REPORT ON THE TOPICAL WORKSHOP

Size: px
Start display at page:

Download "REPORT ON THE TOPICAL WORKSHOP"

Transcription

1 REPORT ON THE TOPICAL WORKSHOP from the stratosphere to the ionosphere: coupling, boundary conditions and assumptions Paris, November 2012 organised in the framework of the ESSEM COST Action ES1005 TOSCA TOwards a more complete assessment of the impact of Solar variability on the Earth s Climate at University Paris VI, November Atmospheric models are the main tool by which the multiple impacts of solar variability on the Earth s atmosphere can be described and tested. The majority of these models address the lower atmosphere only (troposphere, and sometimes also stratosphere). Higher layers, which range from the stratosphere to the ionosphere, are now also receiving growing attention because of the impact of solar UV radiation and energetic particles. However, the description of the terrestrial atmosphere from the surface up to the thermosphere and ionosphere is a very complex problem when dealing with the solar forcing on the climate. Thanks to numerous new observations and recent progress in our understanding of how the thermosphere/ionosphere reacts to solar forcing, several models have recently improved the description of the middle and upper atmosphere. The prime objective of this workshop was to compare current numerical models for the middle and upper atmospheres and, in the light of the observations, to identify key issues, lacks and roads for future improvement. About 80 participants attended the workshop, coming mostly from Europe but also from the US and Canada. The programme was organised in such a way that each session was followed by ample time for discussion. Among the most significant achievements of this workshop were: The specification of the requirements of solar spectral irradiance for models in terms of spectral resolution, spectral coverage, etc. The various approaches chosen in several teams when describing the extension of the troposphere/stratosphere models up to the thermosphere, their main findings and conclusions on what should be done, The identification of few measurements needed to improve those models, among which a better knowledge of the O concentration in the mesosphere/thermosphere (related to the radiative cooling budget) and high resolution measurements of the electron distribution that precipitate into the atmosphere,

2 This workshop was supported by the French PNST (Programme National Soleil- Terre) and by TOSCA. The latter funded 9 participants, among which there were two young scientists. The meeting was hosted by LATMOS (Laboratoire Atmosphères, Milieux, Observations Spatiales) and held in the premises of the University of Paris VI. The main organisers were François Leblanc (LATMOS) and Jean Lilensten (IPAG). The workshop presentations can still be downloaded from the website with Username Password strattoiono november12 PROGRAMME Monday 26/11/12 9h30 Welcome The Sun Convener: T. Dudok de Wit 9h45-10h15 10h15-10h45 10h45-11h15 11h15-11h45 Natasha Krivova (MPI, Lindau) Models and reconstructions of solar spectral irradiance Gaël Cessateur (PMOD, Davos) Solar Spectral Irradiance: past, present and future Observations G. Thuiller (LATMOS, Paris) Comparison of Different Solar Spectral Irradiance Reconstructions 11h45-12h00 S. Melo (CSA, Quebec) Evaluating the impact of using different SSI reconstructions to calculate atmospheric solar heating rates as a function of altitude 12h00-12h15 12h15-12h45 C. Muller (BISA, Brussels) Solar irradiance measured from space: possible perturbing elements, mitigation and quality control procedures

3 12h45-14h15 14h15-14h45 14h45-15h00 15h00-15h15 15h45-16h15 16h15-16h45 16h45-17h15 17h15 17h30-19h15 From the surface to the upper atmosphere Conveners: S. Bekki, P. Keckhut, A. Hauchecorne F. Lott (LMD, Paris) Gravity Wave parameterizations in the LMDz- GCM Onishi T. et al. (LATMOS, Paris) Simultaneous observations of daytime MSTIDs by DEMETER satellite and GPS- TEC S. Melo (CSA, Quebec) Using airglow as a tool to evaluate atmospheric numerical models performance: results from the extended CMAM H. Schmidt (MPI, Hamburg) Solar- cycle signals in ECHAM- based models from the ocean to the mesosphere A. Hauchecorne (LATMOS, Paris) "Dynamics and chemical variability of the mesosphere: Internal causes and role of solar forcing" End of first day Welcome drink Tuesday 27/11/12 From the surface to the upper atmosphere (cnt d) Conveners: S. Bekki, P. Keckhut, A. Hauchecorne 9h00-9h30 9h30-10h00 10h00-10h30 10h30-11h00 11h00-11h30 11h30-11h45 11h45-12h00 E. Rozanov (PMOD, Davos) "Solar influence on the temperature in the lower tropical stratosphere" U. Berger (Leibniz Institute of Atmospheric Physics, Kühlungsborn) Solar cycle and long- term trends in the middle atmosphere effected by tropo- /stratospheric conditions M. Lopez- Puertas (IAA, Granada) "Non- LTE IR energy budget in the middle/upper atmosphere: Status and implementation in GCMs" D. Marsh (NCAR, Boulder) "Adding Aeronomy to a high- top climate model: lessons learned from the development of WACCM" J. Manners (UKMO) Vertical extension of UKMO model H. Schmidt (MPI, Hamburg) HAMMONIA

