Qualitative and Quantitative Interpretation of Parts of Onshore Niger Delta, Nigeria, Using High Resolution Aeromagnetic Data

Size: px
Start display at page:

Download "Qualitative and Quantitative Interpretation of Parts of Onshore Niger Delta, Nigeria, Using High Resolution Aeromagnetic Data"

Transcription

1 Geosciences 2017, 7(2): DOI: /j.geo Qualitative and Quantitative Interpretation of Parts of Onshore Niger Delta, Nigeria, Using High Resolution Aeromagnetic Data Bello R. *, Ofoha C. C., Edah H. Department of Physics, University of Port Harcourt, Nigeria Abstract Aeromagnetic data acquired by the Nigerian Geological Survey Agency and which covers about 3025 square kilometer of some parts of onshore Niger Delta, Nigeria, was processed and interpreted with the purpose of determining the depth to basement of the study area, delineating areas suitable for hydrocarbon and mineral accumulation, establishing the basement topography, highlighting the structural lineaments with their corresponding trend patterns and then inferring the effect of the above findings as it relates to the tectonic history of the area using the qualitative and quantitative approach. Using polynomial fitting of degree two (2), regional-residual separation was carried out on the Composite Total Magnetic Intensity (CTMI) map, lying geographically within longitude 6 30 E E and latitude 4 30 N N, and this generated the regional and residual maps. Some enhancement techniques applied upon the residual map gave rise to some directional gradient maps that depicted structural lineaments trending in the E-W, NE-SW, NW-SE and N-S directions. These lineaments influence the tectonics of the area and as such created faulting and fracturing within the area under review. Quantitatively, the sedimentary thickness was determined using the deeping spikes (blue and green colours) and the shallow spikes (violet, yellow and red colours) models. The deeping spikes highlight zones of deeper magnetic bodies while the shallow spikes reveal magnetic bodies of shallow origin. The deeping spikes also indicate areas with thicker sedimentary cover while the shorter or shallow spikes highlight areas affected with magnetic intrusions. These thick sediments range from m to m but with an average depth of m. The short spikes have sediments thickness ranging from m to m but with an average depth of about m. On the average, a thickness value of m was obtained and this suggested that the area holds a promise for the exploration of hydrocarbon. Keywords Source Parameter Imaging, Hydrocarbon, Geothermal energy, Sedimentary, Magnetic low 1. Introduction Examining the local geology on the basis of the deviations found in the geomagnetic field is the purpose of the magnetic survey. This anomalies result mostly due to magnetization contrast of the subsurface rocks (Maritta, 2007). This method is a passive geophysical method (Henry, 2010). By being passive, no energy source is needed in order to acquire data (Jose, 2009). Magnetic survey is usually carried out either on land, sea or even in the air. When performed in air an aeromagnetic study is undertaken and as such a magnetometer is towed behind an aircraft. Aeromagnetic survey has become an indispensable component of exploration programmes in areas where exposure is poor (Michael and Steven, 2014). Abdulsalam et al., (2011) stated that the speed of operation and low number of field personnel * Corresponding author: bellomo68@yahoo.com (Bello R.) Published online at Copyright 2017 Scientific & Academic Publishing. All Rights Reserved make magnetic surveys performed at any location very attractive. They further explained that the main purpose is to assist in mineral and hydrocarbon exploration. The magnetic method measures spatial variations in the geomagnetic field. Anomalies in the geomagnetic field are due to the contrast in magnetic properties of rocks, which is mostly controlled mainly by magnetic susceptibility (Michael and Steven, 2014). Emujakporue and Ofoha (2015) pointed out that the differences in magnetic susceptibility may lead to insignificant variations in the magnetic fields of rocks measured on the vicinity of measurement. Generally, the susceptibility of rocks varies and this depends on rock type and the environment in which it is found. Magnetic surveys, usually in nano Tesla (nt), show that unusual variations called magnetic anomalies exist and this could be caused by dykes, faults and lava flows. Nevertheless, two types of magnetism, namely the induced and remnant magnetism are responsible for the differences in the magnetic values (Maritta, 2007). The study area and its environs are ranked among the major productive hydrocarbon zones in West Africa and the

2 78 Bello R. et al.: Qualitative and Quantitative Interpretation of Parts of Onshore Niger Delta, Nigeria, Using High Resolution Aeromagnetic Data world generally. Sandstones and unconsolidated sands which is predominant within the Agbada Formation are believed to be the source of oil and gas in the Delta (Aizebeokhai and Olayinka, 2011). Niger Delta basin is known specifically, all over the world, for its hydrocarbon potential. So researchers, government as well as oil exploration companies have made attempts towards the exploration of its hydrocarbon, and perhaps mineral, potentials. Thus, extensive researches have been carried out, and are also currently ongoing, within the basin with various aims and objectives. Oladele and Ojo (2013) enunciated that many exploration works in Niger Delta have been concentrated on seismic survey of Tertiary deltaic hydrocarbon bearing sequence with little or no attention paid to the underlying basement structures. The knowledge of basement framework has been known to exert significant control on the structural disposition and petroleum system of the overlying sedimentary section. Okiwelu et al., (2014) asserted that, in thick sedimentary terrain like the Niger delta basin, regional aeromagnetic field data sets can be utilized in imaging the basement under the sedimentary section, particularly if magnetic sources within the sedimentary section are weaker than the basement rocks as this will have control on the hydrocarbon bearing potential of the basin since structures which will enhance the migration and entrapment of hydrocarbon and minerals will be exhumed. According to Okiwelu et. al., (2014) important factors such as regional structural characteristics of the basement and the correlation between deep basement architectural framework and hydrocarbon target have been lacking in the delta. This study will therefore contribute to the average sedimentary thickness and then exhume the structural controls that will foster the possible migration and accumulation of hydrocarbon and perhaps mineral, within the study area. Location and Geology of the Study Area The study area is bounded eastwards by Port Harcourt, westwards by Oloibiri, southwards by Rule and Bony and Northwards by Patani and Ahoada. The study area lies between longitude 6 30 E E and latitude 4 30 N N with an approximate area of about 3025 km 2 within the Niger Delta sedimentary basin of Nigeria. The geologic map, (Fig 1), reveals the area to be swampy and also depicts the Creeks, Benin Formation and Sombreiro Warri Deltaic Plain, SDP. Figure 1. Geological map of the study area (Obtained from the Nigerian Geological Survey Agency, NGSA, Abuja)

3 Geosciences 2017, 7(2): Data and Analysis Method Digitized aeromagnetic data (Fig 2 and Fig 2b) covering Degema area of Rivers State, and which was obtained from the Nigerian Geological Survey Agency (NGSA) Abuja on a scale of 1: in half degree sheet, was used for this research. The aeromagnetic survey was flown at 500 m line spacing, tie line of 2 km and 80 m mean terrain clearance. Oasis Montaj (Geosoft) software was used for the data processing, analysis and interpretation. Figure 2. Aeromagnetic raster map of the study area (nt) Figure 2b. Aeromagnetic contour map of the study area (nt)

4 80 Bello R. et al.: Qualitative and Quantitative Interpretation of Parts of Onshore Niger Delta, Nigeria, Using High Resolution Aeromagnetic Data Data Enhancement Techniques Undertaken for This Research Work To make clearer to the interpreters eye and to accentuate certain attributes of the subsurface geologic structures, the following filtering techniques were undertaken: Regional-Residual Separation The aeromagnetic data obtained by the NGSA is a superposition of the deeply and shallow seated magnetic sources. This necessitated regional-residual separation. This was paramount as it decomposed the various magnetic effects due to the deep seated and shallow magnetic bodies. Upon the residual the following filtering methods were also carried out. First Vertical Derivative (FVD) FVD was applied on the residual map in order to sharpen up anomalies. This allows clearer imaging of the shallow causative structures vertically. This filtering technique enhanced high frequency components (or the shallow effect) at the expense of low frequency components (or the deeply seated effect). The FVD has been a standard in computing high frequency features using the Laplace transformation expressions shown below 2 f = 0 (3.1) Where 2 f is the Laplace transform which can be expressed in full as 2 f = f z 2 [ f ] (3.2) x 2 x 2 z, y and x are the differentials in z, y and x coordinates. Then nth vertical derivative can be computed once the Fourier transform is known by using the equation shown below: F[ n f ] = z n Kn. F(f) (3.3) Where F is the Fourier representation of the field k is the wave number or frequency. f is the input to be filtered. Second Vertical Derivative (SVD) Like the FVD, the SVD enhances the shallow seated sources at the expense of the deeply seated bodies. The SVD filter makes the shallow sources to appear vertical. Shallow bodies or the high wave number components were apparent when SVD was applied on the residual map. This filtering technique is based on equation 3.3 but when n = Depth Determination This study adopted the use of Source Parameter Imaging (SPI) technique to quantitatively determine the depth to basement or the thickness of the sediments. Nwosu (2014) categorically stated that the SPI technique can be a good analytical signal to estimate magnetic depths. The depth parameter is usually determined from grid data sets. According to Thurston and smith (1997), the technique made use of the relationship between depth to sources and the local wave number (k) of the calculated field at any location through gradient derivatives. One merit of the SPI technique over spectral depth analysis is that the depth can be visualized in a raster format and the true thickness determined for each anomaly. The depth parameter determined is independent of an assumed model. The SPI method estimates the depth parameter using the local wavenumber of the analytic signal (Nwosu, 2014). Nabighian (1972) defines analytic signal A(x,z) as A 1 x,z = M (x,z) j M (x,z) (3.4) x z Where A 1(x,z) is the analytic signal M (x,z) is the magnitude of the anomalous total magnetic field, J is the imaginary number z and x indicate the gradients in the vertical and horizontal direction Also, it was shown by Nabighian (1972) that the gradient changes comprises the real and imaginary parts of the 2D signal and they are related as follows: M (x,z) M (x,z) (3.5) x z Where implies a Hilbert transform. Thurston and Smith (1972) showed the local wave number ĸ 1 to be expressed as: ĸ 1 = x tan 1 M z M x (3.6) Nwosu (2014) stated that the signatures described by Thurston and Smith (1972) utilized Hilbert transformation pair stated in 3.5. Linearity property is possessed by the Herbert transformation and vertical change operators, hence the change in the vertical direction of equation 3.5 will give the Hibert transform pair (Nwosu, 2014) as stated below: 2 M (x,z) - 2 M (x,z) (3.7) x z 2 z The analytic signal can, therefore, be explained based on the expression below: A 2 x,z = 2 M x,z x z j 2 M (x,z) 2 z (3.8) This gives rise to a second order local wave number ĸ 2, where 2M ĸ 2 = tan 1 2 z x 2 M z x (3.9) For the depth parameter of various magnetic sources to be computed using the Oasis Montaj Software via SPI, k 1 and k 2 were determined. Appropriate model using the first and

