross-section makes more sense.

5 5 Exercise 3: Another lost legend... The map below is what is left of an early sketchy map of the local geology of the Pinnacles, one of the many volcanic vents (~50 or so) of Mount Canobolas. 1/ For 20 marks: Construct a legend for the map and document cross-cutting relationships. 2/ For 10 marks: Look at the following photographs, name and point their possible location on the map. a> b> c> d>

6 6 IGNEOUS ROCKS: TEXTURES AND CLASSIFICATIONS INTRODUCTION Igneous (derived from the Latin ignius for fire ) rocks form by the cooling and the crystallization of molten rock. Based on their textures petrologists have divided igneous rocks into two broad categories. Volcanic rocks (also called extrusive igneous rocks) include all the products resulting from eruptions of lava (flows and fragmented debris called pyroclasts). Plutonic rocks (also called intrusive igneous rocks) are those that have solidified below ground; plutonic comes from Pluto, the Greek God of the underworld, not to be confused with the Walt Disney cartoon character who is neither Greek nor a God. The initial distinction between volcanic and plutonic rocks is made based on texture (finegrained volcanic vs. coarse-grained plutonic). Volcanic and plutonic rocks are divided further based on chemistry and mineral composition. COMMON TEXTURES OF IGNEOUS ROCKS Phaneritic: Coarse-grained groundmass in igneous rock, constituent minerals are discernible with the naked eye. Phaneritic textures are indicative of slow cooling away from the surface. The hot environment allow minerals to grow. Below is an example of phaneritic texture. The rock is a granite. Aphanitic: Very fine-grained groundmass in igneous rock, constituent minerals are not visible to the naked eye. Fine-grained textures generally indicate magmas that rapidly cool at or near the Earth's surface. Fast cooling prevents crystals from growing very large. The cutoff between fine- (aphanitic) and coarse-grained (phaneritic) textures is about 1 mm. If you plan on taking more geology classes, it is worth memorizing the word aphanitic (meaning grains too small to easily see). Porphyritic: Texture of igneous rock containing large crystals (phenocrysts) in a groundmass (matrix) of smaller crystals or glass. This texture suggests a two-stage cooling history. The phenocrysts crystallize first in hot magma environment. In a second stage, the magma cools

7 7 down and crystallizes rapidly to form a fine grained matrix. The picture on the right is an andesite with amphibole phenocrysts. Pyroclastic: A pyroclastic texture is defined by a mixture of rock fragments, pumice, and volcanic ash. The ash is very fine grained, so only the rock fragments and pumice are identifyable. A rock with a pyroclastic texture is termed a tuff if the largest fragments are less than 5 cm long; a volcanic brecchia has larger rock fragments and/or pumice. The non-genetic classification of pyroclastic rocks is based on the abundance and nature of the pyroclastes (blocks, lapillis, clasts).

8 8 CLASSIFICATION OF IGNEOUS ROCKS Most geologists have accepted the IUGS (International Union of the Geological Sciences) classification of igneous rocks as the standard. This classification is based on a combination of mineralogy, chemistry, and texture. Texture is used to subdivide igneous rocks into two major groups: (1) the plutonic rocks, with mineral grain sizes that are visible to the naked eye, (2) the volcanic rocks, which are usually too fine-grained or glassy for their mineral composition to be observed without the use of a petrographic microscope. The texture is largely the result of the depth of origin of the rock (volcanic at or near the surface, and plutonic at depth). Let's first examine the classification of plutonic rocks. In 1973, the IUGS suggested the use of the modal composition for all plutonic igneous rocks with a color index less than 90. A second scheme was proposed for those plutonic ultramafic rocks with a color index greater than 90. The three components, Q (quartz) + A (alkali (Na-K) feldspar) + P (plagioclase), are recalculated from the mode to sum to 100 percent. Each component is represented by the corners of the equilateral triangle, the length of whose sides are divided into 100 equal parts. Any composition plotting at a corner, therefore, has a mode of 100 percent of the corresponding component. Owing to the aphanitic texture of volcanic rocks, their modes cannot be readily determined; consequently, a chemical classification based on normative mineralogy is used. The boundaries between the different field in the volcanic rocks AQP triangle correspond to that of the igneous rocks.

9 9 The major division of volcanic rocks is based on the alkali (soda + potash) and silica contents, which yield three groups, the subalkaline, alkaline, and strongly alkaline rocks. Furthermore, as they are so common, the subalkaline rocks have two divisions based mainly on the iron content with the iron-rich group called the tholeiitic series and the iron-poor group called calc-alkaline. The former group is most commonly found along the oceanic ridges and on the ocean floor and is usually restricted to mafic igneous rocks like basalt and gabbro; the latter group is characteristic of the volcanic regions of the continental margins (convergent, or destructive, plate boundaries) and is comprised of a much more diverse suite of rocks. Chemically the subalkaline rocks are saturated with respect to silica. This chemical property is reflected in the mode of the mafic members that have two pyroxenes, hypersthene and augite [Ca(Mg, Fe)Si 2 O 6 ], and perhaps quartz. Plagioclase is common in phenocrysts, but it can also occur in the matrix along with the pyroxenes. Hornblende and biotite phenocrysts are common in calc-alkaline andesites and dacites but are lacking in the tholeiites. Dacites and rhyolites commonly have phenocrysts of plagioclase, alkali feldspar (usually sanidine), and quartz in a glassy matrix. Hornblende and plagioclase phenocrysts are more widespread in dacites than in rhyolites, which have more biotite and alkali feldspar. The alkaline rocks typically are chemically undersaturated with respect to silica; hence, they have only one pyroxene, the calcium-rich augite) and lack quartz but often have a feldspathoid mineral, nepheline. Microscopic examination of alkali olivine basalts (the most common alkaline rock) usually reveals phenocrysts of olivine, one pyroxene (augite), plagioclase and perhaps nepheline.