4 12h00-12h30 12h30-14h00 14h00-14h30 14h30-14h45 14h45-15h15 15h45-16h15 16h15-16h30 16h30-17h00 17h00 F. Forget (LMD, Paris) Extending a Global Climate Model to the thermosphere and ionosphere: the case of the LMD Mars GCM A. Vlasov (KIT, Karlsruhe) Coupling the thermosphere and the middle- atmosphere: the first experiences with EMAC- CMAT Ilya Usoskin (Univ. Oulu) Atmospheric ionization by cosmic rays: How to choose a proper model? A. Marchaudon (IRAP, Toulouse) A new interhemispheric model of ionosphere Non- sollicited contribution Non- sollicited contribution J.Y. Chaufray et al. (LATMOS, Paris) 3D Model of the Martian Ionospheric dynamics End of second day Wednesday 28/11/12 Particle Precipitation and chemistry Conveners: M. Marchand, F. Lefèvre 9h00-9h30 9h30-10h00 10h00-10h30 10h30-11h00 11h00-11h30 11h30-11h45 A. Seppälä (FMI, Helsinki) "Solar influence on the atmosphere through Energetic Particle Precipitation." K. Semeniuk (York University, Ontario) "Simulating effects of galactic cosmic rays, solar proton events and high energy electron precipitation in the Canadian Middle Atmosphere Model" M. Sinnhuber (KIT, Karlsruhe) "Impact of energetic particle precipitation on the chemical composition of the middle atmosphere: results from global models and comparison to observations" P. Verronen (FMI, Helsinki) "Ion chemistry affecting the minor neutral composition in the middle atmosphere" B. Funke (IAA, Granada) Stratospheric EPP- NO y deposition during as seen by MIPAS- Envisat: Contribution to the global NOy budget and implications for atmospheric modeling

5 11h45-12h00 12h00-12h30 12h30-14h00 14h00-14h15 14h15-14h30 14h30-14h45 14h45-15h00 15h00-15h15 15h45 H. Nieder (KIT, Karlsruhe) NO x production due to energetic particle precipitation in the MLT region results from an ion- chemistry model T. Reddmann (KIT, Karslruhe) Transport of NO x from the lower Thermosphere into the middle Atmosphere in the KASIMA Model P. E. Sheese et al. (University of Toronto) Antarctic night NO densities in the MLT: Odin, ACE, and WACCM K. Perrot et al. (CUT, Göteborg) Data sets for studying direct and indirect effects of high energetic particle precipitation on middle atmospheric composition by the Odin Sub- Millimeter Radiometer Kilifarska N. (NIG, Sofia) Ozone and ion chemistry of the lower stratosphere initiated by Galactic Cosmic Rays» F. Duruisseau (LPC2E, Orléans) One- dimensional numerical modeling of blue- jet and its impact on stratospheric chemistry End of the meeting Thierry Dudok de Wit 21 December 2012

Energetic particle effects on the atmosphere and climate

Energetic particle effects on the atmosphere and climate Energetic particle effects on the atmosphere and climate E. Rozanov Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center (PMOD/WRC), Davos, Switzerland Institute for Atmospheric

More information

EPP contribution to (stratospheric and) tropospheric variations. Annika Seppälä Finnish Meteorological Institute Academy of Finland

EPP contribution to (stratospheric and) tropospheric variations. Annika Seppälä Finnish Meteorological Institute Academy of Finland EPP contribution to (stratospheric and) tropospheric variations Annika Seppälä Finnish Meteorological Institute Academy of Finland A. Seppälä, HEPPA-SOLARIS Workshop, Boulder, Oct 0 So far... Energetic

More information

Chemistry-Climate Models: What we have and what we need

Chemistry-Climate Models: What we have and what we need Chemistry-Climate Models: What we have and what we need Dan Marsh National Center for Atmospheric Research NCAR is sponsored by the National Science Foundation Outline Overview of processes in our current

More information

The atmospheric response to solar irradiance variations: Simulations with HAMMONIA

The atmospheric response to solar irradiance variations: Simulations with HAMMONIA The atmospheric response to solar irradiance variations: Simulations with HAMMONIA Hauke Schmidt, Marco A. Giorgetta Max Planck Institute for Meteorology, Hamburg, Germany Guy P. Brasseur National Center

More information

Dynamical coupling between the middle atmosphere and lower thermosphere

Dynamical coupling between the middle atmosphere and lower thermosphere Dynamical coupling between the middle atmosphere and lower thermosphere Anne Smith, Dan Marsh, Nick Pedatella NCAR* Tomoko Matsuo CIRES/NOAA NCAR is sponsored by the National Science Foundation Model runs

More information

AGENDA. Tuesday, 9 October Registration (light refreshments)

AGENDA. Tuesday, 9 October Registration (light refreshments) 4th International HEPPA Workshop in conjunction with SPARC/SOLARIS 9-12 October 2012 National Center for Atmospheric Research, CG1, Boulder, Colorado, USA http://www2.acd.ucar.edu/heppasolaris Tuesday,

More information

Atmospheric Coupling via Energetic Particle Precipitation (EPP)

Atmospheric Coupling via Energetic Particle Precipitation (EPP) Atmospheric Coupling via Energetic Particle Precipitation (EPP) Cora E. Randall University of Colorado Laboratory for Atmospheric and Space Physics Department of Atmospheric and Oceanic Sciences Acknowledgments

More information

An Overview of the Impact. on the Stratosphere and Mesosphere

An Overview of the Impact. on the Stratosphere and Mesosphere An Overview of the Impact of Energetic Particle Precipitation it ti on the Stratosphere and Mesosphere Charles Jackman NASA Goddard Space Flight Center, Greenbelt, MD Aspen GCI Workshop 2010 Colorado June

More information

Satellite measurements of nitric monoxide (NO) in the mesosphere and lower thermosphere

Satellite measurements of nitric monoxide (NO) in the mesosphere and lower thermosphere Satellite measurements of nitric monoxide (NO) in the mesosphere and lower thermosphere S. Bender 1, M. Sinnhuber 1, T. von Clarmann 1, G. Stiller 1, B. Funke 2, M. López-Puertas 2, K. Pérot 3, J. Urban

More information

The Effect of Galactic Cosmic Rays on the Middle Atmosphere: a study using the Canadian Middle Atmosphere Model

The Effect of Galactic Cosmic Rays on the Middle Atmosphere: a study using the Canadian Middle Atmosphere Model The Effect of Galactic Cosmic Rays on the Middle Atmosphere: a study using the Canadian Middle Atmosphere Model A web of theory has been spun around the Sun's climate influence BBC News, Nov 14, 2007 Robert

