Back analysis of staged embankment failure: The case study Streefkerk

Size: px
Start display at page:

Download "Back analysis of staged embankment failure: The case study Streefkerk"

Transcription

1 Back analysis of staged embankment failure: The case study Streefkerk C.M. Bauduin Besix, Brussels, Belgium M. De Vos Belgian Building Research Institute, Brussels, Belgium P.A. Vermeer Institut für Geotechnik, Stuttgart, Germany Keywords: case history, clays, failure, soil models, undrained loading, consolidation, creep ABSTRACT: In 1984 an embankment instability occured in a dike recently heightened in stages. After the instability, an extensive research program has been set up to back-analyse the settlements and the pore pressures measured during construction, focussing especially on the effects of shear stress and plastic yielding. Back-calculations have been performed using two uncoupled FEM codes in sequence : one to estimate initial stresses and the total stress increments at the undrained loading phases and another to simulate the intermittent consolidation. A simplified cap model has been introduced for undrained loading. The present paper presents the results of back-calculations using the Soft Soil and the Soft Soil with Creep models. Comparing them with those of the first back-calculations allow to overlook the progress made in soil modelling, to indicate the remaining vital input of engineers judgement and to propose some directions for further development. 1 INTRODUCTION In 1984 an embankment instability occured in a recently reinforced section of the river Lek Dike near Streefkerk in the central west part of the Netherlands. As the foundation for the riverbanks consist often of extremely weak clay and peat alluvial deposits, the heightening works are performed in stages allowing for in between consolidation. Usually, excess pore pressures generated by loading and their decay due to consolidation are observed during construction using piezometers. Following the instability, design type analyses, based on Bishop s slip circle method and using the monitored pore pressures were performed. However, they were not able to provide satisfactory explanations to the occurrence of the accident. Furthermore, the prediction of excess pore pressures generated during the previous loading sequences, using elastic soil models were shown to be in great error. An extensive research program has therefor been set up in the months following the accident, to investigate the causes that have lead to failure. The method and the results of this research have been extensively reported elsewhere (Teunissen et al. 1986, Bauduin & Molenkamp 1991). As the soil conditions were rather well known and the history of the settlements and of excess pore pressure generation and dissipation were well measured during the whole construction period until failure, the accident may be used as a benchmark problem for the verification of the development of soil models and finite element calculation techniques for embankments on soft soil during the last 15 years. 1

2 2 CROSS SECTION AND SEQUENCE OF EVENTS The cross section of the original flood bank and the additional layers are shown in Figure 1. Vertical drainage (Colbond KF 350 triangular pattern d = 3.0 m) is used under the bank of the heightened dike to accelerate consolidation in this area. The loading history is indicated in Figure 2. The location of the piezometers and settlement gauges is shown in Figure 1. The construction works started in August 1982 : the embankment was raised in four stages from ground level at 1 m below MSL up to 2.3 m above MSL and was then left to consolidate from October 1982 to March The bank was than further raised in three stages to 4.5 m above MSL that was reached in may Consolidation was then allowed until end of August 1983 ; at this period, the embankment was raised in a very short time to the crest level at 6.3 m above MSL and the bank and whole inner slope were covered by a 0.7 m thick clay layer. It was then left to consolidate during one year until September In September and October 1984, the embankment was completed : basaltstone was lead for the outer slope protection and the temporary road on the crest was replaced by the permanent one. Not so much load was added during these works. However, soon after that, when the ditch at the bank bank was enlarged, the landside slope of the bank began to fail over a length of about 80 m. The observed cracks and soil movements indicated horizontal soil displacements up to 40 m beyond the toe of the bank without significant soil heave. A schematic geotechnical soil profile is indicated on Figure 1. Table 1 summarises the values of soil properties as selected for the calculations in The values are mean values from a regional databank, except that for the peat layer for which the additional information from local CD compression and extension triaxial tests at low confining stresses is implemented. Remark that the friction parameters of the regional databank are deduced from cell tests. Elastic deformation moduli Figure 1. Embankment cross section and schematic geotechnical profile. Figure 2. Loading history. 2

3 Table 1. Soil parameters. Soil type Level m-msl γ kn/m³ w % w l % w p % c kn/m² ϕ E kn/m² ν - k v m/day C p - C s - Dike material -1.0/ E Tiel clay under (preloaded) -2.7/ E Tiel clay -2.7/ E Peat under (preloaded) Peat -9.6/ E / / E Gorkum clay 2-7.5/ E Gorkum clay 1 under (preloaded) -13.0/ E Gorkum clay / E Pleistocene sand.../ E-2 NA Figure 3. Measured excess pore pressures. Figure 4. Measured settlements. are deduced from oedometer tests, complemented by pocket pressuremeter tests and by the triaxial tests for the peat layers. It is worthwhile to notice the distinction made between the preloaded soil in the area under the existing old dike and the soil outside its influence area. The soil is considered to be normally consolidated. No reliable information on this is however available, so all calculations will be performed considering OCR equal to 1. The hydraulic heads of the excess pore pressures as measured by the piezometers are shown as function of time on Figure 3. The measured settlements are illustrated on Figure 4. 3

4 3 ANALYSIS IN 1984: SOIL MODELS AND FINITE ELEMENT CALCULATIONS It was recognised in 1984 that a proper prediction of the excess pore pressure due to undrained deformation should take account of: The increment of isotropic total stress, which is equal to the mean of the principal stresses as long as the local shear stress is lower than the local undrained shear resistance and which becomes close to the increment of major principal stress once the local undrained shear resistance is reached (Hoëg et al. 1968, Burland 1971); The increment of deviatoric stress once the ESP reaches a yield surface; Load transfer through the soil mass from areas of fully mobilised shear strength towards areas in which there is still shear resistance available. It was considered that strain softening has a negligible effect. As creep provokes volumetric and deviatoric irreversible strains, it can be also a contributing factor. Due to the lack of simple and reliable creep models usable for FE calculation process at that time, creep effects were disregarded, although the consequences of this assumption were not fully understood. An approximately formulation of undrained behaviour in terms of the stress invariant p and q was established for plane strain deformation. It is illustrated on Figure 5: Path A B : ESP remains below the yield surface at the initial state; elastic behaviour, Path B F : ESP is directed outside the surface at the initial state; irreversible volumetric strain occurs (densification; excess pore pressure u α ), Path AF 1 : TSP up to local state of failure; u β1 is the corresponding increase of isotropic stress, Path F 1 F 2 : TSP is modified to remain at deviatoric stress equal to undrained shear resistance at the initial state; the total stress invariant p increases according to the increase of the principal stress, leading to an equal increase of excess pore pressure u β2. As a consequence of this formulation, the undrained shear strength can be estimated by (Vermeer et al. 1985) ' cu = c cos ( ϕ ) + p F sin ( ϕ ) (1) in which c and ϕ are the effective shear resistance parameters and p F is the effective isotropic stress at undrained failure according to the undrained effective stress path through the current effective stress state. For the calculations in 1984, it was tentatively assumed that the yield surface is a straight line sloping at -45 from the K o line until the failure line in the p-q plane ; below the K o line the behaviour was assumed to be elastic. This simple model was based on the concepts of the YLIGHT model (Tavenas & Leroueil 1977) and on observation of the results of a few CU triaxial tests on Dutch organic clays and peat available at that moment. Remark that the described tentative model focuses only on the prediction of increase of excess pore pressure as a consequence of the increase Figure 5. Stress paths at undrained loading. 4

