d. Geomag. Geoelectr., 25, , 1973 Magnetic Secular Variation in Denmark,

Size: px
Start display at page:

Download "d. Geomag. Geoelectr., 25, , 1973 Magnetic Secular Variation in Denmark,"

Transcription

1 Research Note d. Geomag. Geoelectr., 25, , 1973 Magnetic Secular Variation in Denmark, Niels ABRAHAMSEN Laboratory o f Geophysics, University of Aarhus, Denmark (Received October 6, 1972; Revised December 18, 1972) 1. Compilation of D and I in Denmark Values of declination (D) and inclination (I) have been observed since 1907 at the Magnetic Observatory at Rude Skov 20 km north of Copenhagen by researchers of the Danish meteorological institute (Magnetic Yearbook, Denmark 1956). Between 1892 and 1900 geomagnetic measurements were made at an older observatory in Copenhagen (BocK and SCHUMANN, 1948). Before 1892 fewer regular measurements were made and most of the values known were collected in the works of HANSTEEN (1819, 1855, 1860), D'ARREST (1859) and PAULSEN (1892). In Table 1, such values for Copenhagen are cited, the oldest value in D being from the year 1649 and in I from Some values of D and I from southern Scandinavia are further given in Table 2, and under the supposition that the earth's magnetic field is a simple dipole field, these values are reduced at the site of the Rude Skov Observatory as DRS and IRS. Finally, in Table 3 readings from maps by Hansteen (partly based on the values cited in Tables 1 and 2), van Bemmelen and Halley are given for Copenhagen, the error indicated being the estimated visual error from the reading of the maps. In Fig. 1 the values D and I from Tables 1, 2 and 3 are plotted with smooth curves subjectively drawn through them, giving most weight to the values of Table 1 and those of Table 2, which are situated within a distance of 30 km from Rude Skov. These values are indicated by dots, while other values in Table 2 are indicated by crosses. Values of D and I, read from the curves at intervals of 10 years between 1500 and 1760 and intervals of 5 years after the mean values of a modern observatory are usually given to 0.1'. This is because accuracy in determining the direction of the magnetic field in the past by means of measuring the thermoremanent magnetization in baked clay (which at 105

2 106N. ABRAHAMSEN

3 Magnetic Secular Variation in Denmark, Comparisons and Conclusions To compare the Danish secular variation with other European curves, the two curves in Fig. 1 have been combined and redrawn in Fig. 2 in the tangential projection described by BAUER (1895). As the direction is a function of the geographical position, the curves in Fig. 2 have been recomputed by means of the central dipole hypothesis to the geographical site of Copenhagen (Rude Skov) and are shown in Fig. 3. Although the curves were made more similar, discrepancies are still present, probably due partly to the westward drift (BULLARD Fig. 1. Secular variation of declination and inclination in Copenhagen (Rude Skov), based on the direct measurements of Tables 1, 2 and 3.

4 108N. ABRAHAMSEN Table 2. Southern Scandinavia Table 3. Copenhagen (from maps) et at., 1950; BURLATSKAYA et al., 1970) and partly more local, but unknown effects (BARRACLOUGH, 1971). Measurements of the remanent magnetization in baked clay from a fireplace of the remanent magnetization in archaeologically dated samples will have to be made before this part of the Danish curve is well determined. The extension of the Danish curves further back in time must be based on pure archaeomagnetic data as older direct measurements alone are too few to

5 Magnetic Secular Variation in Denmark, Table 4. Secular Variation, Complied for Rude Skov Sources: : Fig. 1(Tables 1, 2 & 3) : BOCK and SCHUMANN, : Magnetic Yearbook, : L.AURIDSEN, give reliable results by spherical harmonic analysis (YUKUTAKE, 1971), and simple dipole reductions, e.g., from the known curves for London (AITKEN, 1970), obviously do not give the required accuracy, as revealed in Fig. 3 where

6 110N. ABRAHAMSEN Fig. 2. Secular variation of some European sites, not dipole corrected; legend as in Fig. 3. Fig. 3. Secular variation of some European sites, recomputed to the site of Copenhagen by central dipole hypothesis. The non conform curves reveales as well the westward drift as local peculiarities. C: Copenhagen (Rude Skov) L: London P: Paris R: Rome : Oslo PO: Potsdam RI: Riga I0: Inclination at C for central axial dipole field.