5 Geosciences 2017, 7(2): second order local wave numbers was then proposed. 3. Results and Interpretation Qualitative analysis gave rise to some gradient maps and quantitative analysis generated the map depicting the sedimentary thickness of the area. The qualitative analysis results consist of the regional, residual, first vertical derivative, second vertical derivative, first horizontal derivative, upward continuation and downward continuation maps. Quantitatively, SPI and 3D images depicting depth to basement with its morphology were generated. These images reveal undulations of the basement peculiar to the study area. The Regional Aeromagnetic Map The regional map (Fig 3) is the qualitative effect of the regional-residual separation performed on the TMI map. The regional-map depicts zones with long wavelength and with E-W tectonic trends. The regional aeromagnetic values range between nt to 89.0 nt. The southern region is associated with low magnetic values (blue and green colours) while the northern portion of the map is marked with high aeromagnetic values (yellow, red and violet colours). Aeromagnetic Residual Map Like the regional map, the residual map (Fig 4) is the resultant effect of the regional-residual separation. The residual map enhanced the accentuation of shallow bodies. The residual anomalous map highlights short wavelength (high frequency) magnetic bodies trending in the E-W and NE-SW directions at the southern and northern end of the map respectively. The aeromagnetic values range between nt to 21.5 nt. As evidenced by the smoothness of the magnetic signatures, the residual map indicates field corresponding to the high pass filters. The residual map is also an indicative of local trend variations giving clues on structures for possible hydrocarbon, mineral or ore emplacement. The colour variations reveal two magnetic zones which can be grouped into magnetic high (blue and green colours) and magnetic low (yellow, red and violet colours). Fig 4b exemplifies magnetic highs and lows using the arrow, straight and dash thick lines. Areas under the straight thick lines are the magnetic high zones and the areas under the dash thick lines represent the magnetic low. The single and double directional arrows indicate magnetic low but with the double line highlighting weathered magnetic zone. The single directional arrow under the magnetic high region is typical of magnetic aureole according to Gunn et al., (1997). Figure 3. Regional map of the study area (nt)

6 82 Bello R. et al.: Qualitative and Quantitative Interpretation of Parts of Onshore Niger Delta, Nigeria, Using High Resolution Aeromagnetic Data Figure 4. The residual aeromagnetic map (nt) Figure 4b. The aeromagnetic residual map showing magnetic highs and lows First Vertical Derivative (FVD) Map The FVD map showed in Fig.5 highlights shallow anomalous signatures. Similar to the residual map, the signatures trend in the E-W and NE-SW directions at the southern and northern portion of the map respectively. The map shows smoothened contours with less noise effect. These magnetic contours are highly parked at the southern and north western part of the map.

7 Geosciences 2017, 7(2): Second Vertical Derivative (SVD) Map Fig 6 reveals second vertical derivative of the aeromagnetic data. Analogous to the FVD, the SVD reveals changes in magnetic field in the vertical direction. Unlike the FVD map, the anomalies shown in the SVD map are of shorter wavelength. The short wavelengths or the high frequency components are true reflection of the shallow magnetic bodies. The anomalies trend in the NE-SW direction. However, fewer magnetic anomalies can be seen to be trending E-W at the western and southern portion of the map. The numerous shallow anomalies occurring on the SVD map necessitated the zoning of the map into three magnetic units (of 1, 2 and 3) which is shown in Fig 6a. Figure 5. First vertical derivative map (nt) Figure 6. Second vertical derivative map (nt)

8 84 Bello R. et al.: Qualitative and Quantitative Interpretation of Parts of Onshore Niger Delta, Nigeria, Using High Resolution Aeromagnetic Data UNIT 1 UNIT 3 UNIT 2 Figure 6a. The second vertical derivative map sectioned into three idenfiable units of 1, 2 and 3 (nt) 4. Discussion of Findings The aeromagnetic data covering parts of Degema was qualitatively produced into a map consisting of aggregate of colours called the Composite Total Magnetic Intensity (CTMI) map. By first inspecting the CTMI map, colour contrasts are apparent. These colour variations show the magnetic intensity values at various point of the map. The contrast in colour are possibly due to the presence of faults, fractures, dykes, seals, undulations in the basement, differences in lithology and geologic contact as well as magnetic susceptibility contrast of minerals present in the sedimentary section. The aeromagnetic raster map comprises of the violet, yellow, red, green, blue and the light blue colours. Beside the CTMI map is a corresponding legend showing positive and negative magnetic intensity values. The negative values imply areas that are magnetically subdued or quiet while the positive values are magnetically responsive. In respect to the CTMI map, the magnetically subdued areas are the magnetic low points of the study area and this is typical of a sedimentary terrain while the magnetic responsive areas are the magnetic high regions which according to Onuba et.al., (2011) is believed to be due to either igneous or metamorphic rocks. Based on the variation of intensity of magnetic responses, the magnetic low regions are discernible at the southern part of the map while the magnetic highs are obvious at the northern end of the map. The aeromagnetic intensity values ranges from -55 nt to 90.7 nt. Minimum intensity value of -55 nt occurs within the southern portion of the CTMI map while a maximum value of 90.7 nt dominates the northern portion of the map. Critical examination of the magnetic low occurring at the southern portion of the map reveals the blue colour been embedded inside the light blue colour. Gunn (1997) is of the opinion that the blue is as a result of the superposition of magnetic units while the light blue colour is as a result of weathering of the magnetic units. The transformed contour map highlights contours of various characteristics. The magnetic contours vary from been closely parked, relatively closed, closed, linear, smooth to been parallel, elliptical, broadened and irregular. The CTMI is composed of residual and regional field effect trending in the NE-SW and E-W directions but with the NE-SW tectonic trends been dominant. The residual effects are masked on the regional effects. Both effects are due to the total magnetic properties of rocks and this indicates the whole sum of remnant and induced magnetization. The residual and regional anomalous effects are due to shallow magnetic bodies and deep seated magnetic bodies, respectively, found within the mantle and core. In order to unravel the tectonics and economic potential of the study area, regional-residual separation becomes necessary. The regional-residual separation gives rise to the residuals which may provide clue about the existence of mineral bodies or sedimentary structures by highlighting some subtle or concealed features.

9 Geosciences 2017, 7(2): Figure 7. Source parameter image dept map (m) Figure 8. 3D SPI topographic map The regional map reveals hidden and planar E-W tectonic trend which is economically insignificant in terms of both hydrocarbon and minerals. The regional field aeromagnetic values ranges from nt to 89.0 nt. These values are depicted by the legend attached beside the map. However, values between nt to 15.9 nt reflects magnetic low areas (blue and green colours) and this can be traced within the southern portion of the map. From the central portion of the map are high magnetic values represented with the yellow, red and violet colours. These magnetic high anomalies can be found from the central part of the map to the northern portion. The residual anomalous map contains various contour configurations with high economic significance. These contours are of low amplitude and longer wavelength in nature. Although short wavelength magnetic sources are apparent on the map, generally the magnetic signatures trend in the NE-SW and E-W directions. More or less closely

