Tektosilicates- Feldspar Group Min XIVa

Size: px
Start display at page:

Download "Tektosilicates- Feldspar Group Min XIVa"

Transcription

1 Subject Paper No and Title Module No and Title Module Tag Geology Crystallography and Mineralogy Tektosilicates- Feldspar Group Min XIVa Principal Investigator Co-Principal Investigator Co-Principal Investigator Prof. Talat Ahmad Vice-Chancellor Jamia Millia Islamia Delhi Prof. Devesh K Sinha Department of Geology University of Delhi Delhi Paper Coordinator Content Writer Reviewer Prof. P. P. Chakraborty Department of Geology University of Delhi Delhi Prof. Naresh C. Pant Department of Geology University of Delhi Delhi Prof. Naresh C. Pant Department of Geology University of Delhi Delhi Prof. Santosh Kumar Department of Geology Kumaun University Nainital

2 Table of Content 1. Learning outcomes 2. The classification of silicates 3. Structure and chemistry 1. Learning outcomes After studying this module, you shall be able to: To develop a basic understanding of chemical co-ordination leading to formation of minerals with various structures. To understand the variety of feldspars. To develop appreciation of conditions of formation for alkali- and plagioclase feldspars. 2. The classification of alumino-silicates based on SiO4 tetrahedron Silicon is known to be the second most abundant element after oxygen forming the Earth s crust and mantle. Silicate minerals predominate vast majority of rocks of the Earth s crust as the Si-O bond is considered to be stronger than any other bond prevalent amongst oxygen and any other element. As the [SiO4] tetrahedral dominate silicate structures, the way it arranges itself within a particular structure has long been the way of silicate classification. [SiO4] tetrahedral are either isolated from each other or connected by corner sharing to other [SiO4] tetrahedra. The different frameworks provided by variable corner sharing tetrahedra with other cations fitting into suitable interstices provided by this frame work defines the various types of silicate structures This framework of cations and [SiO4] tetrahedra is of prime importance in understanding the way in which a mineral would adapt to changes in its physical and chemical environment. Many silicate minerals also show substitution of Al for Si in the tetrahedron which is accompanied by compensating replacement in cation content to maintain charge neutrality.

3 Based on the number of the [SiO4] 4- units connected to a single oxygen, silicates has been classified into 6 classes. All these classes represent a unique arrangement of [SiO4] 4- units in the packing of mineral. The Si-O bond lengths and the O-Si-O bond angles determine the shape of the tetrahedron. The X-ray diffraction and neutron diffraction has revealed following things about the tetrahedron: 1. The mean Si-O bond length is 1.62 A. The presence of other cations in the vicinity of the Si-O bond tends to attract the oxygen hence leading to the extension in Si-O bond length. Due to this property, the bond length varies between 1.60 A to 1.34 A. 2. When the tetrahedra is in a structural bond, the bridging oxygen is longer than by about A compared with the non-bridging oxygen. 3. The bond angle in Si-O-Si can vary between about 120 to 180º, depending on the local structural environment as well as the temperature and pressure. The bond angle of a strain free Si-O-Si bond is near 140º. 3. Structure and chemistry 3.1 Framework Silicates All tetrahedra share corners with other tetrahedra, having four bridging oxygens per tetrahedron. The Si:O ratio is 1:2, as in quartz SiO2. If Si is not substituted with any other cation, then all the valence bonds are satisfied and the entire framework has the composition of SiO2 (for example, quartz). However when Al substitutes for Si in the tetrahedra, charge balance is required in the tetrahedron. This results in varied bond lengths, which creates rather large interstitial cation sites, compared to those in other chain silicate minerals. At high temperatures, framework silicates have more expanded structures with the maximum symmetry allowed by the tetrahedral linkage pattern. At lower temperatures, they tend to crumple slightly, reducing the size of the interstitial cavities where any cations would be sited. The crumpling of the structures is achieved by a rotation of the SiO4 tetrahedra.

4 3.1.2 The feldspars The feldspars have a general; formula MT4O8 with between 25% and 50% of the Si replaced by Al in the T sites, and the M sites occupied by ions such as Na +, K +, Rb +, Ca 2+, Sr 2+ or Ba 2+. The composition of most natural feldspars lies in the KAlSi3O8 NaAlSi3O8 CaAl2Si2O8 triangle, in which the shaded region represents the extent of high temperature solid solution. Sanidine, KAlSi3O8, shows an ideal high temperature feldspar structure. The Al and Si are distributed at random so that the average occupancy of each tetrahedron is 25% Al and 50% Si. The basic construction of the framework is of ring of four tetrahedra with alternate pairs of vertices pointing in opposite directions. In the real structure of high sanidine, there is some rotation of the tetrahedra. The structure is monoclinic; space group is C2/m and has the highest symmetry possible in the feldspars. Fig. 1 The extent of solid solution in alkali and plagioclase feldspars at high temperature.

5 Fig. 2 The basic building unit of the feldspar structure is the four-membered ring of tetrahedra with a pair of tetrahedral pointing up and a pair pointing down, (b) The four-fold rings are joined to form a layer in which the rings are related by mirror planes parallel to (010) and diads parallel to the b axis. Two sets of individual tetrahedra are distinguishable in this layer, and are labelled T1 and T2. The T1 tetrahedra are all related to one another by symmetry, as are the T2 tetrahedra. Cations occupy the large oval-shaped cavities between the rings. Structural distortion and Al, Si ordering in the feldspar structure: 1. As the temperature falls, the expanded high temperature framework tends to collapse around the interstitial cation. Larger cations such as K or Ba, resists the collapse, keeping the framework extended. However smaller cations, Na and Ca, are not able to resist the collapse, hence allowing the framework to distort, reducing the symmetry to triclinic. 2. At lower temperatures, the Al, Si tetrahedral tend to order the structure. However, it is an extremely slow process in comparison to the structural distortion, involving breaking very strong Al-O and Si-O bonds.