10 10 A Field Classification: Now that we have completely confused you, let's look at a much simpler classification. We call this a field classification because it requires little detailed knowledge of rocks and can be easily applied to any igneous rock we might pick up while on a field trip. It utilizes texture, mineralogy and color. The latter is a particularly unreliable property, but the classification realizes that certain fine-grained (aphanitic) igneous rocks contain no visible mineral grains and in their absence color is the only other available property. Students the thus cautioned to use color only as a last resort. To employ this classification we must first determine the rock's texture. You might remember we have five basic textures; phaneritic (coarse), aphanitic (fine), vesicular, glassy and fragmental (our classification doesn't bother with the latter because we often term all fragmental igneous rocks tuffs). Examine your rock and determine which textural group it belows to. If it is glassy, vesicular or fragmental you cannot determine mineralogy and hence the name is simply obsidian for a glass, tuff for a fragmental or pumice/scoria for a vesicular rock (the latter are differentiated on the basis or color and size of the vesicles or holes). For the phaneritic and some aphanitic rocks you must determine the mineralogy. Often it is only necessary to identify one or two key minerals, not all of the minerals in the rock. For instance quartz and potassium feldspar (k-feldspar) are restricted to granites and rhyolites. Amphibole is only abundant in diorite or andesite, although minor amounts can be present in granite. How am I getting these names? Let's take an example. I pick up my first specimen and notice that it is distinctly coarse grained (phaneritic). This means that it must be one of the rocks in the row labeled coarse (i.e., granite, diorite, gabbro or peridotite). I next place the rock under a binocular microscope and identify the minerals plagioclase and pyroxene. I go to the bottom row of the chart (Minerals Present) and look for a match with my mineralogy. I find it in the third column (Ca-play, pyroxene) and read the name (gabbro) from the coarse row on the chart. Pretty simple!! Relax, when you actually begin your igneous rock identification we will walk you through it step by step. But remember to refer to the above classification diagram often as an aid.

11 11 COMMON MINERALS OF IGNEOUS ROCKS To correctly classify many igneous rocks it is first necessary to identify the constituent minerals that make up the rock. Piece of cake you say, I saw most of these minerals when I did the Minerals Exercise or I have them in my mineral collection. Well, its not quite that easy. The mineral grains in rocks often look a bit different than the larger mineral specimens you see in lab or museum collections. The following section is meant to assist you in recognizing common rockforming minerals in igneous rocks. Refer back to it often as you attempt to classify your rock specimens. Plagioclase: the white or chalky looking grain is the common feldspar. Plagioclase is the most common mineral in igneous rocks. The chalky appearance is a result of weathering of plagioclase to clay and this can often be used to aid in identification. Most plagioclase appears frosty white to gray-white in igneous rocks, but in gabbro it can be dark gray to blue-gray. If you examine plagioclase with a hand lens you can often see the stair-step like cleavage and possibly striations (parallel grooves) on some cleavage faces. Some potassium feldspar is white like plagioclase, but is usually a safe bet to identify any frosty white grains in igneous rocks as plagioclase. Expect to find plagioclase in most phaneritic igneous rocks and often as phenocryts in aphanitic rocks. Quartz: the dark gray, glassy grain is quartz. Quartz is also a very common mineral in some igneous rocks. In igneous rocks it is often medium to dark gray and has a rather amorphous shape. If you look at it with a hand lens you will notice the glassy appearance and lack of any smooth cleavage surfaces. You will also find quartz grains resist scratching with a nail or pocket knife, You can expect to find abundant quartz in granite and as phenocryts in the volcanic rock rhyolite. In some other common igneous rocks you may find a few scattered grains of quartz, but it is often conspicuous by its absence. Once recognized, quartz is rarely confused with any other common rock-forming mineral.

12 12 Potassium Feldspar (K-feldpar, potash feldspar, orthoclase): commonly slightly pinkish grains with the stair-step cleavage characteristic of feldspars. All K-feldspar is not pink, microcline is usually white. How does one distinguish white potassium feldspar from plagioclase? Plagioclase has striations, potassium feldspar does not. In most cases any white feldspar is identified as plagioclase and any pink feldspar as orthoclase. Expect to find orthoclase as a common constituent of granite and matrix material in rhyolite. In the latter rock the orthoclase is too fine-grained to be seen even with a binocular microscope, but its presence gives most rhyolites a distinct pinkish cast. Muscovite: Muscovite is not a common mineral in igneous rocks, but rather an accessory that occurs in small amounts. It is shiny and silvery, but oxidizes to look almost golden. Muscovite has excellent cleavage and will scratch easily. If you suspect muscovite is present, try taking a nail to it. It should flake off the rock. Muscovite occurs in some granites and occasionally in diorite. Unlike, its close cousin, biotite, it rarely occurs as phenocrysts in volcanic rocks. Biotite: Biotite occurs in small amounts in many igneous rocks. It is black, shiny and often occurs in small hexagonal (6-sided) books. Unfortunately, it is often confused with amphibole and pyroxene. Like muscovite, it is soft and has good cleavage. Try scratching the black grains with a nail or knife. Biotite will flake off easily. Biotite is differentiated from amphibole by shape of the crystals (hexagonal for biotite and elongated or needle-like for amphibole) and by hardness (biotite is soft, amphibole is hard). It is differentiated from pyroxene by hardness, color (biotite is black and pyroxene dark green) and occurrence (biotite is found in light-colored igneous rocks like granites, diorites and rhyolites while pyroxene occurs in dark-colored rocks like gabbro and basalt). Expect to find biotite as a common accessory in granite, and as phenocrysts in some rhyolites.

13 13 Amphibole: Amphiboles appear as elongated, black grains are amphibole. Amphibole is a rather common mineral in all igneous rocks, however, it is only abundant in the intermediate igneous rocks. It occurs as slender needle-like crystals. It has good cleavage in 2 directions (with an 120º angle) and hence has a stair-step appearance under a binocular microscope. It is often confused with pyroxene which has also 2 cleavages but closer to 90º. Not all grains of amphibole will be oriented so you can see the elongation of the crystals. Its a good guess that if you see a few crystals that have the "classic" amphibole shape, the other black grains are also amphibole. Biotite and amphibole do occur together in igneous rocks, but the association is not all that common. Amphibole is very commom in diorite, less so in granite or gabbro. It also is a common and diagnostic phenocryst in andesite. Pyroxene: Pyroxene is common only in mafic igneous rocks. It occurs as short, stubby, dark green crystals. It has poor cleavage in 2 directions (at 90º) and cleavage surfaces are often hard to see with even a binocular microscope. It is often confused with amphibole. Amphibole is darker and occurs in needle-like crystals rather than the stubby shape of pyroxene. Association is the best guide for the identification of pyroxene. It is usually restricted to dark-colored rocks such as gabbro or basalt.