7 Magnetic Secular Variation in Denmark, REFERENCES AITKEN, M,J., Dating by archaeomagnetic and thermoluminescent methods, Phil. Trans. Roy. Soc. Lond. A, 269, 77-88, Selskabs Forh., 74-84, BARRACLOUGH, D.R., Secular variation in Scandinavia, Nature, 233, 94-98, BAUER, L.A., Beitrage zur kenntniss des Wesens der Sacular-variation des Erdmagnetismus, 54p, Berlin, BOOK, R. and W. SCHUMANN, Katalog der Jahresmittel, Geophysikal. Inst. Potsdam, nr. 8, BULLARD, E.C., C. FREEDMAN, H. GELLMAN and J. NIXON, The westward drift of the earth's magnetic field, Phil. Trans. Roy. Soc. London, 243, 67-92, BURLATSKAYA, S., T. NECHAEVA and G. PETROVA, Some archaeomagnetic data indicative of the westward drift of the geomagnetic field, Archaeometry,11, , EKEBERG, K.G., Forsok til en Magnetisk Inclinations-Charta, Kungl. Svenska Vetenskaps Acad. Handl., XXIX, , HALLEY, E., Geomagnetism, edited by S. Chapmann and J. Bartels, plate 38, Oxford Univ. Press London, HAHSTEEN, C., Untersuchungen fiber den Magnetismus der Erde, pp, Christiania (Oslo), HANSTEEN, C., Den magnetiske Inclinations Forandring i den nordlige tempererede Zone, Vid. Selsk. Skr. 5. Raekke, 4. Bind, & , HANSTEEN, C., Den magnetiske Inclinations og Intensitets Forandringer i Kjobenhavn, Oversigt over Vidsk. Selsk. Forh., 32-36, HELLMANN, G., Die Anfange der magnetischen Beobachtungen, Z.d. Gesellschaft f. Erdkunde, XXXII, , LAURIDSEN, E. Kring, Personal communication, Magnetic yearbook, Denmark 1956, Danish Meteorological Institute, MAY, W.E., "True"-reading magnetic compasses, Terr. magn. atm. Electr., 53, , NEUMAYER, G., Atlas, des Erdmagnetismus, Justus Perthes, Gotha, PAULSEN, A., Communications de l'observatoire Magnetique de Copenhague, 1-71, SLAUCITAJS, L., On the geomagnetic secularvariation in the past centuries at Riga, Contributions of Baltic University No. 7, 6pp, Hamburg, VAN BEMMELEN, W., Die Abweichung der Magnetnadel, Beobachtungen Sacular-Variation, West- and Isogonensusteme bis zur Mitte des XVIIT"ten Jahrhunderts,109 pp., Batavia,1899. WASSERFALL, K.F., A study on the secular variation of magnetic elements based on data for D, land H for Oslo, , J. Geophys. Res., 55, , VESTINE, E.H., L. LAPORTE, C. COOPER, I. LANGE and W.C. HENDRIX, Description of the earth's main magnetic field and its secular change , Carnegie Inst. Wash. Publ., 578, 1-532, WLEUGEL, P.J., Formodning om at Magnetnalen her i Kj benhavn har naet sit Maximum at vestlig Afvigning, Vid. Selsk. Phys. Skr. I. Del, I Hrefte, ,1821. YUKUTAKE, T., Spherical harmonic analysis of the earth's magnetic field for the 17th and the 18th centuries, J. Geomag. Geoelectr., 23, 11-31, 1971.

Westward drift in secular variation of the main geomagnetic field inferred from IGRF

Westward drift in secular variation of the main geomagnetic field inferred from IGRF Earth Planets Space, 55, 131 137, 2003 Westward drift in secular variation of the main geomagnetic field inferred from IGRF Zi-Gang Wei and Wen-Yao Xu Institute of Geology and Geophysics, Chinese Academy

More information

Global Models of the Magnetic Field in Historical Times: Augmenting Declination Observations with Archeo- and Paleo- Magnetic Data D.

Global Models of the Magnetic Field in Historical Times: Augmenting Declination Observations with Archeo- and Paleo- Magnetic Data D. J. Geomag. Geoelectr., 38, 715-720, 1986 Global Models of the Magnetic Field in Historical Times: Augmenting Declination Observations with Archeo- and Paleo- Magnetic Data D. GUBBINS Bullard Laboratories,

More information

Sq-Field in the Polar. Region on Absolutely Quiet Days

Sq-Field in the Polar. Region on Absolutely Quiet Days Sq-Field in the Polar. Region on Absolutely Quiet Days By T. NAGATA and H. MIZUNO Geophysical Institute, Tokyo University (Read Nov. 4, 1954; Received Aug. 18, 1955) Abstract It is proved by analyzing

More information

The Balkan Peninsula and archaeomagnetism a brief review

The Balkan Peninsula and archaeomagnetism a brief review JOURNAL OF THE BALKAN GEOPHYSICAL SOCIETY, Vol. 6, No. 3, August, 2003, p. 173 178. The Balkan Peninsula and archaeomagnetism a brief review Mary Kovacheva Geophysical Institute, bl. 3, Acad. Bonchev str.,

More information

Fluctuations in the Earth's Rate of Rotation Related to Changes in the Geomagnetic Dipole Field

