SLOPE FAILURE VERIFICATION OF BURIED STEEL PIPELINES

Size: px
Start display at page:

Download "SLOPE FAILURE VERIFICATION OF BURIED STEEL PIPELINES"

Transcription

1 SLOPE FAILURE VERIFICATION OF BURIED STEEL PIPELINES Charis J. Gantes 1, George D. Bouckovalas 2, Vlasis K. Koumousis 3 ABSTRACT. A methodology for the evaluation of the effects of down-slope ground movements, induced by seismic activity, on buried pipelines made of steel, is presented. The basic assumptions, computational tools, numerical analysis options, pertinent code provisions and required checks are outlined. Representative results of the proposed methodology, as applied for the Crude Oil Pipeline from Thessaloniki to Skopje, are presented. INTRODUCTION A methodology for the evaluation of the effects of eventual down-slope ground movements, induced by seismic activity, on buried pipelines made of steel, is presented and applied for the design of the Crude Oil Pipeline from Thessaloniki to Skopje. Such ground movements induce straining of the pipeline in a different way than usual design limit states, and thus require special treatment, combining geological investigations, geotechnical evaluation to identify critical sites and compute direction and magnitude of anticipated movements, sophisticated numerical analysis to obtain pipeline strains, checks by means of appropriate failure criteria, and engineering judgment to propose suitable countermeasures. In the proposed approach, the pipeline is modelled with either beam or shell elements, and the soil with appropriate nonlinear springs in all directions, accounting for soil-pipeline interaction. Geometrically and material nonlinear analyses are carried out, accounting for large displacements, and adopting a nonlinear material law for the pipeline steel, and an elastic-perfectly plastic law for the soil. The suitability of beam elements with respect to shell elements is addressed. The selection of an appropriate pipeline length to be included in the model is investigated. The effects of the predominant direction of down-slope displacement with respect to the pipeline axis are discussed. Appropriate failure criteria are proposed in terms of allowable maximum strains. Finally, alternative countermeasures for critical sites, where the anticipated displacements exceed the allowable limits, are proposed and evaluated. 1 Associate Professor, School of Civil Engineering, National Technical University of Athens, Athens, Greece, e- mail: chgantes@central.ntua.gr 2 Professor, School of Civil Engineering, National Technical University of Athens, Athens, Greece, gbouk@central.ntua.gr 3 Professor, School of Civil Engineering, National Technical University of Athens, Athens, Greece, vkoum@central.ntua.gr 1

2 PIPELINE DESIGN DATA The basic pipeline characteristics, which are required for the purposes of such a study, concern the pipeline geometry and cross-section, the operating internal pressure, as well as the constitutive law of the pipeline material. Cross-Section Characteristics Circular hollow cross-sections are used, denoted as NPS D, where NPS stands for Nominal Pipe Size and the number D denotes the outside diameter measured in inches. The wall thickness varies along the length of the pipeline, usually between a normal wall thickness, which is predominantly employed, and a heavy wall thickness, intended for use in areas where externally applied loads are extreme. At the locations of interest for the specific application presented in this paper, NPS 16 pipes with a wall thickness of 7.14 mm are used. Material Properties Pipes are usually made of steel with Young s modulus equal to MPa and Poisson s ratio equal to The material behaviour is linear up to a stress level known as Specified Minimum Yield Strength (SMYS). The stress-strain law is usually approximated with a trilinear curve, as shown in Fig. 1. The von Mises yield criterion, together with a kinematic hardening rule, is used to define yield. Pipe welds are either long-seam or spiral. For the specific application presented in this paper, pipes are made of API-5LX60 steel with SMYS equal to MPa (58.82 ksi). Pressures and Temperatures Figure 1. Typical pipeline steel stress-strain curve The design pressures and temperatures follow the specifications issued by the manufacturer, according to the guidelines of pertinent codes. For the specific application presented in this paper, ANSI/ASME B31.4 is adopted, specifying design pressure of 10.2 MPa, maximum design temperature (above ground) equal to +38 o C, and minimum design temperature (underground) equal to -10 o C. 2

3 Construction Techniques A general conformance to recognized codes of practice for construction, transportation, storing, placement, and backfilling of pipes is required. The nominal backfill cover is different for cross-country areas, rocky areas and under major roads. In all cases presented here a backfill cover of 0.90 m, intended for cross-country areas, is applied. FAILURE CRITERIA The code normally used for structural design of pipelines is ANSI/ASME B31.4 on Pipeline Transportation Systems for Liquid Hydrocarbons and Other Liquids. This code addresses essentially only straining of the pipeline due to pressure containment. For lifelines operating in extreme environment, such as areas of high seismic activity, post-elastic straining of the pipe material is likely and additional criteria are required [ASCE 1984, ASCE-ALA 2005]. Stresses and strains in buried pipelines may be classified as either load-controlled or displacement-controlled. In the present case of eventual down-slope ground movements caused by earthquake-induced slope failure, the loading is displacement-controlled, so that an upper strain limit has to be specified. During a seismic event the loading is exerted on a buried pipe by the displacement of the surrounding soil, and since the pipe is relatively flexible compared to the soil, the resulting action effects are such that it is more meaningful to specify failure in terms of strains than of stresses. Taking further into account that most pipelines are flexible relative to the surrounding soil, it is realized that they resist externally applied deformations mainly through axial (tensile or compressive) strains. Maximum allowable tensile strain The allowable tensile strain specified for buried pipelines by the European Seismic Code EC- 8 (ENV ) is 5%, corresponding to an axial tensile stress, which is 25% higher than the SMYS of API-5LX60 steel. However, this limit is not acceptable for girth welds due to metallurgical alterations induced to the heat-affected zone of steel during the welding process. In general, the allowable tensile strain for butt (peripheral) welding can be conservatively taken as 0.5%, based on previous experience from similar projects in Greece and abroad. Pipe welds are either long-seam or spiral. With long-seam pipes, it may be possible to orient the seam so that it is not located at a position of high circumferential strain, thereby utilizing the tensile strain capacity of the plain pipe. When dealing with spirally welded pipes, however, the hoop strain always has a component perpendicular to the seam. Assuming a minimum value of 45 o for the angle between the seam and the longitudinal axis of the pipe, the allowable tensile hoop strain for such pipes is modified by dividing it by 0.707, and becomes 0.5%/0.707=0.707%. In our case, long seam welding of the pipes is assumed; therefore, a total allowable strain of 0.5% is considered. Maximum allowable compressive strain Two modes of buckling failure are possible for a pipeline under extreme compressive actions. The pipeline may break free of the backfill cover and buckle upward as a beam in a global buckling mode, or it may buckle as a shell with local wrinkling of its wall in a local buckling mode. Wrinkling may be critical whenever the surrounding soil and the backfill cover provide sufficient confinement to prevent upward displacement. Thus, the strain limits, which are usually set by the industry, are stringent to prevent mainly local wrinkling. In general, 3

4 resistance to the formation of elastic-plastic instability in a pipe is characterized by the SMYS of the pipe material, the shape of the stress-strain curve, and by the outside diameter (D) to thickness (t) ratio of the pipe. In simple terms, the first two factors are overlooked, and the limiting compressive strain for the formation of a buckle is given by D (%) = (1) t e * c which equals 0.64% for an NPS 16 x 8.74 mm pipe, thus constituting a less strict criterion than the limiting tensile strain. Alternatively, based on the provisions of EC-8 (ENV ) for buried pipelines, the limiting compressive strain for the formation of buckles is defined as: e t (%) = 40 5% (2) D all, c < For the pipeline dimensions relevant to the present case study, this expression gives an allowable compressive strain equal to 0.70%. Using the most unfavourable of these two values, the maximum allowable compressive strain has been considered equal to 0.64%. Load and Performance Factors It is common practice in pipeline design to set all load and material factors equal to 1.0. This is due to tight quality control on materials, strict limits on applied pressure enforced through pressure control devices, the displacement-controlled nature of ultimate limit states, and the less severe than average consequences of failure of cross-country pipelines, that are due to proper operational, monitoring, and maintenance procedures. DOWN-SLOPE GROUND DISPLACEMENTS Identification of Problem Sites The sites along the pipeline with potential slope stability problems are identified, based on data provided in the relevant geological and geotechnical reports. The basic information listed for each site includes its approximate extent, the natural ground water conditions, and the factors of safety computed from a static slope stability analysis (e.g. based on the Bishop method of slices) for dry as well as for wet soil conditions. For selected critical sites of the application presented here, this information is listed in Table 1. It is observed that all sites remain dry under natural hydro-geological conditions, with the ground water level met deeper than 10-15m from the ground surface. Thus, the event of partial or complete saturation of these slopes is rather extreme, as it may only be encountered during lasting periods of heavy rainfalls or at the wet period following snow melting. Furthermore, these slopes appear as sufficiently stable under static loads and dry conditions, with factors of safety higher than Potential saturation has a critical effect on stability as it reduces the factors of safety drastically, to as low as Hence, preventing complete saturation of the slopes is crucial, to avoid failure not only during earthquake activity, but also under normal (earthquake-quiet) conditions. Taking the acceptable factor of safety under static conditions as equal to 1.50 under dry conditions, and 1.20 under wet conditions, the application of appropriate measures (surface or deep drainage trenches, vegetation, etc.) is necessary for at least three sites, namely SK992, SK1171 and SK