10 86 Bello R. et al.: Qualitative and Quantitative Interpretation of Parts of Onshore Niger Delta, Nigeria, Using High Resolution Aeromagnetic Data parked, circular, linear, parallel, broadened or localized are revealed on the residual map. Revealed at the northwestern part of the map after the regional-residual was carried out are low magnetic areas typical of a sedimentary section. These areas are indicated with the dash thick lines. Within the area are two magnetic lows, namely the area indicated with the double directional arrow and that indicated with thick double arrow points. The thick double arrow point highlighted closely parked, linear and parallel magnetic anomalies trending in the NE-SW. The area under the two thick directional lines trend also in the NE-SW direction and is presumed to be possible structures housing hydrocarbon but Dobrin and Carl (1988) believe that this anomalous pattern results from subsurface faulting that have displaced magnetized rocks. This region falls under the Sombreiro -Warri Deltaic Plain (SDP) at Orerokpe in the western Niger Delta. Moving downwards and northeast wards are magnetic high which lies within the regional thick lines. The regions with high magnetic values are attributed to basement rocks that have intruded onto the sedimentary section. Geologically, the Benin Formation, SDP, Mangrove Swamps, Meander belt wooded back swamps (MWS) cut across this area. The magnetic high anomalies trend in the NE-SW direction. Within the region, circular and irregular magnetic contours are conspicuous. Higher magnetic anomaly occurs visibly at the circular magnetic contour indicated with three directional arrows. The high magnetic values surrounded by the closer circular contour are perceived to be magnetic aureole and this is indicative of high tectonics within such region but Gunn (1997) opines that the circular anomalies are due to the accumulation of magnetite. Further away from the magnetic aureole and moving north eastwards, the contours are farther apart. Generally, the closely parked and spaced contours found within the magnetic high and low areas indicate shallower and deeper anomalous sources respectively. Immediately below the magnetic highs are linear magnetic signatures which is of regional extent and which trends in the E-W direction. Onuba et al., believe that the E-W directional trend is typical of Pre-Pan African trending fault characterized by little brittle deformation which resulted in the development of conjugate strike-slip fault systems while Stone et al., (2004) stated that the E-W anomaly is synonymous to the anomaly induced around the equator. They further stated that around the equator the field is horizontal. According to Jiakang and Igor (2005), the E-W trend often coincides with litho-tectonic domains. Nevertheless, the linear signatures are of low relief and long wavelength. Moving further southward is an anomalous low with single and double arrow. This magnetic anomaly has a short wavelength and low relief as well as an elliptical shape. The elliptical nature signifies a dyke that houses hydrocarbon. An almost NE-SW trend lies below the dyke like structure. The NE-SW trend probably indicates the Charcot fault and chain oceanic fracture zones which serve as a migratory path for hydrocarbon. Hence the possibility of the NE-SW trend in aiding the exportation and importation of hydrocarbon from the dyke. Above all, high magnetic anomalies trending in the E-W directions are discernible at the northern extreme part of the map. The First Vertical Derivative (FVD) map shows smoothened shallow magnetic bodies with anomalous trend of E-W and NE-SW. Unlike the residual map, high magnetic values indicating magnetic intrusions occur at the north western and south western portion of the map when the enhancement technique was applied. However, zones with high aeromagnetic values can also be seen obviously at the northern and slightly at the southern portion of the map. As earlier stated, the high values are intrusions upon the sedimentary cover. Little magnetic low points can be sighted at the north western and southern areas. The contour obtained during the FVD transformation bears the same configuration with the residual map. This therefore implies that the magnetic sources can still be located at the same depth after the FVD filtering action. Second vertical derivative map reveals irregular magnetic signatures of shorter wavelength unlike in the FVD. The SVD magnetic field map contains anomalies and magnetic discontinuities with E-W, NE-SW and subtle NW-SE structural trends. Thus, it can be said that the major E-W and NE-SW trends truncated an older NW-SE trend within the area. To handle effectively the various magnetic anomalies and to identify the possible hydrocarbon and other mineralized structures occurring within the study area, the SVD map was divided into three identifiable magnetic units. The Magnetic units were established based on dominant magnetic signatures and patterns of the anomalies. Unit 1, 2, 3 are located at the North northeast, central and south western portion of the map respectively. Unit one covers about twenty five percent (25%) of the map and is located at the north-northeast part of the study area. The unit is characterized with irregular magnetic highs and lows having a general axis trend of NE-SW. Magnetic high occupies the northern, eastern and southern portion of unit one while the magnetic low occupies the central portion of the unit. Within the unit, the anomalies are of longer wavelength and it can be seen that the edges of the anomalies with high values cut across the boundary of unit one and two. Magnetic unit 2 is emplaced centrally and occupies about fifty percent (50%) of the map. Unit 2 consists of mixture of irregular magnetic highs and lows. The anomalies are almost of equal wavelength except for the anomalies found at the northwestern portion of the unit. The anomalies generally trend in the NE-SW and NW-SE direction. Few E-W tectonic trends can as well be seen at the North western portion of the map. Unit 3 is located at the south western portion of the map and it occupies about twenty five percent (25%) of the map. The region is characterized with equal number of magnetic highs and lows but with the magnetic low dominating. The anomalies trend in the NE-SW, NW-SE and E-W but with the E-W trend been less occurring at the western portion of the unit. Generally, keen inspection of the SVD map reveals short wavelength bodies with blue and green colouration across all the magnetic units. The blue and green magnetic bodies are typical of a sedimentary terrain

11 Geosciences 2017, 7(2): and they signify probable structures that could accumulate hydrocarbon. It could therefore be inferred that the percentage of hydrocarbon accumulation and exploration would be on the increase within the study area as the intrusive which will be a suitable source of geothermal energy are in proportion with the magnetic lows. The intrusive will provide appropriate geothermal energy needed for the maturation of source rocks. The SPI image map highlights spatial location of various magnetic sources at various depths. The magnetic bodies are evenly distributed as revealed by the image map. Maximum depth of m can be seen occurring at the north western, southern, central and south western portion of the map while minimum depth values occur at the northeastern, north western and southern part of the map. The SPI image, nevertheless, revealed an average depth of m which does not fall short of the maximum thickness required for the concealment of oil and gas formation from organic remains. This was evaluated to be 2.3 km by Wright et al., (1985) provided other conditions remain favourable. The result obtained quantitatively was validated by the dominate NE-SW tectonic faults found within the study area as these fault zone serve as conduit for oil and gas exploration. The spatial location of magnetic sources revealed by the SPI image map (Fig 7) is in consonance with the various locations of sources found on the 3D SPI map (Fig 8). The 3D SPI map reveals two magnetic source models, namely the deepening and the shallow spikes. The deeping spikes (represented with the blue and green colour) show areas with thicker sediments that are lying with the basement complex. These thick sediments range from m to m with a true thickness of m. According to Nwosu (2014), the sedimentary thickness is similar to the thickness of over burden sediment. The thickness of over burden sediment, according to him has a very important significance as to the hydrocarbon generation potential. The short spikes (represented by the violet, yellow, and red colours) have thickness of sediments varying between m and m with a true depth of about m. The short spikes highlight shallow seated magnetic bodies that have intruded onto the sedimentary cover. A thickness value of m is validated by the result of other researchers within the study area and its environs as this surpasses the average thickness value proposed by Wright et al., (1985), for the accumulation of hydrocarbon (oil and gas). 5. Conclusions The qualitative analysis revealed structures trending in the E-W, N-S, NW-SE, NE-SW directions while the quantitative analysis established an average depth value of m. This conform favouraby with the result of other researches within the area of study in that, qualitatively, these structures aid the migration and entrapement of hydrocabon and quantitatively, the average sedimentary thickness obtained is beyond that required for the accumulation of oil and gas as stated by Wright et al., (1985). ACKNOWLEDGEMENTS To the Nigeria Geological Survey Agency that assisted in this research by providing the aeromagnetic data used for this study. REFERENCES [1] Henry, L, Magnetic and Gravity Methods in Mineral Exploration: the Value of Well-Rounded Geophysical Skills. CSEG recorder, 27(2), [2] Jose, R, Gravity and magnetic methods: Presented at Short Course on Surface Exploration for Geothermal Resources, organized by UNU-GTP and LaGeo, in Ahuachapan and Santa Tecla, El Salvador, [3] Mariita, N.O, The magnetic method. Presented at Short Course II on Surface Exploration for Geothermal Resources, organized by UNU-GTP and KenGen, at Lake Naivasha, Kenya, 1-8. [4] Micahel, D. and Steven, M, Geophysics for the Mineral Exploration Geoscientist (1 st edn). Cambridge University Press, NewYork [5] Abdusalam, N. N., Mallam A., and Likkason, O.K, Evidence of some tectonic events in the Koton Kaifi area, Nigeria, from aeromagnetic studies. Journal of petroleum and gas exploration research, 3 (1), [6] Emujakporue, G and. Ofoha, C, Qualitative interpretation of aeromagnetic data of parts of offshore Niger Delta, Nigeria. Scientia Africana, 14(1), [7] Aizebeokhai, A. P. and Olayinka, I, Structural and stratigraphic mapping of Emi field, offshore Niger Delta. J. Geol. Min. Res., 3(2), [8] Okiwelu, A.A., Obianwu, V.I., Eze,O., and Ude, I.A, Magnetic anomaly patterns, fault block tectonism and hydrocarbon related structural features in the Niger Delta basin. Journal of applied geology and geophysics, Vol 2, Issue1 Ver.1, [9] Oladele, S. and Ojo, B, Basement Architecture in Part of the Niger Delta from Aeromagnetic Data and its Implication for Hydrocarbon Prospectivity. The Pacific Journal of Science and Technology, 14(2), [10] Phillips, J.D, Two-step processing for 3D magnetic source locations and structural indices using extended Euler or analytic signal methods: 72nd Ann. Internat. Mtg. Soc. Expl. Geophys, Expanded Abstracts, GM [11] Luis, A.M, Processing techniques of aeromagnetic data: Case studies from the Precambrian of Mozambique. M.sc thesis, Uppsala university, Mozambique, (Publ). [12] Nwosu, O.B. (2014): Determination Of Magnetic Basement Depth Over Parts Of Middle Benue Trough By Source Parameter Imaging (SPI) Technique Using HRAM. International journal of scientific and technology research,