Fluctuations in the Earth's Rate of Rotation Related to Changes in the Geomagnetic Dipole Field J. Geomag. Geoelectr., 25, 195-212, 1973 Fluctuations in the Earth's Rate of Rotation Related to Changes in the Geomagnetic Dipole Field Takesi YUKUTAKE Earthquake Research Institute, University of Tokyo,

More information

Equations governing the system are given in non-dimensional form as

Equations governing the system are given in non-dimensional form as Research Note J. Geomag. Geoelectr., 37, 1147-1155, 1985 A Perturbed Disk Dynamo Model and Polarity Reversals of the Earth's Magnetic Field Y. HoNKURA and M. SHIMIZU* Department of Applied Physics, Tokyo

More information

Originally published as:

Originally published as: Originally published as: Mandea, M., Olsen, N. (2009): Geomagnetic and Archeomagnetic Jerks: Where Do We Stand?. - Eos, Transactions, American Geophysical Union, 90, 24, 208-208 From geomagnetic jerks

More information

Unusual behaviour of the IGRF during the period

Unusual behaviour of the IGRF during the period Earth Planets Space, 52, 1227 1233, 2000 Unusual behaviour of the IGRF during the 1945 1955 period Wen-yao Xu Institute of Geophysics, Chinese Academy of Sciences, Beijing 100101, China (Received February

More information

The Earth's Magnetic Field. Its History, Origin and Planetary Perspective

The Earth's Magnetic Field. Its History, Origin and Planetary Perspective The Earth's Magnetic Field Its History, Origin and Planetary Perspective RONALD T. MERRILL Geophysics Program University of Washington Seattle, USA MICHAEL W. McELHINNY Formerly, Research School of Earth

More information

POLYNOMIAL MODELLING OF SOUTHERN AFRICAN SECULAR VARIATION OBSERVATIONS SINCE 2005

POLYNOMIAL MODELLING OF SOUTHERN AFRICAN SECULAR VARIATION OBSERVATIONS SINCE 2005 POLYNOMIAL MODELLING OF SOUTHERN AFRICAN SECULAR VARIATION OBSERVATIONS SINCE 2005 P. Kotzé 1*, M. Korte 2, and M. Mandea 2,3 *1 Hermanus Magnetic Observatory, Hermanus, South Africa Email: pkotze@hmo.ac.za

More information

A study on the great geomagnetic storm of 1859: Comparisons with other storms in the 19th century

A study on the great geomagnetic storm of 1859: Comparisons with other storms in the 19th century Advances in Space Research 38 (2006) 180 187 www.elsevier.com/locate/asr A study on the great geomagnetic storm of 1859: Comparisons with other storms in the 19th century Heikki Nevanlinna * Finnish Meteorological

More information

The Magnetic Field of the Earth

The Magnetic Field of the Earth The Magnetic Field of the Earth Paleomagnetism, the Core, and the Deep Mantle RONALD T. MERRILL Department of Geophysics University of Washington Seattle, Washington MICHAEL W. McELHINNY Gondwana Consultants

More information

Statistical relationships between the surface air temperature anomalies and the solar and geomagnetic activity indices

Statistical relationships between the surface air temperature anomalies and the solar and geomagnetic activity indices Statistical relationships between the surface air temperature anomalies and the solar and geomagnetic activity indices Dimitar Valev Stara Zagora Department, Solar-Terrestrial Influences Laboratory, Bulgarian

More information

Modelling the southern African geomagnetic field secular variation using ground survey data for 2005

Modelling the southern African geomagnetic field secular variation using ground survey data for 2005 P. B. KOTZÉ, M. MANDEA AND M. KORTE 187 Modelling the southern African geomagnetic field secular variation using ground survey data for 2005 P. B. Kotzé Hermanus Magnetic Observatory, Hermanus, South Africa

More information

Palaeomagnetic Study on a Granitic Rock Mass with Normal and Reverse Natural Remanent Magnetization

Palaeomagnetic Study on a Granitic Rock Mass with Normal and Reverse Natural Remanent Magnetization JOURNAL OF GEOMAGNETISM AND GEOELECTRICITY VOL. 17, No. 2. 1965 Palaeomagnetic Study on a Granitic Rock Mass with Normal and Reverse Natural Remanent Magnetization Haruaki ITo Physics Laboratory, Shimane

More information

A New Method of Determining the Magnitude

A New Method of Determining the Magnitude Geophys. J. R. astr. Soc. (1974) 39, 133-141. A New Method of Determining the Magnitude of the Palaeomagnetic Field Application to five historic lavas and five archaeological samples J. Shaw (Received