More information

Report on the first SOLARIS workshop 4-6 October 2006, Boulder, Colorado, USA

Report on the first SOLARIS workshop 4-6 October 2006, Boulder, Colorado, USA Report on the first SOLARIS workshop 4-6 October 2006, Boulder, Colorado, USA K. Matthes, Freie Universität Berlin, Institut für Meteorologie, Berlin, Germany and National Center for Atmospheric Research,

More information

An Overview of the Impact of Energetic Particle Precipitation (EPP) on the Mesosphere and Stratosphere

An Overview of the Impact of Energetic Particle Precipitation (EPP) on the Mesosphere and Stratosphere An Overview of the Impact of Energetic Particle Precipitation (EPP) on the Mesosphere and Stratosphere Charles Jackman & Dean Pesnell NASA Goddard Space Flight Center, Greenbelt, MD International Workshop

More information

WACCM-X Simulations of Climate Change in the Upper Atmosphere Stan Solomon, Hanli Liu, Dan Marsh, Joe McInerney, Liying Qian, and Francis Vitt

WACCM-X Simulations of Climate Change in the Upper Atmosphere Stan Solomon, Hanli Liu, Dan Marsh, Joe McInerney, Liying Qian, and Francis Vitt WACCM-X Simulations of Climate Change in the Upper Atmosphere Stan Solomon, Hanli Liu, Dan Marsh, Joe McInerney, Liying Qian, and Francis Vitt High Altitude Observatory National Center for Atmospheric

More information

Whole Atmosphere Simulation of Anthropogenic Climate Change

Whole Atmosphere Simulation of Anthropogenic Climate Change Whole Atmosphere Simulation of Anthropogenic Climate Change Stan Solomon, Hanli Liu, Dan Marsh, Joe McInerney, Liying Qian, and Francis Vitt High Altitude Observatory National Center for Atmospheric Research

More information

Nighttime nitric oxide densities in the Southern Hemisphere mesosphere lower thermosphere

Nighttime nitric oxide densities in the Southern Hemisphere mesosphere lower thermosphere GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl048054, 2011 Nighttime nitric oxide densities in the Southern Hemisphere mesosphere lower thermosphere P. E. Sheese, 1 R. L. Gattinger, 2 E. J.

More information

The solar cycle effect in the MLT region. Simulations with HAMMONIA

The solar cycle effect in the MLT region. Simulations with HAMMONIA The solar cycle effect in the MLT region Simulations with HAMMONIA Hauke Schmidt Max Planck Institute for Meteorology, Hamburg, Germany Variability of solar UV irradiance as given by UARS / SOLSTICE (Maximum:

More information

Coupling of the polar stratosphere and mesosphere during stratospheric sudden warmings - Relevance for solar-terrestrial coupling -

Coupling of the polar stratosphere and mesosphere during stratospheric sudden warmings - Relevance for solar-terrestrial coupling - Coupling of the polar stratosphere and mesosphere during stratospheric sudden warmings - Relevance for solar-terrestrial coupling - Yvan J. Orsolini NILU - Norwegian Institute for Air Research and Birkeland

More information

Characteristics of the Atmosphere

Characteristics of the Atmosphere Characteristics of the Atmosphere * The atmosphere is a mixture of gases that surrounds the Earth. * It contains oxygen and protects us from the sun's ultraviolet rays. * The atmosphere has 78% Nitrogen,

More information

IONIZATION EFFECTS IN THE MIDDLE STRATOSPHERE DUE TO COSMIC RAYS DURING STRONG GLE EVENTS

IONIZATION EFFECTS IN THE MIDDLE STRATOSPHERE DUE TO COSMIC RAYS DURING STRONG GLE EVENTS Доклади на Българската академия на науките Comptes rendus de l Académie bulgare des Sciences Tome 71, No 4, 2018 SPACE SCIENCES Cosmic ray physics IONIZATION EFFECTS IN THE MIDDLE STRATOSPHERE DUE TO COSMIC

More information

Thermospheric Winds. Astrid Maute. High Altitude Observatory (HAO) National Center for Atmospheric Science (NCAR) Boulder CO, USA

Thermospheric Winds. Astrid Maute. High Altitude Observatory (HAO) National Center for Atmospheric Science (NCAR) Boulder CO, USA Thermospheric Winds Astrid Maute High Altitude Observatory (HAO) National Center for Atmospheric Science (NCAR) Boulder CO, USA High Altitude Observatory (HAO) National Center for Atmospheric Research

More information

The Mars Climate Database (MCD version 5.2)

The Mars Climate Database (MCD version 5.2) The Mars Climate Database (MCD version 5.2) E. Millour 1, F. Forget 1, A. Spiga 1, T. Navarro 1, J.-B. Madeleine 1, L. Montabone 1,2, A. Pottier 1,3, F. Lefèvre 3, F. Montmessin 3, J.-Y. Chaufray 3, M.A.

More information

Summary. Introduction The solar variability Some words about the Earth's atmosphere Simulations and results

Summary. Introduction The solar variability Some words about the Earth's atmosphere Simulations and results Summary Introduction The solar variability Some words about the Earth's atmosphere Simulations and results Introduction Understanding and quantifying the natural variability of climate on decadal and centennial

More information

Analysis and hindcast experiments of the 2009 sudden stratosphere warming in WACCMX+DART

Analysis and hindcast experiments of the 2009 sudden stratosphere warming in WACCMX+DART Analysis and hindcast experiments of the 2009 sudden stratosphere warming in WACCMX+DART Nick Pedatella 1,2, Hanli Liu 1, Daniel Marsh 1,3, Jeffrey Anderson 4, and Kevin Raeder 4 1 High Altitude Observatory,

More information

Whole Atmosphere Community Climate Model (WACCM) and Its Thermosphere/Ionosphere Extension (WACCM-X)

Whole Atmosphere Community Climate Model (WACCM) and Its Thermosphere/Ionosphere Extension (WACCM-X) Whole Atmosphere Community Climate Model (WACCM) and Its Thermosphere/Ionosphere Extension (WACCM-X) WAWG Co-Chairs: Han-Li Liu, NCAR/HAO Lorenzo Polvani, Columbia University Scientific Objectives of WACCM

More information

Impact of COSMIC observations in a whole atmosphere-ionosphere data assimilation model

Impact of COSMIC observations in a whole atmosphere-ionosphere data assimilation model Impact of COSMIC observations in a whole atmosphere-ionosphere data assimilation model Nick Pedatella 1,2, Hanli Liu 1, Jing Liu 1, Jeffrey Anderson 3, and Kevin Raeder 3 1 High Altitude Observatory, NCAR

More information

Earth s Atmosphere. How does Earth s atmosphere affect life on Earth?