5 Site Table 1: Description of sites with slope stability problems along the pipeline route Extent along the pipeline route From To a Geological conditions As above, with a 2m cover of debris and low plasticity, brownish silty clay 4-7 m of upper pleistocene deposits resting on top of pliocene lake sediments Pliocene deposits of conglomerates, sands and silts Pliocene deposits of conglomerates, sands and silts Talus, blocks of limestones and diabases within a silty matrix Calculation of Anticipated Displacements: Assumptions Methodology Natural ground water conditions Static factor of safety Dry Wet Dry Dry Dry Dry Dry During earthquakes, static loads are increased due to seismic actions in the horizontal and the vertical directions, representing the inertia of the soil mass. Under the combined action of static and seismic loads, the slope may fail leading to down-slope ground displacements along the failure surface. For the geotechnical conditions of the slopes in Table 1, earthquake induced slope instabilities are far less ominous, compared to a static failure, since the induced amount of displacement is generally limited. This is because failure, and the associated ground displacements, last for a very limited period of time (fractions of a second), only as long as the ground acceleration exceeds a critical acceleration a y, i.e. the horizontal acceleration that is required in order to reduce the pseudo-static factor of safety of the slope to However, note that this may not be the case in the presence of saturated, cohesionless (e.g. sand and silt) soil layers, which liquefy due to earthquake shaking and lead to a postshaking landslide. According to Newmark (1965), a reasonable upper bound to the downslope ground displacements triggered by earthquakes, in absence of soil liquefaction, is given by the following relation: 1 2 V a 2 δ = max max a y a y (3) where a max and V max are the horizontal peak ground acceleration and velocity, respectively. The input data used for the computation of down-slope ground displacements are summarized in Tables 2 and 3 for two seismic events, the Design Probable (DPE) and the Design Maximum (DME) earthquakes, with 70 and 1000 years return period, respectively. Table 2: Summary of input data for down-slope ground movement computations - DPE Site a max (g) V max (cm/sec) Dry conditions Wet conditions bedrock A a ground bedrock A v ground a y (g) a y (g)

6 Table 3: Summary of input data for down-slope ground movement computations DME Site a max (g) V max (cm/sec) Dry conditions Wet conditions bedrock A a ground bedrock A v ground a y (g) a y (g) Peak Seismic Motion Parameters The peak seismic motion parameters for the different sites were computed from the corresponding values at the seismic bedrock of the pipeline route (Bouckovalas and Kavouklis, 2000) and the local geological conditions listed in Table 1. It was assumed that the peak seismic motion parameters varied, from a b max and V b max at the seismic bedrock to a g max=a a a b max and V g max=a v V b max at the ground surface (A a, A V are soil amplification factors). To take into account that the potential failure surface extends to considerable depth within the soil cover (and may reach the underlying bedrock), down-slope ground movements were computed for the average of the bedrock and the ground surface motion parameters, i.e. a max (1 + A ) a 2, V (1 + A a b V b = max max = Vmax (4) 2 ) Alternatively, the peak seismic motion parameters at ground surface could have been reduced to 2/3 or 1/2 (e.g. Kramer 1996). However, this approach is suitable rather for high and flexible embankments than for the natural slopes examined herein. The criteria set in the above mentioned report for soil effects on seismic ground motion parameters are as follows: Table 4: Criteria for soil effects on seismic ground motion parameters Bedrock Shallow Soil Deep Soil H<5m 5m<H<15m 15m<H<35m H>35m A a A v According to these criteria soil amplification of the seismic motion (A a and A v > 1.00) was conservatively taken into account only for sites SK1013 and SK1200, where the ground surface is covered by recent soil deposits (pleistocene and talus formations) with a depth greater than about 5m. For the rest of the sites, it was assumed that A s =A v =1.0. Critical Seismic Acceleration In brief, the slope stability analyses assume: (a) A downslope pointing horizontal acceleration a h and an upward pointing vertical acceleration a v =0.5a h. Preliminary analyses have shown that this combination is less favourable as compared to the one with downward pointing vertical acceleration. (b) Failure surfaces that include the pipeline cross section (for slope gradients perpendicular to the pipeline axis) or major portions of its length (for slope gradients parallel to the pipeline axis). (c) Dry as well as fully saturated ground conditions. For each case of slope and groundwater conditions, the pseudo-static analyses were repeated for different values of a h and the results were presented as Factor of Safety (FS) versus horizontal acceleration diagram. The value of a y was consequently computed graphically for FS=1.0. 6

7 Calculation of Anticipated Displacements: Results Computed down-slope ground movements for the DPE and the DME seismic events are summarized in Table 5, together with the possible extent of the affected length of pipeline axis and the direction of the ground movement relative to the pipeline axis, defined in terms of the directional angle ω (Fig. 2). It is observed that the largest ground displacements correspond to the DME seismic event combined with complete saturation of the slopes. In gross terms, displacements are reduced by an order of magnitude if the DPE is considered instead of the DME or if dry conditions are considered instead of wet. Site Extent along the pipeline route From To Figure 2: Definition of directional angle ω Table 5: Summary of computed down-slope ground displacements Position of Computed pipeline axis down-slope ground relative to the movement DPE maximum slope (cm) Computed down-slope ground movement - DME (cm) gradient (2) Dry Wet Dry Wet Perpendicular (70-75 o ) Parallel (40 o ) Parallel (30 o ) Perpendicular (90 o ) a Perpendicular (80-90 o ) >150 The sites may be divided in two different groups, with reference to the direction of ground displacement relative to the pipeline axis: (a) The group of perpendicular displacements, where the direction of maximum slope gradient forms an angle ω>45 ο with the pipeline axis (sites SK992, 1173 and 1200). In this case, the pipeline will primarily undergo lateral deflection of its axis line. (b) The group of parallel displacements, where the direction of maximum slope gradient forms an angle ω<45 ο with the pipeline axis (sites SK1013 and 1171). In this case, the pipeline will primarily undergo tension at the upper part of the slope and compression at the lower part. Among the sites of the first group, SK1200 is clearly the most critical as it undergoes the largest down-slope displacements, under any seismic and groundwater conditions. Among the sites of the second group, both SK1013 and SK1172 undergo significant ground displacements. At both sites the pipeline axis is inclined relative to the direction of maximum 7