More information

International Geomagnetic Reference Field the eighth generation

International Geomagnetic Reference Field the eighth generation Earth Planets Space, 52, 1119 1124, 2000 International Geomagnetic Reference Field the eighth generation Mioara Mandea 1 and Susan Macmillan 2 1 Institut de Physique du Globe de Paris, B.P. 89, 4 Place

More information

COMMONWEALTH OF AUSTRALIA DEPARTMENT OF NATIONAL DEVELOPMENT. RECORD No. 1964/160. BUREAU OF Inv:AL It. ireoropn GECCIKICAL LIMY

COMMONWEALTH OF AUSTRALIA DEPARTMENT OF NATIONAL DEVELOPMENT. RECORD No. 1964/160. BUREAU OF Inv:AL It. ireoropn GECCIKICAL LIMY ic14.41-(1(-0 eopy 3 COMMONWEALTH OF AUSTRALIA DEPARTMENT OF NATIONAL DEVELOPMENT BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS RECORD No. 1964/160 BUREAU OF Inv:AL It. ireoropn GECCIKICAL LIMY EeL^S.*.

More information

Statistics on Geomagnetically-Induced Currents in the Finnish 400 kv Power System Based on Recordings of Geomagnetic Variations

Statistics on Geomagnetically-Induced Currents in the Finnish 400 kv Power System Based on Recordings of Geomagnetic Variations J. Geomag. Geoelectr., 41, 411-420,1989 Statistics on Geomagnetically-Induced Currents in the Finnish 400 kv Power System Based on Recordings of Geomagnetic Variations Ari VILJANEN and Risto PIRJOLA Finnish

More information

The Magnetic Field of the Earth. Paleomagnetism, the Core, and the Deep Mantle

The Magnetic Field of the Earth. Paleomagnetism, the Core, and the Deep Mantle The Magnetic Field of the Earth Paleomagnetism, the Core, and the Deep Mantle This is Volume 63 in the INTERNATIONAL GEOPHYSICS SERIES A series of monographs and textbooks Edited by RENATA DMOWSKA and

More information

Archaeointensity Determinations from Finland, Estonia, and Italy

Archaeointensity Determinations from Finland, Estonia, and Italy Geophysica (2007), 43(1 2), 9 24 Archaeointensity Determinations from Finland, Estonia, and Italy Fabio Donadini 1,2 and Lauri J. Pesonen 1 1 Division of Geophysics, University of Helsinki, Gustav Hällströmin

More information

Does Building a Relative Sunspot Number Make Sense? A Qualified Yes

Does Building a Relative Sunspot Number Make Sense? A Qualified Yes Does Building a Relative Sunspot Number Make Sense? A Qualified Yes Leif Svalgaard 1 (leif@leif.org) 1 Stanford University, Cypress Hall C13, W.W. Hansen Experimental Physics Laboratory, Stanford University,

More information

Analysis of Zonal Field Morphology and Data Quality for a Global Set of Magnetic Observatory Daily Mean Values*

Analysis of Zonal Field Morphology and Data Quality for a Global Set of Magnetic Observatory Daily Mean Values* J. Geomag. Geoelectr., 35, 835-846, 1983 Analysis of Zonal Field Morphology and Data Quality for a Global Set of Magnetic Observatory Daily Mean Values* A. SCHULTZ1 and J. C. LARSEN2 1Geophysics Program

More information

Paleointensities of the Geomagnetic Field Obtained from Pre-Inca Potsherds near Cajamarca, Northern Peru

Paleointensities of the Geomagnetic Field Obtained from Pre-Inca Potsherds near Cajamarca, Northern Peru J. Geomag. Geoelectr., 38, 1339-1348, 1986 Paleointensities of the Geomagnetic Field Obtained from Pre-Inca Potsherds near Cajamarca, Northern Peru (Received December 28, 1985; Revised May 12, 1986) The

More information

Non-steady Bullard- Gellman Dynamo Model (2)

Non-steady Bullard- Gellman Dynamo Model (2) JOURNAL OF GEOMAGNETISM AND GEOELECTRICITY VOL.20,N0.4,1968 Non-steady Bullard- Gellman Dynamo Model (2) Tsuneji RIKITAKE and Yukio HAGIWARA Earthquake Research Institute, University of Tokyo (Received

More information

THE RELIABILITY OF EARTH S MAGNETIC POLES IN THE MODERN, HISTORICAL AND ANCIENT MODELS. T.I. Zvereva, S.V. Starchenko

THE RELIABILITY OF EARTH S MAGNETIC POLES IN THE MODERN, HISTORICAL AND ANCIENT MODELS. T.I. Zvereva, S.V. Starchenko THE RELIABILITY OF EARTH S MAGNETIC POLES IN THE MODERN, HISTORICAL AND ANCIENT MODELS T.I. Zvereva, S.V. Starchenko Pushkov institute of Terrestrial Magnetism, ionosphere and Radio wave Propagation (IZMIRAN),