5 of the shear stress, but the volumetric strains, which are the «motor» of the excess pore pressures due to shearing, are not calculated. To increase the insight into the effects of the plastic spreading of additional loads, it was attempted to back-analyse the behaviour of the embankment using two uncoupled FE codes in combination with relatively simple additions to simulate ESP as in Figure 5 (see e.g. Teunissen et al. 1986). The main conclusions of the calculations were (see Bauduin & Molenkamp 1991): For the loading stages up to the one of May 1993 an area of full shear strength mobilisation developed under the existing riverbank ; the behaviour at the toe of the embankment remained below the failure line. The severe load of August-September 1983 produced a much larger area with full plastic flow. It was recognised that quite no safety against failure remained available from that moment. The excess pore pressures due to undrained loading could be well back calculated for all loading stages until may Back calculated values of the excess pore pressure provoked by the severe loading stage of August-September remained significantly lower than the observed ones. Although the use of non-linear FE analyses allowed to account for global stress transfer due to plastic flow and the very important improvement of the constitutive model compared to the ones applied for design, it was considered that the applied constitutive model was still too rough to lead to an accurate simulation of «a near failure state» of the soil mass. Also the fact that creep has not been simulated may have contributed to the deficiency. Further on, the limitations due to the use of uncoupled codes were pointed out. 4 DEVELOPMENTS OF SOIL MODELLING Since the calculations of 1984 and the present date, enormous progress in the development and implementation of advanced constitutive models in finite elements codes have taken place, allowing for coupled analyses of the undrained loading and consolidation of soil with appropriate realistic constitutive models. For loading of soft, normally or near normally consolidated soils, PLAXIS provides following improved models compared with the Mohr-Coulomb model : The Soft Soil model, The Soft Soil with Creep model. The Soft Soil model is extensively described in Vermeer & Brinkgreve (1998). It resembles to the modified Cam-Clay model, including a yield function but without softening behaviour. The yield function models the irreversible volumetric straining in primary compression and is used as the cap of the yield contour. The failure behaviour is modelled using a Mohr-Coulomb type yield function. A fixed Mohr-Coulomb failure surface and a cap, which may expand in primary compression (see Fig. 6), thus define the total yield contour. Figure 6. Yield contour of the Soft Soil model. 5

6 Stress paths within this boundary only give elastic (unloading or reloading) strain increments, whereas stress paths that tend to cross this boundary generally give both elastic and plastic strain increments and corresponding excess pore pressures. Compared to the previous tentative model for the prediction of excess pore pressures, the Soft Soil model proposes a proper formulation of the changes in volumetric strains. The logarithmic compression law is described by the modified compression and swelling index λ* and κ*. The shear resistance at failure for undrained loading is again given at the intersection of the effective stress path with the failure line and is thus deduced from the effective strength parameters c and ϕ and the effective isotropic stress at undrained failure according to the undrained effective stress path through the current effective stress state, which is usually located on the (expanding) cap for uniform loading problems at OCR equal to 1, such as those treated in this paper. The Soft Soil with Creep model is basically similar to the Soft Soil model, but includes the effects of volumetric strains due to creep. It introduces time dependency of the plastic range in a Soft Soil model, having thus an ellipsoidal plastic potential and a Mohr-Coulomb type failure surface at the dry side of critical state. The time dependent creep plastic strains are described by the modified creep index µ*. The following rough estimates and interrelations for λ*, κ* and µ* might be used : 1 λ = ' C p (2) κ 1 ν 1+ ν 1 µ ' C s ur ur 3 C p (3) (4) and: λ µ λ = 10 à 15 = 5 à 10 κ (5,6) 5 BACK ANALYSIS OF THE FAILURE USING ADVANCED MODELS To overlook the progress made in computational techniques since 15 years, back-calculation runs have been performed with PLAXIS 7.1 windows version, using the following models: Mohr-Coulomb, Soft Soil, Soft Soil with Creep. The undrained loading stages and subsequent consolidation are coupled in one single calculation run simulating the complete history of the embankment. The Mohr-Coulomb analysis has been performed to compare the results of the more sophisticated models with this classical one. It was expected that no noticeable improvements in prediction of excess pore pressures should be gained compared to the analysis of 1984 as the Mohr-Coulomb model does not account for generation of excess pore pressure due to shearing. This run however allows comparing the effectivity and consequences of enhanced soil modelling. The shear strength and other soil parameters where firstly taken equal to those of the calculations of The modified compression and swelling index λ* and κ* needed in the Soft Soil model were estimated from the available test result of one-dimensional oedometer tests and observed settlements of embankments on similar soil. Similarly, the creep deformation parameter µ* 6

7 required for the creep model was deduced from values of the secondary compression modulus C s and from empirical relations between µ*, λ* and κ*. The OCR has been taken equal to 1.0 as no reliable quantified information is available. Clearly more appropriate laboratory testing should be welcome to obtain more accurate values. The values of these parameters as used for the calculations are indicated in Table 2. The load sequence, geometry, soil layering etc. were taken fully identical to those reported for the calculations performed in The same mesh has been used for all three calculations. 5.1 Results of Mohr-Coulomb analyses The results of the Mohr-Coulomb analyses are shown in Figures 7, 9 and 10. The conclusions put forward for the 1984 calculations are confirmed by the use of this simple model. 5.2 Results of analyses using the Soft Soil model The initial stress state before starting of the heightening of the dike was established using the Mohr-Coulomb soil model ; further loading stages were analysed using the Soft Soil model. In a first run all strength and permeability parameters were maintained unchanged compared with those of the Mohr-Coulomb analysis. The calculations lead to collapse of the soil for the loading stage of August-September It appears that: The excess pore pressures for the load stages of 1982 were well back calculated. The Soft Soil calculations over-predict strongly the excess pore pressures induced by the loading stage of March-May Very intense shearing, with full plastic strength mobilisation was observed in the calculation results up to a few meters beyond the toe of the bank ; besides the effect of shearing, also an important effect of stress transfer explains the high values of excess pore pressures calculated at this stage. The excess pore pressures calculated by the Soft Soil model at the collapse of August 1983 are much higher than those calculated using previous models. The fact that failure was calculated for the loading stage August 1983 results from both the effects of much larger strength mobilisation in the previous load steps compared to those calculated previously and the higher excess pore pressure remaining after consolidation from March to August Table 2. Modified or complementary values of soil properties for Soft Soil calculations without and with creep. Soil type λ* - κ* - µ* - c kn/m 2 ϕ Dike material NA NA NA 8 30 Tiel clay under (preloaded) Tiel clay Peat under (preloaded) Peat Gorkum clay Gorkum clay 1 under (preloaded) Gorkum clay