14 Olivine: Olivine is common only in ultramafic igneous rocks like dunite and peridotite. It occurs as small, light green, glassy crystals. It has no cleavage. The texture of olivine in igneous rocks is often termed sugary. Although olivine occurs in gabbro and basalt, it is far more common in peridotite and dunite. Because of the light green color and sugary texture it is rarely confused with other rock-forming minerals. 14

15 15 COMMON VOLCANIC ROCKS The silica content alone is enough to make the distinction between basalt, andesite, dacite, and rhyolite. Because of different silica content, these rock types have contrasting viscosity (resistance to flow), which impact on the explosiveness of the volcanoes. Silica rich lavas such as rhyolites have a higher viscosity and therefore a much-reduced mobility compared to that of basalts (cf. Figure below). The consequence is that felsic volcanoes are more explosive than mafic volcanoes. It is therefore important from an environmental protection point of view to be able to recognize felsic volcanoes. Rhyolite: a light-colored rock with silica (SiO 2 ) content greater than about 68 weight percent. Sodium and potassium oxides both can reach about 5 weight percent. Common mineral types include quartz, feldspar and biotite and are often found in a glassy matrix. Rhyolite is erupted at temperatures of 700 C to 850 C. Comendite: A variety of quartz-bearaing alkali rhyolite. Leucocratic (a fancy word that means pale) volcanic rock made of phenocrysts of quartz, alkali feldspar, aegerine (a clino-pyroxene), alkali amphibole, some biotite in a groundmass of quartz and alkali feldspar. Trachyte: Fine grained extrusive alkaline rock, sometimes porphyritic, approximately silicasaturated, and with a wide compositional range grading into rhyolites. Main components are alkali feldspar and minor mafic minerals, sometimes with a small amount of quartz. Often

16 16 trachytes show a preferential alignment of feldspar microlites bending around phenocrysts when they are present. Solvsbergite: Fine grained crystalline trachyte, rarely porphyritic; contains feldspar, pyroxene or amphibole, rare quartz. Dacite: Dacite lava is most often light gray, but can be dark gray to black. Dacite lava consists of about 63 to 68% silica (SiO2). Common minerals include plagioclase feldspar, pyroxene, and amphibole. Dacite generally erupts at temperatures between 800 C and 1000 C. It is one of the most common rock types associated with enormous Plinian-style eruptions. When relatively gaspoor dacite erupts onto a volcano's surface, it typically forms thick rounded lava flow in the shape of a dome. Andesite: Grey to black volcanic rock with between about 52 and 63 weight % silica (SiO2). Andesites contain crystals composed primarily of plagioclase feldspar and one or more of the minerals pyroxene and lesser amounts of hornblende. At the lower end of the silica range, andesite lava may also contain olivine. Andesite magma commonly erupts from stratovolcanoes as thick lava flows, some reaching several km in length. Andesite magma can also generate strong explosive eruptions to form pyroclastic flows and surges and enormous eruption columns. Andesites erupt at temperatures between 900 and 1100 C. Basalt: a hard, black volcanic rock with less than about 52 weight % silica (SiO2). Because of basalt's low silica content, it has a low viscosity (resistance to flow). Therefore, basaltic lava can flow quickly and easily move >20 km from a vent. The low viscosity typically allows volcanic gases to escape without generating enormous eruption columns. Basaltic lava fountains and fissure eruptions, however, still form explosive fountains hundreds of meters tall. Common minerals in basalt include olivine, pyroxene, and plagioclase. Basalt is erupted at temperatures between 1100 C to 1250 C.

17 17 References: Nb: Take a couple of minute to learn how to properly reference all papers mentioned in the text of the booklet. Remember, properly referencing your report is the best protection against plagiarism. Branagan, D. and G. Packham, Field Geology of New South Whales. Third Edition, Published by NSW Department of Mineral Resources. 418p. Johnson, R.W., O Reilly, S.Y., Lister, G.S., Etheridge, M.A., Knutson, S., Sun, S.S., Ewart, A., Green, D.H., McDonough, W.F., and Wellman, P., Intraplate Volcanism in Eastern Australia and New Zealand. Cambridge University Press. 408 p. LeMaitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M.J., Sabine, P.A., Schmid, R., Sörensen, H., Streckeisen, A., Woolley, A.R., and Zanettin, B., Eds. (1989). A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences - Subcommision on the Systematics of Igneous Rocks. Blackwell Science Publications, Oxford, U. K. 193 p. Wellman, P. and McDougall, I., Cenozoic igneous activity in Eastern Australia. Tectonophysics, 23,

Lab 4 - Identification of Igneous Rocks

Lab 4 - Identification of Igneous Rocks Lab 4 - Identification of Igneous Rocks Page - Introduction A rock is a substance made up of one or more different minerals. Thus an essential part of rock identification is the ability to correctly recognize

More information

Lab 3 - Identification of Igneous Rocks

Lab 3 - Identification of Igneous Rocks Lab 3 - Identification of Igneous Rocks Page - 1 Introduction A rock is a substance made up of one or more different minerals. Thus an essential part of rock identification is the ability to correctly

More information

Student Name: College: Grade:

Student Name: College: Grade: Student Name: College: Grade: Physical Geology Laboratory IGNEOUS MINERALS AND ROCKS IDENTIFICATION - INTRODUCTION & PURPOSE: In this lab you will learn to identify igneous rocks in hand samples from their

More information

Engineering Geology ECIV 2204

Engineering Geology ECIV 2204 Engineering Geology ECIV 2204 Instructor : Dr. Jehad Hamad 2017-2016 Chapter (3) Igneous Rocks Chapter 3: Rocks: Materials of the Solid Earth Igneous Rocks Chapter 3: Rocks: Materials of the Solid Earth

More information

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Ray Rector - Instructor Major Concepts 1) Igneous rocks form directly from the crystallization of a magma or lava 2)