More information

Magnetic field nomenclature

Magnetic field nomenclature Magnetic field nomenclature Declination trend angle between horizontal projection of F and true North Inclination plunge angle between horizontal and F Magnetic equator location on surface where field

More information

SIO 229 Part II Geomagnetism. Lecture 1 Introduction to the geomagnetic field

SIO 229 Part II Geomagnetism. Lecture 1 Introduction to the geomagnetic field SIO 229 Part II Geomagnetism Lecture 1 Introduction to the geomagnetic field Why study Earth's magnetic field Schematic picture of Earth's magnetic field interacting with the solar wind (credit: NASA)

More information

The geomagnetic dipole moment over the last 7000 years new results from a global model

The geomagnetic dipole moment over the last 7000 years new results from a global model Earth and Planetary Science Letters 236 (25) 348 358 www.elsevier.com/locate/epsl The geomagnetic dipole moment over the last 7 years new results from a global model M. Korte a, *, C.G. Constable b a GeoForschungsZentrum

More information

The Earth's Magnetism

The Earth's Magnetism Roberto Lanza Antonio Meloni The Earth's Magnetism An Introduction for Geologists With 167 Figures and 6 Tables 4y Springer Contents 1 The Earth's Magnetic Field 1 1.1 Observations and Geomagnetic Measurements

More information

RECENT STUDIES OF THE NORTH MAGNETIC DIP POLE*

RECENT STUDIES OF THE NORTH MAGNETIC DIP POLE* RECENT STUDIES OF THE NORTH MAGNETIC DIP POLE* K. Whitham, E. I. Loomer, and E. Dawsont Introduction T HE Division of Geomagnetism of the Dominion Observatory is often approached for information on the

More information

Conductivity of the Subcontinental Upper Mantle: An Analysis Using Quiet-Day

Conductivity of the Subcontinental Upper Mantle: An Analysis Using Quiet-Day Conductivity of the Subcontinental Upper Mantle: An Analysis Using Quiet-Day Geomagnetic Records of North America Wallace H. CAMPBELL* and Robert S. ANDERSSEN** *U.S. Geological Survey, Denver Federal

More information

ATMOSPHERIC RADIOCARBON: IMPLICATIONS FOR THE GEOMAGNETIC DIPOLE MOMENT INTRODUCTION DIPOLE MOMENT AND 14C FLUCTUATIONS

ATMOSPHERIC RADIOCARBON: IMPLICATIONS FOR THE GEOMAGNETIC DIPOLE MOMENT INTRODUCTION DIPOLE MOMENT AND 14C FLUCTUATIONS [Radiocarbon, Vol 25, No. 2, 1983, P 239-248 ATMOSPHERIC RADIOCARBON: IMPLICATIONS FOR THE GEOMAGNETIC DIPOLE MOMENT R S STERNBERG* and P E DAMON Laboratory of Isotope Geochemistry Department of Geosciences

More information

Improvement of the secular variation curve of the geomagnetic field in Egypt during the last 6000 years

Improvement of the secular variation curve of the geomagnetic field in Egypt during the last 6000 years LETTER Earth Planets Space, 51, 1325 1329, 1999 Improvement of the secular variation curve of the geomagnetic field in Egypt during the last 6000 years Hatem Odah Institute for Study of the Earth s Interior,

More information

Monthly Magnetic Bulletin

Monthly Magnetic Bulletin BRITISH GEOLOGICAL SURVEY Jim Carrigan Observatory Prudhoe Bay Monthly Magnetic Bulletin May 2014 14/05/JC JIM CARRIGAN OBSERVATORY MAGNETIC DATA 1. Introduction Jim Carrigan observatory is the fourth

More information

Causes of high PM 10 values measured in Denmark in 2006

Causes of high PM 10 values measured in Denmark in 2006 Causes of high PM 1 values measured in Denmark in 26 Peter Wåhlin and Finn Palmgren Department of Atmospheric Environment National Environmental Research Institute Århus University Denmark Prepared 2 October

More information

COMMONWEALTH OF AUSTRALIA DEPARTMENT OF NATIONAL DEVELOPMENT. RECORD No. 1964/47 REGIONAL MAGNETIC STATIONS ON SOME ISLANDS IN THE PACIFIC

COMMONWEALTH OF AUSTRALIA DEPARTMENT OF NATIONAL DEVELOPMENT. RECORD No. 1964/47 REGIONAL MAGNETIC STATIONS ON SOME ISLANDS IN THE PACIFIC tital7^ COMMONWEALTH OF AUSTRALIA DEPARTMENT OF NATIONAL DEVELOPMENT BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS RECORD No. 1964/47 REGIONAL S ON SOME ISLANDS IN THE PACIFIC AND INDIAN OCEANS,

More information

4.6-day gravimeter record;' and, significantly, it is absent in the analysis of the