8 slope gradient and consequently ground deformations will have two components: one longitudinal and one transverse. Due to the combined action of these components, phenomena of local instability may develop at the lower part of the pipeline well before the SMYS is reached. This event is more likely for site SK1013 where the directional angle ω, and consequently the percentage of transverse displacement, is larger. Therefore, numerical analyses have been carried out for sites SK1013 and 1200, taken as representative for parallel and perpendicular patterns of down-slope ground displacements. Nevertheless, due to length limitations, details are presented here only for the former site, which combines appreciable ground movements along as well as perpendicular to the pipeline axis. STRESS ANALYSIS METHODOLOGY AND ASSUMPTIONS Pipeline Modeling The geometrically and material non-linear analysis is performed using an appropriate FEM code. Geometric non-linearity is treated by satisfying the equilibrium equations in the current deformed configuration. The inelastic behavior of the pipe material is considered by hybrid modeling, namely with 4-node isoparametric shell elements within the area of expected slope failure, in order to capture stress concentrations in a more accurate way, with 2-node isoparametric 3-D beam elements outside the area of expected slope failure, where a gradual reduction of stresses is expected, and with one rigid element at each interface of shell elements with a beam element, coupling the beam and the shell sub-models (shown schematically with radial lines in Fig. 3). Figure 3: Coupling of the beam and shell part of the numerical model with a rigid element Analyses can also be carried out with a pure 3-D beam model of the pipeline, in order to have a preliminary, still realistic, estimate of the pipeline response before advancing to the considerably more cumbersome hybrid modeling. In addition, the results of the beam model analysis are used in order to identify areas of higher stresses, which are then modeled with shell elements in the hybrid beam-shell model. Along the beam part of the pipeline, the 3-D beam elements must have sufficient number of control points along the perimeter of the pipe to account for the inelastic behavior. Stresses are computed at these points of all crosssections, accounting for the contributions of axial forces and bending moments. The soil is modeled by 4 sets of inelastic springs in the axial and the two transverse directions (Fig. 4), with two different sets of vertical springs, one in the upwards and one in the downwards direction. The ground movement is modeled as an imposed displacement on the base nodes of all attached springs. 8

9 Figure 4: Transverse soil springs in the beam part of the structural model (axial springs are not shown for clarity purposes) In the shell part of the pipeline, 16 elements are used along the periphery of each crosssection, while springs are attached in each of the X, Y, and Z directions at all nodes (Fig. 5). The properties of the transverse springs depend on the projected area of the cross-section in the corresponding direction. Figure 5: Transverse soil springs (a) in a typical cross-section of the shell part of the structural model (Y-Z plane), (b) 3-D view Z Y X In the shell model, internal pressure is modeled as a uniformly distributed load on the internal face of all shell elements. Thus, a more accurate representation of the actual situation is achieved in comparison to a pure beam element model, where the cross-sectional behavior of the pipe under internal pressure can only be considered separately and consequently superimposed to the strains and stresses caused by ground movement. Equivalent Soil Springs In general, the pipeline is fully embedded into loose cohesionless backfill. Hence, it is assumed that the pipeline will deform entirely within this uniform material and consequently soil springs will be correlated to the properties of the backfill and not of the natural soil. The constitutive relations of the soil springs are considered bi-linear elastoplastic, although it turns out that, except from the vertical downward springs, the main parameter is the ultimate soil resistance, i.e. the soil springs behave essentially as stick-slip elements. The theory behind the computation of soil spring characteristics is briefly outlined in the following paragraphs. The presentation focuses upon cohesionless materials (sands) such as the backfill soil commonly used along pipeline routes. Axial Springs Axial spring restraint forces represent the skin friction on the cylindrical surface along the pipe. They are developed from similar theories as for the load transfer at axially loaded pilesoil interfaces. For sands and other cohesionless soils (e.g. gravel), they are obtained by integrating the shear stress along the area of contact between pipe and soil. Therefore, for a fully buried pipeline the ultimate axial resistance t u per unit length can be expressed as: 9

10 t π D = γ H (1 K o ) tan δ (5) 2 u + where K o is the coefficient of soil pressure at rest, H is the depth from the ground surface to the center of the pipeline, D is the external pipe diameter, γ is the effective unit weight of soil, and δ is the angle of friction between pipe and soil. An average value of δ equal to 2/3 of the backfill friction angle φ is used. The ultimate axial resistance is first attained at relative displacement x u of the order of 2.5 to 5.0 mm, for dense to loose sand, respectively [Singhal, 1980]. The value used for the present study is conservatively taken as the mean of this range, i.e. 38 mm. Transverse Horizontal Springs These springs simulate the resistance of the surrounding soils to any horizontal translation of the pipeline. Thus, the mechanisms of soil-pipeline interaction are similar to those of vertical anchor plates or footings moving horizontally relative to the surrounding soils, and thus mobilizing a passive type of earth pressure. For cohesionless soils, the relationship between the force per unit length of the pipe (p) and the horizontal displacement (y), has been expressed by a hyperbolic relationship of the form [Trautmann and O Rourke,1983a]: y p = A + B y (6) where A=0.15y u /p u, B=0.85/p u, p u =γ H N qh D, N qh is the horizontal bearing capacity factor [Hansen 1961], and y u =0.07 to 0.10(H+D/2) for loose sand, while y u =0.02 to 0.03(H+D/2) for dense sand. In the case of a bi-linear elastoplastic representation of the spring response fitted to Eq. (6) at p=0.5p u the previous values of y u must be reduced by a factor of Taking further into account the mean value recommended for loose sands, the displacement at first yield finally becomes y u =0.022(H+D/2). Transverse Vertical Springs The resistance forces for the vertical springs are different for downward and upward movements, as the resistance applied from the relatively thin layer of soil above the pipe is significantly smaller. For the downward direction of motion, the pipeline is assumed to act as a cylindrically-shaped strip footing and the ultimate soil resistance q u is given by conventional bearing capacity theory. For cohesionless soils: q u 2 = γ H N q D+ 0.5 γ D N γ (7) where N q, N γ are bearing capacity factors for horizontal strip footings, vertically loaded in the downward direction, given by Meyerhof (1955) as a function of φ. For fully buried pipelines and a bi-linear elastoplastic load-displacement relation, the displacement at first yield is z u,dn =0.10D 0.15D), for dense to loose sands, respectively. In this study, the computations are carried out with the upper limit of that range, corresponding to loose sand backfill. For upward motions, based on tests performed with pipes that are buried in dry uniform sand, the relationship between the force q and the vertical upward displacement z, has been shown to vary according to the following hyperbolic relation [Trautmann and O Rourke 1983b]: 10

11 z q = A+ B z (8) where A=0.07z u /q u and B=0.93/q u. For cohesionless soils, the ultimate uplift resistance is expressed as [Trautmann and O Rourke, 1983b]: q u = γ H N D (9) qv where the vertical uplift factor N qv is a function of the depth to diameter ratio H/D and the angle φ. Based on field tests [Esquivel-Diaz, 1967, Trautman and O Rourke 1983a], the value of uplift displacement at first yield is z u,up =( )H, for dense to loose sands, respectively. However, when a bi-linear elastoplastic expression is fitted to Eq. (8) at q=0.50q u, z u,up must be reduced by a factor of Taking further into account the upper limit of the above range, corresponding to loose sand backfill, the uplift displacement at first yield used in this study becomes z u,up =0.002H. STRESS ANALYSIS AT SITE SK1013 Geomorphology Conditions Based on the available drawings, as well as the earthquake induced ground displacements computed above it is concluded that: (a) In the case of extreme seismic activity (DME), landslide displacements for the specific site are of the order of 5 to 96 cm for dry and wet soil conditions, respectively. (b) Ground displacements will develop parallel to the maximum downslope gradient, i.e. at a directional angle ω=40 o relative to the pipeline axis. (c) The pipeline length that is going to be affected by the landslide extends to an approximate length of 80m, as deduced from the relevant slope stability analyses. (d) Ground displacements are considered uniform, based on the common assumption that the soil mass will slide along the failure surface as a rigid block. Furthermore, displacements are taken as parallel to the sloping ground surface, acknowledging that the failure surface is relatively shallow. The pipeline verification in this region is performed with the aid of three different numerical models: a beam model, a hybrid beam-shell model without internal pressure and a hybrid beam-shell model with internal pressure. Beam Model A possible landslide in the area of bent SK 1013 is considered and its effects on strains and stresses along the pipeline are investigated. A total length of m of the pipeline is modeled that accommodates the imposed displacements due to the landslide around the middle of the entire pipeline segment (Fig. 6 left). The axis of the pipeline is formed by a series of line segments and circular arcs, according to the recording plan and longitudinal section drawings of the pipeline. The pipeline is modeled using 3D beam elements and the surrounding soil using springs along the x-y-z directions. Nodes are spaced at 0.25 m along the pipeline. For the entire pipeline, 1562 nodes are used connecting 1561 beam elements. In addition, there are 6248 (4 x 1562) springs along the x, y, z upward and z downward directions. For the entire model, including the pipeline and the soil springs, 7805 elements are considered and 7806 nodes. The total number of active degrees of freedom for this model is