More information

EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4

EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4 Name: EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4 Introduction In the previous lab, we learned about mineral characteristics, properties and identities as well as the three basic rock

More information

CHAPTER 3: THE STUDY OF ROCKS

CHAPTER 3: THE STUDY OF ROCKS CHAPTER 3: THE STUDY OF ROCKS INTRODUCTION Rock is defined as a mixtures formed of aggregates of one or more minerals (aggregate of minerals). Rocks can be formed by many different processes such as: (1)

More information

Chapter 3: Igneous Rocks 3.2 IGNEOUS ROCK ORIGIN

Chapter 3: Igneous Rocks 3.2 IGNEOUS ROCK ORIGIN Chapter 3: Igneous Rocks Adapted by Lyndsay R. Hauber & Michael B. Cuggy (2018) University of Saskatchewan from Deline B, Harris R & Tefend K. (2015) "Laboratory Manual for Introductory Geology". First

More information

INTRODUCTION ROCK COLOR

INTRODUCTION ROCK COLOR LAST NAME (ALL IN CAPS): FIRST NAME: 6. IGNEOUS ROCKS Instructions: Some rocks that you would be working with may have sharp edges and corners, therefore, be careful when working with them! When you are

More information

Block: Igneous Rocks. From this list, select the terms which answer the following questions.

Block: Igneous Rocks. From this list, select the terms which answer the following questions. Geology 12 Name: Mix and Match: Igneous Rocks Refer to the following list. Block: porphyritic volatiles mafic glassy magma mixing concordant discontinuous reaction series igneous vesicular partial melting

More information

Rocks. Types of Rocks

Rocks. Types of Rocks Rocks Rocks are the most common material on Earth. They are naturally occurring aggregates of one or more minerals. 1 Igneous rocks, Types of Rocks Sedimentary rocks and Metamorphic rocks. 2 1 3 4 2 IGNEOUS

More information

How 2 nd half labs will work

How 2 nd half labs will work How 2 nd half labs will work Continue to use your mineral identification skills Learn to describe, classify, interpret rock hand samples: Igneous sedimentary metamorphic volcanic plutonic (1 week) (1 wk)

More information

6. IGNEOUS ROCKS AND VOLCANIC HAZARDS

6. IGNEOUS ROCKS AND VOLCANIC HAZARDS LAST NAME (ALL IN CAPS): FIRST NAME: 6. IGNEOUS ROCKS AND VOLCANIC HAZARDS Instructions: Refer to Laboratory 5 in your lab book on pages 129-152 to answer the questions in this work sheet. Your work will

More information

Rocks: Materials of the Solid Earth

Rocks: Materials of the Solid Earth 1 Rocks: Materials of the Solid Earth Presentation modified from: Instructor Resource Center on CD-ROM, Foundations of Earth Science,, 4 th Edition, Lutgens/Tarbuck, Rock Cycle Igneous Rocks Today 2 Rock

More information

CHAPTER ROCK WERE FORMED

CHAPTER ROCK WERE FORMED HOW CHAPTER 3 ROCK WERE FORMED 1 I. Modern geology- 1795 A. James Hutton- 1. uniformitarianism- "the present is the key to the past" a. b. the geologic processes now at work were also active in the past

More information

Imagine the first rock and the cycles that it has been through.

Imagine the first rock and the cycles that it has been through. A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one type of rocky material gets transformed into another The Rock Cycle Representation

More information

The 3 types of rocks:

The 3 types of rocks: Igneous Rocks and Intrusive Igneous Activity The 3 types of rocks:! Sedimentary! Igneous! Metamorphic Marble 1 10/7/15 SEDIMENTARY ROCKS Come from rocks sediments (rock fragments, sand, silt, etc.) Fossils

More information

CHAPTER ROCK WERE FORMED

CHAPTER ROCK WERE FORMED HOW CHAPTER 5 ROCK WERE FORMED 1 I. Modern geology- 1795 A. James Hutton- 1. uniformitarianism- "the present is the key to the past" a. b. the geologic processes now at work were also active in the past

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Igneous Rocks and Intrusive Activity Chapter 3 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois College Characteristics

More information

The Nature of Igneous Rocks

The Nature of Igneous Rocks The Nature of Igneous Rocks Form from Magma Hot, partially molten mixture of solid liquid and gas Mineral crystals form in the magma making a crystal slush Gases - H 2 O, CO 2, etc. - are dissolved in

More information

EESC 4701: Igneous and Metamorphic Petrology IGNEOUS ROCK CLASSIFICATION LAB 2 HANDOUT

EESC 4701: Igneous and Metamorphic Petrology IGNEOUS ROCK CLASSIFICATION LAB 2 HANDOUT EESC 4701: Igneous and Metamorphic Petrology IGNEOUS ROCK CLASSIFICATION LAB 2 HANDOUT Sources: University of Washington, Texas A&M University, University of Southern Alabama What is an igneous rock (a

More information

Name. GEOL.3250 Geology for Engineers Igneous Rocks

Name. GEOL.3250 Geology for Engineers Igneous Rocks Name GEOL.3250 Geology for Engineers Igneous Rocks I. Introduction The bulk of the earth's crust is composed of relatively few minerals. These can be mixed together, however, to give an endless variety

More information

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013 Igneous and Metamorphic Rock Forming Minerals Department of Geology Mr. Victor Tibane 1 SGM 210_2013 Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011

More information

Chapter 4 8/27/2013. Igneous Rocks. and Intrusive Igneous Activity. Introduction. The Properties and Behavior of Magma and Lava

Chapter 4 8/27/2013. Igneous Rocks. and Intrusive Igneous Activity. Introduction. The Properties and Behavior of Magma and Lava Introduction Chapter 4 Igneous rocks form by the cooling of magma (or lava). Large parts of the continents and all the oceanic crust are composed of. and Intrusive Igneous Activity The Properties and Behavior

More information

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar Rocks A naturally occurring aggregate of one or more minerals (e.g., granite), or a body of non-crystalline material (e.g., obsidian glass), or of solid organic material (e.g., coal). Rock Cycle A sequence

More information

Engineering Geology. Igneous rocks. Hussien Al - deeky

Engineering Geology. Igneous rocks. Hussien Al - deeky Igneous rocks Hussien Al - deeky 1 The Geology Definition of Rocks In Geology Rock is defined as the solid material forming the outer rocky shell or crust of the earth. There are three major groups of

More information

Plate tectonics, rock cycle

Plate tectonics, rock cycle Dikes, Antarctica Rock Cycle Plate tectonics, rock cycle The Rock Cycle A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one

More information

Thursday, October 4 th

Thursday, October 4 th Thursday, October 4 th Objective: We will use and define the different ways to classify igneous rocks. Warm-up: 1. Which type of lava is most viscous? 2. Which type of lava has the least amount of silicate?