8 Based on the observation that the dike did not collapse in August 1983, a second run has been performed using slightly increased values of the internal friction angle and the cohesion. This might appear as illogical, but following argument supports this way of doing : The original values of the shear strength parameters were based on the common use of cell tests and on a cautious estimate of the shear resistance as measured in the CD tests on peat ( failure criterion was rather a strain criterion than a maximum observed shear resistance in the test). It is well known that these approaches lead to an underestimate of the shear parameters of 10 to 15 % compared to values obtained at failure from triaxial tests. In terms of classical approaches there was a good reason to choose somewhat low values of shear strength parameters : slip circle methods, taking further account of the fact that a sufficient value of the safety factors against sliding calculated using the c and ϕ from cell test lead to a design for which the displacements of the dike were usually observed as acceptable. This avoided that the shear stresses should reach such a level that the densification produces very high increase of excess pore pressures. Thus, the use of rather conservative estimates of the shear strength parameters avoided stress levels close to the sensitive near plastic failure levels. The results of the second run using the Soft Soil model are shown on Figures 7, 9 and 10 indicating the calculated excess pore pressures and settlements compared to the measured ones and the ESP at piezometer 2. A good agreement is found. Especially the Soft Soil model gives much better back-calculated values of the pore pressures at the severe loading stage of August 1983 compared to the previous calculations. For the loading stages up to May 1983, the Soft Soil model tends to overestimate slightly the excess pore pressures at undrained loading. This might be explained by the fact that the slight overconsolidation of the soil has been neglected. The displacements at failure (September 1984) are shown in Figure 8. Remark that the permeability coefficients of the soil were taken equal to the values used for the calculations performed in 1984, except after day 370. For the area in which vertical drainage was applied, the vertical permeability coefficient was taken ten times higher than the «natural» value up to day 370 ; after that the permeability coefficient was taken slightly higher than the natural value : it was indeed considered that the decrease of observed consolidation rate was to be ascribed to a decrease of effectivity of the drains. 5.3 Result of calculations using Soft Soil with Creep The same input parameters were used as in the second Soft Soil run ; the value of the creep parameter (see Table 2) has been estimated using rather simple correlations and needs to be refined by appropriate laboratory testing. The results of some calculations are given in Figures 7 to 10. Figure 7. Calculated and measured vertical displacements at the toe of the existing dike. 8

9 Figure 8. Total displacement field according to the Soft Soil calculations. Figure 9. Calculated and measured excess pore pressures. 9

10 Figure 10. Stress paths at piezometer 2. The main conclusions from the calculations are summarised below. The excess pore pressures generated by undrained loading are lower than those calculated using Soft Soil model ; undrained shear has a less effect on the shape of the ESP than in the Soft Soil model : in fact, in the Soft Soil with Creep model the ESP at undrained loading is close to the ESP at undrained loading using the Mohr-Coulomb model. This is in agreement with Vermeer & Neher (1998). The creep model shows increase of excess pore pressure over a period after undrained loading. The value of these excess pore pressure is very sensitive to the value of µ* and of the soil permeability : A good fitting between measurements and calculations was obtained for the loading stages up to 10

11 370 days by using low estimates of the creep factor and the same values of the permeability coefficients as in previous Mohr-Coulomb and Soft Soil calculations. The lowered values of the soil permeability in the area with vertical drainage, introduced after 370 days in the Mohr-Coulomb and Soft Soil calculations to match the measured consolidation lead to completely erroneous calculated behaviour in the Soft Soil with Creep model ; a better fitting shown in Figure 9 was obtained by introducing permeability coefficients after 370 days equal to 50 % of the initial value in that area. The effective stress paths at the piezometer 2 are compared in Figure 10. One notices the differences, especially at undrained loading (Soft Soil clearly exhibits shear strain induced excess pore pressures, while both other models do not) and during consolidation (Mohr-Coulomb consolidates close to the failure line, while both other models consolidate at more or less constant shear stress). 6 CONCLUSIONS The following main conclusions may be put forward on base of this second back-analysis of the Streefkerk failure problem: The use of the software has become incredibly more easy and user-friendly in the last 15 years, allowing to concentrate on modelling and geotechnical matter rather than on computational difficulties. The results of the calculations using sophisticated soil models validate most of the assumptions and conclusions of the work performed in The Soft Soil model appeared to give very reliable results, even in the near failure stages, after having somewhat upgraded the shear strength parameters compared to the previous analyses. Best fit of the total soil stability is found for slightly higher values of the shear strength parameters in the Soft Soil model compared to the Mohr-Coulomb or simplistically improved Mohr-Coulomb model. One should be aware that transferring values of soil parameters from one model to the other might lead to gross errors : for each model, there is an appropriate choice of strength parameters. Further development in this should be welcome for design practice. Design at stress levels rather far from failure (thus at rather high values of the safety factor) is not too much sensitive to the model used ; design at stress levels very close to failure is very sensitive to the choice of the soil model and of appropriate values of the soil parameters. More investigation on the sensitivity and on the values of creep and permeability coefficients is needed for the Soft Soil with Creep model, together with a closer analysis of the model behaviour at undrained loading as it seems to underestimate somewhat the excess pore pressures. The use of advanced Soft Soil and Creep models needs for quantified evaluation of the overconsolidation ratio. ACKNOWLEDGEMENTS The authors are grateful to Mr. Brinkgreve and Mr. Bonnier for their advice and help during the calculations presented. REFERENCES Bauduin, C.M. & Molenkamp, F Evaluation of failure of embankment during heightening. Geotechnique 41(3) : Burland, J.B A method of estimating pore pressures and displacements beneath embankments of soft natural clay deposits. Proc. Roscoe Memorial Symp., Cambridge. Cambridge : University Press. Hoëg, K.H., Christian, J.T. & Whitman, R.V Settlement of a strip load on elastic-plasic soil. J. Soil Mech. Fdns. Div. Am. Soc. Civ. Engrs. 94(SM2) :

12 Tavenas, F. & Leroueil, S Effects of stresses and time on yielding of clays. Proc. 9 th Int. Conf. Soil Mech., Tokyo, Teunissen, J.A.M., Bauduin, C.M. & Calle, E.O.F Analysis of failure of an embankment on soft soil : a case study. 2 nd International Symposium on Numerical Models in Geomechanics, Ghent : Redruth : Jackson. Vermeer, P.A. & Brinkgreve, R.B.J. (ed.) PLAXIS Finite Element Code for Soil and Rock Analyses Version 7. Rotterdam : Balkema. Vermeer, P.A. & Neher, H A soft soil model that accounts for creep. PAO course Stability of embankments on soft soils, Delft, May Vermeer, P.A., Vergeer C.J.H. & Termaat, R.J Failure by large plastic deformations. Proc. XIth Int. Conf. On Soil Mech. And Found Eng., San Francisco, Aug Rotterdam : Balkema. 12

SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS

SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 48, NO. 1 2, PP. 53 63 (2004) SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS Gabriella VARGA and Zoltán CZAP Geotechnical Department Budapest University of Technology

More information

1 Introduction. Abstract

1 Introduction. Abstract Abstract This paper presents a three-dimensional numerical model for analysing via finite element method (FEM) the mechanized tunneling in urban areas. The numerical model is meant to represent the typical

More information

Cubzac-les-Ponts Experimental Embankments on Soft Clay

Cubzac-les-Ponts Experimental Embankments on Soft Clay Cubzac-les-Ponts Experimental Embankments on Soft Clay 1 Introduction In the 197 s, a series of test embankments were constructed on soft clay at Cubzac-les-Ponts in France. These full-scale field tests

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

Landslide FE Stability Analysis

Landslide FE Stability Analysis Landslide FE Stability Analysis L. Kellezi Dept. of Geotechnical Engineering, GEO-Danish Geotechnical Institute, Denmark S. Allkja Altea & Geostudio 2000, Albania P. B. Hansen Dept. of Geotechnical Engineering,

More information

1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION

1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION Module 6 Lecture 40 Evaluation of Soil Settlement - 6 Topics 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5.1 Definition of Stress Path 1.5. Stress and Strain Path for Consolidated Undrained Undrained

More information

Monitoring of underground construction

Monitoring of underground construction Monitoring of underground construction Geotechnical Aspects of Underground Construction in Soft Ground Yoo, Park, Kim & Ban (Eds) 2014 Korean Geotechnical Society, Seoul, Korea, ISBN 978-1-138-02700-8

More information

Finite Element Investigation of the Interaction between a Pile and a Soft Soil focussing on Negative Skin Friction

Finite Element Investigation of the Interaction between a Pile and a Soft Soil focussing on Negative Skin Friction NGM 2016 Reykjavik Proceedings of the 17 th Nordic Geotechnical Meeting Challenges in Nordic Geotechnic 25 th 28 th of May Finite Element Investigation of the Interaction between a Pile and a Soft Soil

More information

Advanced model for soft soils. Modified Cam-Clay (MCC)

Advanced model for soft soils. Modified Cam-Clay (MCC) Advanced model for soft soils. Modified Cam-Clay (MCC) c ZACE Services Ltd August 2011 1 / 62 2 / 62 MCC: Yield surface F (σ,p c ) = q 2 + M 2 c r 2 (θ) p (p p c ) = 0 Compression meridian Θ = +π/6 -σ

More information

Towards Efficient Finite Element Model Review Dr. Richard Witasse, Plaxis bv (based on the original presentation of Dr.

Towards Efficient Finite Element Model Review Dr. Richard Witasse, Plaxis bv (based on the original presentation of Dr. Towards Efficient Finite Element Model Review Dr. Richard Witasse, Plaxis bv (based on the original presentation of Dr. Brinkgreve) Journée Technique du CFMS, 16 Mars 2011, Paris 1/32 Topics FEA in geotechnical

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL Soil Failure Criteria SHEAR STRENGTH OF SOIL Knowledge about the shear strength of soil important for the analysis of: Bearing capacity of foundations, Slope stability, Lateral pressure on retaining structures,

More information

SOIL SHEAR STRENGTH. Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida

SOIL SHEAR STRENGTH. Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida SOIL SHEAR STRENGTH Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida What is shear strength Shear strength of a soil is the maximum internal resistance to applied shearing forces Why it is

More information

Soil Constitutive Models and Their Application in Geotechnical Engineering: A Review

Soil Constitutive Models and Their Application in Geotechnical Engineering: A Review Soil Constitutive Models and Their Application in Geotechnical Engineering: A Review Kh Mohd Najmu Saquib Wani 1 Rakshanda Showkat 2 Post Graduate Student, Post Graduate Student, Dept. of Civil Engineering

More information

Deformation And Stability Analysis Of A Cut Slope

Deformation And Stability Analysis Of A Cut Slope Deformation And Stability Analysis Of A Cut Slope Masyitah Binti Md Nujid 1 1 Faculty of Civil Engineering, University of Technology MARA (Perlis), 02600 Arau PERLIS e-mail:masyitahmn@perlis.uitm.edu.my

More information

1.8 Unconfined Compression Test

1.8 Unconfined Compression Test 1-49 1.8 Unconfined Compression Test - It gives a quick and simple measurement of the undrained strength of cohesive, undisturbed soil specimens. 1) Testing method i) Trimming a sample. Length-diameter

More information

Nonlinear Time-Dependent Soil Behavior due to Construction of Buried Structures

Nonlinear Time-Dependent Soil Behavior due to Construction of Buried Structures Journal of Earth Sciences and Geotechnical Engineering, vol. 4, no. 1, 214, 71-88 ISSN: 172-4 (print), 172- (online) Scienpress Ltd, 214 Nonlinear Time-Dependent Soil Behavior due to Construction of Buried

More information

LOOKING INTO AN APPROPRIATE METHODOLOGY FOR THE EMBANKMENT DESIGN AND CONSTRUCTION ON SOFT SOILS

LOOKING INTO AN APPROPRIATE METHODOLOGY FOR THE EMBANKMENT DESIGN AND CONSTRUCTION ON SOFT SOILS LOWLAND TECHNOLOGY INTERNATIONAL SI, Vol. 9, No. 2, 21-28, December 2007 International Association of Lowland Technology (IALT), ISSN 1344-9656 LOOKING INTO AN APPROPRIATE METHODOLOGY FOR THE EMBANKMENT

More information

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL Qassun S. Mohammed Shafiqu and Maarib M. Ahmed Al-Sammaraey Department of Civil Engineering, Nahrain University, Iraq

More information

Soil strength. the strength depends on the applied stress. water pressures are required

Soil strength. the strength depends on the applied stress. water pressures are required Soil Strength Soil strength u Soils are essentially frictional materials the strength depends on the applied stress u Strength is controlled by effective stresses water pressures are required u Soil strength

More information

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials Dublin, October 2010 A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials FracMan Technology Group Dr Mark Cottrell Presentation Outline Some Physical

More information

Chapter 5 Shear Strength of Soil

Chapter 5 Shear Strength of Soil Page 5 Chapter 5 Shear Strength of Soil. The internal resistance per unit area that the soil mass can offer to resist failure and sliding along any plane inside it is called (a) strength (b) shear strength