Earth s Atmosphere. How does Earth s atmosphere affect life on Earth? Name Earth s How does Earth s atmosphere affect life on Earth? Before You Read Before you read the chapter, think about what you know about Earth s atmosphere. Record your thoughts in the first column.

More information

Characteristics of the Atmosphere

Characteristics of the Atmosphere Characteristics of the Atmosphere * The atmosphere is a mixture of gases that surrounds the Earth. * It contains oxygen and protects us from the sun's ultraviolet rays. * The atmosphere has 78% Nitrogen,

More information

Production of Odd Hydrogen in the Mesosphere During the January 2005 Solar Proton Event

Production of Odd Hydrogen in the Mesosphere During the January 2005 Solar Proton Event GEOPHYSICAL RESEARCH LETTERS, VOL.???, XXXX, DOI:10.1029/, 1 2 Production of Odd Hydrogen in the Mesosphere During the January 2005 Solar Proton Event Pekka T. Verronen, Annika Seppälä, Erkki Kyrölä, and

More information

VALIDATION OF GOMOS OZONE PROFILES USING NDSC LIDAR: STATISTICAL COMPARISONS

VALIDATION OF GOMOS OZONE PROFILES USING NDSC LIDAR: STATISTICAL COMPARISONS VALIDATION OF GOMOS OZONE PROFILES USING NDSC LIDAR: STATISTICAL COMPARISONS Philippe Keckhut 1, Stephane Marchand 1, Alain Hauchecorne 1, Sophie Godin-Beekmann 1, Françoise Pinsard 1, Stuart McDermid

More information

Direct effects of particle precipitation and ion chemistry in the middle atmosphere

Direct effects of particle precipitation and ion chemistry in the middle atmosphere Direct effects of particle precipitation and ion chemistry in the middle atmosphere P. T. Verronen Finnish Meteorological Institute, Earth Observation Helsinki, Finland Contents of presentation 1. Middle

More information

Layers of the Atmosphere

Layers of the Atmosphere Layers of the Atmosphere The atmosphere is a layer of gases around Earth. It is held in place by Earth s gravity. We usually call it air. The atmosphere is made up of about 78% nitrogen and 21% oxygen.

More information

Coupled Chemistry in the Met Office UM: current and in a future extended (thermosphere) version

Coupled Chemistry in the Met Office UM: current and in a future extended (thermosphere) version Coupled Chemistry in the Met Office UM: current and in a future extended (thermosphere) version David Jackson QEPPA Meeting, Lancaster 13/03/2013 Overview What is the UM? UKCA chemistry Link to QEPPA goals

More information

Influence of Sudden Stratosphere Warmings on the Ionosphere and Thermosphere

Influence of Sudden Stratosphere Warmings on the Ionosphere and Thermosphere Influence of Sudden Stratosphere Warmings on the Ionosphere and Thermosphere Nick Pedatella 1,2 1 High Altitude Observatory, National Center for Atmospheric Research 2 COSMIC Program Office, University

More information

Planetary Atmospheres Part 2

Planetary Atmospheres Part 2 Planetary Atmospheres Part 2 Atmospheric Layers: The temperature gradient (whether it increases or decreases with altitude) is set by the type of absorption that occurs. We can affect this! Photo- disassocia,on

More information

The Layered Atmosphere:

The Layered Atmosphere: The Layered Atmosphere: The Earth s Atmosphere Like all the planets, the Earth s atmosphere is highly distinct. What makes it different from the other terrestrial planets? Comparative Planetology The basic

More information

Model simulations of stratospheric ozone loss caused by enhanced mesospheric NO x during Arctic Winter 2003/2004

Model simulations of stratospheric ozone loss caused by enhanced mesospheric NO x during Arctic Winter 2003/2004 Atmos. Chem. Phys., 8, 5279 5293, 2008 Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Atmospheric Chemistry and Physics Model simulations of stratospheric

More information

WACCM Studies at CU-Boulder

WACCM Studies at CU-Boulder WACCM Studies at CU-Boulder V.L. Harvey, C.E. Randall, O.B. Toon, E. Peck, S. Benze, M. Brakebusch, L. Holt, D. Wheeler, J. France, E. Wolf, Y. Zhu, X. Fang, C. Jackman, M. Mills, D. Marsh Most Topics

More information

Science 1206 Unit 2: Weather Dynamics Worksheet 8: Layers of the Atmosphere

Science 1206 Unit 2: Weather Dynamics Worksheet 8: Layers of the Atmosphere Science 1206 Unit 2: Weather Dynamics Worksheet 8: Layers of the Atmosphere The atmosphere has a definite impact upon weather patterns and changes. At one time the atmosphere was once considered to be

More information

NAME BLOCK WEATHER STUDENT PACKET WEATHER WARM UPS WEATHER VOCABULARY ATMOSPHERE GASES CAREERS

NAME BLOCK WEATHER STUDENT PACKET WEATHER WARM UPS WEATHER VOCABULARY ATMOSPHERE GASES CAREERS NAME BLOCK 6-4.1 WEATHER STUDENT PACKET WEATHER WARM UPS WEATHER VOCABULARY ATMOSPHERE GASES CAREERS WARM UPS- Week of Tuesday Warm Up-MATCHING THE LAYERS OF THE ATMOSPHERE 1. mesosphere 2. thermosphere