12 88 Bello R. et al.: Qualitative and Quantitative Interpretation of Parts of Onshore Niger Delta, Nigeria, Using High Resolution Aeromagnetic Data volume 3, issue 1, [13] Thurston, J.B. and Smith, R. S. (1997): improved source parameter imaging method. Geophysics, 62, [14] Blakely, R.J. (1996). Potential theory in gravity and Magnetic Applications. Cambridge University Press, New York, [15] Nabighian, M.N., Grauch, V.J.S., Hansen, R.O., Lafehr, T.R., Li, Y., Pearson, W.C., Peirce, J.W., Phillips, J.D., and Ruder, M.E. (2001): Historical development of magnetic method in exploration. Geophysics, 23(17), [16] Stone, V., Fairhead, J.D., Oterdoom, W.H. and Carigali, P, The meter reader: Micro magnetic seep detection in the Sudan. The Leading Edge, 23(8): [17] Onuba, L. N., Anudu, G.K., Chiaghanam, O.I. and Anakwuba, E.K Evaluation of Aeromagnetic Anomalies Over Okigwe Area, South-eastern Nigeria. Research Journal of Environmental and Earth Sciences 3(5): [18] Gunn, P.J., Maidment, D. and Milligan, P.R, Interpreting aeromagnetic data in areas of limited outcrop. Journal of Austrian Geology and Geophysics, 17(2), [19] Jiakang, L. and Igor, M, Potential Field investigation of Williston Basin Basement. Canadian Society of Exploration Geophysicists National Convention, pp [20] Dobrin, M.B., and Carl, H.S. (1988): An introduction to geophysical prospecting, (4 th edn). McGrall Hill international, New York, [21] Wright, J.B., Hastings, D.A., Jones, W.B. and Williams, H.R. (1985): Geology and Mineral Resources of West Africa. George Allen and Urwin, London,

Structural Interpretations Inferred from a High Resolution Aeromagnetic (HRAM) Data over Parts of Onshore Niger Delta, Nigeria

Structural Interpretations Inferred from a High Resolution Aeromagnetic (HRAM) Data over Parts of Onshore Niger Delta, Nigeria International Journal of High Energy Physics 2017; 4(3): 23-31 http://www.sciencepublishinggroup.com/j/ijhep doi: 10.11648/j.ijhep.20170403.11 ISSN: 2376-7405 (Print); ISSN: 2376-7448 (Online) Structural

More information

Spectral Analysis of Aeromagnetic Anomalies from Parts of Mmaku and its Adjoining Areas in Southeastern, Nigeria

Spectral Analysis of Aeromagnetic Anomalies from Parts of Mmaku and its Adjoining Areas in Southeastern, Nigeria International Journal of Scientific and Research Publications, Volume 5, Issue 10, October 2015 1 Spectral Analysis of Aeromagnetic Anomalies from Parts of Mmaku and its Adjoining Areas in Southeastern,

More information

Potential Field investigation of Williston Basin Basement

Potential Field investigation of Williston Basin Basement Potential Field investigation of Williston Basin Basement Jiakang Li* and Igor Morozov, University of Saskatchewan, Canada Summary Major faults and domains are identified in the Precambrian basement of

More information

Available online Journal of Scientific and Engineering Research, 2016, 3(2):1-7. Research Article

Available online   Journal of Scientific and Engineering Research, 2016, 3(2):1-7. Research Article Available online www.jsaer.com, 2016, 3(2):1-7 Research Article ISSN: 2394-2630 CODEN(USA): JSERBR Assessment of the Reliability of Magnetic Method to Delineate Geologic Features in a Basement Complex:

More information

Horizontal gradient and band-pass filter of aeromagnetic data image the subsurface structure; Example from Esh El Mellaha Area, Gulf of Suez, Egypt.

Horizontal gradient and band-pass filter of aeromagnetic data image the subsurface structure; Example from Esh El Mellaha Area, Gulf of Suez, Egypt. Horizontal gradient and band-pass filter of aeromagnetic data image the subsurface structure; Example from Esh El Mellaha Area, Gulf of Suez, Egypt. Essam Aboud 1, Serguei Goussev 2, Hassan Hassan 2, Suparno

More information

Mapping Basement Structures in the Peace River Arch of Alberta Using Monogenic Signal Decomposition of Magnetic Data

Mapping Basement Structures in the Peace River Arch of Alberta Using Monogenic Signal Decomposition of Magnetic Data Mapping Basement Structures in the Peace River Arch of Alberta Using Monogenic Signal Decomposition of Magnetic Data Hassan H. Hassan*, CGG Gravity & Magnetic Services, Calgary, Alberta, Canada Hassan.Hassan@CGG.com

More information

Geomagnetic modeling of potential hydrocarbon traps in the lower Niger Delta, Offshore West Africa

Geomagnetic modeling of potential hydrocarbon traps in the lower Niger Delta, Offshore West Africa Available online at www.scholarsresearchlibrary.com Archives of Applied Science Research, 2012, 4 (2):863-874 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Geomagnetic

More information

Delineation of Magnetic Zones of Sokoto Basin, in Northwestern Nigeria, Using Aeromagnetic Data.

Delineation of Magnetic Zones of Sokoto Basin, in Northwestern Nigeria, Using Aeromagnetic Data. Research Inventy: International Journal Of Engineering And Science Vol.4, Issue 1 (January 2014), PP 37-45 Issn(e): 2278-4721, Issn(p):2319-6483, Www.Researchinventy.Com Delineation of Magnetic Zones of

More information

Determination of Geothermal Gradient in the Eastern Niger Delta Sedimentary Basin from Bottom Hole Temperatures

Determination of Geothermal Gradient in the Eastern Niger Delta Sedimentary Basin from Bottom Hole Temperatures Journal of Earth Sciences and Geotechnical Engineering, vol. 4, no. 3, 2014, 109-114 ISSN: 1792-9040 (print), 1792-9660 (online) Scienpress Ltd, 2014 Determination of Geothermal Gradient in the Eastern

More information

OZ SEEBASE TM. Datasets. Digital Elevation Model

OZ SEEBASE TM. Datasets. Digital Elevation Model Digital Elevation Model 10 Digital Elevation Models (DEM s) often show the youngest structures, and any active geological structures. They are widely used for neotectonic analysis. The composition of eroding

More information

Spectral Analysis of Aeromagnetic Data over Part of the Southern Bida basin, West-Central Nigeria

Spectral Analysis of Aeromagnetic Data over Part of the Southern Bida basin, West-Central Nigeria Spectral Analysis of Aeromagnetic Data over Part of the Southern Bida basin, West-Central Nigeria Ikumbur Emmanuel Bemsen 1*, Onwuemesi Ajana Godwin 2, Anakwuba Emmanuel Kenechukwu 2, Chinwuko Augustine

More information

Depth Estimation and Source Location of Magnetic Anomalies from a Basement Complex Formation, Using Local Wavenumber Method

Depth Estimation and Source Location of Magnetic Anomalies from a Basement Complex Formation, Using Local Wavenumber Method IOSR Journal of Applied Phsics (IOSR-JAP) e-issn: 78-4861. Volume 4, Issue (Jul. - Aug. 013), PP 33-38 Depth Estimation and Source Location of agnetic Anomalies from a Basement Complex Formation, Using

More information

Airborne gravity gradiometer surveying of petroleum systems under Lake Tanganyika, Tanzania

Airborne gravity gradiometer surveying of petroleum systems under Lake Tanganyika, Tanzania Airborne gravity gradiometer surveying of petroleum systems under Lake Tanganyika, Tanzania D. Roberts Beach Energy P. Roy Chowdhury CGG S. J. Lowe CGG A. N. Christensen CGG Outline Introduction Geology

More information

Application of Ground and Aeromagnetics as Reconnaissance tool for Hydrocarbon Exploration in Part of Ikom Embayment and Lower Benue Trough, Nigeria.

Application of Ground and Aeromagnetics as Reconnaissance tool for Hydrocarbon Exploration in Part of Ikom Embayment and Lower Benue Trough, Nigeria. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 4, Issue 5 Ver. III (Sep. - Oct. 2016), PP 14-23 www.iosrjournals.org Application of Ground and Aeromagnetics

More information

CULTURAL EDITING OF HRAM DATA COMPARISON OF TECHNIQUES. Canadian Journal of Exploration Geophysics, no. 1&2, vol. 34, 1998, pp.

CULTURAL EDITING OF HRAM DATA COMPARISON OF TECHNIQUES. Canadian Journal of Exploration Geophysics, no. 1&2, vol. 34, 1998, pp. CULTURAL EDITING OF HRAM DATA COMPARISON OF TECHNIQUES H. H. Hassan 1, J. W. Peirce 1, W. C. Pearson 2 and M. J. Pearson 3 Canadian Journal of Exploration Geophysics, no. 1&2, vol. 34, 1998, pp. 16-22

More information

Magnetic Case Study: Raglan Mine Laura Davis May 24, 2006

Magnetic Case Study: Raglan Mine Laura Davis May 24, 2006 Magnetic Case Study: Raglan Mine Laura Davis May 24, 2006 Research Objectives The objective of this study was to test the tools available in EMIGMA (PetRos Eikon) for their utility in analyzing magnetic

More information

Mapping Magnetic Lineaments in the Foothills of Northeastern British Columbia using 2-D Wavelet Transform

Mapping Magnetic Lineaments in the Foothills of Northeastern British Columbia using 2-D Wavelet Transform Mapping Magnetic Lineaments in the Foothills of Northeastern British Columbia using 2-D Wavelet Transform Hassan Hassan* GEDCO, Calgary, Alberta, Canada hassan@gedco.com Abstract Summary This work describes