6 3. The structural distortion is strongly dependent on both Al and Si. For example, the C1 site contains four different T sites, but when it expands to C2/m structure, there are only two distinguishable T sites. The conversion from one structure is result of complete loss of one structure before the formation of another structure. (a) (b) Fig. 3 (a) In sanidine, KAlSi3O8, the oxygen coordination around K + is symmetrical and the unit cell is monoclinic (α=90º). (b) In high albite, NaAlSi3O8, the oxygen coordination around Na + is distorted and the unit cell is triclinic (α=93.4º). The position of Na + ion is smeared over a number of positions and hence represented by an ellipsoid. The number on each oxygen atom is the cation oxygen distance in Angstrom unit (after Liebau, 1985). The alkali feldspar: Albite, NaAlSi3O8 is monoclinic C2/m above 980ºC (monalbite) but collapses around the small Na atom to the triclinic C1 structure below this temperature. At this stage there is little Al, Si ordering, hence it is called high albite, but below 700ºC Al, Si ordering begins and can proceed without any further symmetry change until at low temperature low albite is formed. The Sanidine: High Albite Series Complete solid solution series: KAlSi3O8 NaAlSi3O8 can be synthesized in the lab, but only KAlSi3O8 exists in nature. The K-end member is called high sanidine and the Na end member is called high albite.

7 Crystallography: High sanidine is monoclinic, but high albite is triclinic. High Sanidine Sanidine Anorthoclase High Albite α β γ In the plane polarized light, it have euhedral square shaped or elongated parallel to x-axis. It is colorless and non-pleochroic. Perfect basal and pinacoidal cleavage is present. Under cross polars, it shows very weak birefringence and is anisotropic. It exhibits Carlsbad twinning. The occurrence of sanidine as phenocrysts in lavas of silicic composition distinguishes it clearly. It occurs only in high K-lavas, or as a product of contact metamorphism in xenoliths within basalts. The Orthoclase-Low Albite Series The complete miscible solution exists in this series. At low temperatures, it breaks down to the nearly pure end-members. The initial intermediate members, upon cooling become mixed and show lamellar structure called perthite. Crystallography: The orthoclase are monoclinic with domains of triclinic. Orthoclase Low Albite α β γ In thin section, anhedral grains are commonly seen. Relief is poor to moderate but negative against araldite or quartz. It is colorless and non-pleochroic. It shows basal and pinacoidal cleavage. Under cross polars, its anisotropic character is seen and the birefringence is very weak. It shows first order first order polarization colors, maximum upto first order grey. All members of this series commonly exhibit Carlsbad twinning. These are mainly found in felsic igneous rock associated with quartz, plagioclase, or nepheline.

8 The Microcline- Low Albite Series This series is represented by perthite in which hosts are K-rich end members and lamellae are Na rich. Crystallography: It is triclinic. Monoclinic Low Albite α β γ Under plane polarized light, anhedral grains are common. Perfect basal or pinacoidal cleavage is seen. It is colorless and non-pleochroic. It shows very weak birefringence and shows polarization colors upto first order grey. It is twinned on both albite and pericline laws. In felsic, igneous rock members of this series are associated with quartz, plagioclase, or nepheline. The plagioclase feldspar In pure anorthite CaAl2Si2O8, the small Ca atom is unable to support the expanded monoclinic C2/m structure at any temperature below the melting point. Similarly, the tendency to order Si and Al in the tetrahedra is greater than in the alkali feldspar, since the Si:Al ratio of 1:1 means that in a framework structure any amount of disorder results in the formation of Al-O-Al linkages. In pure anorthite, this disordering temperature is estimated at above 2000 C, well above the melting point. Ordered anorthite is triclinic with space group II. Partial disordering is allowed in anorthite while retaining the II symmetry, and up to 20% disorder may be induced by annealing anorthite just below its melting point. There is complete solid solution between albite (An0) and anorthite (An100) above about 700 C, the result of the substitution Na ++ Si 4+ = Ca 2+ Al 3+.

9 Fig. 4 Summary of the stability regions of the various feldspar structures in the plagioclases. At high temperature, the phase boundaries between C2/m, C1 and I1 are truncated by the melting curve. At low temperatures, the shaded areas represent regions in which the plagioclase consists of intergrowths barely visible by optical microscopy (after Carpenter, 1987). Crystallography: Triclinic Low Albite Anorthite α β γ In thin sections, under plane polarized lights, it is colorless and non-pleochroic. While under cross polars, it shows very weak birefringence and upto first order grey polarization colors. It follows albitic, pericline and Carlsbad twin laws.

10 The Cordierite: The structure of cordierite is based on the six-fold rings of Al, Si tetrahedral (termed the T2 tetrahedra) joined laterally and vertically by T1 tetrahedra, which may also contain Al or Si. The Mg or Fe cations occupy octahedral sites between the rings. Layers are vertically stacked above one another so that the rings form infinitely long channels parallel to the c axis. In each unit cell, there are 9 tetrahedra: 3T1 and 6T2 tetrahedra over which the 4Al and 5Si atoms tends to be distributed. If Al and Si are randomly distributed in all the 9 sites, the resultant structure is hexagonal and each site has occupancy 4/9 Al and 5/9 Si. Natural hexagonal cordierite is called indialite. Fig. 5 One layer of the structure of cordierite showing the showing the six-fold rings of tetrahedra, labelled T2 connected via the tetrahedra labelled T1. The Mg 2+ cations lie in the octahedral sites (reproduced after Putnis). Frequently Asked Questions- Q1. Describe the order-disorder in feldspar? Q2. Discuss the solid solution in feldspars and reasons of its temperature dependence? Q3. How the structure of feldspars and its crystallographic axes are related?

11 Multiple Choice Questions- 1. Sanidine is Ans: a (a) Alkali-feldspar (b) Plagioclase (c) Feldspathoid (d) None of the above 2. The bond angle of a strain-free Si-O-Si in tectosilicates is Ans: c (a) ~100 (b) ~120 (c) ~140 (d) ~ The number of tetrahedral sites in feldspar are Ans: d (a) 1 (b) 2 (c) 3 (d) 4 4. At high temperatures alkali feldspar are Ans: a (a) Monoclinic (b) Triclinic (c) Hexagonal (d) Trigonal 5. This form of feldspar shows highest disorder in tetrahedral site Ans: c (a) Low-albite (b) Microcline (c) Sanidine (d) High-albite

12 Suggested Readings: 1. Klien, Cornelis and Hurlbut, Cornelius S., (1985). Manual of Mineralogy (after James D. Dana), 20 th Edn. John Wiley & Sons, New York. ISBN: , Putnis Andrew (1992), An Introduction to Mineral Sciences, 1 st Edn., Cambridge University Press, UK. ISBN: ,

Phase transitions and exsolution phenomena in pyroxenes

Phase transitions and exsolution phenomena in pyroxenes Phase transitions and exsolution phenomena in pyroxenes Cleavage in the pyroxenes 001 100 010 110 110 Optical micrograph showing two cleavages at 90 o Exsolution lamellae in pyroxenes Because exsolution

More information

Feldspars. Structure. The feldspars are by far the most abundant group of minerals and are found in igneous, metamorphic and many sedimentary rocks.