More information

Chapter (12) Instructor : Dr. Jehad Hamad

Chapter (12) Instructor : Dr. Jehad Hamad Chapter (12) Instructor : Dr. Jehad Hamad 2017-2016 Chapter Outlines Shear strength in soils Direct shear test Unconfined Compression Test Tri-axial Test Shear Strength The strength of a material is the

More information

EU Creep (PIAG-GA )

EU Creep (PIAG-GA ) EU Creep (PIAG-GA-2011-286397) Creep analysis of Onsøy test fill M. Mehli 1 1 Norwegian Geotechnical Institute i Preface This report is part of documentation of work package 1, WP2, (Benchmarking) in the

More information

Numerical simulation of long-term peat settlement under the sand embankment

Numerical simulation of long-term peat settlement under the sand embankment Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (2016) 000 000 www.elsevier.com/locate/procedia 1st International Conference on the Material Point Method, MPM 2017 Numerical

More information

Ch 4a Stress, Strain and Shearing

Ch 4a Stress, Strain and Shearing Ch. 4a - Stress, Strain, Shearing Page 1 Ch 4a Stress, Strain and Shearing Reading Assignment Ch. 4a Lecture Notes Sections 4.1-4.3 (Salgado) Other Materials Handout 4 Homework Assignment 3 Problems 4-13,

More information

Theory of Shear Strength

Theory of Shear Strength SKAA 1713 SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 SOIL STRENGTH DEFINITION Shear strength of a soil is the maximum internal resistance to applied shearing forces The maximum or

More information

Triaxial Shear Test. o The most reliable method now available for determination of shear strength parameters.

Triaxial Shear Test. o The most reliable method now available for determination of shear strength parameters. TOPICS Introduction Components of Shear Strength of Soils Normal and Shear Stresses on a Plane Mohr-Coulomb Failure Criterion Laboratory Shear Strength Testing Direct Shear Test Triaxial Compression Test

More information

Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities

Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities Hany El Naggar, Ph.D., P. Eng. and M. Hesham El Naggar, Ph.D., P. Eng. Department of Civil Engineering

More information

SIMULATION OF AUGER DISPLACEMENT PILE INSTALLATION

SIMULATION OF AUGER DISPLACEMENT PILE INSTALLATION SIMULATION OF AUGER DISPLACEMENT PILE INSTALLATION M.D. Larisch1, 3, E. Nacke2, M. Arnold2, D. Williams1, A. Scheuermann1 1Golder Geomechanics Centre, School of Civil Engineering, The University of Queensland,

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL SHEAR STRENGTH OF SOIL Necessity of studying Shear Strength of soils : Soil failure usually occurs in the form of shearing along internal surface within the soil. Shear Strength: Thus, structural strength

More information

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm 444 Chapter : Shear Strength of Soil Example. Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 5 mm Normal Shear force

More information

PLAXIS 3D FOUNDATION Validation Manual. version 1.5

PLAXIS 3D FOUNDATION Validation Manual. version 1.5 PLAXIS 3D FOUNDATION Validation Manual version 1.5 TABLE OF CONTENTS TABLE OF CONTENTS 1 Introduction...1-1 2 Soil model problems with known theoretical solutions...2-1 2.1 Bi-axial test with linear elastic

More information

Calculation of 1-D Consolidation Settlement

Calculation of 1-D Consolidation Settlement Calculation of 1-D Consolidation Settlement A general theory for consolidation, incorporating threedimensional flow is complicated and only applicable to a very limited range of problems in geotechnical

More information

Laboratory Testing Total & Effective Stress Analysis

Laboratory Testing Total & Effective Stress Analysis SKAA 1713 SOIL MECHANICS Laboratory Testing Total & Effective Stress Analysis Prepared by: Dr. Hetty Mohr Coulomb failure criterion with Mohr circle of stress 2 ' 2 ' ' ' 3 ' 1 ' 3 ' 1 Cot Sin c ' ' 2

More information

EN Eurocode 7. Section 3 Geotechnical Data Section 6 Spread Foundations. Trevor L.L. Orr Trinity College Dublin Ireland.

EN Eurocode 7. Section 3 Geotechnical Data Section 6 Spread Foundations. Trevor L.L. Orr Trinity College Dublin Ireland. EN 1997 1: Sections 3 and 6 Your logo Brussels, 18-20 February 2008 Dissemination of information workshop 1 EN 1997-1 Eurocode 7 Section 3 Geotechnical Data Section 6 Spread Foundations Trevor L.L. Orr

More information

Theory of Shear Strength

Theory of Shear Strength MAJ 1013 ADVANCED SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 Strength of different materials Steel Concrete Soil Tensile strength Compressive strength Shear strength Complex behavior

More information

Compression and swelling. Mechanisms of compression. Mechanisms Common cases Isotropic One-dimensional Wet and dry states

Compression and swelling. Mechanisms of compression. Mechanisms Common cases Isotropic One-dimensional Wet and dry states Compression and swelling Mechanisms Common cases Isotropic One-dimensional Wet and dry states The relationship between volume change and effective stress is called compression and swelling. (Consolidation

More information

Modified Cam-clay triaxial test simulations

Modified Cam-clay triaxial test simulations 1 Introduction Modified Cam-clay triaxial test simulations This example simulates a series of triaxial tests which can be used to verify that Modified Cam-Clay constitutive model is functioning properly.

More information

Lateral Earth Pressure

Lateral Earth Pressure 1 of 11 6/2/2012 4:28 AM Lateral Earth Pressure The magnitude of lateral earth pressure depends on: 1. Shear strength characteristics of soil 2. Lateral strain condition 3. Pore water pressure 4. State

More information

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading Jorge Castillo, Yong-Beom Lee Ausenco, USA Aurelian C. Trandafir Fugro GeoConsulting Inc., USA ABSTRACT

More information

(Refer Slide Time: 02:18)

(Refer Slide Time: 02:18) Geology and Soil Mechanics Prof. P. Ghosh Department of Civil Engineering Indian Institute of Technology Kanpur Lecture 40 Shear Strength of Soil - C Keywords: Shear strength of soil, direct shear test,

More information

D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test.

D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test. (d) COMPRESSIBILITY AND CONSOLIDATION D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test. (a) Plot the e - σ curve. (b)

More information

Seabed instability and 3D FE jack-up soil-structure interaction analysis

Seabed instability and 3D FE jack-up soil-structure interaction analysis Seabed instability and 3D FE jack-up soil-structure interaction analysis Lindita Kellezi, GEO Danish Geotechnical Institute, Denmark Gregers Kudsk, Maersk Contractors, Denmark Hugo Hofstede, Marine Structure

More information

A kinematic hardening critical state model for anisotropic clays

A kinematic hardening critical state model for anisotropic clays A kinematic hardening critical state model for anisotropic clays D. Mašín * * Geotechnical Engineering Research Centre, City University Northampton Square, London EC1V OHB, UK ABSTRACT. The paper investigates

More information

APPENDIX I. Deformation Analysis of the Left Abutment

APPENDIX I. Deformation Analysis of the Left Abutment APPENDIX I Deformation Analysis of the Left Abutment August 25, 2016 Appendix I Deformation Analysis of the Left Abutment TABLE OF CONTENTS I1 INTRODUCTION... 1 I2 MODEL DEVELOPMENT... 2 I2.1 General...