More information

STRUCTURAL INTERPRETATION AND HYDROCARBON POTENTIAL OF OBUA FIELD, NIGER DELTA, SOUTHERN NIGERIA

STRUCTURAL INTERPRETATION AND HYDROCARBON POTENTIAL OF OBUA FIELD, NIGER DELTA, SOUTHERN NIGERIA STRUCTURAL INTERPRETATION AND HYDROCARBON POTENTIAL OF OBUA FIELD, NIGER DELTA, SOUTHERN NIGERIA 1 Iwuoma Juliet Onyinyechukwu and 2 Minapuye I. Odigi 1 Department of Geology, University of Port Harcourt,

More information

Aeromagnetic Data Interpretation for Geostructural Analysis of Ibadan, Southwestern Nigeria

Aeromagnetic Data Interpretation for Geostructural Analysis of Ibadan, Southwestern Nigeria Aeromagnetic Data Interpretation for Geostructural Analysis of Ibadan, Southwestern Nigeria 1 Sunmonu, L.A., 2* Olasunkanmi, N. K. and 3 Alagbe, O. A. 1 Pure and Applied Physics Department, Ladoke Akintola

More information

INTERPRETED FAULTING PATTERNS IN NORTHEAST ALBERTA USING HIGH RESOLUTION AEROMAGNETIC DATA. Canadian Journal of Exploration Geophysicists, 1998

INTERPRETED FAULTING PATTERNS IN NORTHEAST ALBERTA USING HIGH RESOLUTION AEROMAGNETIC DATA. Canadian Journal of Exploration Geophysicists, 1998 INTERPRETED FAULTING PATTERNS IN NORTHEAST ALBERTA USING HIGH RESOLUTION AEROMAGNETIC DATA M. E. Best 1, H. J. Abercrombie 2 and J. W. Peirce 3 Canadian Journal of Exploration Geophysicists, 1998 ABSTRACT

More information

Aeromagnetic map of the Death Valley ground-water model area, Nevada and California

Aeromagnetic map of the Death Valley ground-water model area, Nevada and California Aeromagnetic map of the Death Valley ground-water model area, Nevada and California By D.A. Ponce and R.J. Blakely Prepared in cooperation with the Nevada Operations Office National Nuclear Security Administration

More information

Source Depth Determination from Aeromagnetic Data of Ilesha, Southwest Nigeria, Using the Peters Half Slope Method

Source Depth Determination from Aeromagnetic Data of Ilesha, Southwest Nigeria, Using the Peters Half Slope Method Earth Science Research; Vol. 3, No. 1; 2014 ISSN 1927-0542 E-ISSN 1927-0550 Published by Canadian Center of Science and Education Source Depth Determination from Aeromagnetic Data of Ilesha, Southwest

More information

Analysis of Surface and Magnetic Lineaments in and Around Wase Area of Northern Nigeria

Analysis of Surface and Magnetic Lineaments in and Around Wase Area of Northern Nigeria IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 5, Issue 1 Ver. II (Jan. - Feb. 2017), PP 52-62 www.iosrjournals.org Analysis of Surface and Magnetic

More information

GRAVITY AND MAGNETIC METHODS

GRAVITY AND MAGNETIC METHODS Presented at Short Course IX on Exploration for Geothermal Resources, organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Nov. 2-24, 2014. Kenya Electricity Generating Co.,

More information

Aeromagnetic data analysis of tafawa balewa area using second vertical derivative and analytic signal techniques

Aeromagnetic data analysis of tafawa balewa area using second vertical derivative and analytic signal techniques IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 6, Issue 1 Ver. I (Jan. Feb. 2018), PP 25-32 www.iosrjournals.org Aeromagnetic data analysis of tafawa

More information

Interpretation of Subsurface Geological Structure of Massepe Geothermal Area Using Resistivity Data

Interpretation of Subsurface Geological Structure of Massepe Geothermal Area Using Resistivity Data Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 Interpretation of Subsurface Geological Structure of Massepe Geothermal Area Using Resistivity Data Ahmad Zarkasyi and Yuanno

More information

Geophysical Evaluation of Magnetic Data of Okenugbo Area, Ago - Iwoye, Southwestern, Nigeria

Geophysical Evaluation of Magnetic Data of Okenugbo Area, Ago - Iwoye, Southwestern, Nigeria Geophysical Evaluation of Magnetic Data of Okenugbo Area, Ago - Iwoye, Southwestern, Nigeria 1 Oladunjoye H.T. 2 Olasunkanmi, N. K. 3 Olaleye, A.O 1 Department of Physics, Olabisi Onabanjo University,

More information

2) First Order Resistivity Effects. The first order effects discussed above in the main reflect vertical resistivity features. (1) Surficial Zone (R3)

2) First Order Resistivity Effects. The first order effects discussed above in the main reflect vertical resistivity features. (1) Surficial Zone (R3) The first and second order effects represent clear and obvious features in the data, while the third order effects are subtle, appearing real and consistent, but on the limit of interpretability. A number

More information

The Gulf of Mexico - From Various Vantage Points John E. Bain, Kenton J. Hamilton

The Gulf of Mexico - From Various Vantage Points John E. Bain, Kenton J. Hamilton The Gulf of Mexico - From Various Vantage Points John E. Bain, Kenton J. Hamilton Oftentimes in exploration geophysics we tend to focus on specific near-term exploration prospects, as dictated by the current

More information

Tectonic Patterns Interpreted From Ground Magnetic Survey of Part of Southern Margin of Hawal Basement Complex, Northeast Nigeria

Tectonic Patterns Interpreted From Ground Magnetic Survey of Part of Southern Margin of Hawal Basement Complex, Northeast Nigeria IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 4, Issue 1 Ver. I (Jan. - Feb. 2016), PP 117-122 www.iosrjournals.org Tectonic Patterns Interpreted

More information

Evaluation of the petroleum potentials and prospect of the Chad Basin Nigeria from heat flow and gravity data

Evaluation of the petroleum potentials and prospect of the Chad Basin Nigeria from heat flow and gravity data J Petrol Explor Prod Technol (2012) 2:1 6 DOI 10.1007/s13202-011-0015-5 ORIGINAL PAPER - EXPLORATION GEOPHYSICS Evaluation of the petroleum potentials and prospect of the Chad Basin Nigeria from heat flow

More information

Geologic applications of magnetic data and using enhancements for contact mapping

Geologic applications of magnetic data and using enhancements for contact mapping Geologic applications of magnetic data and using enhancements for contact mapping M. Pilkington ( 1 ), P. Keating ( 1 ) ( 1 ) Geological Survey of Canada, Ottawa, Canada Summary Magnetic field data are

More information

CHAPTER FOUR GEOPHYSICAL INTERPRETATION AND DISCUSSION

CHAPTER FOUR GEOPHYSICAL INTERPRETATION AND DISCUSSION CHAPTER FOUR GEOPHYSICAL INTERPRETATION AND DISCUSSION 4.1. DATA PROCESSING AND INTERPRETATION 4.1.1. Introduction Processing of potential field data entails the application of various filters to the data

More information

C5 Magnetic exploration methods data analysis techniques

C5 Magnetic exploration methods data analysis techniques C5 Magnetic exploration methods data analysis techniques C5.1 Data processing and corrections After magnetic field data have been collected a number of corrections are applied to simplify the interpretation.

More information

MUHAMMAD S TAMANNAI, DOUGLAS WINSTONE, IAN DEIGHTON & PETER CONN, TGS Nopec Geological Products and Services, London, United Kingdom

MUHAMMAD S TAMANNAI, DOUGLAS WINSTONE, IAN DEIGHTON & PETER CONN, TGS Nopec Geological Products and Services, London, United Kingdom Geological and Geophysical Evaluation of Offshore Morondava Frontier Basin based on Satellite Gravity, Well and regional 2D Seismic Data Interpretation MUHAMMAD S TAMANNAI, DOUGLAS WINSTONE, IAN DEIGHTON

More information

GEOPHYSICS GRAVITY DATA COVERAGE

GEOPHYSICS GRAVITY DATA COVERAGE GEOPHYSICS DATA COVERAGE The Mudgee-Gulgong district lies within the Dubbo 1:250,000 sheet area. This area is now covered by high res_olution gravity, magnetic and radiometric data. The aeromagnetic and

More information

Gravity Support for Hydrocarbon Exploration at the Prospect Level

Gravity Support for Hydrocarbon Exploration at the Prospect Level Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 2 (1): 1-6 Scholarlink Research Institute Journals, 2011 (ISSN: 2141-7016) jeteas.scholarlinkresearch.org Journal of Emerging Trends

More information

Imaging VTEM Data: Mapping Contamination Plumes In Tarlton, South Africa

Imaging VTEM Data: Mapping Contamination Plumes In Tarlton, South Africa Imaging VTEM Data: Mapping Contamination Plumes In Tarlton, South Africa M. Combrinck Geotech Airborne Limited Summary VTEM data were acquired during a test survey flown over the Tarlton region in South

More information

Edge Detection in Gravity Field of the Gheshm Sedimentary Basin

Edge Detection in Gravity Field of the Gheshm Sedimentary Basin Int J Min & Geo-Eng (IJMGE), Vol. 47, No. 1, Jun. 013, pp. 41-50 Edge Detection in Gravity Field of the Gheshm Sedimentary Basin Seyed Ali Akbar Hosseini 1*, Faramarz Doulati Ardejani, Seyed Hashem Tabatabaie

More information

Spectral Depth Analysis of Sokoto Basin.