12 Figure 6. Pipeline geometry and imposed translation on pertinent spring base nodes The landslide movement is modeled as a uniform translation imposed to the base nodes of the spring elements extended along the down-slope part of the pipeline route, with a length of approximately 80m. The direction of the landslide movement, with respect to the x-z plane, coincides with the slope of the ground in the landslide area and has both a horizontal and a vertical component. The imposed translations are shown in Figure 6 (right) as vectors in red. The stress analysis is performed imposing a total landslide translation of 140 cm in a number of steps following a Newton-Raphson iteration method. The value of 140 cm was selected following a number of trial analyses to identify the value of imposed translation that causes failure. The critical failure mode was found to be the development of axial tensile strain equal to 0.5%. In Figure 7 (left), the total translation of pipeline nodes in the landslide zone is presented. The red line corresponds to the undeformed and the blue line to the deformed pipeline configuration. In Figure 7 (right), the evolution of the total translation of the pipeline projected along the X global axis is presented for four characteristic time steps corresponding to 25%, 50%, 75% and 100% of the total imposed displacements. The effect of the soilstructure interaction, expressed mostly via the plastification of soil springs, results in reduced and smoothed pipeline translation values as compared to the imposed ground movement. Figure 7. Total translation of the pipeline in the landslide zone In Figure 8 the stresses of axial soil springs along the pipeline are shown. The constant stress regions near the landslide indicate full soil plastification, while the zero stress regions confirm the pipeline length considered in the numerical model is sufficient to be able to neglect boundary effects. Figure 8. Stresses of axial soil springs along the pipeline 12

13 In Figure 9, the evolution of the total strain (sum of axial normal strain and bending normal strain) at two characteristic points, 1 (left) and 2 (right), on the outer horizontal diameter and upper vertical one, respectively, is presented. The different curves correspond to 25%, 50%, 75%, and 92.5% of the total imposed translation. The peaks A, B, C correspond to geometric irregularities and changing curvature of the pipeline route near the top of the landslide, while the peaks D, E, F correspond to similar irregularities near its toe. Tensile strains reaching the 5 limit are observed at point 2 for imposed displacement equal to x 1.40 m = 1.30 m. F A B C D E Beam Shell Hybrid Model Figure 9. Evolution of total strain at points 1 (left) and 2 (right) In order to have a more accurate representation of pipeline strains and to account for the effects of internal pressure a beam-shell model is also used. A part of the pipeline in and around the landslide area, where strains and stresses obtained from the beam model analysis were found to be high, is modeled with shell elements for a length of 110 m. The remaining part of the pipeline is modeled with beam elements (Figure 10). In total, the number of elements is equal to and the number of nodes is equal to The total number of degrees of freedom of the model is and the active degrees of freedom are Figure 10. Pipeline model with shell elements and part of the beam elements Based on the results of the beam model analysis, and expecting that the more exact representation by shell elements in the critical region will activate increased redundancy, so that the allowable strain of 0.5% will be reached at larger imposed displacements, this analysis was carried out for imposed displacements of 1.80 m. In Figure 11, an overall view and a detail of the undeformed and deformed shapes of the hybrid model for imposed translation of 1.80 m are shown. No major differences in relation to the beam model are observed. In Figure 12, details of the major strains and stresses at the inner face of the shell, at the toe of the landslide, for imposed displacements of 1.80 m are presented. Zones in red color indicate areas where yielding has occurred. For the case with internal pressure 10.2 MPa the landslide movement is modeled in the same manner. No significant differences in the results are observed. The 0.5% strain is reached at approximately 1.44 m of imposed displacement. 13

14 Figure 11. Total pipeline translation and detail for imposed soil translation of 1.80 m Figure 12. Major strains (left) and stresses (right) at the bottom of the landslide (1.80m) CONCLUDING REMARKS The slope verification of buried steel pipelines examined herein is typical of a wide category of soil-structure interaction problems, where a multidisciplinary cooperation of experts is required, in geotechnical and structural engineering, as well as in numerical analysis methods. Similar problems include the verification of buried pipelines at active fault crossings and at areas where large ground movements are anticipated due to earthquake-induced liquefaction and lateral spreading. For the case analyzed in the paper, it is deduced that: (a) Wet soil conditions are far more critical than dry ones and should be always considered in practice, even for cases of low water table, in order to take into account possible seasonal changes during periods of heavy rain falls or snow melting. (b) The most likely mode of failure is yielding in tension, both at the head and at the toe of the slope. Nevertheless, different modes of failure should be expected for cases of curved pipeline segments and thinner wall sections where local instabilities (e.g. buckling or section ovalization) control the pipeline response. (c) The beam and hybrid shell-beam models capture equally well the yielding mode of failure, with the former providing slightly more conservative estimates for the maximum strains. However, larger differences should be expected for the more complex modes of failure mentioned in (b) above, which cannot be predicted with the beam model. (d) The allowable maximum downslope displacement is estimated as 144cm, i.e. in excess of the maximum anticipated slope displacements of 5cm and 96cm, computed for dry and wet soil conditions, respectively. Main factors that may reduce these safety margins in practice include the existence of field bends or the relative increase of the component of ground displacement which is perpendicular to the pipeline axis. For instance, numerical computations for site SK1200 (Tablew 2, 3 & 5), not shown here due to length limitations, show that the allowable displacement for the same pipeline running perpendicular to the maximum slope gradient is reduced to only 56cm. 14

15 ACKNOWLEDGEMENTS Sincere appreciation is due to C&M Engineering Ltd. for providing the means, the necessary data and, most importantly, the opportunity to perform the study described above. The assistance in the numerical analyses of Dr. Christos Dimou, Dr. George Kouretzis and Dr. Minas Lemonis is also gratefully acknowledged. REFERENCES ASME/ANSI, B Edition, Pipeline Transportation Systems for liquid Hydrocarbons and Other Liquids. Bouckovalas G. & Kavouklis P. (2000). Thessaloniki to Skopje Crude Oil Pipeline: Detailed Evaluation of soil Effects on Seismic Motions and Seismic Wave Verification of Pipeline, Technical Report C&M RP-ENG-03. A.S.C.E. (1984). Guidelines for the Seismic Design of Oil and Gas Pipeline Systems, Committee on Gas and Liquid Fuel Lifelines, Technical Council on Lifeline Earthquake Engineering, New York. Esquirel-Diaz, R. (1967), Pull-out Resistance of Deeply Buried Anchors in Sand, M.S. Thesis, Duke University, Durham, North Carolina. ENV , Eurocode 8: Design Provisions for Earthquake Resistance of Structures. Gapkovski N. & Jovanovski M. (2000). Thessaloniki to Skopje Crude Oil Pipeline: Report for the General Geological Conditions in Areas along the Crude Oil Pipeline from OKTA Refinery to the Border, Technical Report C&M RP-GEO-01 (Rev. 3). 300-RP-GEO-15 (Rev. 0). Gorgevski S., Jovanovski M. (2000). Geotechnical Investigations in Problematic areas along the Crude Oil Pipeline from Okta refinery to the Border, Technical report C&M RP-GET-03 (Rev. 0). Hansen J.B., 1961, The Ultimate Resistance of Rigid Piles Against Transversal Forces, Bulletin 12, Danish Geotechnical Institute, Copenhagen, Denmark. Kramer S. L. (1996). Geotechnical Earthquake Engineering, Prentice Hall. Meyerhof G. G. (1955). Influence of Roughness of Base and Ground Water Conditions on the Ultimate Bearing capacity of Foundations, Geotechnique, Vol. 5, pp Newmark N. (1965). Effects of Earthquakes on Dams and Embankments, Geotechnique, Vol. 15, No. 2, pp Pavlopoulos K., Lionis M. & Antoniadis K. (2000). Sites under Special Investigation: Geological Report from SK 1171 to SK 1175, Technical report C&M RP-GEO- 18 (Rev. 0). PENSPEN (1999), Thessaloniki to Skopje Crude Oil Pipeline: Operating Philosophy, Technical Report prepared for Meton ETEP Group of Companies. Singhal A. C. (1980). Strength Characteristics of Buried Jointed Pipelines, report to the Engineering Foundation and ASCE, Grant No. RC-A-77-6A. Trautmann C.H. and O Rourke T.D.,1983a, Behavior of Pipe in Dry Sand under Lateral and Uplift Loading, Geotechnical Engineering Report 83-6, Cornell Univ. Ithaca, N.Y. Trautmann C.H. and O Rourke T.D., 1983b, Load-Displacement Characteristics of Pipe Affected by Permanent Earthquake Ground Movements, Proceedings, International Symposium on Lifeline Earth- quake Engineering, Portland, Oregon, ASME, PVP-77, pp A.S.C.E.-A.L.A. (2005). Guidelines for the Design of Buried Steel Pipes, American Lifeline Alliance. Gresnigt, A.M. (1986), Plastic Design of Buried Steel Pipelines in Settlement Areas, Heron, Vol. 31, No. 4, pp