Feldspars. Structure. The feldspars are by far the most abundant group of minerals and are found in igneous, metamorphic and many sedimentary rocks. Feldspars The feldspars are by far the most abundant group of minerals and are found in igneous, metamorphic and many sedimentary rocks. Structure Felsdpars are framework silicates where each silica tetrahedra

More information

Silicates. The most common group of minerals forming the silicate Earth

Silicates. The most common group of minerals forming the silicate Earth Silicates The most common group of minerals forming the silicate Earth 25% of all minerals (~1000) 40% of rock forming minerals 90% of earth s crust i.e those minerals you are likely to find ~100 of earth

More information

Earth Materials II Review Optical Mineralogy and Igneous Minerals

Earth Materials II Review Optical Mineralogy and Igneous Minerals Earth Materials II Review Optical Mineralogy and Igneous Minerals Refractive Index and Angle of Refraction Refractive Index(R. I. ) = velocity of light in a vacuum velocity of light in a medium The refractive

More information

Environments of Mineral Formation. Stability Diagrams

Environments of Mineral Formation. Stability Diagrams Environments of Mineral Formation Unary, Binary, and Ternary Mineral Stability Diagrams Minerals of differing composition (or polymorphs of the same mineral) that coexist at a set of pressure (P) temperature

More information

ESS 439 Igneous Petrology/Optical Mineralogy

ESS 439 Igneous Petrology/Optical Mineralogy 1 Lab # 3: Biaxial minerals ESS 439 Igneous Petrology/Optical Mineralogy In this laboratory session we will introduce the concepts of the Biaxial Indicatrix, Optic Axes, Vibration Directions and Ray Paths,

More information

CHAPTER 4. Crystal Structure

CHAPTER 4. Crystal Structure CHAPTER 4 Crystal Structure We can assume minerals to be made of orderly packing of atoms or rather ions or molecules. Many mineral properties like symmetry, density etc are dependent on how the atoms

More information

ESS 439 Lab 2 Examine Optical Properties of Minerals

ESS 439 Lab 2 Examine Optical Properties of Minerals ESS 439 Lab 2 Examine Optical Properties of Minerals The optical properties depend on the manner that visible light is transmitted through the crystal, and thus are dependent on mineral s Crystal Structure

More information

LAB 5: COMMON MINERALS IN IGNEOUS ROCKS

LAB 5: COMMON MINERALS IN IGNEOUS ROCKS EESC 2100: Mineralogy LAB 5: COMMON MINERALS IN IGNEOUS ROCKS Part 1: Minerals in Granitic Rocks Learning Objectives: Students will be able to identify the most common minerals in granitoids Students will

More information

GY 302: Crystallography & Mineralogy

GY 302: Crystallography & Mineralogy UNIVERSITY OF SOUTH ALABAMA GY 302: Crystallography & Mineralogy Lecture 26: Class VIII-Silicates Tektosilicates part 2: Feldspars Last Time Class VIII Minerals (Tektosilicates) 1. Quartz Group Tektosilicate

More information

Biaxial Minerals This document last updated on 27-Oct-2014

Biaxial Minerals This document last updated on 27-Oct-2014 1 of 18 10/27/2014 1:10 PM EENS 2110 Tulane University Biaxial Minerals Mineralogy Prof. Stephen A. Nelson This document last updated on 27-Oct-2014 All minerals that crystallize in the orthorhombic, monoclinic,

More information

Ionic Coordination and Silicate Structures

Ionic Coordination and Silicate Structures Ionic Coordination and Silicate Structures Pauling s Rules A coordination polyhedron of anions forms around a cation Ionic distance determined by radii Coordination number determined by radius ratio. May

More information

Silicate Structures. Silicate Minerals: Pauling s s Rules and. Elemental Abundance in Crust. Elemental Abundance in Crust: Pauling s s Rules

Silicate Structures. Silicate Minerals: Pauling s s Rules and. Elemental Abundance in Crust. Elemental Abundance in Crust: Pauling s s Rules Silicate Minerals: Pauling s s Rules and Silicate Structures February 6, 2007 Elemental Abundance in Crust Fe Ion O 2- Si 4+ Al 3+, 3+ Ca Na + K + Mg mol % 2.6 1.4 mol% x charge 4.8 3.8 2.6 1.4 3.8 Sum

More information

Uniaxial Minerals Descriptions

Uniaxial Minerals Descriptions Uniaxial Minerals Descriptions Look at 6 uniaxial minerals Quartz Nepheline Calcite Apatite Tourmaline Zircon Examine composition, relief, colour, form, cleavage, twinning, birefringence, occurrence Quartz

More information

amphibole PART 3 Pyroxene: augite CHAIN SILICATES

amphibole PART 3 Pyroxene: augite CHAIN SILICATES amphibole PART 3 Pyroxene: augite CHAIN SILICATES CHAIN SILICATES = INOSILICATES inos = chains Basic structural group: Si 2 O 6 (each tetrahedra shared two corners) Simple or double chains linked by cations

More information

Igneous petrology EOSC 321

Igneous petrology EOSC 321 Igneous petrology EOSC 321 Laboratory 2: Determination of plagioclase composition. Mafic and intermediate plutonic rocks Learning Goals. After this Lab, you should be able: Determine plagioclase composition

More information

Name Petrology Spring 2006 Igneous rocks lab Part II Hand samples of igneous rocks Due Tuesday 3/7

Name Petrology Spring 2006 Igneous rocks lab Part II Hand samples of igneous rocks Due Tuesday 3/7 Igneous rocks lab Part II Hand samples of igneous rocks Due Tuesday 3/7 1. Use the color index and density of the rock to establish whether it is felsic, intermediate, mafic, or ultramafic. 2. Determine

More information

LAB 2: SILICATE MINERALS

LAB 2: SILICATE MINERALS GEOLOGY 640: Geology through Global Arts and Artifacts LAB 2: SILICATE MINERALS FRAMEWORK SILICATES The framework silicates quartz and feldspar are the most common minerals in Earth s crust. Quartz (SiO

More information

GY-343 Petrology Petrographic Microscope Laboratory

GY-343 Petrology Petrographic Microscope Laboratory Introduction to the Petrographic Microscope In this laboratory you will be using the petrographic microscope to analyze thin sections of various types of igneous rocks. You will be assigned a thin section

More information

EPSC 233. Compositional variation in minerals. Recommended reading: PERKINS, p. 286, 41 (Box 2-4).