More information

Igneous Rocks. Sedimentary Rocks. Metamorphic Rocks

Igneous Rocks. Sedimentary Rocks. Metamorphic Rocks Name: Date: Igneous Rocks Igneous rocks form from the solidification of magma either below (intrusive igneous rocks) or above (extrusive igneous rocks) the Earth s surface. For example, the igneous rock

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Igneous Rocks What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. extrusive igneous rock intrusive

More information

Name Petrology Spring 2006 Igneous rocks lab Part II Hand samples of igneous rocks Due Tuesday 3/7

Name Petrology Spring 2006 Igneous rocks lab Part II Hand samples of igneous rocks Due Tuesday 3/7 Igneous rocks lab Part II Hand samples of igneous rocks Due Tuesday 3/7 1. Use the color index and density of the rock to establish whether it is felsic, intermediate, mafic, or ultramafic. 2. Determine

More information

EARTH SCIENCE. Geology, the Environment and the Universe. Chapter 5: Igneous Rocks

EARTH SCIENCE. Geology, the Environment and the Universe. Chapter 5: Igneous Rocks EARTH SCIENCE Geology, the Environment and the Universe Chapter 5: Igneous Rocks CHAPTER 5 Igneous Rocks Section 5.1 What are igneous rocks? Section 5.2 Classification of Igneous Rocks Click a hyperlink

More information

IGNEOUS ROCKS. SECTION 5.1 What are igneous rocks?

IGNEOUS ROCKS. SECTION 5.1 What are igneous rocks? Date Period Name IGNEOUS ROCKS SECTION.1 What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. basaltic

More information

Igneous Rock. Magma Chamber Large pool of magma in the lithosphere

Igneous Rock. Magma Chamber Large pool of magma in the lithosphere Igneous Rock Magma Molten rock under the surface Temperature = 600 o 1400 o C Magma Chamber Large pool of magma in the lithosphere Magma chamber - most all magma consists of silicon and oxygen (silicate)

More information

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks Chapter 3.0: Weathering & soils Chapter 4.0: Geological

More information

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011 by W. H. Freeman and Company Chapter 4: Igneous Rocks: Solids from Melts 1 About Igneous Rocks Igneous

More information

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification:

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks

More information

What Do You See? Learning Outcomes Goals Learning Outcomes Think About It Identify classify In what kinds of environments do igneous rocks form?

What Do You See? Learning Outcomes Goals Learning Outcomes Think About It Identify classify In what kinds of environments do igneous rocks form? Section 2 Igneous Rocks and the Geologic History of Your Community What Do You See? Learning Outcomes In this section, you will Goals Text Learning Outcomes In this section, you will Identify and classify

More information

Chapter 4 Rocks & Igneous Rocks

Chapter 4 Rocks & Igneous Rocks Chapter 4 Rocks & Igneous Rocks Rock Definition A naturally occurring consolidated mixture of one or more minerals e.g, marble, granite, sandstone, limestone Rock Definition Must naturally occur in nature,

More information

Earth Science 11: Minerals

Earth Science 11: Minerals lname: Date: Earth Science 11: Minerals Purpose: Text Pages: I can identify and classify minerals using their physical and chemical properties 90-111 *This is recommended reading! Matter and Atoms (5.1)

More information

Quiz Five (9:30-9:35 AM)

Quiz Five (9:30-9:35 AM) Quiz Five (9:30-9:35 AM) UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 10: Intrusive Igneous Rocks Instructor: Dr. Douglas W. Haywick Last Time 1) Pyro-what? (air fall volcanic rocks) 2)

More information

A Rock is a solid aggregate of minerals.

A Rock is a solid aggregate of minerals. Quartz A Rock is a solid aggregate of minerals. Orthoclase Feldspar Plagioclase Feldspar Biotite Four different minerals are obvious in this piece of Granite. The average automobile contains: Minerals

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Igneous Rocks What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. extrusive igneous rock intrusive

More information

To get you thinking What natural process is responsible for the appearance of these rocks? Rocks and the Rock Cycle

To get you thinking What natural process is responsible for the appearance of these rocks? Rocks and the Rock Cycle To get you thinking What natural process is responsible for the appearance of these rocks? Rocks and the Rock Cycle Bell Ringer Name the 3 types of rock. Is one type of rock able to change into a different

More information

Rock Cart for High School Students

Rock Cart for High School Students Rock Cart for High School Students Goals and Objectives for high school students (9 th 12 th grade): 1) Define igneous rocks 2) Discuss chemical composition of rocks 3) Understand the plate tectonics and

More information

GY 111: Physical Geology

GY 111: Physical Geology UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 9: Extrusive Igneous Rocks Instructor: Dr. Douglas W. Haywick Last Time 1) The chemical composition of the crust 2) Crystallization of molten

More information

Earth Science 11: Earth Materials: Rock Cycle

Earth Science 11: Earth Materials: Rock Cycle Name: Date: Earth Science 11: Earth Materials: Rock Cycle Chapter 2, pages 44 to 46 2.1: Rock Cycle What is a Rock? A solid mass of mineral or mineral-like matter that occurs naturally as part of our planet

More information

Igneous petrology EOSC 321 Laboratory 8: Intermediate and Felsic Volcanic Rocks. Pyroclastic Rocks

Igneous petrology EOSC 321 Laboratory 8: Intermediate and Felsic Volcanic Rocks. Pyroclastic Rocks 321 Lab 8 Instructor: L. Porritt - 1 - Igneous petrology EOSC 321 Laboratory 8: Intermediate and Felsic Volcanic Rocks. Pyroclastic Rocks Learning Goals. After this Lab, you should be able: Identify fine-grained