Technical Note 16 Equivalent Static Method

Technical Note 16 Equivalent Static Method Technical Note 16 Equivalent Static Method Contents Technical Note 21 -... 1 1 Introduction... 1 2 Operational Strain in the Pipeline... 2 3 Seismicity... 2 4 Vertical Uplift... 3 5 Vertical Bearing...

More information

RESPONSE OF STEEL BURIED PIPELINES TO THREE-DIMENSIONAL FAULT MOVEMENTS BY CONSIDERING MATERIAL AND GEOMETRICAL NON-LINEARITIES

RESPONSE OF STEEL BURIED PIPELINES TO THREE-DIMENSIONAL FAULT MOVEMENTS BY CONSIDERING MATERIAL AND GEOMETRICAL NON-LINEARITIES 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 24 Paper No. 694 RESPONSE OF STEEL BURIED PIPELINES TO THREE-DIMENSIONAL FAULT MOVEMENTS BY CONSIDERING MATERIAL AND GEOMETRICAL

More information

Doctoral Dissertation 3-D Analytical Simulation of Ground Shock Wave Action on Cylindrical Underground Structures

Doctoral Dissertation 3-D Analytical Simulation of Ground Shock Wave Action on Cylindrical Underground Structures Doctoral Dissertation 3-D Analytical Simulation of Ground Shock Wave Action on Cylindrical Underground Structures by George P. Kouretzis Geotechnical Division, School of Civil Engineering, NTUA EXTENDED

More information

Landslide FE Stability Analysis

Landslide FE Stability Analysis Landslide FE Stability Analysis L. Kellezi Dept. of Geotechnical Engineering, GEO-Danish Geotechnical Institute, Denmark S. Allkja Altea & Geostudio 2000, Albania P. B. Hansen Dept. of Geotechnical Engineering,

More information

Soil Dynamics and Earthquake Engineering

Soil Dynamics and Earthquake Engineering Soil Dynamics and Earthquake Engineering 30 (2010) 1361 1376 Contents lists available at ScienceDirect Soil Dynamics and Earthquake Engineering journal homepage: www.elsevier.com/locate/soildyn Finite

More information

Effective stress analysis of pile foundations in liquefiable soil

Effective stress analysis of pile foundations in liquefiable soil Effective stress analysis of pile foundations in liquefiable soil H. J. Bowen, M. Cubrinovski University of Canterbury, Christchurch, New Zealand. M. E. Jacka Tonkin and Taylor Ltd., Christchurch, New

More information

AN IMPORTANT PITFALL OF PSEUDO-STATIC FINITE ELEMENT ANALYSIS

AN IMPORTANT PITFALL OF PSEUDO-STATIC FINITE ELEMENT ANALYSIS AN IMPORTANT PITFALL OF PSEUDO-STATIC FINITE ELEMENT ANALYSIS S. Kontoe, L. Pelecanos & D.M. Potts ABSTRACT: Finite Element (FE) pseudo-static analysis can provide a good compromise between simplified

More information

Verification of Numerical Modeling in Buried Pipelines under Large Fault Movements by Small-Scale Experiments

Verification of Numerical Modeling in Buried Pipelines under Large Fault Movements by Small-Scale Experiments Verification of Numerical Modeling in Buried Pipelines under Large Fault Movements by Small-Scale Experiments T.J. Lin, G.Y. Liu, L.L. Chung, and C.H. Chou National Center for Research on Earthquake Engineering,

More information

FLAC3D analysis on soil moving through piles

FLAC3D analysis on soil moving through piles University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 211 FLAC3D analysis on soil moving through piles E H. Ghee Griffith University

More information

UNIVERSITY OF CALGARY. Numerical Modeling of Pipe-Soil Interaction under Transverse Direction. Bahar Farhadi Hikooei A THESIS

UNIVERSITY OF CALGARY. Numerical Modeling of Pipe-Soil Interaction under Transverse Direction. Bahar Farhadi Hikooei A THESIS UNIVERSITY OF CALGARY Numerical Modeling of Pipe-Soil Interaction under Transverse Direction by Bahar Farhadi Hikooei A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE

More information

Axially Loaded Piles

Axially Loaded Piles Axially Loaded Piles 1 t- Curve Method using Finite Element Analysis The stress-strain relationship for an axially loaded pile can be described through three loading mechanisms: axial deformation in the

More information

Sample Chapter HELICAL ANCHORS IN SAND 6.1 INTRODUCTION

Sample Chapter HELICAL ANCHORS IN SAND 6.1 INTRODUCTION 6 ELICAL ANCORS IN SAN At the present time, limited studies on helical anchors are available, the results of which can be used to estimate their ultimate uplift capacity. In many instances, the ultimate

More information

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai Geosynthetics and Reinforced Soil Structures Reinforced Soil Walls continued Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai e-mail: gopalkr@iitm.ac.inac in Outline of the Lecture

More information

Protection of Pipelines and Buried Structures Using EPS Geofoam. Campus Dr., Salt Lake City, UT 84112;

Protection of Pipelines and Buried Structures Using EPS Geofoam. Campus Dr., Salt Lake City, UT 84112; Protection of Pipelines and Buried Structures Using EPS Geofoam Steven F. Bartlett 1, M. ASCE, P.E., Bret N. Lingwall 2 1, Dept. of Civil and Environmental Engineering, University of Utah, 110 Central

More information

Deep Foundations 2. Load Capacity of a Single Pile

Deep Foundations 2. Load Capacity of a Single Pile Deep Foundations 2 Load Capacity of a Single Pile All calculations of pile capacity are approximate because it is almost impossible to account for the variability of soil types and the differences in the

More information

SLOPE STABILITY EVALUATION AND ACCEPTANCE STANDARDS

SLOPE STABILITY EVALUATION AND ACCEPTANCE STANDARDS INFORMATION BULLETIN / PUBLIC - BUILDING CODE REFERENCE NO.: LAMC 98.0508 Effective: 1-26-84 DOCUMENT NO. P/BC 2002-049 Revised: 11-1-02 Previously Issued As: RGA #1-84 SLOPE STABILITY EVALUATION AND ACCEPTANCE

More information

Liquefaction and Foundations

Liquefaction and Foundations Liquefaction and Foundations Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Seismic Design of Reinforced Concrete Buildings 26 30 November, 2012 What is Liquefaction? Liquefaction

More information

S Wang Beca Consultants, Wellington, NZ (formerly University of Auckland, NZ)

S Wang Beca Consultants, Wellington, NZ (formerly University of Auckland, NZ) Wang, S. & Orense, R.P. (2013) Proc. 19 th NZGS Geotechnical Symposium. Ed. CY Chin, Queenstown S Wang Beca Consultants, Wellington, NZ (formerly University of Auckland, NZ) Jackson.wang@beca.com R P Orense

More information

NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES

NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES 8 th GRACM International Congress on Computational Mechanics Volos, 12 July 15 July 2015 NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES Savvas Akritidis, Daphne

More information

Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil

Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil [Jafar Bolouri Bazaz, Javad Keshavarz] Abstract Almost all types of piles are subjected to lateral loads. In many cases,

More information

NUMERICAL SIMULATION OF FLANGE-BOLT INTERACTION IN WIND TUBRINE TOWER CONNECTIONS

NUMERICAL SIMULATION OF FLANGE-BOLT INTERACTION IN WIND TUBRINE TOWER CONNECTIONS 8 th International Congress on Computational Mechanics Volos, 12 July 15 July 2015 NUMERICAL SIMULATION OF FLANGE-BOLT INTERACTION IN WIND TUBRINE TOWER CONNECTIONS Aikaterini I. Ntaifoti 1, Konstantina

More information

Geotechnical issues in seismic assessments: When do I need a geotechnical specialist?