Spectral Depth Analysis of Sokoto Basin. IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861. Volume 6, Issue 1 Ver. I (Jan. 2014), PP 15-21 Spectral Depth Analysis of Sokoto Basin. Bonde,D. S*.1, Udensi E. E 2 ; Rai J. K. 1 1 Department

More information

Determination of Incompressibility, Elasticity and the Rigidity of Surface Soils and Shallow Sediments from Seismic Wave Velocities

Determination of Incompressibility, Elasticity and the Rigidity of Surface Soils and Shallow Sediments from Seismic Wave Velocities Journal of Earth Sciences and Geotechnical Engineering, vol. 6, no.1, 2016, 99-111 ISSN: 1792-9040 (print), 1792-9660 (online) Scienpress Ltd, 2016 Determination of Incompressibility, Elasticity and the

More information

Spectral Analysis of the Residual Magnetic Anomalies Overpategi and Egbako Area of the of the Mddle Niger Basin, Nigeria

Spectral Analysis of the Residual Magnetic Anomalies Overpategi and Egbako Area of the of the Mddle Niger Basin, Nigeria Spectral Analysis of the Residual Magnetic Anomalies Overpategi and Egbako Area of the of the Mddle Niger Basin, Nigeria OFOR. N. P, ADAM. K. D and UDENSI. E. E. Department of Physics, Federal University

More information

CHAPTER 4 POTENTIAL FIELD MODELLING

CHAPTER 4 POTENTIAL FIELD MODELLING CHAPTER 4 POTENTIAL FIELD MODELLING POTENTIAL FIELD MODELLING The reference dataset used for the potential field modelling is the Gravity anomaly map and Magnetic anomaly map of the Atlantic region of

More information

Integration of Well Logs and Seismic Data for Prospects Evaluation of an X Field, Onshore Niger Delta, Nigeria

Integration of Well Logs and Seismic Data for Prospects Evaluation of an X Field, Onshore Niger Delta, Nigeria International Journal of Geosciences, 2012, 3, 872-877 http://dx.doi.org/10.4236/ijg.2012.324088 Published Online September 2012 (http://www.scirp.org/journal/ijg) Integration of Well Logs and Seismic

More information

DETERMINATION OF THE CURIE POINT DEPTH OF ANAMBRA BASIN AND ITS ENVIRONS USING HIGH RESOLUTION AIRBORNE MAGNETIC DATA

DETERMINATION OF THE CURIE POINT DEPTH OF ANAMBRA BASIN AND ITS ENVIRONS USING HIGH RESOLUTION AIRBORNE MAGNETIC DATA www.arpapress.com/volumes/vol34issue2/ijrras_34_2_02.pdf DETERMINATION OF THE CURIE POINT DEPTH OF ANAMBRA BASIN AND ITS ENVIRONS USING HIGH RESOLUTION AIRBORNE MAGNETIC DATA Christopher Aigbogun & Kuforijimi

More information

3D Geometry of the Xade Complex inferred from Gravity and Magnetic Data

3D Geometry of the Xade Complex inferred from Gravity and Magnetic Data Geophysical Case Histories 3D Geometry of the Xade Complex inferred from Gravity and Magnetic Data 1. British Geological Survey, Edinburgh, United Kingdom Paper 92 Pouliquen, G. [1], Key, R. [1] ABSTRACT

More information

Bulletin of Earth Sciences of Thailand. Evaluation of the Petroleum Systems in the Lanta-Similan Area, Northern Pattani Basin, Gulf of Thailand

Bulletin of Earth Sciences of Thailand. Evaluation of the Petroleum Systems in the Lanta-Similan Area, Northern Pattani Basin, Gulf of Thailand Evaluation of the Petroleum Systems in the Lanta-Similan Area, Northern Pattani Basin, Gulf of Thailand Sirajum Munira Petroleum Geoscience Program, Department of Geology, Faculty of Science, Chulalongkorn

More information

Petroleum geology framework, West Coast offshore region

Petroleum geology framework, West Coast offshore region Petroleum geology framework, West Coast offshore region James W. Haggart* Geological Survey of Canada, Vancouver, BC jhaggart@nrcan.gc.ca James R. Dietrich Geological Survey of Canada, Calgary, AB and

More information

FAULT SLICING IN THE INTERPRETATION OF FAULTS IN SEISMIC DATA PROC- ESSING IN ATALA PROSPECT OF RIVER STATE, NIGERIA

FAULT SLICING IN THE INTERPRETATION OF FAULTS IN SEISMIC DATA PROC- ESSING IN ATALA PROSPECT OF RIVER STATE, NIGERIA FAULT SLICING IN THE INTERPRETATION OF FAULTS IN SEISMIC DATA PROC- ESSING IN ATALA PROSPECT OF RIVER STATE, NIGERIA Egbai, J.C. Department of Physics, Delta State University, Abraka ABSTRACT e-mail: jamesegbai@yahoo.com

More information

Upward Continuation and Reduction to Pole Process on Aeromagnetic Data of Ibadan Area, South-Western Nigeria

Upward Continuation and Reduction to Pole Process on Aeromagnetic Data of Ibadan Area, South-Western Nigeria Earth Science Research; Vol. 2, No. 1; 2013 ISSN 1927-0542 E-ISSN 1927-0550 Published by Canadian Center of Science and Education Upward Continuation and Reduction to Pole Process on Aeromagnetic Data

More information

THE USE OF ANALYTIC AND FIRST DERIVATIVE TECHNIQUES TO GAIN INSIGHT INTO AEROMAGNETIC ANOMALY PATTERNS IN PART OF IKARA, NIGERIA

THE USE OF ANALYTIC AND FIRST DERIVATIVE TECHNIQUES TO GAIN INSIGHT INTO AEROMAGNETIC ANOMALY PATTERNS IN PART OF IKARA, NIGERIA THE USE OF ANALYTIC AND FIRST DERIVATIVE TECHNIQUES TO GAIN INSIGHT INTO AEROMAGNETIC ANOMALY PATTERNS IN PART OF IKARA, NIGERIA Supported by B. Bala 1 *, K. M. Lawal 1, A. L. Ahmed 1, M. Umar 1, M. A.

More information

Evidence Linking Surface Lineaments, Deep-Seated Faults and Fracture-Controlled Fluid Movement in the Williston Basin

Evidence Linking Surface Lineaments, Deep-Seated Faults and Fracture-Controlled Fluid Movement in the Williston Basin Evidence Linking Surface Lineaments, Deep-Seated Faults and Fracture-Controlled Fluid Movement in the Williston Basin Lynden Penner J.D. Mollard and Associates Limited Regina, SK Canada 14 th Williston

More information

Modeling of Magnetic Anomaly zones in Sokoto Basin, Nigeria.

Modeling of Magnetic Anomaly zones in Sokoto Basin, Nigeria. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 2, Issue 1 Ver. I. (Jan. 2014), PP 19-25 Modeling of Magnetic Anomaly zones in Sokoto Basin, Nigeria.

More information

Summary. 3D potential field migration. Various approximations of the Newton method result in the imaging condition for the vector of densities, :

Summary. 3D potential field migration. Various approximations of the Newton method result in the imaging condition for the vector of densities, : 24 A case study from Broken Hill, Australia, with comparison to 3D regularized inversion Michael S. Zhdanov, University of Utah and TechnoImaging, Xiaojun Liu, University of Utah, Le Wan*, Martin Čuma,

More information

8 2 E L. Geophysical Exploration Report of 18282EL, Wase LGA, Plateau State. BRIGO MINING COMPANY LTD.

8 2 E L. Geophysical Exploration Report of 18282EL, Wase LGA, Plateau State. BRIGO MINING COMPANY LTD. 1 Geophysical Exploration Report of 18282EL, Wase LGA, Plateau State. BRIGO MINING COMPANY LTD. 8 2 Electromagnetic and Induced Polarization Exploration Report 8 2 E L By: Dr. Oladele Olaniyan GISL, Abuja

More information

An integrated geothermal, gravity and aeromagnetic study for possible structural feature analysis of the Eastern Niger Delta sedimentary basin

An integrated geothermal, gravity and aeromagnetic study for possible structural feature analysis of the Eastern Niger Delta sedimentary basin Vol. 14, 2018 ISSN 2278 5485 EISSN 2278 5477 Science DISCOVERY An integrated geothermal, gravity and aeromagnetic study for possible structural feature analysis of the Eastern Niger Delta sedimentary basin

More information

SPECTRAL ANALYSIS OF GROUND MAGNETIC DATA IN MAGADI AREA, SOUTHERN KENYA RIFT

SPECTRAL ANALYSIS OF GROUND MAGNETIC DATA IN MAGADI AREA, SOUTHERN KENYA RIFT SPECTRAL ANALYSIS OF GROUND MAGNETIC DATA IN MAGADI AREA, SOUTHERN KENYA RIFT 1 JG Githiri, 2 JP Patel, 3 JO Barongo and 4 PK Karanja 1 Jomo-Kenyatta University of Agriculture, Science and Technology,

More information

Integrated Interpretation of Gravity, Magnetic & Seismic data for delineation of Basement Configuration in Sadiya Block, Upper Assam, India

Integrated Interpretation of Gravity, Magnetic & Seismic data for delineation of Basement Configuration in Sadiya Block, Upper Assam, India P-225 Integrated Interpretation of Gravity, Magnetic & Seismic data for delineation of Basement Summary G.K.Ghosh *, S.K.Basha, V.K. Kulshreshth Gravity and magnetic data were collected jointly by National