EPSC 233. Compositional variation in minerals. Recommended reading: PERKINS, p. 286, 41 (Box 2-4). EPSC 233 Compositional variation in minerals Recommended reading: PERKINS, p. 286, 41 (Box 2-4). Some minerals are nearly pure elements. These are grouped under the category of native elements. This includes

More information

UNIVERSITY OF EDINBURGH. College of Science and Engineering School of GeoSciences. Earth Materials UO4824 DEGREE EXAMINATION (MOCK) xxxxxxxxxxxxxxxxx

UNIVERSITY OF EDINBURGH. College of Science and Engineering School of GeoSciences. Earth Materials UO4824 DEGREE EXAMINATION (MOCK) xxxxxxxxxxxxxxxxx UNIVERSITY OF EDINBURGH College of Science and Engineering School of GeoSciences Earth Materials UO4824 DEGREE EXAMINATION (MOCK) xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx Chairman: External Examiners:

More information

Quartz. ! Naturally occurring - formed by nature. ! Solid - not liquid or gas. Liquid water is not a mineral

Quartz. ! Naturally occurring - formed by nature. ! Solid - not liquid or gas. Liquid water is not a mineral GEOL 110 - Minerals, Igneous Rocks Minerals Diamond Azurite Quartz Why Study Minerals?! Rocks = aggregates of minerals! Importance to Society?! Importance to Geology? 5 part definition, must satisfy all

More information

CHAPTER 5: CRYSTAL DEFECTS AND TWINNING. Sarah Lambart

CHAPTER 5: CRYSTAL DEFECTS AND TWINNING. Sarah Lambart CHAPTER 5: CRYSTAL DEFECTS AND TWINNING Sarah Lambart RECAP CHAP. 4 Hermann-Mauguin symbols 32 crystal classes Miller indices Crystal forms RECAP CHAP. 4 Crystal System Crystal Class Symmetry Name of Class

More information

Chemical bonds. In some minerals, other (less important) bond types include:

Chemical bonds. In some minerals, other (less important) bond types include: Chemical bonds Chemical bond: force of attraction between two or more atoms/ions Types of bonds in crystals: Ionic bond: electrostatic attraction between two oppositely charged ions. This type of bond

More information

Matter and Minerals Earth: Chapter Pearson Education, Inc.

Matter and Minerals Earth: Chapter Pearson Education, Inc. Matter and Minerals Earth: Chapter 3 Minerals: Building Blocks of Rocks By definition a mineral is: Naturally occurring An inorganic solid Ordered internal molecular structure Definite chemical composition

More information

REVIEW: CHAPTERS 1 TO 5. Sarah Lambart

REVIEW: CHAPTERS 1 TO 5. Sarah Lambart REVIEW: CHAPTERS 1 TO 5 Sarah Lambart CHAPTER 1: MINERAL PROPERTIES AND CLASSIFICATION CHAP. 1: MINERAL PROPERTIES AND CLASSIFICATION Mineral: naturally occurring (always) a structure and a composition

More information

305 ATOMS, ELEMENTS, AND MINERALS

305 ATOMS, ELEMENTS, AND MINERALS DATE DUE: Name: Instructor: Ms. Terry J. Boroughs Geology 305 ATOMS, ELEMENTS, AND MINERALS Instructions: Read each question carefully before selecting the BEST answer. Use GEOLOGIC VOCABULARY where APPLICABLE!

More information

Lecture 6 - Igneous Rocks and Volcanoes

Lecture 6 - Igneous Rocks and Volcanoes Lecture 6 - Igneous Rocks and Volcanoes Learning objectives Understand and be able to predict where and why magma will be forming at different tectonic settings Understand the factors controlling magma

More information

Matter and Minerals. Earth 9 th edition Chapter 3 Minerals: summary in haiku form "Mineral" defined: natural, inorganic, solid (and two more).

Matter and Minerals. Earth 9 th edition Chapter 3 Minerals: summary in haiku form Mineral defined: natural, inorganic, solid (and two more). 1 2 Matter and Minerals Earth 9 th edition Chapter 3 Minerals: summary in haiku form "Mineral" defined: natural, inorganic, solid (and two more). continued... 3 4 5 6 7 8 9 10 11 12 13 14 Also crystalline,

More information

Minerals. Atoms, Elements, and Chemical Bonding. Definition of a Mineral 2-1

Minerals. Atoms, Elements, and Chemical Bonding. Definition of a Mineral 2-1 Minerals In order to define a what we mean by a mineral we must first make some definitions: 2-1 Most of the Earth s surface is composed of rocky material. An element is a substance which cannot be broken

More information

A Rock is a solid aggregate of minerals.

A Rock is a solid aggregate of minerals. Quartz A Rock is a solid aggregate of minerals. Orthoclase Feldspar Plagioclase Feldspar Biotite Four different minerals are obvious in this piece of Granite. The average automobile contains: Minerals

More information

GY 302: Crystallography & Mineralogy

GY 302: Crystallography & Mineralogy UNIVERSITY OF SOUTH ALABAMA GY 302: Crystallography & Mineralogy Lecture 7b: Optical Mineralogy Instructor: Dr. Douglas Haywick Last Time 1. Properties of light 2. Minerals and light transmission Light

More information

300 ATOMS, ELEMENTS, AND MINERALS

300 ATOMS, ELEMENTS, AND MINERALS DATE DUE: Name: Instructor: Ms. Terry J. Boroughs Geology 300 ATOMS, ELEMENTS, AND MINERALS Instructions: Read each question carefully before selecting the BEST answer. Use GEOLOGIC VOCABULARY where APPLICABLE!