4.6-day gravimeter record;' and, significantly, it is absent in the analysis of the THE FUNDAMENTAL FREE MODE OF THE EARTH'S INNER CORE B-Y Louis B. SLICHTER INSTITUTE OF GEOPHYSICS, UNIVERSITY OF CALIFORNIA AT LOS ANGELES Communicated December 20, 1960 The large Chilean earthquake of

More information

Correlation Between IGRF2000 Model and Measured Geomagnetic Data on the Territory of the Republic of Macedonia from 2003 and 2004 Measurements

Correlation Between IGRF2000 Model and Measured Geomagnetic Data on the Territory of the Republic of Macedonia from 2003 and 2004 Measurements PUBLS. INST. GEOPHYS. POL. ACAD. SC., C-99 (398), 2007 Correlation Between IGRF2000 Model and Measured Geomagnetic Data on the Territory of the Republic of Macedonia from 2003 and 2004 Measurements Sanja

More information

Components of the lunar gravitational tide in the terrestrial atmosphere and geomagnetic field

Components of the lunar gravitational tide in the terrestrial atmosphere and geomagnetic field Pertsev N. 1, Dalin P. 2, Perminov V. 1 1- Obukhov Institute of Atmospheric Physics, Moscow, Russia 2- Swedish Institute of Space Physics, Kiruna, Sweden Components of the lunar gravitational tide in the

More information

Received 30 October 2006; received in revised form 1 June 2007; accepted 1 June 2007

Received 30 October 2006; received in revised form 1 June 2007; accepted 1 June 2007 Advances in Space Research 40 (07) 15 1111 www.elsevier.com/locate/asr New indices of geomagnetic activity at test: Comparing the correlation of the analogue ak index with the digital A h and IHV indices

More information

The International Geomagnetic Reference Field. Introduction. Scope of the IGRF. Applications and Availability. Inception and development

The International Geomagnetic Reference Field. Introduction. Scope of the IGRF. Applications and Availability. Inception and development The International Geomagnetic Reference Field Susan Macmillan 1 and Christopher Finlay 2 1 British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA, UK 2 Institut für Geophysik,

More information

A SEISMIC REFRACTION STUDY OF THE ROCKS COVERING THE MØNSTED SALT DOME

A SEISMIC REFRACTION STUDY OF THE ROCKS COVERING THE MØNSTED SALT DOME A SEISMIC REFRACTION STUDY OF THE ROCKS COVERING THE MØNSTED SALT DOME UWE CASTEN CASTEN, U.: A Seismic refraction study of the rocks covering the Mønsted salt dome. Bull. geol. Soc. Denmark, vol. 22,

More information

Past and Present of Polish Geomagnetic Observatories

Past and Present of Polish Geomagnetic Observatories PUBLS. INST. GEOPHYS. POL. ACAD. SC., C-99 (398), 2007 Past and Present of Polish Geomagnetic Observatories Jerzy JANKOWSKI and Janusz MARIANIUK Institute of Geophysics, Polish Academy of Sciences ul.

More information

NEW ARCHEOINTENSITY RESULTS ON A BAKED-CLAY TILE COLLECTION FROM THE NEW JERUSALEM MONASTERY (MOSCOW REGION, RUSSIA)

NEW ARCHEOINTENSITY RESULTS ON A BAKED-CLAY TILE COLLECTION FROM THE NEW JERUSALEM MONASTERY (MOSCOW REGION, RUSSIA) УДК 550.384 NEW ARCHEOINTENSITY RESULTS ON A BAKED-CLAY TILE COLLECTION FROM THE NEW JERUSALEM MONASTERY (MOSCOW REGION, RUSSIA) N.V. Salnaia 1, Y. Gallet 2, A. Genevey 3, O.N. Glazunova 4, D.A. Gavryushkin

More information

Long-term Variations in Solar Activity and their Apparent Effect on the Earth's Climate

Long-term Variations in Solar Activity and their Apparent Effect on the Earth's Climate Long-term Variations in Solar Activity and their Apparent Effect on the Earth's Climate K.Lassen Danish Meteorological Institute, Solar-Terrestrial Physics Division, Lyngbyvej,100, DK-2100 Copenhagen (2),

More information

EQUATORIAL ELECTROJET STRENGTH IN THE AFRICAN SECTOR DURING HIGH AND LOW SOLAR ACTIVITY YEARS

EQUATORIAL ELECTROJET STRENGTH IN THE AFRICAN SECTOR DURING HIGH AND LOW SOLAR ACTIVITY YEARS SINET: ETHIOP. J. SCI., 26(1):77 81, 2003 Faculty of Science, Addis Ababa University, 2003 ISSN: 0379 2897 Short communication EQUATORIAL ELECTROJET STRENGTH IN THE AFRICAN SECTOR DURING HIGH AND LOW SOLAR