More information

PLAXIS. Material Models Manual

PLAXIS. Material Models Manual PLAXIS Material Models Manual 2015 Build 7519 TABLE OF CONTENTS TABLE OF CONTENTS 1 Introduction 7 1.1 On the use of different models 7 1.2 Limitations 9 2 Preliminaries on material modelling 13 2.1 General

More information

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials 1.3 Scope of This Book 1.4 Historical Development of Geotechnical

More information

Comparison of different soil models for excavation using retaining walls

Comparison of different soil models for excavation using retaining walls Comparison of different soil models for excavation using retaining walls Arjun Gaur 1, Ankit Sahay 2 1 Department of Civil Engineering, Delhi Technical Campus, Guru Gobind Singh Indraprastha University,

More information

Influence of Soil Models on Numerical Simulation of Geotechnical works in Bangkok subsoil

Influence of Soil Models on Numerical Simulation of Geotechnical works in Bangkok subsoil Influence of Soil Models on Numerical Simulation of Geotechnical works in Bangkok subsoil Tanapong Rukdeechuai, Pornkasem Jongpradist, Anucha Wonglert, Theerapong Kaewsri Department of Civil Engineering,

More information

EFFECTS OF PLASTIC POTENTIAL ON THE HORIZONTAL STRESS IN ONE-DIMENSIONAL CONSOLIDATION

EFFECTS OF PLASTIC POTENTIAL ON THE HORIZONTAL STRESS IN ONE-DIMENSIONAL CONSOLIDATION Journal of GeoEngineering, Vol. 11, No. 1, pp. 27-31, April Iinuma 216 et al.: Effects of Plastic Potential on the Horizontal Stress in One-Dimensional Consolidation 27 http://dx.doi.org/1.631/jog.216.11(1).3

More information

Determination of Excess Pore Pressure in Earth Dam after Earthquake

Determination of Excess Pore Pressure in Earth Dam after Earthquake ABSTRACT: Determination of Excess Pore Pressure in Earth Dam after Earthquake S.M. Nasrollahi Faculty of Islamic Azad University Qaenat Branch, Qaen, Iran. Email: s.m.nasrollahi@gmail.com Pore pressure

More information

FUNDAMENTALS SOIL MECHANICS. Isao Ishibashi Hemanta Hazarika. >C\ CRC Press J Taylor & Francis Group. Taylor & Francis Group, an Informa business

FUNDAMENTALS SOIL MECHANICS. Isao Ishibashi Hemanta Hazarika. >C\ CRC Press J Taylor & Francis Group. Taylor & Francis Group, an Informa business SOIL MECHANICS FUNDAMENTALS Isao Ishibashi Hemanta Hazarika >C\ CRC Press J Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an Informa business

More information

Geotechnical Properties of Soil

Geotechnical Properties of Soil Geotechnical Properties of Soil 1 Soil Texture Particle size, shape and size distribution Coarse-textured (Gravel, Sand) Fine-textured (Silt, Clay) Visibility by the naked eye (0.05 mm is the approximate

More information

Determination of subgrade reaction modulus of two layered soil

Determination of subgrade reaction modulus of two layered soil 3 r d International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, 28-30 June 2012, Near East University, Nicosia, North Cyprus Determination of subgrade reaction modulus

More information

Verification of the Hyperbolic Soil Model by Triaxial Test Simulations

Verification of the Hyperbolic Soil Model by Triaxial Test Simulations 1 Introduction Verification of the Hyperbolic Soil Model by Triaxial Test Simulations This example simulates a series of triaxial tests that can be used to verify that the Hyperbolic constitutive model

More information

PLAXIS 3D TUNNEL. Material Models Manual version 2

PLAXIS 3D TUNNEL. Material Models Manual version 2 PLAXIS 3D TUNNEL Material Models Manual version 2 TABLE OF CONTENTS TABLE OF CONTENTS 1 Introduction...1-1 1.1 On the use of different models...1-1 1.2 Limitations...1-2 2 Preliminaries on material modelling...2-1

More information

Seismic Evaluation of Tailing Storage Facility

Seismic Evaluation of Tailing Storage Facility Australian Earthquake Engineering Society 2010 Conference, Perth, Western Australia Seismic Evaluation of Tailing Storage Facility Jonathan Z. Liang 1, David Elias 2 1 Senior Geotechnical Engineer, GHD

More information

SOIL MECHANICS: palgrave. Principles and Practice. Graham Barnes. macmiiian THIRD EDITION

SOIL MECHANICS: palgrave. Principles and Practice. Graham Barnes. macmiiian THIRD EDITION SOIL MECHANICS: Principles and Practice THIRD EDITION Graham Barnes palgrave macmiiian 'running Contents Preface xii Fine soil 19 List of symbols xiv Mass structure 21 Note on units xix Degree of weathering

More information

AN IMPORTANT PITFALL OF PSEUDO-STATIC FINITE ELEMENT ANALYSIS

AN IMPORTANT PITFALL OF PSEUDO-STATIC FINITE ELEMENT ANALYSIS AN IMPORTANT PITFALL OF PSEUDO-STATIC FINITE ELEMENT ANALYSIS S. Kontoe, L. Pelecanos & D.M. Potts ABSTRACT: Finite Element (FE) pseudo-static analysis can provide a good compromise between simplified

More information

On Rate-Dependency of. Gothenburg Clay

On Rate-Dependency of. Gothenburg Clay On Rate-Dependency of Gothenburg Clay Mats Olsson Chalmers/NCC Teknik 1 Background & Introduction Mats Olsson Outline MAC-s model (anisotropic creep model) New K 0 - triaxial cell Results & Simulations

More information

PGroupN background theory

PGroupN background theory 12/12/03 Dr Francesco Basile, Geomarc Ltd PGroupN background theory Estimation of the deformations and load distributions in a group of piles generally requires the use of computer-based methods of analysis.

More information

Study of the behavior of Tunis soft clay

Study of the behavior of Tunis soft clay Innov. Infrastruct. Solut. (2016) 1:31 DOI 10.1007/s41062-016-0031-x ORIGINAL PAPER Study of the behavior of Tunis soft clay Mnaouar Klai 1 Mounir Bouassida 1 Received: 20 July 2016 / Accepted: 3 August

More information

Oh, Erwin, Bolton, Mark, Balasubramaniam, Bala, Buessucesco, B.