More information

305 ATOMS, ELEMENTS, AND MINERALS

305 ATOMS, ELEMENTS, AND MINERALS DATE DUE: Name: Instructor: Ms. Terry J. Boroughs Geology 305 ATOMS, ELEMENTS, AND MINERALS Instructions: Read each question carefully before selecting the BEST answer. Use GEOLOGIC VOCABULARY where APPLICABLE!

More information

Symmetry. 2-D Symmetry. 2-D Symmetry. Symmetry. EESC 2100: Mineralogy 1. Symmetry Elements 1. Rotation. Symmetry Elements 1. Rotation.

Symmetry. 2-D Symmetry. 2-D Symmetry. Symmetry. EESC 2100: Mineralogy 1. Symmetry Elements 1. Rotation. Symmetry Elements 1. Rotation. Symmetry a. Two-fold rotation = 30 o /2 rotation a. Two-fold rotation = 30 o /2 rotation Operation Motif = the symbol for a two-fold rotation EESC 2100: Mineralogy 1 a. Two-fold rotation = 30 o /2 rotation

More information

LAB 6: COMMON MINERALS IN IGNEOUS ROCKS

LAB 6: COMMON MINERALS IN IGNEOUS ROCKS GEOLOGY 17.01: Mineralogy LAB 6: COMMON MINERALS IN IGNEOUS ROCKS Part 2: Minerals in Gabbroic Rocks Learning Objectives: Students will be able to identify the most common silicate minerals in gabbroic

More information

Solid Earth materials:

Solid Earth materials: Solid Earth materials: Elements minerals rocks Nonuniform distribution of matter Molten core Contains most heavy elements Iron, nickel Thin surface crust Mostly lighter elements 8 elements make up 98.6%

More information

Happy Tuesday. Pull out a ½ sheet of paper

Happy Tuesday. Pull out a ½ sheet of paper Happy Tuesday Pull out a ½ sheet of paper 1. Physical properties of a mineral are predominantly related to 1. the external conditions of temperature, pressure, and amount of space available for growth.

More information

305 ATOMS, ELEMENTS, AND MINERALS

305 ATOMS, ELEMENTS, AND MINERALS DATE DUE: Name: Instructor: Ms. Terry J. Boroughs Geology 305 ATOMS, ELEMENTS, AND MINERALS Instructions: Read each question carefully before selecting the BEST answer. Use GEOLOGIC VOCABULARY where APPLICABLE!

More information

Igneous petrology EOSC 321 Laboratory 8: Intermediate and Felsic Volcanic Rocks. Pyroclastic Rocks

Igneous petrology EOSC 321 Laboratory 8: Intermediate and Felsic Volcanic Rocks. Pyroclastic Rocks 321 Lab 8 Instructor: L. Porritt - 1 - Igneous petrology EOSC 321 Laboratory 8: Intermediate and Felsic Volcanic Rocks. Pyroclastic Rocks Learning Goals. After this Lab, you should be able: Identify fine-grained

More information

LAB 3: COMMON MINERALS IN SEDIMENTARY ROCKS, Part 1

LAB 3: COMMON MINERALS IN SEDIMENTARY ROCKS, Part 1 EESC 2100: Mineralogy LAB 3: COMMON MINERALS IN SEDIMENTARY ROCKS, Part 1 Learning Objectives: Students will be able to identify minerals that occur commonly in sandstones (quartz and feldspars), both

More information

305 ATOMS, ELEMENTS, AND MINERALS

305 ATOMS, ELEMENTS, AND MINERALS DATE DUE: Name: Instructor: Ms. Terry J. Boroughs Geology 305 ATOMS, ELEMENTS, AND MINERALS Instructions: Read each question carefully before selecting the BEST answer. Use GEOLOGIC VOCABULARY where APPLICABLE!

More information

Minerals: Minerals: Building blocks of rocks. Atomic Structure of Matter. Building Blocks of Rocks Chapter 3 Outline

Minerals: Minerals: Building blocks of rocks. Atomic Structure of Matter. Building Blocks of Rocks Chapter 3 Outline Minerals: Building Blocks of Rocks Chapter 3 Outline Does not contain complete lecture notes. To be used to help organize lecture notes and home/test studies. Minerals: Building blocks of rocks Definition

More information

Textures of Igneous Rocks

Textures of Igneous Rocks Page 1 of 6 EENS 212 Prof. Stephen A. Nelson Petrology Tulane University This document last updated on 12-Feb-2004 Introduction to Igneous Rocks An igneous rock is any crystalline or glassy rock that forms

More information

Geos 306, Mineralogy Final Exam, Dec 12, pts

Geos 306, Mineralogy Final Exam, Dec 12, pts Name: Geos 306, Mineralogy Final Exam, Dec 12, 2014 200 pts 1. (9 pts) What are the 4 most abundant elements found in the Earth and what are their atomic abundances? Create a reasonable hypothetical charge-balanced

More information

Lecture 36. Igneous geochemistry

Lecture 36. Igneous geochemistry Lecture 36 Igneous geochemistry Reading - White Chapter 7 Today 1. Overview 2. solid-melt distribution coefficients Igneous geochemistry The chemistry of igneous systems provides clues to a number of important

More information

Lecture Outlines PowerPoint. Chapter 2 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 2 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 2 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Chemistry primer. Atom = the smallest unit of an element. Element determined by the number of protons in the nucleus

Chemistry primer. Atom = the smallest unit of an element. Element determined by the number of protons in the nucleus Chemistry primer Atom = the smallest unit of an element Element determined by the number of protons in the nucleus E- is an electron, P+ is a proton, N is a neutron Carbon atom Electron cloud Nucleus Carbon

More information

Physical Geology 101 Laboratory MINERALS II Silicate and Carbonate Rock-Forming Minerals

Physical Geology 101 Laboratory MINERALS II Silicate and Carbonate Rock-Forming Minerals Student Name: College: Grade: Physical Geology 101 Laboratory MINERALS II Silicate and Carbonate Rock-Forming Minerals I. INTRODUCTION: The purpose of this lab is you will improve your mineral identification