More information

TOSCA Training School. Impact of Solar Variability on Climate. Thessaloniki (Greece), March School booklet

TOSCA Training School. Impact of Solar Variability on Climate. Thessaloniki (Greece), March School booklet TOSCA Training School Impact of Solar Variability on Climate Thessaloniki (Greece), 10-15 March 2013 School booklet http://sun2climate.sciencesconf.org Venue : Hotel Santa Beach, Agia Triada, Greece Conveners

More information

2005 Bachelor of Arts, St. Cloud State University, summa cum laude. Mathematics

2005 Bachelor of Arts, St. Cloud State University, summa cum laude. Mathematics Laura Holt Curriculum Vitæ Education 2005 Bachelor of Arts, St. Cloud State University, summa cum laude. Mathematics 2005 Bachelor of Science, St. Cloud State University, summa cum laude. Physics 2013

More information

Atmospheric effects of energetic particle precipitation in the Arctic winter revisited

Atmospheric effects of energetic particle precipitation in the Arctic winter revisited JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011jd016663, 2012 Atmospheric effects of energetic particle precipitation in the Arctic winter 1978 1979 revisited L. A. Holt, 1,2 C. E. Randall,

More information

The Earth s thermosphere and coupling to the Sun:

The Earth s thermosphere and coupling to the Sun: The Earth s thermosphere and coupling to the Sun: Does the stratosphere and troposphere care? Alan D Aylward, George Millward, Ingo Muller-Wodarg and Matthew Harris Atmospheric Physics Laboratory, Dept

More information

The Sun s Influence on Planetary Atmospheres

The Sun s Influence on Planetary Atmospheres The Sun s Influence on Planetary Atmospheres Frank Eparvier eparvier@colorado.edu University of Colorado, Laboratory for Atmospheric & Space Physics Who am I? Dr. Frank Eparvier Research Scientist @ LASP

More information

The influence of spectral solar irradiance data on stratospheric heating rates during the 11 year solar cycle

The influence of spectral solar irradiance data on stratospheric heating rates during the 11 year solar cycle GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2011gl049539, 2012 The influence of spectral solar irradiance data on stratospheric heating rates during the 11 year solar cycle S. Oberländer, 1 U.

More information

I T A T I O N H B I T B T V A O C J K M R S A T M O S P H E R E

I T A T I O N H B I T B T V A O C J K M R S A T M O S P H E R E Word Search Directions: Below are definitions of vocabulary terms. Figure out each term and then find and circle it in the puzzle. Words may appear horizontally, vertically, or diagonally. K E M I S S

More information

Key issue in Mars atmosphere and climate. François Forget LMD, IPSL, Paris

Key issue in Mars atmosphere and climate. François Forget LMD, IPSL, Paris Key issue in Mars atmosphere and climate François Forget LMD, IPSL, Paris Objectives of Mars atmosphere studies Of course : understand the present Martian climate system Extrapolation to the past : understanding

More information

Agronomy 406 World Climates January 11, 2018

Agronomy 406 World Climates January 11, 2018 Agronomy 406 World Climates January 11, 2018 Greenhouse effect quiz. Atmospheric structure and Earth's energy budget. Review for today: Online textbook: 2.1.1 The heat balance at the top of the atmosphere.

More information

Enhancement of N 2 O during the October November 2003 solar proton events

Enhancement of N 2 O during the October November 2003 solar proton events Atmos. Chem. Phys.,,, www.atmos-chem-phys.net//// Author(s). This work is distributed under the Creative Commons Attribution. License. Atmospheric Chemistry and Physics Enhancement of N O during the October

More information

Attendance Sign-Up Sheet. A L: Light Yellow-Green. M Y: Bright Orange

Attendance Sign-Up Sheet. A L: Light Yellow-Green. M Y: Bright Orange Attendance Sign-Up Sheet Last Name A L: Light Yellow-Green M Y: Bright Orange Lecture #02 January 13, 2010, Wednesday (1) Thickness of the atmosphere (2) Composition of the atmosphere (3) Thermodynamic

More information

The Other Side of NO; Nitric Oxide in the Infrared

The Other Side of NO; Nitric Oxide in the Infrared The Other Side of NO; Nitric Oxide in the Infrared Jeremy Winick - AFRL retired M. G. Mlynczak - NASA Langley M. Lopez-Puertas - IAA R. Sharma - B.C. AFRL-AFGL Laboratory Group, CIRRIS-1A Outline My journey

More information

Tidal Coupling in the Earth s Atmosphere. Maura Hagan NCAR High Altitude Observatory

Tidal Coupling in the Earth s Atmosphere. Maura Hagan NCAR High Altitude Observatory Tidal Coupling in the Earth s Atmosphere Maura Hagan NCAR High Altitude Observatory OUTLINE Motivation - Observations Tidal Nomenclature/Characteristics/Sources Results from the Global-Scale Wave Model

More information

Are cosmic rays responsible for climate change?

Are cosmic rays responsible for climate change? Cosmoclimatology Kristina Pistone SIO 209: Cloud Physics 5 June 2009 Are cosmic rays responsible for climate change? I call it cosmoclimatology and I suggest that it is already at least as secure, scientifically

More information

Answer to Referee #2. MAJOR COMMENTS: (1) What SORCE are we talking about?