More information

Lecture 6 - Igneous Rocks and Volcanoes

Lecture 6 - Igneous Rocks and Volcanoes Lecture 6 - Igneous Rocks and Volcanoes Learning objectives Understand and be able to predict where and why magma will be forming at different tectonic settings Understand the factors controlling magma

More information

Geology 101. Reading Guide for Chapters 1, 4, and 5

Geology 101. Reading Guide for Chapters 1, 4, and 5 Geology 101 Name Reading Guide for Chapters 1, 4, and 5 The purpose of the Reading Guides is to help you sort out the most important ideas in the text. I recommend answering the questions as you read the

More information

Classification of Igneous Rocks

Classification of Igneous Rocks Classification of Igneous Rocks Textures: Glassy- no crystals formed Aphanitic- crystals too small to see by eye Phaneritic- can see the constituent minerals Fine grained- < 1 mm diameter Medium grained-

More information

Rock Program Elementary School

Rock Program Elementary School Mount St Helens National Volcanic Monument Gifford Pinchot National Forest USDA Forest Service Time Commitment: Location: Materials: Rock Program Elementary School 45 minutes Johnston Ridge Observatory

More information

REMINDER. MOVIE: Rocks that Originate Underground 5:41 to 12:40

REMINDER. MOVIE: Rocks that Originate Underground 5:41 to 12:40 REMINDER 2 chapters covered next week Sedimentary Rocks Soils and Weathering (first half) Learn vocabulary for both! Turn to Neighbor: Without using your book or notes, try to remember which te mineral

More information

A Rock is A group of minerals that have been put together in several different ways.

A Rock is A group of minerals that have been put together in several different ways. A Rock is A group of minerals that have been put together in several different ways. Depending on how they are put together, rocks are classified as: 1. Sedimentary 2. Igneous 3. Metamorphic Sedimentary

More information

Igneous Processes I: Igneous Rock Formation, Compositions, and Textures

Igneous Processes I: Igneous Rock Formation, Compositions, and Textures Igneous Processes I: Igneous Rock Formation, Compositions, and Textures Crustal Abundances of Rock Types Igneous Rocks Form by the cooling and hardening (crystallization/glassification) of magma. There

More information

Quartz. ! Naturally occurring - formed by nature. ! Solid - not liquid or gas. Liquid water is not a mineral

Quartz. ! Naturally occurring - formed by nature. ! Solid - not liquid or gas. Liquid water is not a mineral GEOL 110 - Minerals, Igneous Rocks Minerals Diamond Azurite Quartz Why Study Minerals?! Rocks = aggregates of minerals! Importance to Society?! Importance to Geology? 5 part definition, must satisfy all

More information

Igneous Rocks. Magma molten rock material consisting of liquid rock and crystals. A variety exists, but here are the end members:

Igneous Rocks. Magma molten rock material consisting of liquid rock and crystals. A variety exists, but here are the end members: Igneous Rocks Magma molten rock material consisting of liquid rock and crystals. A variety exists, but here are the end members: Types of Magma Basaltic, Basic or Mafic very hot (900-1200 C) very fluid

More information

GEOL FORENSIC GEOLOGY ROCK IDENTIFICATION

GEOL FORENSIC GEOLOGY ROCK IDENTIFICATION GEOL.2150 - FORENSIC GEOLOGY ROCK IDENTIFICATION Name I. Introduction There are three basic types of rocks - igneous, sedimentary, and metamorphic: Igneous. Igneous rocks have solidified from molten matter

More information

Lab 3: Igneous Rocks

Lab 3: Igneous Rocks Lab 3: Igneous Rocks The Geology in YOUR life initiative Mount Shinmoedake erupts in Japan (Jan 26, 2010) Volcanic smoke rises from Mount Shinmoedake on 1 February, 2011. Smoke rises from Mount Shinmoedake

More information

Igneous Rocks. Igneous Rocks - 1. Environment of Formation - Magma - Plutonic - rock that formed within the Earth. Intrusive - Earth s crust.

Igneous Rocks. Igneous Rocks - 1. Environment of Formation - Magma - Plutonic - rock that formed within the Earth. Intrusive - Earth s crust. Name: Date: Period: Minerals and Rocks The Physical Setting: Earth Science CLASS NOTES - Methods to classify igneous rocks: 1. Environment of Formation - Magma - Plutonic - rock that formed within the

More information

Igneous Rocks. Definition of Igneous Rocks. Igneous rocks form from cooling and crystallization of molten rock- magma

Igneous Rocks. Definition of Igneous Rocks. Igneous rocks form from cooling and crystallization of molten rock- magma Igneous Rocks Definition of Igneous Rocks Igneous rocks form from cooling and crystallization of molten rock- magma Magma molten rock within the Earth Lava molten rock on the Earth s s surface Igneous

More information

Page 1. Name: 1) Which diagram best shows the grain size of some common sedimentary rocks?

Page 1. Name: 1) Which diagram best shows the grain size of some common sedimentary rocks? Name: 1) Which diagram best shows the grain size of some common sedimentary rocks? 1663-1 - Page 1 5) The flowchart below illustrates the change from melted rock to basalt. 2) Which processes most likely

More information

Igneous Rocks and the Geologic History of Your Community

Igneous Rocks and the Geologic History of Your Community Ch 1 Bedrock Geology 9/17/04 12:48 PM Page 14 Activity 2 Igneous Rocks and the Geologic History of Your Community Goals In this activity you will: Identify several igneous rocks using a rock chart. Describe

More information

The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks

The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks Igneous rocks form as molten magma or lava cools and solidifies. Magma is completely or partly molten

More information

Rocks. 1) igneous = fiery 2) sedimentary = settled 3) metamorphic = changed form

Rocks. 1) igneous = fiery 2) sedimentary = settled 3) metamorphic = changed form Rocks Identified on the basis of composition and texture (arrangement of features). Classification depends on description and interpretation of these features. Three major categories: 1) igneous = fiery