More information

WORKING WITH ELECTRON MICROPROBE DATA FROM A HIGH PRESSURE EXPERIMENT CALCULATING MINERAL FORMULAS, UNIT CELL CONTENT, AND GEOTHERMOMETRY

WORKING WITH ELECTRON MICROPROBE DATA FROM A HIGH PRESSURE EXPERIMENT CALCULATING MINERAL FORMULAS, UNIT CELL CONTENT, AND GEOTHERMOMETRY WORKING WITH ELECTRON MICROPROBE DATA FROM A HIGH PRESSURE EXPERIMENT CALCULATING MINERAL FORMULAS, UNIT CELL CONTENT, AND GEOTHERMOMETRY Brandon E. Schwab Department of Geology Humboldt State University

More information

Minerals: Building Blocks of Rocks Chapter 2. Based on: Earth Science, 10e

Minerals: Building Blocks of Rocks Chapter 2. Based on: Earth Science, 10e Minerals: Building Blocks of Rocks Chapter 2 Based on: Earth Science, 10e Minerals: the building blocks of rocks Definition of a mineral Solid Inorganic Natural Crystalline Structure - Possess an orderly

More information

TWO COMPONENT (BINARY) PHASE DIAGRAMS. Experimental Determination of 2-Component Phase Diagrams

TWO COMPONENT (BINARY) PHASE DIAGRAMS. Experimental Determination of 2-Component Phase Diagrams Page 1 of 12 EENS 211 Earth Materials Tulane University Prof. Stephen A. Nelson TWO COMPONENT (BINARY) PHASE DIAGRAMS This document last updated on 08-Oct-2003 Experimental Determination of 2-Component

More information

Geol /19/06 Labs 5 & 6 Crystal Chemistry Ionic Coordination and Mineral Structures

Geol /19/06 Labs 5 & 6 Crystal Chemistry Ionic Coordination and Mineral Structures Geol 2311 9/19/0 Labs 5 & Crystal Chemistry Ionic Coordination and Mineral Structures Handout Oral Mineral Tray Report Samples Ionic Coordination Exercise Investigating Mineral Structures using XtalDraw

More information

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification:

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks

More information

Solids. properties & structure

Solids. properties & structure Solids properties & structure Determining Crystal Structure crystalline solids have a very regular geometric arrangement of their particles the arrangement of the particles and distances between them is

More information

Vibrational dynamics and structure of natural feldspars

Vibrational dynamics and structure of natural feldspars UNIVERSITA DEGLI STUDI DI PARMA Dottorato di Ricerca in Fisica Ciclo XXVIII Vibrational dynamics and structure of natural feldspars Coordinatore: Chiar.mo Prof. Cristiano Viappiani Tutor: Chiar.mo Prof.

More information

Lecture 3: Earth Materials and their Properties I: Minerals. Introduction to the Earth System EAS 2200

Lecture 3: Earth Materials and their Properties I: Minerals. Introduction to the Earth System EAS 2200 Lecture 3: Earth Materials and their Properties I: Minerals Introduction to the Earth System EAS 2200 Earth Materials Plan of the Why it matters Nature of the Earth/Composition The Solid Earth Mineral

More information

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks Chapter 3.0: Weathering & soils Chapter 4.0: Geological

More information

Atoms, Molecules and Minerals

Atoms, Molecules and Minerals Atoms, Molecules and Minerals Atoms Matter The smallest unit of an element that retain its properties Molecules - a small orderly group of atoms that possess specific properties - H 2 O Small nucleus surrounded

More information

O and Si make up % of all atoms available to make minerals in the Earth's crust.

O and Si make up % of all atoms available to make minerals in the Earth's crust. 7. Minerals III (p. 87-97) Mineral Families O and Si make up % of all atoms available to make minerals in the Earth's crust. Minerals in which cations combine with O 2- anions are called. If Si gets added,

More information

Field Trips. Field Trips

Field Trips. Field Trips Field Trips Saturday field trips have been scheduled October 9, October 23 and December 4 Last all day (9:00 AM to 4:00 PM) Bus transportation provided from campus Joint with GG101 laboratory, GG101 Section

More information

Tectosilicate minerals. SiO 2 group Feldspar group Feldspathoid group Zeolite group

Tectosilicate minerals. SiO 2 group Feldspar group Feldspathoid group Zeolite group Tectosilicate minerals SiO 2 group Feldspar group Feldspathoid group Zeolite group Tectosilicate Si:O ratio is 1:2; three-dimensional framework of SiO 2 tetrahedra linked togethe results in stable, strongly

More information

The Lithosphere. Definition

The Lithosphere. Definition 10/14/2014 www.komar.de The Lithosphere Ben Sullivan, Assistant Professor NRES 765, Biogeochemistry October 14th, 2014 Contact: bsullivan@cabnr.unr.edu Definition io9.com tedquarters.net Lithos = rocky;

More information

Principal Investigator Co-Principal Investigator Co-Principal Investigator Prof. Talat Ahmad Vice-Chancellor Jamia Millia Islamia Delhi

Principal Investigator Co-Principal Investigator Co-Principal Investigator Prof. Talat Ahmad Vice-Chancellor Jamia Millia Islamia Delhi Subject Paper No and Title Module No and Title Module Tag Geology Crystallography and Mineralogy Nesosilicates (Olivine and Garnet Group Min IX Principal Investigator Co-Principal Investigator Co-Principal

More information

Chapter 4 8/27/2013. Igneous Rocks. and Intrusive Igneous Activity. Introduction. The Properties and Behavior of Magma and Lava

Chapter 4 8/27/2013. Igneous Rocks. and Intrusive Igneous Activity. Introduction. The Properties and Behavior of Magma and Lava Introduction Chapter 4 Igneous rocks form by the cooling of magma (or lava). Large parts of the continents and all the oceanic crust are composed of. and Intrusive Igneous Activity The Properties and Behavior

More information

Atoms and Elements. Chemical Composition of the Earth s Crust Crystallinity. Chemical Activity Ions. The Silicon-Oxygen Tetrahedron