Answer to Referee #2. MAJOR COMMENTS: (1) What SORCE are we talking about? Answer to Referee #2 We thank the Referee for raising a number of important points. We have addressed all the points raised by him/her and have marked blue the relevant corrections in the current version

More information

Let s Think for a Second

Let s Think for a Second Weather and Climate Let s Think for a Second Why is weather important in Ohio? Is climate important in Ohio? Spend 2 minutes sharing your thoughts with 1 partner. First, Let s Watch This. http://video.nationalgeographic.com/video/science/earthsci/climate-weather-sci/

More information

Section 2: The Atmosphere

Section 2: The Atmosphere Section 2: The Atmosphere Preview Classroom Catalyst Objectives The Atmosphere Composition of the Atmosphere Air Pressure Layers of the Atmosphere The Troposphere Section 2: The Atmosphere Preview, continued

More information

The Earth s Atmosphere-II. GEOL 1350: Introduction To Meteorology

The Earth s Atmosphere-II. GEOL 1350: Introduction To Meteorology The Earth s Atmosphere-II GEOL 1350: Introduction To Meteorology 1 Vertical Structure of Atmosphere Vertical profile of the atmosphere reveals that it can be divided into a series of layers. Each layer

More information

CESM: A platform for atmospheric prediction from the surface to geospace

CESM: A platform for atmospheric prediction from the surface to geospace CESM: A platform for atmospheric prediction from the surface to geospace Dan Marsh, NCAR & University of Leeds Whole Atmosphere Modelling Workshop Deimos, Tres Cantos, Spain 13-15 June, 2018 Outline NCAR

More information

Computation of ionization effect due to cosmic rays in polar middle atmosphere during GLE 70 on 13 December 2006

Computation of ionization effect due to cosmic rays in polar middle atmosphere during GLE 70 on 13 December 2006 Computation of ionization effect due to cosmic rays in polar middle atmosphere during GLE 7 on 13 December 26 ReSolve CoE University of Oulu, Finland. E-mail: alexander.mishev@oulu.fi Peter I.Y.I Velinov

More information

Atmospheric Layers. Ionosphere. Exosphere. Thermosphere. Mesosphere. Stratosphere. Troposphere. mi (km) above sea level 250 (400) 50 (80) 30 (50)

Atmospheric Layers. Ionosphere. Exosphere. Thermosphere. Mesosphere. Stratosphere. Troposphere. mi (km) above sea level 250 (400) 50 (80) 30 (50) mi (km) above sea level Atmospheric Layers Exosphere 250 (400) Thermosphere Ionosphere 50 (80) Mesosphere Ozone Layer 30 (50) 7 (12) Stratosphere Troposphere Atmospheric Layers Earth s atmosphere is held

More information

WOULD THERE BE WIND IF THE EARTH S TEMPERATURE WAS THE SAME EVERYWHERE? ANSWER IN PARAGRAPH FORM AND PROVIDE EVIDENCE TO DEFEND YOUR ANSWER.

WOULD THERE BE WIND IF THE EARTH S TEMPERATURE WAS THE SAME EVERYWHERE? ANSWER IN PARAGRAPH FORM AND PROVIDE EVIDENCE TO DEFEND YOUR ANSWER. WOULD THERE BE WIND IF THE EARTH S TEMPERATURE WAS THE SAME EVERYWHERE? ANSWER IN PARAGRAPH FORM AND PROVIDE EVIDENCE TO DEFEND YOUR ANSWER. No, there would be no wind. Wind is caused by differences in

More information

Evolution of the Martian Climate and atmospheric escape

Evolution of the Martian Climate and atmospheric escape Evolution of the Martian Climate and atmospheric escape François Forget CNRS, Institut Pierre Simon Laplace, Laboratoire de Météorologie Dynamique, Paris, France Why the Mars Climate evolves? Throughout

More information

Unit 3 Review Guide: Atmosphere

Unit 3 Review Guide: Atmosphere Unit 3 Review Guide: Atmosphere Atmosphere: A thin layer of gases that forms a protective covering around the Earth. Photosynthesis: Process where plants take in carbon dioxide and release oxygen. Trace

More information

On Forecasting Thermospheric and Ionospheric Disturbances in Space Weather Events

On Forecasting Thermospheric and Ionospheric Disturbances in Space Weather Events On Forecasting Thermospheric and Ionospheric Disturbances in Space Weather Events R. G. Roble High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado It is well known that

More information

Acknowledgement: This work was funded by the Office of Naval Research and the NASA/AIM Program

Acknowledgement: This work was funded by the Office of Naval Research and the NASA/AIM Program D.E.Siskind, D. P. Drob, J. T. Emmert, M. H. Stevens Space Science Division, Naval Research Laboratory A.J. Kochenash, Computational Physics Inc M.E.Hervig, GATS E.J.Llewellyn and P. Sheese, the ODIN/OSIRIS

More information

CCM Modelling : LMDz-Reprobus

CCM Modelling : LMDz-Reprobus CCM Modelling : LMDz-Reprobus Marchand Marion, Slimane Bekki, Franck Lefèvre, François Lott, David Cugnet, Line Jourdain, Perrine Lemmenais, Virginie Poulain, Julien Jumelet, Slimane Bekki, marie-pierre

More information

Atmosphere & Heat Transfer Basics Notes

Atmosphere & Heat Transfer Basics Notes Atmosphere & Heat Transfer Basics Notes S6E4. A: Analyze and interpret data to compare and contrast the composition of Earth s atmospheric layers (including the ozone layer) and greenhouse gases. Read

More information

Mesospheric temperature trends at mid latitudes in summer

Mesospheric temperature trends at mid latitudes in summer GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl049528, 2011 Mesospheric temperature trends at mid latitudes in summer U. Berger 1 and F. J. Lübken 1 Received 2 September 2011; revised 13 October

More information

Atmospheric Responses to Solar Wind Dynamic Pressure

Atmospheric Responses to Solar Wind Dynamic Pressure Atmospheric Responses to Solar Wind Dynamic Pressure Hua Lu British Antarctic Survey Outline Background: Sun-Earth Climate Connection Solar wind/geomagnetic activity signals with 3 examples stratospheric