More information

Textures of Igneous Rocks

Textures of Igneous Rocks Page 1 of 6 EENS 212 Prof. Stephen A. Nelson Petrology Tulane University This document last updated on 12-Feb-2004 Introduction to Igneous Rocks An igneous rock is any crystalline or glassy rock that forms

More information

Lab 2: The rock cycle, minerals and igneous rocks. Rocks are divided into three major categories on the basis of their origin:

Lab 2: The rock cycle, minerals and igneous rocks. Rocks are divided into three major categories on the basis of their origin: Geology 101 Name(s): Lab 2: The rock cycle, minerals and igneous rocks Rocks are divided into three major categories on the basis of their origin: Igneous rocks (from the Latin word, ignis = fire) are

More information

Minerals Give Clues To Their Environment Of Formation. Also. Rocks: Mixtures of Minerals

Minerals Give Clues To Their Environment Of Formation. Also. Rocks: Mixtures of Minerals Minerals Give Clues To Their Environment Of Formation!!Can be a unique set of conditions to form a particular mineral or rock!!temperature and pressure determine conditions to form diamond or graphite

More information

Directed Reading. Section: Rocks and the Rock Cycle. made of a. inorganic matter. b. solid organic matter. c. liquid organic matter. d. chemicals.

Directed Reading. Section: Rocks and the Rock Cycle. made of a. inorganic matter. b. solid organic matter. c. liquid organic matter. d. chemicals. Skills Worksheet Directed Reading Section: Rocks and the Rock Cycle 1. The solid part of Earth is made up of material called a. glacial ice. b. lava. c. rock. d. wood. 2. Rock can be a collection of one

More information

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements.

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. CHAPTER 5 Igneous Rocks SECTION 5.1 What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. basaltic

More information

Topics that will be discussed

Topics that will be discussed Topics that will be discussed The Rock Cycle Igneous Rock Sedimentary Rock Metamorphic Rock The Rock Cycle -Rocks The parent material for all rocks is MAGMA. What is MAGMA? -Rock forming Minerals Are:

More information

Rock Identification. invisible rhyolite andesite basalt komatiite. visible granite diorite gabbro peridotite

Rock Identification. invisible rhyolite andesite basalt komatiite. visible granite diorite gabbro peridotite Rock Identification The samples in this lab are arranged into four groups: igneous, sedimentary, metamorphic, and unknown. Study the igneous, sedimentary, and metamorphic collections to get an idea of

More information

Igneous Rocks and Intrusive Activity

Igneous Rocks and Intrusive Activity Summary IGNEOUS ROCKS AND METAMORPHIC ROCKS DERIVED FROM IGNEOUS parents make up about 95 percent of Earth s crust. Furthermore, the mantle, which accounts for more than 82 percent of Earth s volume, is

More information

Rocks Rock- A group of minerals, glass, mineroid bound together in some way.

Rocks Rock- A group of minerals, glass, mineroid bound together in some way. Rocks Rock- A group of minerals, glass, mineroid bound together in some way. All rocks fit into one of three categories: Igneous- formed by the cooling and hardening of hot molten rock Sedimentary- formed

More information

RR#7 - Multiple Choice

RR#7 - Multiple Choice 1. Which mineral is mined for its iron content? 1) hematite 2) fluorite 3) galena 4) talc 2. Which rock is composed of the mineral halite that formed when seawater evaporated? 1) limestone 2) dolostone

More information

Objectives of this Lab. Introduction. The Petrographic Microscope

Objectives of this Lab. Introduction. The Petrographic Microscope Geological Sciences 101 Lab #9 Introduction to Petrology Objectives of this Lab 1. Understand how the minerals and textures of rocks reflect the processes by which they were formed. 2. Understand how rocks

More information

Version 1 Page 1 Barnard/George/Ward

Version 1 Page 1 Barnard/George/Ward The Great Mineral & Rock Test 1. Base your answer to the following question on the table below which provides information about the crystal sizes and the mineral compositions of four igneous rocks, A,

More information

1. Which mineral is mined for its iron content? A) hematite B) fluorite C) galena D) talc

1. Which mineral is mined for its iron content? A) hematite B) fluorite C) galena D) talc 1. Which mineral is mined for its iron content? A) hematite B) fluorite C) galena D) talc 2. Which material is made mostly of the mineral quartz? A) sulfuric acid B) pencil lead C) plaster of paris D)

More information

Introduction. Volcano a vent where molten rock comes out of Earth

Introduction. Volcano a vent where molten rock comes out of Earth Introduction Volcano a vent where molten rock comes out of Earth Example: Kilauea Volcano, Hawaii Hot (~1,200 o C) lava pools around the volcanic vent. Hot, syrupy lava runs downhill as a lava flow. The

More information

Page 1. Name:

Page 1. Name: Name: 1) What is the approximate density of a mineral with a mass of 262.2 grams that displaces 46 cubic centimeters of water? A) 6.1 g/cm 3 C) 1.8 g/cm 3 B) 5.7 g/cm 3 D) 12.2 g/cm 3 2) In which two Earth

More information

10/20/2015. How is magma different from lava? Magma is molten rock below the Earth s surface. Lava is magma that flows out onto Earth s surface.

10/20/2015. How is magma different from lava? Magma is molten rock below the Earth s surface. Lava is magma that flows out onto Earth s surface. Chapter 5 What are igneous rocks? How do they form? Igneous rocks are rocks that form when molten material cools and crystallizes. Molten material can be either magma or lava. How is magma different from

More information

IGNEOUS ROCKS AND IGNEOUS ACTIVITY

IGNEOUS ROCKS AND IGNEOUS ACTIVITY DATE DUE: Ms. Terry J. Boroughs Geology 300 Name: Section: IGNEOUS ROCKS AND IGNEOUS ACTIVITY Instructions: Read each question carefully before selecting the BEST answer. Use GEOLOGIC vocabulary where

More information

ENVI.2030L Rock Identification

ENVI.2030L Rock Identification ENVI.2030L Rock Identification Name I. Introduction The bulk of the earth's crust is composed of relatively few minerals. These can be mixed together, however, to give an endless variety of rocks - aggregates