Atoms and Elements. Chemical Composition of the Earth s Crust Crystallinity. Chemical Activity Ions. The Silicon-Oxygen Tetrahedron Atoms and Elements Chemical Activity Ions Chemical Composition of the Earth s Crust Crystallinity The Silicon-Oxygen Tetrahedron Minerals Crystalline Solids Natural and Inorganic Substances Definite Chemical

More information

Name Petrology Spring 2006

Name Petrology Spring 2006 Igneous rocks lab Part I Due Tuesday 3/7 Igneous rock classification and textures For each of the rocks below, describe the texture, determine whether the rock is plutonic or volcanic, and describe its

More information

Introductory Statement:

Introductory Statement: The use of visualization and sketches of thin sections to encourage a better understanding of phase diagrams: Binary and ternary phase diagram exercises Jennifer M. Wenner Drew S. Coleman Introductory

More information

The Nucleus. Protons. Positive electrical charge The number of protons in the nucleus determines the atomic number

The Nucleus. Protons. Positive electrical charge The number of protons in the nucleus determines the atomic number Matter Atoms The smallest unit of an element that retain its properties Small nucleus surrounded by a cloud of electrons The nucleus contains protons and neutrons The Nucleus Protons Positive electrical

More information

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Ray Rector - Instructor Major Concepts 1) Igneous rocks form directly from the crystallization of a magma or lava 2)

More information

Laboratory 7: Alkaline rocks

Laboratory 7: Alkaline rocks Laboratory 7: Alkaline rocks Learning Goals. After this Lab, you should be able: Identify the key rock-forming minerals in alkaline rocks Identify textures of alkaline rocks in thin sections Name alkaline

More information

Topic 5 : Crystal chemistry

Topic 5 : Crystal chemistry GEOL360 LECTURE NOTES: T5 : CRYSTAL CHEMISTRY 1/15 GEOL360 Topic 5 : Crystal chemistry 5.1 Introduction what is a crystal? A crystal is a homogeneous, solid body of a chemical element, compound, or isomorphous

More information

Lab 4 - Identification of Igneous Rocks

Lab 4 - Identification of Igneous Rocks Lab 4 - Identification of Igneous Rocks Page - Introduction A rock is a substance made up of one or more different minerals. Thus an essential part of rock identification is the ability to correctly recognize

More information

Remember the purpose of this reading assignment is to prepare you for class. Reading for familiarity not mastery is expected.

Remember the purpose of this reading assignment is to prepare you for class. Reading for familiarity not mastery is expected. Remember the purpose of this reading assignment is to prepare you for class. Reading for familiarity not mastery is expected. After completing this reading assignment and reviewing the intro video you

More information

2/23/2009. Visualizing Earth Science. Chapter Overview. Minerals. By Z. Merali and B. F. Skinner. Chapter 2 Minerals: Earth s Building Blocks

2/23/2009. Visualizing Earth Science. Chapter Overview. Minerals. By Z. Merali and B. F. Skinner. Chapter 2 Minerals: Earth s Building Blocks Visualizing Earth Science By Z. Merali and B. F. Skinner Chapter 2 Minerals: Earth s Building Blocks Chapter Overview Minerals The Nature of Matter Identifying Minerals Classifying Minerals Mineral Resources

More information

GEOLOGY 333 LAB 5. Light Mechanics

GEOLOGY 333 LAB 5. Light Mechanics GEOLOGY 333 LAB 5 OPTICAL MICROSCOPY & MINERALS IN THIN SECTION Light Mechanics Light Waves: Visible light travels in waves, which have measurable wavelengths, frequencies, and velocities Wavelength (

More information

12 Chemistry (Mg,Fe) 2 SiO 4 Olivine is forms what is called an isomorphous solid solution series that ranges between two end members: Forsterite Mg

12 Chemistry (Mg,Fe) 2 SiO 4 Olivine is forms what is called an isomorphous solid solution series that ranges between two end members: Forsterite Mg 11 Olivine Structure Olivine is a common green or brown rock forming minerals which consists of a solid-solution series between Forsterite (Fo) and Fayalite (Fa). It is an orthorhombic orthosilicate with

More information

Lab 3 - Identification of Igneous Rocks

Lab 3 - Identification of Igneous Rocks Lab 3 - Identification of Igneous Rocks Page - 1 Introduction A rock is a substance made up of one or more different minerals. Thus an essential part of rock identification is the ability to correctly

More information

Minerals. [Most] rocks are [mostly] made of minerals, so identification and interpretation depends on recognizing

Minerals. [Most] rocks are [mostly] made of minerals, so identification and interpretation depends on recognizing Minerals [Most] rocks are [mostly] made of minerals, so identification and interpretation depends on recognizing Over mineral types have been described, but only about account for the bulk of most rocks.

More information

TCNJ Physics 120 Introduction to Geology

TCNJ Physics 120 Introduction to Geology TCNJ Physics 120 Introduction to Geology Laboratory Manual Professor Gregory C. Herman hermang@tcnj.edu Sources notes within GCH 2018-01 1 GCH 2016-17 2 TCNJ Physics 120 Introduction to Geology Lab Manual

More information

Bonding and Packing: building crystalline solids

Bonding and Packing: building crystalline solids Bonding and Packing: building crystalline solids The major forces of BONDING Gravitational forces: F = G m m 1 2 F = attractive forces between 2 bodies G = universal graviational constant (6.6767 * 10

More information

About Earth Materials

About Earth Materials Grotzinger Jordan Understanding Earth Sixth Edition Chapter 3: EARTH MATERIALS Minerals and Rocks 2011 by W. H. Freeman and Company About Earth Materials All Earth materials are composed of atoms bound

More information

Regents Earth Science. Lab &: Elements / Minerals

Regents Earth Science. Lab &: Elements / Minerals Name Date Regents Earth Science Period Lab &: Elements / Minerals Question: What is the relationship between elements and minerals? Introduction: (you will need the ESRT to complete this lab) Below is

More information

Chapter 3. The structure of crystalline solids 3.1. Crystal structures

Chapter 3. The structure of crystalline solids 3.1. Crystal structures Chapter 3. The structure of crystalline solids 3.1. Crystal structures 3.1.1. Fundamental concepts 3.1.2. Unit cells 3.1.3. Metallic crystal structures 3.1.4. Ceramic crystal structures 3.1.5. Silicate