Oh, Erwin, Bolton, Mark, Balasubramaniam, Bala, Buessucesco, B. Undrained Behavior of Lime Treated Soft Clays Author Oh, Erwin, Bolton, Mark, Balasubramaniam, Bala, Buessucesco, B. Published 8 Conference Title Proceedings of the Eighteenth (8) International Offshore

More information

Drained Against Undrained Behaviour of Sand

Drained Against Undrained Behaviour of Sand Archives of Hydro-Engineering and Environmental Mechanics Vol. 54 (2007), No. 3, pp. 207 222 IBW PAN, ISSN 1231 3726 Drained Against Undrained Behaviour of Sand Andrzej Sawicki, Waldemar Świdziński Institute

More information

Numerical Modeling of Direct Shear Tests on Sandy Clay

Numerical Modeling of Direct Shear Tests on Sandy Clay Numerical Modeling of Direct Shear Tests on Sandy Clay R. Ziaie Moayed, S. Tamassoki, and E. Izadi Abstract Investigation of sandy clay behavior is important since urban development demands mean that sandy

More information

INTI COLLEGE MALAYSIA

INTI COLLEGE MALAYSIA EGC373 (F) / Page 1 of 5 INTI COLLEGE MALAYSIA UK DEGREE TRANSFER PROGRAMME INTI ADELAIDE TRANSFER PROGRAMME EGC 373: FOUNDATION ENGINEERING FINAL EXAMINATION : AUGUST 00 SESSION This paper consists of

More information

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room 2017 Soil Mechanics II and Exercises Final Exam 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room Attention: The exam consists of five questions for which you are provided with five answer sheets. Write

More information

Triaxial Consolidated Undrained (CU) Test

Triaxial Consolidated Undrained (CU) Test Benchmark Example No. 48 Triaxial Consolidated Undrained (CU) Test SOFiSTiK 218 VERiFiCATiON MANUAL BE48: Triaxial Consolidated Undrained (CU) Test VERiFiCATiON MANUAL, Version 218-7 Software Version:

More information

Interpretation of Flow Parameters from In-Situ Tests (P.W. Mayne, November 2001)

Interpretation of Flow Parameters from In-Situ Tests (P.W. Mayne, November 2001) Interpretation of Flow Parameters from In-Situ Tests (P.W. Mayne, November 2001) FLOW PROPERTIES Soils exhibit flow properties that control hydraulic conductivity (k), rates of consolidation, construction

More information

Validation of empirical formulas to derive model parameters for sands

Validation of empirical formulas to derive model parameters for sands Validation of empirical formulas to derive model parameters for sands R.B.J. Brinkgreve Geo-Engineering Section, Delft University of Technology, Delft, Netherlands/Plaxis B.V., Delft, Netherlands E. Engin

More information

Slope stability analysis limit equilibrium or the finite element method?

Slope stability analysis limit equilibrium or the finite element method? Slope stability analysis limit equilibrium or the finite element method? Carol Matthews and Zeena Farook, Arup; and Peter Helm, Newcastle University 1. Introduction Since the 193s, the limit equilibrium

More information

CHARACTERISTICS OF VACUUM CONSOLIDATION COMPARING WITH SURCHARGE LOAD INDUCED CONSOLIDATION

CHARACTERISTICS OF VACUUM CONSOLIDATION COMPARING WITH SURCHARGE LOAD INDUCED CONSOLIDATION International Symposium on Geotechnical Engineering, Ground Improvement and Geosynthetics for Human Security and Environmental preservation, Bangkok, Thailand CHARACTERISTICS OF VACUUM CONSOLIDATION COMPARING

More information

2D Liquefaction Analysis for Bridge Abutment

2D Liquefaction Analysis for Bridge Abutment D Liquefaction Analysis for Bridge Abutment Tutorial by Angel Francisco Martinez Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering

More information

Calculation types: drained, undrained and fully coupled material behavior. Dr Francesca Ceccato

Calculation types: drained, undrained and fully coupled material behavior. Dr Francesca Ceccato Calculation types: drained, undrained and fully coupled material behavior Dr Francesca Ceccato Summary Introduction Applications: Piezocone penetration (CPTU) Submerged slope Conclusions Introduction Porous

More information

The Role of Slope Geometry on Flowslide Occurrence

The Role of Slope Geometry on Flowslide Occurrence American Journal of Environmental Sciences 3 (3): 93-97, 27 ISSN 1553-345X 27 Science Publications Corresponding Author: The Role of Slope Geometry on Flowslide Occurrence Chiara Deangeli DITAG, Politecnico

More information

NUMERICAL ANALYSIS OF DAMAGE OF RIVER EMBANKMENT ON SOFT SOIL DEPOSIT DUE TO EARTHQUAKES WITH LONG DURATION TIME

NUMERICAL ANALYSIS OF DAMAGE OF RIVER EMBANKMENT ON SOFT SOIL DEPOSIT DUE TO EARTHQUAKES WITH LONG DURATION TIME Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan NUMERICAL ANALYSIS OF DAMAGE OF RIVER EMBANKMENT ON SOFT

More information

Foundation Analysis LATERAL EARTH PRESSURE

Foundation Analysis LATERAL EARTH PRESSURE Foundation Analysis LATERAL EARTH PRESSURE INTRODUCTION Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheet-pile walls, sheet-pile bulkheads, braced cuts, and other

More information

Numerical Modeling of Nonhomogeneous Behavior of Structured Soils during Triaxial Tests

Numerical Modeling of Nonhomogeneous Behavior of Structured Soils during Triaxial Tests Numerical Modeling of Nonhomogeneous Behavior of Structured Soils during Triaxial Tests D. S. Liyanapathirana 1 ; J. P. Carter 2 ; and D. W. Airey 3 Abstract: The nonhomogeneous behavior of structured

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 56 Module 4: Lecture 7 on Stress-strain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin p-q space; Mohr-Coulomb failure

More information

Simulation of footings under inclined loads using different constitutive models

Simulation of footings under inclined loads using different constitutive models Simulation of footings under inclined loads using different constitutive models J. Hintner, P.A. Vermeer Institute of Geotechnical Engineering, University of Stuttgart, Germany P.-A. von Wolffersdorff

More information

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM]

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM] Objectives_template Objectives In this section you will learn the following Introduction Different Theories of Earth Pressure Lateral Earth Pressure For At Rest Condition Movement of the Wall Different

More information

CONSOLIDATION BEHAVIOR OF PILES UNDER PURE LATERAL LOADINGS

CONSOLIDATION BEHAVIOR OF PILES UNDER PURE LATERAL LOADINGS VOL., NO., DECEMBER 8 ISSN 89-8 -8 Asian Research Publishing Network (ARPN). All rights reserved. CONSOLIDATION BEAVIOR OF PILES UNDER PURE LATERAL LOADINGS Qassun S. Mohammed Shafiqu Department of Civil