Geotechnical issues in seismic assessments: When do I need a geotechnical specialist? Geotechnical issues in seismic assessments: When do I need a geotechnical specialist? B.H. Rama & S.J. Palmer Tonkin & Taylor Ltd (T+T), Wellington, New Zealand. 2016 NZSEE Conference ABSTRACT: The Canterbury

More information

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION October 1-17,, Beijing, China DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION Mohammad M. Ahmadi 1 and Mahdi Ehsani 1 Assistant Professor, Dept. of Civil Engineering, Geotechnical Group,

More information

Analysis of Inclined Strip Anchors in Sand Based on the Block Set Mechanism

Analysis of Inclined Strip Anchors in Sand Based on the Block Set Mechanism Analysis of Inclined Strip Anchors in Sand Based on the Block Set Mechanism S. B. Yu 1,a, J. P. Hambleton 1,b, and S. W. Sloan 1,c 1 ARC Centre of Excellence for Geotechnical Science and Engineering, The

More information

SLOPE STABILITY EVALUATION AND ACCEPTANCE STANDARDS

SLOPE STABILITY EVALUATION AND ACCEPTANCE STANDARDS INFORMATION BULLETIN / PUBLIC - BUILDING CODE REFERENCE NO.: LABC 7006.3, 7014.1 Effective: 01-01-2017 DOCUMENT NO.: P/BC 2017-049 Revised: 12-21-2016 Previously Issued As: P/BC 2014-049 SLOPE STABILITY

More information

Evaluation of dynamic behavior of culverts and embankments through centrifuge model tests and a numerical analysis

Evaluation of dynamic behavior of culverts and embankments through centrifuge model tests and a numerical analysis Computer Methods and Recent Advances in Geomechanics Oka, Murakami, Uzuoka & Kimoto (Eds.) 2015 Taylor & Francis Group, London, ISBN 978-1-138-00148-0 Evaluation of dynamic behavior of culverts and embankments

More information

Guidelines on Foundation Loading and Deformation Due to Liquefaction Induced Lateral Spreading

Guidelines on Foundation Loading and Deformation Due to Liquefaction Induced Lateral Spreading Guidelines on Foundation Loading and Deformation Due to Liquefaction Induced Lateral Spreading February, 2011 1 INTRODUCTION Past earthquakes offer many examples of bridges that either collapsed or incurred

More information

COMPARATIVE STUDY OF LINEAR-ELASTIC AND NONLINEAR- INELASTIC SEISMIC RESPONSES OF FLUID-TANK SYSTEMS

COMPARATIVE STUDY OF LINEAR-ELASTIC AND NONLINEAR- INELASTIC SEISMIC RESPONSES OF FLUID-TANK SYSTEMS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1127 COMPARATIVE STUDY OF LINEAR-ELASTIC AND NONLINEAR- INELASTIC SEISMIC RESPONSES OF FLUID-TANK SYSTEMS

More information

On seismic landslide hazard assessment: Reply. Citation Geotechnique, 2008, v. 58 n. 10, p

On seismic landslide hazard assessment: Reply. Citation Geotechnique, 2008, v. 58 n. 10, p Title On seismic landslide hazard assessment: Reply Author(s) Yang, J; Sparks, A.D.W. Citation Geotechnique, 28, v. 58 n. 1, p. 831-834 Issued Date 28 URL http://hdl.handle.net/1722/58519 Rights Geotechnique.

More information

Seismic Slope Stability

Seismic Slope Stability ISSN (e): 2250 3005 Volume, 06 Issue, 04 April 2016 International Journal of Computational Engineering Research (IJCER) Seismic Slope Stability Mohammad Anis 1, S. M. Ali Jawaid 2 1 Civil Engineering,

More information

Shakedown analysis of pile foundation with limited plastic deformation. *Majid Movahedi Rad 1)

Shakedown analysis of pile foundation with limited plastic deformation. *Majid Movahedi Rad 1) Shakedown analysis of pile foundation with limited plastic deformation *Majid Movahedi Rad 1) 1) Department of Structural and Geotechnical Engineering, Széchenyi István University Egyetem Tér1, H-9026

More information

Effectiveness of Geotextiles in Reducing Levels of Soil Restraint for Buried Pipelines Crossing Seismic Faults

Effectiveness of Geotextiles in Reducing Levels of Soil Restraint for Buried Pipelines Crossing Seismic Faults Effectiveness of Geotextiles in Reducing Levels of Soil Restraint for Buried Pipelines Crossing Seismic Faults MANUEL MONROY, M.Sc. (Eng.) Geotechnical Consultant, Golder Associates Ltd., Vancouver, BC

More information

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM]

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM] Objectives_template Objectives In this section you will learn the following Introduction Different Theories of Earth Pressure Lateral Earth Pressure For At Rest Condition Movement of the Wall Different

More information

Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation

Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation Yong-Beom Lee, Jorge Castillo Ausenco, USA Aurelian C. Trandafir Fugro GeoConsulting

More information

Nonlinear Seismic Analysis of Buried Pipelines During Liquefaction

Nonlinear Seismic Analysis of Buried Pipelines During Liquefaction Missouri University of Science and Technology Scholars Mine International Conference on Case Histories in Geotechnical Engineering (8) - Sixth International Conference on Case Histories in Geotechnical

More information

Numerical Modeling of Interface Between Soil and Pile to Account for Loss of Contact during Seismic Excitation

Numerical Modeling of Interface Between Soil and Pile to Account for Loss of Contact during Seismic Excitation Numerical Modeling of Interface Between Soil and Pile to Account for Loss of Contact during Seismic Excitation P. Sushma Ph D Scholar, Earthquake Engineering Research Center, IIIT Hyderabad, Gachbowli,

More information

Model tests and FE-modelling of dynamic soil-structure interaction

Model tests and FE-modelling of dynamic soil-structure interaction Shock and Vibration 19 (2012) 1061 1069 1061 DOI 10.3233/SAV-2012-0712 IOS Press Model tests and FE-modelling of dynamic soil-structure interaction N. Kodama a, * and K. Komiya b a Waseda Institute for

More information

Chapter (3) Ultimate Bearing Capacity of Shallow Foundations

Chapter (3) Ultimate Bearing Capacity of Shallow Foundations Chapter (3) Ultimate Bearing Capacity of Shallow Foundations Introduction To perform satisfactorily, shallow foundations must have two main characteristics: 1. They have to be safe against overall shear

More information

Back Analysis of the Lower San Fernando Dam Slide Using a Multi-block Model

Back Analysis of the Lower San Fernando Dam Slide Using a Multi-block Model Proceedings Geohazards Engineering Conferences International Year 2006 Back Analysis of the Lower San Fernando Dam Slide Using a Multi-block Model C. A. Stamatopoulos P. Petridis Stamatopoulos and Associates

More information

A UNIQUE PIPELINE FAULT CROSSING DESIGN FOR A HIGHLY FOCUSED FAULT

A UNIQUE PIPELINE FAULT CROSSING DESIGN FOR A HIGHLY FOCUSED FAULT Proceedings of IPC 2004 International Pipeline Conference October 4-8, 2004 Calgary, Alberta, Canada IPC04-0102 A UNIQUE PIPELINE FAULT CROSSING DESIGN FOR A HIGHLY FOCUSED FAULT James D. Hart President

More information

Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment

Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment Proc. of Second China-Japan Joint Symposium on Recent Development of Theory and Practice in Geotechnology, Hong Kong, China Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment J. C. Chai 1

More information

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

J. Paul Guyer, P.E., R.A.

J. Paul Guyer, P.E., R.A. J. Paul Guyer, P.E., R.A. Paul Guyer is a registered mechanical engineer, civil engineer, fire protection engineer and architect with over 35 years experience in the design of buildings and related infrastructure.