More information

Lecture 15: The ancient geomagnetic field. Why study the ancient field. Paleosecular variation: the Holocene. past 5 Myr. Excursions and reversals

Lecture 15: The ancient geomagnetic field. Why study the ancient field. Paleosecular variation: the Holocene. past 5 Myr. Excursions and reversals Lecture 15: The ancient geomagnetic field Why study the ancient field Paleosecular variation: the Holocene past 5 Myr Excursions and reversals 1 Why study the ancient geomagnetic field The geomagnetic

More information

Geomagnetic effects of the solar eclipse, 12 October 1958, at Apia, Western Samoa

Geomagnetic effects of the solar eclipse, 12 October 1958, at Apia, Western Samoa New Zealand Journal of Geology and Geophysics ISSN: 0028-8306 (Print) 1175-8791 (Online) Journal homepage: http://www.tandfonline.com/loi/tnzg20 Geomagnetic effects of the solar eclipse, 12 October 1958,

More information

Hermanus Magnetic Observatory

Hermanus Magnetic Observatory Hermanus Magnetic Observatory A facility of the National Research Foundation Magnetic Results 2009 Hermanus, Hartebeesthoek and Keetmanshoop observatories 1. INTRODUCTION The Hermanus Magnetic Observatory

More information

Time Rate of Energy Release by Earthquakes in and near Japan

Time Rate of Energy Release by Earthquakes in and near Japan JOURNAL OF PHYSICS OF THE EARTH, Vol. 12, No. 2, 1964 25 Time Rate of Energy Release by Earthquakes in and near Japan By Chuji TSUBOI Geophysical Institute, Faculty of Science University of Tokyo Abstract

More information

YOKOYAMA (1977) have recently reported the oceanic effects in the coastal

YOKOYAMA (1977) have recently reported the oceanic effects in the coastal J. Phys. Earth, 27, 481-496, 1979 TIDAL CORRECTIONS FOR PRECISE GRAVITY MEASUREMENTS IN IZU PENINSULA Hideo HANADA* Earthquake Research Institute, University of Tokyo, Tokyo, Japan (Received June 18, 1979)

More information

Observatories in India

Observatories in India J. Geomag. Geoelectr., 26, 529-537, 1974 On the Occurrence of SSC(-+) Observatories in India at Geomagnetic R.G. RASTOGI* and N.S. SASTRI** Physical Research Laboratory, Ahmedabad, India* and Indian Institute

More information

Monthly Magnetic Bulletin

Monthly Magnetic Bulletin BRITISH GEOLOGICAL SURVEY Fort McMurray Observatory Monthly Magnetic Bulletin February 2016 16/02/FM Fort McMurray FORT McMURRAY OBSERVATORY MAGNETIC DATA 1. Introduction The British Geological Survey

More information

Lecture 4. Things we might want to know about the geomagnetic field. Components of the geomagnetic field. The geomagnetic reference field

Lecture 4. Things we might want to know about the geomagnetic field. Components of the geomagnetic field. The geomagnetic reference field Lecture 4 Things we might want to know about the geomagnetic field Components of the geomagnetic field The geomagnetic reference field All sorts of magnetic poles observables Things we might want to know

More information

Roberto Lanza Antonio Meloni The Earth s Magnetism An Introduction for Geologists

Roberto Lanza Antonio Meloni The Earth s Magnetism An Introduction for Geologists Roberto Lanza Antonio Meloni The Earth s Magnetism An Introduction for Geologists Roberto Lanza Antonio Meloni The Earth s Magnetism An Introduction for Geologists With 167 Figures and 6 Tables Authors

More information

Monthly Magnetic Bulletin

Monthly Magnetic Bulletin BRITISH GEOLOGICAL SURVEY Fort McMurray Observatory Monthly Magnetic Bulletin March 2017 17/03/FM Fort McMurray FORT McMURRAY OBSERVATORY MAGNETIC DATA 1. Introduction The British Geological Survey (BGS)

More information

With a group, get a bar magnet, some plastic wrap, iron filings and a compass.

With a group, get a bar magnet, some plastic wrap, iron filings and a compass. Name: EPS 50 Lab 8: The Earth's Magnetic Field Chapter 2, p. 39-41: The Seafloor as a Magnetic Tape Recorder Chapter 7, p. 213: Paleomagnetic Stratigraphy Chapter 14, p. 396-406: Earth s Magnetic Field

More information

Estimating Atmospheric Mass Using Air Density

Estimating Atmospheric Mass Using Air Density Estimating Atmospheric Mass Using Air Density L. L. Simpson 1 and D. G. Simpson 2 1 Union Carbide Corporation, South Charleston, West Virginia, USA (retired). 2 NASA Goddard Space Flight Center, Greenbelt,