More information

Seismic Reflection Imaging across the Johnson Ranch, Valley County, Idaho

Seismic Reflection Imaging across the Johnson Ranch, Valley County, Idaho Seismic Reflection Imaging across the Johnson Ranch, Valley County, Idaho Report Prepared for the Skyline Corporation Lee M. Liberty Center for Geophysical Investigation of the Shallow Subsurface (CGISS)

More information

Darnley Bay Resources Preliminary Airborne Survey Results

Darnley Bay Resources Preliminary Airborne Survey Results 4 King Street West, Suite 1103 Toronto, Ontario M5H 1B6, Canada Tel:(416) 862-7885 Fax:(416) 862-7889 dbr@darnleybay.com UPDATE Trading Symbol: DBL. TSX Venture Exchange April 19, 2010 Darnley Bay Resources

More information

Enhancing exploration opportunities at Broken Hill with airborne gravity gradiometry

Enhancing exploration opportunities at Broken Hill with airborne gravity gradiometry Enhancing exploration opportunities at Broken Hill with airborne gravity gradiometry Richard Lane Paper presented at the NSW Department of Mineral Resources Exploration NSW Geoscience information Release

More information

INTEGRATED GEOPHYSICAL INVESTIGATION OF SEQUENCE OF DEPOSITION OF SEDIMENTARY STRATA IN ABAKALIKI, NIGERIA ABSTRACT

INTEGRATED GEOPHYSICAL INVESTIGATION OF SEQUENCE OF DEPOSITION OF SEDIMENTARY STRATA IN ABAKALIKI, NIGERIA ABSTRACT INTEGRATED GEOPHYSICAL INVESTIGATION OF SEQUENCE OF DEPOSITION OF SEDIMENTARY STRATA IN ABAKALIKI, NIGERIA Agha S.O Dept. of Industrial Physics Ebonyi State University, Abakaliki, Nigeria & Arua A.I Dept.

More information

2D-Euler Deconvolution technique and Electrical Self-Potential analysis for subsurface structures delineation in Matuu, Machakos County, Kenya

2D-Euler Deconvolution technique and Electrical Self-Potential analysis for subsurface structures delineation in Matuu, Machakos County, Kenya IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 99, p-issn: 2321 982.Volume 3, Issue 6 Ver.II (Nov. - Dec. 215), PP 3-36 www.iosrjournals.org 2D-Euler Deconvolution technique and

More information

HRAM FAULT INTERPRETATION USING MAGPROBE DEPTH ESTIMATES AND NON- TRADITIONAL FILTERING

HRAM FAULT INTERPRETATION USING MAGPROBE DEPTH ESTIMATES AND NON- TRADITIONAL FILTERING HRAM FAULT INTERPRETATION USING MAGPROBE DEPTH ESTIMATES AND NON- TRADITIONAL FILTERING Serguei A. Goussev 1, Robert A. Charters 1, Hassan H. Hassan 1, John W. Peirce 1 and James A. Genereux 2 Canadian

More information

Controls on clastic systems in the Angoche basin, Mozambique: tectonics, contourites and petroleum systems

Controls on clastic systems in the Angoche basin, Mozambique: tectonics, contourites and petroleum systems P2-2-13 Controls on clastic systems in the Angoche basin, Mozambique: tectonics, contourites and petroleum systems Eva Hollebeek, Olivia Osicki, Duplo Kornpihl Schlumberger, London, UK Introduction Offshore

More information

Relevance of 2D Electrical Imaging in Subsurface Mapping: Case Study of National Animal Production Research Institute (NAPRI), Zaria.

Relevance of 2D Electrical Imaging in Subsurface Mapping: Case Study of National Animal Production Research Institute (NAPRI), Zaria. Relevance of 2D Electrical Imaging in Subsurface Mapping: Case Study of National Animal Production Research Institute (NAPRI), Zaria. S.I. Fadele, Ph.D. (in view) 1* ; J. Adamu, M.Sc. 2 ; N.O. Patrick,

More information

MOKWA (Sheet 41) 1:250,000 GEOPHYSICAL MAP SERIES AND INTERPRETATION

MOKWA (Sheet 41) 1:250,000 GEOPHYSICAL MAP SERIES AND INTERPRETATION TECHNICAL ASSISTANCE FOR THE INTERPRETATION OF AIRBORNE GEOPHYSICAL SURVEY Contract No. SMMRP/C.2.1/CON/07/02 MOKWA (Sheet 41) 1:250,000 GEOPHYSICAL MAP SERIES AND INTERPRETATION Prepared for Federal Republic

More information

5. Gravity. 5.1 Geoid Variations. The Australian Continent: A Geophysical Synthesis Gravity

5. Gravity. 5.1 Geoid Variations. The Australian Continent: A Geophysical Synthesis Gravity 34 The Australian Continent: A Geophysical Synthesis Gravity 5. Gravity Gravity data map subtle changes in the Earth s gravitational field caused by variations in the density of the underlying materials.

More information

2-D potential field modeling across the Hawtmi and Wiahatya faults in search of geothermal resources within the Umatilla Indian Reservation

2-D potential field modeling across the Hawtmi and Wiahatya faults in search of geothermal resources within the Umatilla Indian Reservation 2-D potential field modeling across the Hawtmi and Wiahatya faults in search of geothermal resources within the Umatilla Indian Reservation Grober, Benjamin L. 1 & Palmer, Zachary A. 1 1 U.S. Geological

More information

AIRBORNE MAGNETIC STUDY OF OTUKPO AREA. Ogah, Vincent E. and B. S. Jatau 1

AIRBORNE MAGNETIC STUDY OF OTUKPO AREA. Ogah, Vincent E. and B. S. Jatau 1 AIRBORNE MAGNETIC STUDY OF OTUKPO AREA Ogah, Vincent E. and B. S. Jatau 1 Department of Geology, Benue State Polytechnic, Ugbokolo 2 Department of Geology and Mining, Nasarawa State University, Keffi ABSTRACT:

More information

Interpretation of aeromagnetic data over the Bida Basin, North Central, Nigeria

Interpretation of aeromagnetic data over the Bida Basin, North Central, Nigeria Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2015, 6(3): 50-63 ISSN: 0976-8610 CODEN (USA): AASRFC Interpretation of aeromagnetic data over the Bida Basin, North

More information

Estimation of the Heat Flow Variation in the Chad Basin Nigeria NWANKWO, CYRIL N.; EKINE, ANTHONY S.; NWOSU, LEONARD I.

Estimation of the Heat Flow Variation in the Chad Basin Nigeria NWANKWO, CYRIL N.; EKINE, ANTHONY S.; NWOSU, LEONARD I. JASEM ISSN 1119-8362 All rights reserved Full-text Available Online at www.bioline.org.br/ja J. Appl. Sci. Environ. Manage. March, 2009 Vol. 13(1) 73-80 Estimation of the Heat Flow Variation in the Chad

More information

APPENDIX C GEOLOGICAL CHANCE OF SUCCESS RYDER SCOTT COMPANY PETROLEUM CONSULTANTS

APPENDIX C GEOLOGICAL CHANCE OF SUCCESS RYDER SCOTT COMPANY PETROLEUM CONSULTANTS APPENDIX C GEOLOGICAL CHANCE OF SUCCESS Page 2 The Geological Chance of Success is intended to evaluate the probability that a functioning petroleum system is in place for each prospective reservoir. The

More information

Integration of Aeromagnetic Data and Landsat Imagery for Structural Analysis: A Case Study of Awgu in Enugu State, South-Eastern, Nigeria

Integration of Aeromagnetic Data and Landsat Imagery for Structural Analysis: A Case Study of Awgu in Enugu State, South-Eastern, Nigeria Available online at www.worldnewsnaturalsciences.com WNOFNS 18(2) (2018) 79-105 EISSN 2543-5426 Integration of Aeromagnetic Data and Landsat Imagery for Structural Analysis: A Case Study of Awgu in Enugu

More information

Scholars Research Library. Predicting the aquifer characteristic within the major towns in Ndokwa land

Scholars Research Library. Predicting the aquifer characteristic within the major towns in Ndokwa land Available online at www.scholarsresearchlibrary.com Archives of Physics Research, 2011, 2 (4):1-5 (http://scholarsresearchlibrary.com/archive.html) ISSN : 0976-0970 CODEN (USA): APRRC7 Predicting the aquifer

More information

Formation Evaluation of an Onshore Oil Field, Niger Delta Nigeria.