More information

IGNEOUS ROCKS AND IGNEOUS ACTIVITY

IGNEOUS ROCKS AND IGNEOUS ACTIVITY DATE DUE: Ms. Terry J. Boroughs Geology 305 Name: Section: IGNEOUS ROCKS AND IGNEOUS ACTIVITY Instructions: Read each question carefully before selecting the BEST answer. Use GEOLOGIC vocabulary where

More information

Geology for Engineers Rocks

Geology for Engineers Rocks 89.325 Geology for Engineers Rocks Name I. Introduction The bulk of the earth's crust is composed of relatively few minerals. These can be mixed together, however, to give an endless variety of rocks -

More information

PLATE TECTONICS, VOLCANISM AND IGNEOUS ROCKS

PLATE TECTONICS, VOLCANISM AND IGNEOUS ROCKS PLATE TECTONICS, VOLCANISM AND IGNEOUS ROCKS PLATE TECTONICS TO IGNEOUS ROCKS Internal Heat Seafloor Spreading/Plate Tectonics Volcanism Plate Boundary Intra-plate (hot spot) Divergent Convergent Igneous

More information

Rocks. Rocks are composed of 1 or more minerals. Rocks are classified based on how they formed (origin). 3 classes of rocks:

Rocks. Rocks are composed of 1 or more minerals. Rocks are classified based on how they formed (origin). 3 classes of rocks: ROCKS Rocks If a mineral is a naturally occurring homogeneous solid, inorganically formed, with a definite chemical composi:on and a crystalline structure then what is a rock? Rocks Rocks are composed

More information

A. IGNEOUS Rocks formed by cooling and hardening of hot molten rock called magma (within crust or at its surface).

A. IGNEOUS Rocks formed by cooling and hardening of hot molten rock called magma (within crust or at its surface). EARTH SCIENCE 11 CHAPTER 5 NOTES KEY How Earth's Rocks Were Formed Early geologists believed that the physical features of the Earth were formed by sudden spectacular events called CATASTROPHES. Modern

More information

GLY 155 Introduction to Physical Geology, W. Altermann

GLY 155 Introduction to Physical Geology, W. Altermann Earth Materials Systematic subdivision of magmatic rocks Subdivision of magmatic rocks according to their mineral components: Content of quartz SiO 2 ( free quartz presence) Quartz with conchoidal breakage

More information

2 Igneous Rock. How do igneous rocks form? What factors affect the texture of igneous rock? BEFORE YOU READ. Rocks: Mineral Mixtures

2 Igneous Rock. How do igneous rocks form? What factors affect the texture of igneous rock? BEFORE YOU READ. Rocks: Mineral Mixtures CHAPTER 2 2 Igneous Rock SECTION Rocks: Mineral Mixtures BEFORE YOU READ After you read this section, you should be able to answer these questions: How do igneous rocks form? What factors affect the texture

More information

Chapter 10. Chapter Rocks and the Rock Cycle. Rocks. Section 1 Rocks and the Rock Cycle

Chapter 10. Chapter Rocks and the Rock Cycle. Rocks. Section 1 Rocks and the Rock Cycle Chapter 10 Rocks 1 Chapter 10 Section 1 Rocks and the Rock Cycle 2 10.1 Rocks and the Rock Cycle Magma is the parent material for all rocks. Once the magma cools and hardens, many changes can occur. Geology:

More information

Geology Lab: The Properties of Minerals & Igneous Rocks. Part 1: Minerals

Geology Lab: The Properties of Minerals & Igneous Rocks. Part 1: Minerals Geology 101, Lab Section (20 Points) Your First & Last Name: Geology Lab: The Properties of Minerals & Igneous Rocks Part 1: Minerals This section designed to introduce you to the most common minerals

More information

Which sample best shows the physical properties normally associated with regional metamorphism? (1) A (3) C (2) B (4) D

Which sample best shows the physical properties normally associated with regional metamorphism? (1) A (3) C (2) B (4) D 1 Compared to felsic igneous rocks, mafic igneous rocks contain greater amounts of (1) white quartz (3) pink feldspar (2) aluminum (4) iron 2 The diagram below shows how a sample of the mineral mica breaks

More information

Chapter 4: Igneous Rocks and Plutons

Chapter 4: Igneous Rocks and Plutons Chapter 4: Igneous Rocks and Plutons Chapter Outline 4.1 Introduction 4.2 The Properties and Behavior of Magma and Lava 4.3 How Does Magma Originate and Change? 4.4 Igneous Rocks Their Characteristics

More information

Igneous, Metamorphic & Sedimentary. Chapter 5 & Chapter 6

Igneous, Metamorphic & Sedimentary. Chapter 5 & Chapter 6 Igneous, Metamorphic & Sedimentary Chapter 5 & Chapter 6 Section 5.1 What are Igneous Rocks? Compare and contrast intrusive and extrusive igneous rocks. Describe the composition of magma Discuss the factors

More information

Happy Tuesday. Pull out a ½ sheet of paper

Happy Tuesday. Pull out a ½ sheet of paper Happy Tuesday Pull out a ½ sheet of paper 1. Physical properties of a mineral are predominantly related to 1. the external conditions of temperature, pressure, and amount of space available for growth.

More information

Recognising Igneous Rocks Teacher Notes

Recognising Igneous Rocks Teacher Notes Minerals are the building blocks of rocks Minerals are inorganic crystals with constant structure and composition Classification of igneous rocks Igneous (Latin ig = fire, neous = born) rocks are formed

More information

Unit 2 Exam: Rocks & Minerals

Unit 2 Exam: Rocks & Minerals Name: Date: 1. Base your answer(s) to the following question(s) on the 2001 edition of the Earth Science Reference Tables, the map and cross section below, and your knowledge of Earth science. The shaded

More information

Igneous Rock Processes and Identification

Igneous Rock Processes and Identification Igneous Rock Processes and Identification http://www.rockhounds.com/rockshop/rockkey/index.html http://earthsci.org/education/teacher/basicgeol/igneous/igneous.html#kindsofigneousrocks Major Concepts 1)

More information

Recognising Igneous Rocks - Student Activity

Recognising Igneous Rocks - Student Activity Igneous (Latin ig = fire, neous born) rocks form from molten magma. They are made from interlocking crystals and are therefore hard. We classify igneous rocks by where they became solid and their chemical

More information