More information

Numerical Modelling of Dynamic Earth Force Transmission to Underground Structures

Numerical Modelling of Dynamic Earth Force Transmission to Underground Structures Numerical Modelling of Dynamic Earth Force Transmission to Underground Structures N. Kodama Waseda Institute for Advanced Study, Waseda University, Japan K. Komiya Chiba Institute of Technology, Japan

More information

CHAPTER 8 ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE

CHAPTER 8 ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE CHAPTER ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE.1 INTRODUCTION An important objective of this research is to determine whether accurate analyses of the lateral load-deflection behavior

More information

On Nonlinear Buckling and Collapse Analysis using Riks Method

On Nonlinear Buckling and Collapse Analysis using Riks Method Visit the SIMULIA Resource Center for more customer examples. On Nonlinear Buckling and Collapse Analysis using Riks Method Mingxin Zhao, Ph.D. UOP, A Honeywell Company, 50 East Algonquin Road, Des Plaines,

More information

INTRODUCTION TO STATIC ANALYSIS PDPI 2013

INTRODUCTION TO STATIC ANALYSIS PDPI 2013 INTRODUCTION TO STATIC ANALYSIS PDPI 2013 What is Pile Capacity? When we load a pile until IT Fails what is IT Strength Considerations Two Failure Modes 1. Pile structural failure controlled by allowable

More information

Foundation Engineering Prof. Dr. N. K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee

Foundation Engineering Prof. Dr. N. K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee Foundation Engineering Prof. Dr. N. K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee Module - 01 Lecture - 01 Shallow Foundation (Refer Slide Time: 00:19) Good morning.

More information

Numerical simulation of inclined piles in liquefiable soils

Numerical simulation of inclined piles in liquefiable soils Proc. 20 th NZGS Geotechnical Symposium. Eds. GJ Alexander & CY Chin, Napier Y Wang & R P Orense Department of Civil and Environmental Engineering, University of Auckland, NZ. ywan833@aucklanduni.ac.nz

More information

Rock Slope Analysis Small and Large Scale Failures Mode of Failure Marklands Test To establish the possibility of wedge failure. Plane failure is a special case of wedge failure. Sliding along

More information

Module 8 SEISMIC SLOPE STABILITY (Lectures 37 to 40)

Module 8 SEISMIC SLOPE STABILITY (Lectures 37 to 40) Module 8 SEISMIC SLOPE STABILITY (Lectures 37 to 40) Lecture 38 Topics 8.5 STATIC SLOPE STABILITY ANALYSIS 8.5.1 Limit Equilibrium Analysis 8.5.2 Stress-Deformation Analyses 8.6 SEISMIC SLOPE STABILITY

More information

The Preliminary Study of the Impact of Liquefaction on Water Pipes

The Preliminary Study of the Impact of Liquefaction on Water Pipes The Preliminary Study of the Impact of Liquefaction on Water Pipes Jerry J. Chen and Y.C. Chou ABSTRACT Damages to the existing tap-water pipes have been found after earthquake. Some of these damages are

More information

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

Chapter 6 Bearing Capacity

Chapter 6 Bearing Capacity Chapter 6 Bearing Capacity 6-1. Scope This chapter provides guidance for the determination of the ultimate and allowable bearing stress values for foundations on rock. The chapter is subdivided into four

More information

Initial Stress Calculations

Initial Stress Calculations Initial Stress Calculations The following are the initial hand stress calculations conducted during the early stages of the design process. Therefore, some of the material properties as well as dimensions

More information

9 MECHANICAL PROPERTIES OF SOLIDS

9 MECHANICAL PROPERTIES OF SOLIDS 9 MECHANICAL PROPERTIES OF SOLIDS Deforming force Deforming force is the force which changes the shape or size of a body. Restoring force Restoring force is the internal force developed inside the body

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

THE COLLAPSE LOAD IN SUBMARINE PIPELINES UNDER COMPRESSIVE LOAD AND INTERNAL PRESSURE

THE COLLAPSE LOAD IN SUBMARINE PIPELINES UNDER COMPRESSIVE LOAD AND INTERNAL PRESSURE SDSS Rio 010 STABILITY AND DUCTILITY OF STEEL STRUCTURES E. Batista,. Vellasco, L. de Lima (Eds.) Rio de Janeiro, Brazil, September 8-10, 010 THE COLLASE LOAD IN SUBMARINE IELINES UNDER COMRESSIVE LOAD

More information

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The

More information

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading Jorge Castillo, Yong-Beom Lee Ausenco, USA Aurelian C. Trandafir Fugro GeoConsulting Inc., USA ABSTRACT

More information

Finite Element analysis of Laterally Loaded Piles on Sloping Ground

Finite Element analysis of Laterally Loaded Piles on Sloping Ground Indian Geotechnical Journal, 41(3), 2011, 155-161 Technical Note Finite Element analysis of Laterally Loaded Piles on Sloping Ground K. Muthukkumaran 1 and N. Almas Begum 2 Key words Lateral load, finite

More information

S E C T I O N 1 2 P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S

S E C T I O N 1 2 P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S 1. P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S Helical foundation pile includes a lead and extension(s). The lead section is made of a central steel

More information

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses

More information

Assessment of New Zealand scaling procedure of ground motions for liquid storage tanks

Assessment of New Zealand scaling procedure of ground motions for liquid storage tanks Assessment of New Zealand scaling procedure of ground motions for liquid storage tanks M. Ormeno, M. Geddes, T. Larkin & N. Chouw The University of Auckland, Auckland, New Zealand. 2014 NZSEE Conference

More information

Designing Offshore Pipelines Facing the Geohazard of Active Seismic Faults

Designing Offshore Pipelines Facing the Geohazard of Active Seismic Faults International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering Vol:9, No:6, 215 Designing Offshore Pipelines Facing the Geohazard of Active Seismic Faults Maria S.

More information

Task 1 - Material Testing of Bionax Pipe and Joints

Task 1 - Material Testing of Bionax Pipe and Joints Task 1 - Material Testing of Bionax Pipe and Joints Submitted to: Jeff Phillips Western Regional Engineer IPEX Management, Inc. 20460 Duncan Way Langley, BC, Canada V3A 7A3 Ph: 604-534-8631 Fax: 604-534-7616

More information

Seismic Response Analysis of Structure Supported by Piles Subjected to Very Large Earthquake Based on 3D-FEM

Seismic Response Analysis of Structure Supported by Piles Subjected to Very Large Earthquake Based on 3D-FEM Seismic Response Analysis of Structure Supported by Piles Subjected to Very Large Earthquake Based on 3D-FEM *Hisatoshi Kashiwa 1) and Yuji Miyamoto 2) 1), 2) Dept. of Architectural Engineering Division

More information

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS Atsuhiko MACHIDA And Khairy H ABDELKAREEM SUMMARY Nonlinear D FEM was utilized to carry out inelastic

More information

Study of Pile Interval of Landslide Restraint Piles by Centrifuge Test and FEM Analysis

Study of Pile Interval of Landslide Restraint Piles by Centrifuge Test and FEM Analysis Disaster Mitigation of Debris Flows, Slope Failures and Landslides 113 Study of Pile Interval of Landslide Restraint Piles by Centrifuge Test and FEM Analysis Yasuo Ishii, 1) Hisashi Tanaka, 1) Kazunori

More information

Downloaded from Downloaded from / 1

Downloaded from   Downloaded from   / 1 PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

Numerical Investigation of the Effect of Recent Load History on the Behaviour of Steel Piles under Horizontal Loading

Numerical Investigation of the Effect of Recent Load History on the Behaviour of Steel Piles under Horizontal Loading Numerical Investigation of the Effect of Recent Load History on the Behaviour of Steel Piles under Horizontal Loading K. Abdel-Rahman Dr.-Ing., Institute of Soil Mechanics, Foundation Engineering and Waterpower

More information

PES Institute of Technology

PES Institute of Technology PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