Formation Evaluation of an Onshore Oil Field, Niger Delta Nigeria. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 4, Issue 6 Ver. II (Nov-Dec. 2016), PP 36-47 www.iosrjournals.org Formation Evaluation of an Onshore

More information

Effect of multicyclic compaction on cohesion in lateritic soils

Effect of multicyclic compaction on cohesion in lateritic soils Available online at www.scholarsresearchlibrary.com Scholars Research Library Archives of Applied Science Research, 2011, 3 (3):115-121 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-8X CODEN

More information

Investigation of Mambila Plateau In North Central Part of Nigeria For Potential Minerals Using Aeromagnetic Method

Investigation of Mambila Plateau In North Central Part of Nigeria For Potential Minerals Using Aeromagnetic Method IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 6, Issue 2 Ver. I (Mar. Apr. 2018), PP 10-22 www.iosrjournals.org Investigation of Mambila Plateau

More information

Hydrocarbon Volumetric Analysis Using Seismic and Borehole Data over Umoru Field, Niger Delta-Nigeria

Hydrocarbon Volumetric Analysis Using Seismic and Borehole Data over Umoru Field, Niger Delta-Nigeria International Journal of Geosciences, 2011, 2, 179-183 doi:10.4236/ijg.2011.22019 Published Online May 2011 (http://www.scirp.org/journal/ijg) Hydrocarbon Volumetric Analysis Using Seismic and Borehole

More information

Integrated Geophysical Interpretation On The Groundwater Aquifer (At The North Western Part of Sinai, Egypt)

Integrated Geophysical Interpretation On The Groundwater Aquifer (At The North Western Part of Sinai, Egypt) Integrated Geophysical Interpretation On The Groundwater Aquifer (At The North Western Part of Sinai, Egypt) Sultan Awad Sultan Araffa 1, Hassan S. Sabet 2, Ahmed M, Al Dabour 3 1 National Research Institute

More information

Interpretation of magnetic anomaly using cos( ) map and SED for automatic source edge location in Assam-Arakan basin of Mizoram state, India

Interpretation of magnetic anomaly using cos( ) map and SED for automatic source edge location in Assam-Arakan basin of Mizoram state, India Interpretation of magnetic anomaly using cos( ) map and SED for automatic source edge location in Assam-Arakan basin of Mizoram state, India G. K.Ghosh*, R. Dasgupta, A. N. Borthakur and S. N. Singh, Oil

More information

Pasco project ground magnetics

Pasco project ground magnetics Pasco project ground magnetics Survey information Magnetic results Comments Conclusions General data information 13 June 2017 Piura Trujillo Lima Pasco Cusco Arequipa Survey information General geographic

More information

Predictive Modelling of Ag, Au, U, and Hg Ore Deposits in West Texas Carl R. Stockmeyer. December 5, GEO 327G

Predictive Modelling of Ag, Au, U, and Hg Ore Deposits in West Texas Carl R. Stockmeyer. December 5, GEO 327G Predictive Modelling of Ag, Au, U, and Hg Ore Deposits in West Texas Carl R. Stockmeyer December 5, 2013 - GEO 327G Objectives and Motivations The goal of this project is to use ArcGIS to create models

More information

S. Mangal, G.L. Hansa, S. R. Savanur, P.H. Rao and S.P. Painuly Western Onshore Basin, ONGC, Baroda. INTRODUCTION

S. Mangal, G.L. Hansa, S. R. Savanur, P.H. Rao and S.P. Painuly Western Onshore Basin, ONGC, Baroda. INTRODUCTION 5th Conference & Exposition on Petroleum Geophysics, Hyderabad-2004, India PP 782-787 Identification of Shallow Gas Prospects from DHI and Inversion Studies of 2D Seismic Data, Kosamba Oil field, South

More information

AN INTEGRATED GEOPHYSICAL INVESTIGATION OF A SPRING IN IBUJI, IGBARA-OKE, SOUTHWESTERN NIGERIA.

AN INTEGRATED GEOPHYSICAL INVESTIGATION OF A SPRING IN IBUJI, IGBARA-OKE, SOUTHWESTERN NIGERIA. Ife Journal of Science vol. 13, no. 1 (2011) AN INTEGRATED GEOPHYSICAL INVESTIGATION OF A SPRING IN IBUJI, IGBARA-OKE, SOUTHWESTERN NIGERIA. 63 Bayode S. * and Akpoarebe O. Department of Applied Geophysics,

More information

Application of geophysical results to designing bridge. over a large fault

Application of geophysical results to designing bridge. over a large fault Application of geophysical results to designing bridge over a large fault Ho-Joon Chung 1, Jung-Ho Kim 2, Keun-Pil Park 2, Hyoung-Seok Kwon 1, Ho-Sik Choi 3, Ki-Seog Kim 4, Jong-Soo Kim 5 1 Manager, HeeSong

More information

PART A: Short-answer questions (50%; each worth 2%)

PART A: Short-answer questions (50%; each worth 2%) PART A: Short-answer questions (50%; each worth 2%) Your answers should be brief (just a few words) and may be written on these pages if you wish. Remember to hand these pages in with your other exam pages!

More information

Bonn, Germany MOUTAZ DALATI. General Organization for Remote Sensing ( GORS ), Syria Advisor to the General Director of GORS,

Bonn, Germany MOUTAZ DALATI. General Organization for Remote Sensing ( GORS ), Syria Advisor to the General Director of GORS, Bonn, Germany Early Warning System is needed for Earthquakes disaster mitigation in Syria Case Study: Detecting and Monitoring the Active faulting zones along the Afro-Arabian-Syrian Rift System MOUTAZ

More information

Application of airborne magnetic data to mineral exploration in the Okene Iron Ore Province of Nigeria

Application of airborne magnetic data to mineral exploration in the Okene Iron Ore Province of Nigeria International Research Journal of Geology and Mining (IRJGM) (2276-6618) Vol. 2(6) pp. 132-140, August 2012 Available online http://www.interesjournals.org/irjgm Copyright 2012 International Research Journals

More information

J.A. Haugen* (StatoilHydro ASA), J. Mispel (StatoilHydro ASA) & B. Arntsen (NTNU)

J.A. Haugen* (StatoilHydro ASA), J. Mispel (StatoilHydro ASA) & B. Arntsen (NTNU) U008 Seismic Imaging Below "Dirty" Salt J.A. Haugen* (StatoilHydro ASA), J. Mispel (StatoilHydro ASA) & B. Arntsen (NTNU) SUMMARY Base and sub salt seismic imaging is still an unresolved issue. To solve

More information

Vertical Hydrocarbon Migration at the Nigerian Continental Slope: Applications of Seismic Mapping Techniques.

Vertical Hydrocarbon Migration at the Nigerian Continental Slope: Applications of Seismic Mapping Techniques. ROAR HEGGLAND, Statoil ASA, N-4035 Stavanger, Norway Vertical Hydrocarbon Migration at the Nigerian Continental Slope: Applications of Seismic Mapping Techniques. Summary By the use of 3D seismic data,

More information

Repeatability in geophysical data processing: A case study of seismic refraction tomography.

Repeatability in geophysical data processing: A case study of seismic refraction tomography. Available online at www.scholarsresearchlibrary.com Archives of Applied Science Research, 2012, 4 (5):1915-1922 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Repeatability

More information

(Adapted from Report of Airborne Magnetometer Survey by Lockwood, Kessler and Bartlett, Inc.)

(Adapted from Report of Airborne Magnetometer Survey by Lockwood, Kessler and Bartlett, Inc.) PRELIMINARY INTERPRETATION REPORT AIRBORNE MAGNETOMETER SURVEY OF SOUTHERN IOWA (Adapted from Report of Airborne Magnetometer Survey by Lockwood, Kessler and Bartlett, Inc.) IOWA GEOLOGICAL SURVEY Iowa

More information

Bulletin of Earth Sciences of Thailand

Bulletin of Earth Sciences of Thailand Quantitative Seismic Geomorphology of Early Miocene to Pleistocene Fluvial System of Northern Songkhla Basin, Gulf of Thailand Oanh Thi Tran Petroleum Geoscience Program, Department of Geology, Faculty

More information

Basinal Configuration And Intrasediment Intrusives As Revealed By Aeromagnetics Data Of South East Sector Of Mamfe Basin, Nigeria.

Basinal Configuration And Intrasediment Intrusives As Revealed By Aeromagnetics Data Of South East Sector Of Mamfe Basin, Nigeria. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 1, Issue 5 (Nov. Dec. 2013), PP 01-08 Basinal Configuration And Intrasediment Intrusives As Revealed

More information

Blocks offered in Sri Lanka s Second Licensing Round

Blocks offered in Sri Lanka s Second Licensing Round Blocks offered in Sri Lanka s Second Licensing Round Sri Lankan Main Basins Cauvery Basin Cauvery Deep Water sub-basin Mannar Basin 2 Structural Framework Sri Lanka Basins Cauvery & Mannar Basins were

More information

Analytic Signal and Euler Depth Interpretation of Magnetic Anomalies: Applicability to the Beatrice Greenstone Belt

Analytic Signal and Euler Depth Interpretation of Magnetic Anomalies: Applicability to the Beatrice Greenstone Belt Journal of Geography and Geology; Vol. 7, No. 4; 15 ISSN 1916-9779 E-ISSN 1916-9787 Published by Canadian Center of Science and Education Analytic Signal and Euler Depth Interpretation of Magnetic Anomalies:

More information

MEMORANDUM. Interpretation of Magnetic and Volterra-3DIP survey MC Claims

MEMORANDUM. Interpretation of Magnetic and Volterra-3DIP survey MC Claims 11966 95A Avenue, Delta, BC V4C 3W2 Canada Tel +1 (604) 582-1100 www.sjgeophysics.com MEMORANDUM Date: September 13, 2017 From: To: SUBJECT: E. Trent Pezzot Bonanza Mining Corporation Interpretation of

More information

Subsurface Characterization using Electrical Resistivity(Dipole-Dipole) method at Lagos State University (LASU) Foundation School, Badagry

Subsurface Characterization using Electrical Resistivity(Dipole-Dipole) method at Lagos State University (LASU) Foundation School, Badagry Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2010, 1 (1): 174-181 Subsurface Characterization using Electrical Resistivity(Dipole-Dipole) method at Lagos State

More information

IJSER 1. INTRODUCTION 2. GEOLOGY OF THE AREA AROUND OBAJANA 3.0 MATERIALS AND METHODS

IJSER 1. INTRODUCTION 2. GEOLOGY OF THE AREA AROUND OBAJANA 3.0 MATERIALS AND METHODS International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 155 Structural Interpretation of the area around Obajana using Satellite Imagery and High Resolution Aeromagnetic

More information