More information

SCIENCE CHINA Technological Sciences

SCIENCE CHINA Technological Sciences SCIENCE CHINA Technological Sciences RESEARCH PAPER May 2012 Vol.55 No.5: 1258 1263 doi: 10.1007/s11431-012-4802-0 Longitudinal distribution of O 2 nightglow brightness observed by TIEMD/SABER satellite

More information

Sensitivity of Regional and Global Climate to Solar Forcing

Sensitivity of Regional and Global Climate to Solar Forcing Sun-Climate Focused Science Team Sensitivity of Regional and Global Climate to Solar Forcing Summary of Accomplishments Year 2 July, 2006 - July, 2007 Submitted 9 August 2007 Sun-Climate Focused Science

More information

Ionization Rates for from Solar Proton Events

Ionization Rates for from Solar Proton Events Ionization Rates for 1963-2005 from Solar Proton Events Charles H. Jackman E-mail: Charles.H.Jackman@nasa.gov Phone: 301-614-6053 Code 613.3 Laboratory for Atmospheres NASA Goddard Space Flight Center

More information

Average Temperature Readings at Various Altitudes

Average Temperature Readings at Various Altitudes Graphing the Atmosphere 1 Name Graphing the Atmosphere Purpose: To visualize how the atmosphere can be divided into layers based on temperature changes at different heights by making a graph. Background

More information

Acronyms and Abbreviations

Acronyms and Abbreviations Acronyms and Abbreviations ACE-FTS AIM AIMOS AMIP2 ALOMAR ARTOS ATLAS ATMOS AURA BMBF CAWSES CCM CCN CCMVAL CHAMP CFC CLaMS CMAM CMAT CME COSMIC CPW-TEC CR CRISTA CTIP CTM DFG Atmospheric Chemistry Experiment

More information

An investigation into the correlation of geomagnetic storms with tropospheric parameters over the South Pole

An investigation into the correlation of geomagnetic storms with tropospheric parameters over the South Pole Annales Geophysicae (2003) 21: 1095 1100 c European Geosciences Union 2003 Annales Geophysicae An investigation into the correlation of geomagnetic storms with tropospheric parameters over the South Pole

More information

Are Cosmic Rays Changing our Climate? Jose Cardoza University of Utah Atmospheric Science Department Tuesday, February 16, 2010

Are Cosmic Rays Changing our Climate? Jose Cardoza University of Utah Atmospheric Science Department Tuesday, February 16, 2010 Are Cosmic Rays Changing our Climate? Jose Cardoza University of Utah Atmospheric Science Department Tuesday, February 16, 2010 OUTLINE Cosmic rays in the atmosphere The supporters The skeptics Summary

More information

JOINT RETRIEVAL OF CO AND VIBRATIONAL TEMPERATURE FROM MIPAS-ENVISAT

JOINT RETRIEVAL OF CO AND VIBRATIONAL TEMPERATURE FROM MIPAS-ENVISAT JOINT RETRIEVAL OF CO AND VIBRATIONAL TEMPERATURE FROM MIPAS-ENVISAT Joanne Walker and Anu Dudhia Atmospheric, Oceanic and Planetary Physics, Oxford Universtity, UK ABSTRACT MIPAS is a limb viewing fourier

More information

arxiv: v1 [physics.space-ph] 12 May 2009

arxiv: v1 [physics.space-ph] 12 May 2009 arxiv:95.1812v1 [physics.space-ph] 12 May 29 Solar forcing of the terrestrial atmosphere Thierry Dudok de Wit a, Jürgen Watermann a,b a Laboratoire de Physique et Chimie de l Environnement et de l Espace,

More information

Thermosphere Part-3. EUV absorption Thermal Conductivity Mesopause Thermospheric Structure Temperature Structure on other planets

Thermosphere Part-3. EUV absorption Thermal Conductivity Mesopause Thermospheric Structure Temperature Structure on other planets Thermosphere Part-3 EUV absorption Thermal Conductivity Mesopause Thermospheric Structure Temperature Structure on other planets Thermosphere Absorbs EUV Absorption: Solar Spectrum 0.2 0.6 1.0 1.4 1.8

More information

The HAMMONIA Chemistry Climate Model: Sensitivity of the Mesopause Region to the 11-year Solar Cycle and CO 2 Doubling

The HAMMONIA Chemistry Climate Model: Sensitivity of the Mesopause Region to the 11-year Solar Cycle and CO 2 Doubling The HAMMONIA Chemistry Climate Model: Sensitivity of the Mesopause Region to the 11-year Solar Cycle and CO 2 Doubling H. Schmidt, G. P. Brasseur, M. Charron, E. Manzini, M. A. Giorgetta, T. Diehl Max

More information

Substorm-induced energetic electron precipitation: Impact on atmospheric chemistry

Substorm-induced energetic electron precipitation: Impact on atmospheric chemistry GEOPHYSICAL RESEARCH LETTERS, VOL.???, XXXX, DOI:10.1002/, Substorm-induced energetic electron precipitation: Impact on atmospheric chemistry A. Seppälä 1, M. A. Clilverd 2, M. J. Beharrell 3, C. J Rodger

More information

Thermospheric/Ionospheric Extension of the Whole Atmosphere Community Climate Model

Thermospheric/Ionospheric Extension of the Whole Atmosphere Community Climate Model Thermospheric/Ionospheric Extension of the Whole Atmosphere Community Climate Model Han-Li Liu High Altitude Observatory, National Center for Atmospheric Science 3080 Center Green, Boulder, CO 80301 phone:

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? Planetary Atmospheres Pressure Composition Greenhouse effect Atmospheric structure Color of the sky 1 Atmospheres

More information

OBJECTIVES: By the end of today s lesson, you will be able to. SWBAT list the layers of the atmosphere and describe the characteristics of each one.