More information

3D FEM investigation on bending failure mechanism of column inclusion under embankment load

3D FEM investigation on bending failure mechanism of column inclusion under embankment load Lowland Technology International 215; 17 (3): 157-166 International Association of Lowland Technology (IALT): ISSN 1344-9656 Research Paper 3D FEM investigation on bending failure mechanism of column inclusion

More information

Finite Element Solutions for Geotechnical Engineering

Finite Element Solutions for Geotechnical Engineering Release Notes Release Date: July, 2015 Product Ver.: GTSNX 2015 (v2.1) Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering Enhancements

More information

Compressibility & Consolidation

Compressibility & Consolidation CHAPTER Compressibility & Consolidation Settlement If a structure is placed on soil surface, then the soil will undergo an elastic and plastic deformation. In engineering practice, the deformation or reduction

More information

Numerical modelling of tension piles

Numerical modelling of tension piles Numerical modelling of tension piles S. van Baars Ministry of Public Works, Utrecht, Netherlands W.J. van Niekerk Ballast Nedam Engineering, Amstelveen, Netherlands Keywords: tension piles, shaft friction,

More information

Adapting The Modified Cam Clay Constitutive Model To The Computational Analysis Of Dense Granular Soils

Adapting The Modified Cam Clay Constitutive Model To The Computational Analysis Of Dense Granular Soils University of Central Florida Electronic Theses and Dissertations Masters Thesis (Open Access) Adapting The Modified Cam Clay Constitutive Model To The Computational Analysis Of Dense Granular Soils 2005

More information

EARTHQUAKE-INDUCED SETTLEMENT AS A RESULT OF DENSIFICATION, MEASURED IN LABORATORY TESTS

EARTHQUAKE-INDUCED SETTLEMENT AS A RESULT OF DENSIFICATION, MEASURED IN LABORATORY TESTS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3291 EARTHQUAKE-INDUCED SETTLEMENT AS A RESULT OF DENSIFICATION, MEASURED IN LABORATORY TESTS Constantine

More information

Computers and Geotechnics

Computers and Geotechnics Computers and Geotechnics xxx (29) xxx xxx Contents lists available at ScienceDirect Computers and Geotechnics journal homepage: www.elsevier.com/locate/compgeo Simulation of the progressive failure of

More information

DERIVATIVE OF STRESS STRAIN, DEVIATORIC STRESS AND UNDRAINED COHESION MODELS BASED ON SOIL MODULUS OF COHESIVE SOILS

DERIVATIVE OF STRESS STRAIN, DEVIATORIC STRESS AND UNDRAINED COHESION MODELS BASED ON SOIL MODULUS OF COHESIVE SOILS International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 7, Jul 2015, pp. 34-43, Article ID: IJCIET_06_07_005 Available online at http://www.iaeme.com/ijciet/issues.asp?jtypeijciet&vtype=6&itype=7

More information

Foundations of High Rise Buildings

Foundations of High Rise Buildings Foundations of High Rise Buildings Prof. Dr.-Ing. Yasser El-Mossallamy Professor of Geotechnical Engineering Ain Shams Univ. Cairo, Egypt c/o Arcadis Consult, Germany y.el-mossallamy@arcadis.de Slide:

More information

Session 3 Mohr-Coulomb Soil Model & Design (Part 2)

Session 3 Mohr-Coulomb Soil Model & Design (Part 2) Mohr Coulomb Model Session 3 Mohr-Coulomb Soil Model & Design (Part 2) Time Session Topic 09:00 10:30 1 Overview 10:30 11:00 Coffee Break 11:00 12:30 2 Design (Part 1) 12:30-01:30 Lunch 01:30 03:00 3 Mohr-Coulomb

More information

Influences of material dilatancy and pore water pressure on stability factor of shallow tunnels

Influences of material dilatancy and pore water pressure on stability factor of shallow tunnels Influences of material dilatancy and pore water pressure on stability factor of shallow tunnels YANG Xiao-li( ), HUANG Fu( ) School of Civil and Architectural Engineering, Central South University, Changsha

More information

Shear strength. Common cases of shearing In practice, the state of stress in the ground will be complex. Common cases of shearing Strength

Shear strength. Common cases of shearing In practice, the state of stress in the ground will be complex. Common cases of shearing Strength Shear strength Common cases of shearing Strength Near any geotechnical construction (e.g. slopes, excavations, tunnels and foundations) there will be both mean and normal stresses and shear stresses. The

More information

FINITE ELEMENT SIMULATION OF RETROGRESSIVE FAILURE OF SUBMARINE SLOPES

FINITE ELEMENT SIMULATION OF RETROGRESSIVE FAILURE OF SUBMARINE SLOPES FINITE ELEMENT SIMULATION OF RETROGRESSIVE FAILURE OF SUBMARINE SLOPES A. AZIZIAN & R. POPESCU Faculty of Engineering & Applied Science, Memorial University, St. John s, Newfoundland, Canada A1B 3X5 Abstract

More information

Stress and Strains in Soil and Rock. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University

Stress and Strains in Soil and Rock. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Stress and Strains in Soil and Rock Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Stress and Strain ε 1 1 2 ε 2 ε Dimension 1 2 0 ε ε ε 0 1 2 ε 1 1 2 ε 2 ε Plane Strain = 0 1 2

More information

QUESTION BANK DEPARTMENT: CIVIL SUBJECT CODE / Name: CE 2251 / SOIL MECHANICS SEMESTER: IV UNIT 1- INTRODUCTION PART - A (2 marks) 1. Distinguish between Residual and Transported soil. (AUC May/June 2012)

More information

Life Science Journal 2016;13(3)

Life Science Journal 2016;13(3) A modified Pile Load Test Based on Numerical and Experimental Evaluation of Bored Pile in Clayey Soil Bakr R., Ibrahim A., and Elmeligy M. Faculty of Engineering, Mansura University, Mansoura, Dakahleya,

More information

INVESTIGATION OF SATURATED, SOFT CLAYS UNDER EMBANKMENTS. Zsolt Rémai Budapest University of Technology and Economics Department of Geotechnics

INVESTIGATION OF SATURATED, SOFT CLAYS UNDER EMBANKMENTS. Zsolt Rémai Budapest University of Technology and Economics Department of Geotechnics INVESTIGATION OF SATURATED, SOFT CLAYS UNDER EMBANKMENTS PhD thesis Zsolt Rémai Budapest University of Technology and Economics Department of Geotechnics Budapest December, 2012 1. IMPORTANCE OF THE RESEARCH

More information

MPM Research Community. Anura3D MPM Software. Verification Manual

MPM Research Community. Anura3D MPM Software. Verification Manual MPM Research Community Anura3D MPM Software Verification Manual Version: 2017.1 12 January 2017 Anura3D MPM Software, Verification Manual Edited by: Miriam Mieremet (Deltares Delft, The Netherlands) With

More information