More information

Chapter Two: Mechanical Properties of materials

Chapter Two: Mechanical Properties of materials Chapter Two: Mechanical Properties of materials Time : 16 Hours An important consideration in the choice of a material is the way it behave when subjected to force. The mechanical properties of a material

More information

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room 2017 Soil Mechanics II and Exercises Final Exam 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room Attention: The exam consists of five questions for which you are provided with five answer sheets. Write

More information

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:

More information

Centrifuge Shaking Table Tests and FEM Analyses of RC Pile Foundation and Underground Structure

Centrifuge Shaking Table Tests and FEM Analyses of RC Pile Foundation and Underground Structure Centrifuge Shaking Table s and FEM Analyses of RC Pile Foundation and Underground Structure Kenji Yonezawa Obayashi Corporation, Tokyo, Japan. Takuya Anabuki Obayashi Corporation, Tokyo, Japan. Shunichi

More information

FINITE ELEMENT ANALYSIS OF BURIED STEEL PIPELINES UNDER STRIKE-SLIP FAULT DISPLACEMENTS

FINITE ELEMENT ANALYSIS OF BURIED STEEL PIPELINES UNDER STRIKE-SLIP FAULT DISPLACEMENTS COMPDYN 2011 III ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.) Corfu, Greece, 25 28 May 2011

More information

CALCULATION OF A SHEET PILE WALL RELIABILITY INDEX IN ULTIMATE AND SERVICEABILITY LIMIT STATES

CALCULATION OF A SHEET PILE WALL RELIABILITY INDEX IN ULTIMATE AND SERVICEABILITY LIMIT STATES Studia Geotechnica et Mechanica, Vol. XXXII, No. 2, 2010 CALCULATION OF A SHEET PILE WALL RELIABILITY INDEX IN ULTIMATE AND SERVICEABILITY LIMIT STATES JERZY BAUER Institute of Mining, Wrocław University

More information

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

More information

External Pressure... Thermal Expansion in un-restrained pipeline... The critical (buckling) pressure is calculated as follows:

External Pressure... Thermal Expansion in un-restrained pipeline... The critical (buckling) pressure is calculated as follows: External Pressure... The critical (buckling) pressure is calculated as follows: P C = E. t s ³ / 4 (1 - ν ha.ν ah ) R E ³ P C = Critical buckling pressure, kn/m² E = Hoop modulus in flexure, kn/m² t s

More information

Evaluation of Pore Water Pressure Characteristics in Embankment Model.

Evaluation of Pore Water Pressure Characteristics in Embankment Model. Evaluation of Pore Water Pressure Characteristics in Embankment Model. Abdoullah Namdar and Mehdi Khodashenas Pelkoo Mysore University, Mysore, India. 76. Amirkabir University, Department of Mining Engineering,

More information

Ch 4a Stress, Strain and Shearing

Ch 4a Stress, Strain and Shearing Ch. 4a - Stress, Strain, Shearing Page 1 Ch 4a Stress, Strain and Shearing Reading Assignment Ch. 4a Lecture Notes Sections 4.1-4.3 (Salgado) Other Materials Handout 4 Homework Assignment 3 Problems 4-13,

More information

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL Qassun S. Mohammed Shafiqu and Maarib M. Ahmed Al-Sammaraey Department of Civil Engineering, Nahrain University, Iraq

More information

ENG1001 Engineering Design 1

ENG1001 Engineering Design 1 ENG1001 Engineering Design 1 Structure & Loads Determine forces that act on structures causing it to deform, bend, and stretch Forces push/pull on objects Structures are loaded by: > Dead loads permanent

More information

RAMWALL DESIGN METHODOLOGY

RAMWALL DESIGN METHODOLOGY RAMWALL DESIGN METHODOLOGY Submitted by:. June 005 CONTENTS 1. INTRODUCTION 1 Page. REFERENCED DOCUMENTS & ABBREVIATIONS 1 3 DESIGN METHODOLOGY / THEORY 3.1 General 3. Internal Analysis 4 3.3 External

More information

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

More information

Effect of uniform and gradient thermal loadings on cylindrical steel reservoirs (analytical investigation)

Effect of uniform and gradient thermal loadings on cylindrical steel reservoirs (analytical investigation) Journal of Civil Engineering and Construction Technology Vol. (3), pp. 9-3, March 13 Available online at http://www.academicjournals.org/jcect DOI:.597/JCECT1.91 ISS 11-3 13 Academic Journals Full Length

More information

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil Fang Ming Scholl of Civil Engineering, Harbin Institute of Technology, China Wang Tao Institute of

More information

FEA A Guide to Good Practice. What to expect when you re expecting FEA A guide to good practice

FEA A Guide to Good Practice. What to expect when you re expecting FEA A guide to good practice FEA A Guide to Good Practice What to expect when you re expecting FEA A guide to good practice 1. Background Finite Element Analysis (FEA) has transformed design procedures for engineers. Allowing more

More information

LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL

LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL SREELATHA P.R * M.Tech. Student, Computer Aided Structural Engineering, M A College of Engineering, Kothamangalam 686 666,

More information

Seismic Analysis of Soil-pile Interaction under Various Soil Conditions

Seismic Analysis of Soil-pile Interaction under Various Soil Conditions Seismic Analysis of Soil-pile Interaction under Various Soil Conditions Preeti Codoori Assistant Professor, Department of Civil Engineering, Gokaraju Rangaraju Institute of Engineering and Technology,

More information

STEEL JOINTS - COMPONENT METHOD APPLICATION

STEEL JOINTS - COMPONENT METHOD APPLICATION Bulletin of the Transilvania University of Braşov Vol. 5 (54) - 2012 Series 1: Special Issue No. 1 STEEL JOINTS - COPONENT ETHOD APPLICATION D. RADU 1 Abstract: As long as the rotation joint stiffness

More information

Mass Wasting. Revisit: Erosion, Transportation, and Deposition

Mass Wasting. Revisit: Erosion, Transportation, and Deposition Mass Wasting Revisit: Erosion, Transportation, and Deposition While landslides are a normal part of erosion and surface processes, they can be very destructive to life and property! - Mass wasting: downslope

More information

SEISMIC DESIGN OF CONTINUOUS BURIED PIPELINE A.K.Arya 1 *, B. Shingan 2,, Ch. Vara Prasad 3

SEISMIC DESIGN OF CONTINUOUS BURIED PIPELINE A.K.Arya 1 *, B. Shingan 2,, Ch. Vara Prasad 3 SEISMIC DESIGN OF CONTINUOUS BURIED PIPELINE A.K.Arya 1 *, B. Shingan 2,, Ch. Vara Prasad 3 1,2,3* Department of Chemical Engineering, University of Petroleum & Energy Studies, Dehradun, INDIA Abstract

More information

PILE DESIGN IN LIQUEFYING SOIL

PILE DESIGN IN LIQUEFYING SOIL PILE DESIGN IN LIQUEFYING SOIL Vijay K. Puri 1 and Shamsher Prakash 2 1 Professor,Civil and Environmental Engineering, Southern Illinois University, Carbondale, USA 2 Professor Emeritus, Missouri University

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

STUDY OF THE BEHAVIOR OF PILE GROUPS IN LIQUEFIED SOILS

STUDY OF THE BEHAVIOR OF PILE GROUPS IN LIQUEFIED SOILS STUDY OF THE BEHAVIOR OF PILE GROUPS IN LIQUEFIED SOILS Shin-Tower Wang 1, Luis Vasquez 2, and Lymon C. Reese 3, Honorary Member,, ASCE ABSTRACT : 1&2 President & Project Manager, Ensoft, Inc. Email: ensoft@ensoftinc.com

More information

7. Seismic Design of. Underground Structures. G. Bouckovalas Professor N.T.U.A. G. Kouretzis Civil Engineer, Ph.D. N.T.U.A.

7. Seismic Design of. Underground Structures. G. Bouckovalas Professor N.T.U.A. G. Kouretzis Civil Engineer, Ph.D. N.T.U.A. 7. Seismic Design of Underground Structures G. Bouckovalas Professor N.T.U.A. G. Kouretzis Civil Engineer, Ph.D. N.T.U.A. October 2010 GEORGE BOUCKOVALAS, National of Athes, Greece, 2011 7.1 Preface This

More information