OBJECTIVES: By the end of today s lesson, you will be able to. SWBAT list the layers of the atmosphere and describe the characteristics of each one. 7 th Grade Science Unit: Water s Cycles and Patterns Lesson: WCP 10 Name: Date: Monday, September 12, 2016 Homeroom: OBJECTIVES: By the end of today s lesson, you will be able to SWBAT list the layers

More information

The influence of geomagnetic activity on the subauroral mesopause temperature over Yakutia

The influence of geomagnetic activity on the subauroral mesopause temperature over Yakutia on the subauroral mesopause temperature over Yakutia Ammosova Anastasiia 1 E-mail: ammosovaam@mail.ru Gavrilyeva Galina E-mail: gagavrilyeva@ikfia.ysn.ru Ammosov Petr E-mail: ammosov@ikfia.ysn.ru Koltovskoi

More information

CONTRIBUTION TO ATMOSPHERIC ECVs

CONTRIBUTION TO ATMOSPHERIC ECVs CONTRIBUTION TO ATMOSPHERIC ECVs Piera Raspollini, Ugo Cortesi Istituto di Fisica Applicata "Nello Carrara", IFAC-CNR, Firenze Luca Palchetti Istituto Nazionale di Ottica, INO-CNR, Firenze Bianca Maria

More information

Chapter 4 Lesson 1: Describing Earth s Atmosphere

Chapter 4 Lesson 1: Describing Earth s Atmosphere Chapter 4 Lesson 1: Describing Earth s Atmosphere Vocabulary Importance of Earth s Atmosphere The atmosphere is a thin layer of gases surrounding Earth. o Contains the oxygen and water needed for life.

More information

LECTURE 6 - THE EARTH'S ATMOSPHERE

LECTURE 6 - THE EARTH'S ATMOSPHERE LECTURE 6 - THE EARTH'S ATMOSPHERE Note: Slide numbers refer to the PowerPoint presentation which accompanies the lecture. Earth s Atmosphere, slide 1 here INTRODUCTION Earth s Atmosphere, slide 2 here

More information

Solar variability and global climate change

Solar variability and global climate change Indian Journal of Geo-Marine Sciences Vol. 43(5), May 2014, pp. 871-875 Solar variability and global climate change S.C. Dubey Department of Physics, S.G.S. Govt. P.G. College, Sidhi (M.P.) Pin-486 661,

More information

General Comments about the Atmospheres of Terrestrial Planets

General Comments about the Atmospheres of Terrestrial Planets General Comments about the Atmospheres of Terrestrial Planets Mercury Very little atmosphere Contents: vaporized micrometeorites, solar wind Sky is black Venus Very thick (10% density of water), dense

More information

PICARD Scien-fic objec-ves

PICARD Scien-fic objec-ves PICARD Scien-fic objec-ves Alain Hauchecorne LATMOS Alain.hauchecorne@latmos.ipsl.fr PICARD and the solar ac3vity PICARD PICARD observa-ons made during the ascending phase and the plateau of solar cycle

More information

Direct observations of nitric oxide produced by energetic electron precipitation into the Antarctic middle atmosphere

Direct observations of nitric oxide produced by energetic electron precipitation into the Antarctic middle atmosphere GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl048666, 2011 Direct observations of nitric oxide produced by energetic electron precipitation into the Antarctic middle atmosphere David A. Newnham,

More information

FCAT Review Earths Systems

FCAT Review Earths Systems FCAT Review Earths Systems PARTS OF EARTHS SYSTEMS The Earth system has 5 main spheres: 1) Atmosphere The layer of gases that forms Earth s outermost layer. It is a mixture of gases- mostly nitrogen and

More information

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued Outline Planetary Atmospheres Chapter 10 General comments about terrestrial planet atmospheres Atmospheric structure & the generic atmosphere Greenhouse effect Magnetosphere & the aurora Weather & climate

More information

The effect of flares on total solar irradiance

The effect of flares on total solar irradiance 1 The effect of flares on total solar irradiance Matthieu Kretzschmar 1*, Thierry Dudok de Wit 1, Werner Schmutz 2, Sabri Mekaoui 3, Jean-François Hochedez 4, Steven Dewitte 3 1 LPC2E - Laboratoire de

More information

Atmospheric Circulation

Atmospheric Circulation Atmospheric Circulation (WAPE: General Circulation of the Atmosphere and Variability) François Lott, flott@lmd.ens.fr http://web.lmd.jussieu.fr/~flott 1) Mean climatologies and equations of motion a)thermal,

More information

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely CHAPTER 3 SOLAR AND TERRESTRIAL RADIATION MULTIPLE CHOICE QUESTIONS 1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely 2. is the distance between successive

More information

IMPULSIVE NITRATE DEPOSITION EVENTS IN POLAR ICE THE RESULT OF SOLAR PROTON EVENTS. D. F. Smart and M. A. Shea SYNOPSIS

IMPULSIVE NITRATE DEPOSITION EVENTS IN POLAR ICE THE RESULT OF SOLAR PROTON EVENTS. D. F. Smart and M. A. Shea SYNOPSIS IMPULSIVE NITRATE DEPOSITION EVENTS IN POLAR ICE THE RESULT OF SOLAR PROTON EVENTS D. F. Smart and M. A. Shea Emeritus at AFRL (RVBXS), Bedford, MA, 01731, USA SYNOPSIS The endothermic chemical reaction

More information

CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION

CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION i CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION 1 1.1 MIXING RATIO 1 1.2 NUMBER DENSITY 2 1.3 PARTIAL PRESSURE 6 PROBLEMS 10 1.1 Fog formation 10 1.2 Phase partitioning of water in cloud 10 1.3 The ozone

More information

WACCM: State of the Model

WACCM: State of the Model WACCM: State of the Model Whole Atmosphere Working Group Michael Mills, liaison Andrew Gettelman, internal co-chair Lorenzo Polvani, external co-chair CESM Workshop, June 2014 Scientifically validated

More information