More information

Pyroxene, amphibole, and feldspar

Pyroxene, amphibole, and feldspar Pyroxene, amphibole, and feldspar Sometimes, common minerals in igneous and metamorphic rocks are hard to distinguish, unless you know the tricks. Colored mineral such as pyroxene and amphibole can be

More information

EESC 4701: Igneous and Metamorphic Petrology IGNEOUS MINERALS LAB 1 HANDOUT

EESC 4701: Igneous and Metamorphic Petrology IGNEOUS MINERALS LAB 1 HANDOUT EESC 4701: Igneous and Metamorphic Petrology IGNEOUS MINERALS LAB 1 HANDOUT Sources: Cornell EAS302 lab, UMass Lowell 89.301 Mineralogy, LHRIC.org The Petrographic Microscope As you know, light is an electromagnetic

More information

2. REPLACEMENT OF PRIMARY PLAGIOCLASE BY SECONDARY K-FELDSPAR AND MYRMEKITE

2. REPLACEMENT OF PRIMARY PLAGIOCLASE BY SECONDARY K-FELDSPAR AND MYRMEKITE 1 ISSN 1526-5757 2. REPLACEMENT OF PRIMARY PLAGIOCLASE BY SECONDARY K-FELDSPAR AND MYRMEKITE Lorence G. Collins email: lorencec@sysmatrix.net November 21, 1996; revised February 17, 1997 The following

More information

How 2 nd half labs will work

How 2 nd half labs will work How 2 nd half labs will work Continue to use your mineral identification skills Learn to describe, classify, interpret rock hand samples: Igneous sedimentary metamorphic volcanic plutonic (1 week) (1 wk)

More information

Florida Atlantic University PETROLOGY -- MIDTERM ONE KEY

Florida Atlantic University PETROLOGY -- MIDTERM ONE KEY GLY4310 Name 60 points February 7, 2011 14 took exam - Numbers to the left of the question number in red are the number of incorrect responses. Instructor comments are in blue. Florida Atlantic University

More information

The alkali feldspars of the Ardara pluton, Donegal

The alkali feldspars of the Ardara pluton, Donegal 695 The alkali feldspars of the Ardara pluton, Donegal By A. HALL Geology Department, King's College, London, W.C.2 [Read 4 November 1965] Summary. The alkali feldspars in the Ardara pluton are microcline-

More information

Orthoclase Feldspar Smith College Mineralogy, Fall 20XX

Orthoclase Feldspar Smith College Mineralogy, Fall 20XX Orthoclase Feldspar Smith College Mineralogy, Fall 20XX Abstract A sample of orthoclase feldspar with composition of K (0.737) Na (0.22218) Ca (- 0.0012)Al (1.0018) Si (3.0095) O (8.00) was collected on

More information

EESC 4701: Igneous and Metamorphic Petrology IGNEOUS ROCK CLASSIFICATION LAB 2 HANDOUT

EESC 4701: Igneous and Metamorphic Petrology IGNEOUS ROCK CLASSIFICATION LAB 2 HANDOUT EESC 4701: Igneous and Metamorphic Petrology IGNEOUS ROCK CLASSIFICATION LAB 2 HANDOUT Sources: University of Washington, Texas A&M University, University of Southern Alabama What is an igneous rock (a

More information

Atoms>>>Elements>>>Minerals>>>Rocks>>>Continents>>>Planet

Atoms>>>Elements>>>Minerals>>>Rocks>>>Continents>>>Planet Introduction to Minerals It s all about scale: Atoms>>>Elements>>>Minerals>>>Rocks>>>Continents>>>Planet Basic Chem: Atomic Structure Atom: smallest unit of an element that possesses the properties of

More information

Earth Materials I Crystal Structures

Earth Materials I Crystal Structures Earth Materials I Crystal Structures Isotopes same atomic number, different numbers of neutrons, different atomic mass. Ta ble 1-1. Su mmar y of quantu m num bers Name Symbol Values Principal n 1, 2,

More information

Tectosilicates, Carbonates, Oxides, & Accessory Minerals

Tectosilicates, Carbonates, Oxides, & Accessory Minerals Page 1 of 15 EENS 212 Petrology Prof. Stephen A. Nelson Tulane University Tectosilicates, Carbonates, Oxides, & Accessory Minerals This document last updated on 02-Feb-2004 Tectosilicates (Framework Silicates)

More information

And the study of mineral the branch in geology is termed as mineralogy. (Refer Slide Time: 0:29)

And the study of mineral the branch in geology is termed as mineralogy. (Refer Slide Time: 0:29) Earth Sciences for Civil Engineering Professor Javed N Malik Department of Earth Sciences Indian Institute of Technology Kanpur Module 2 Lecture No 6 Rock-Forming Minerals and their Properties (Part-2)

More information

Practice Test Rocks and Minerals. Name. Page 1

Practice Test Rocks and Minerals. Name. Page 1 Name Practice Test Rocks and Minerals 1. Which rock would be the best source of the mineral garnet? A) basalt B) limestone C) schist D) slate 2. Which mineral is mined for its iron content? A) hematite

More information

10/8/15. Earth Materials Minerals and Rocks. I) Minerals. Minerals. (A) Definition: Topics: -- naturally occurring What are minerals?

10/8/15. Earth Materials Minerals and Rocks. I) Minerals. Minerals. (A) Definition: Topics: -- naturally occurring What are minerals? minerals Earth Materials Minerals and Rocks I) Minerals Minerals Topics: What are minerals? Basic Chemistry Amethysts in geode: minerals Characteristics of Minerals Types of Minerals -- orderly arrangement

More information

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar Rocks A naturally occurring aggregate of one or more minerals (e.g., granite), or a body of non-crystalline material (e.g., obsidian glass), or of solid organic material (e.g., coal). Rock Cycle A sequence

More information

Chapter IV MINERAL CHEMISTRY

Chapter IV MINERAL CHEMISTRY Chapter IV MINERAL CHEMISTRY Chapter-IV MINERAL CHEMISTRY 4.1 INTRODUCTION In this chapter, chemical analyses of different minerals present in various rocks of Mashhad granitoid plutons have been presented.

More information