More information

GEOL.3250 Geology for Engineers Plate Tectonics - Geomagnetism, Earthquakes, and Gravity

GEOL.3250 Geology for Engineers Plate Tectonics - Geomagnetism, Earthquakes, and Gravity Name GEOL.3250 Geology for Engineers Plate Tectonics - Geomagnetism, Earthquakes, and Gravity I. Geomagnetism The earth's magnetic field can be viewed as a simple bar magnet located near the center of

More information

Tobias Holck Colding: Publications

Tobias Holck Colding: Publications Tobias Holck Colding: Publications [1] T.H. Colding and W.P. Minicozzi II, The singular set of mean curvature flow with generic singularities, submitted 2014. [2] T.H. Colding and W.P. Minicozzi II, Lojasiewicz

More information

Twentieth century secular decrease in the atmospheric potential gradient

Twentieth century secular decrease in the atmospheric potential gradient Twentieth century secular decrease in the atmospheric potential gradient Article Published Version Harrison, G. (2002) Twentieth century secular decrease in the atmospheric potential gradient. Geophysical

More information

Stability analysis of geomagnetic baseline data obtained at Cheongyang observatory in Korea

Stability analysis of geomagnetic baseline data obtained at Cheongyang observatory in Korea https://doi.org/10.5194/gi-6-231-2017 Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Stability analysis of geomagnetic baseline data obtained at Cheongyang

More information

Publications. Graeme Segal All Souls College, Oxford

Publications. Graeme Segal All Souls College, Oxford Publications Graeme Segal All Souls College, Oxford [1 ] Classifying spaces and spectral sequences. Inst. Hautes Études Sci., Publ. Math. No. 34, 1968, 105 112. [2 ] Equivariant K-theory. Inst. Hautes

More information

Monthly Magnetic Bulletin

Monthly Magnetic Bulletin BRITISH GEOLOGICAL SURVEY Ascension Island Observatory Monthly Magnetic Bulletin March 2017 17/03/AS Crown copyright; Ordnance Survey ASCENSION ISLAND OBSERVATORY MAGNETIC DATA 1. Introduction Ascension

More information

Geomagnetic Field Modeling Lessons learned from Ørsted and CHAMP and prospects for Swarm

Geomagnetic Field Modeling Lessons learned from Ørsted and CHAMP and prospects for Swarm Geomagnetic Field Modeling Lessons learned from Ørsted and CHAMP and prospects for Swarm Nils Olsen RAS Discussion Meeting on Swarm October 9 th 2009 Nils Olsen (DTU Space) Ørsted, CHAMP, and Swarm 1 /

More information

Monthly Magnetic Bulletin

Monthly Magnetic Bulletin BRITISH GEOLOGICAL SURVEY Ascension Island Observatory Monthly Magnetic Bulletin December 2008 08/12/AS Crown copyright; Ordnance Survey ASCENSION ISLAND OBSERVATORY MAGNETIC DATA 1. Introduction Ascension

More information

KING EDWARD POINT OBSERVATORY MAGNETIC DATA

KING EDWARD POINT OBSERVATORY MAGNETIC DATA BRITISH GEOLOGICAL SURVEY King Edward d Point Observatory Monthly Magnetic Bulletin October 2018 18/10/KE King Edward Point (UK) Maps British Antarctic Survey KING EDWARD POINT OBSERVATORY MAGNETIC DATA

More information

CHANGING SOURCES FOR RESEARCH LITERATURE

CHANGING SOURCES FOR RESEARCH LITERATURE Future Professional Communication in Astronomy (Eds. A. Heck & L. Houziaux, Mém. Acad. Royale Belgique, 2007) CHANGING SOURCES FOR RESEARCH LITERATURE HELMUT A. ABT Kitt Peak National Observatory P.O.

More information

Space Weather effects observed on the ground geomagnetic effects

Space Weather effects observed on the ground geomagnetic effects Space Weather effects observed on the ground geomagnetic effects J. Watermann Danish Meteorological Institute, Copenhagen, Denmark my thanks to 1 Ground-based systems affected by space weather ( physics

More information

Tobias Holck Colding: Publications. 1. T.H. Colding and W.P. Minicozzi II, Dynamics of closed singularities, preprint.

Tobias Holck Colding: Publications. 1. T.H. Colding and W.P. Minicozzi II, Dynamics of closed singularities, preprint. Tobias Holck Colding: Publications 1. T.H. Colding and W.P. Minicozzi II, Dynamics of closed singularities, preprint. 2. T.H. Colding and W.P. Minicozzi II, Analytical properties for degenerate equations,

More information

22. PALEOMAGNETIC EVIDENCE FOR MOTION OF THE PACIFIC PLATE FROM LEG 32 BASALTS AND MAGNETIC ANOMALIES 1

22. PALEOMAGNETIC EVIDENCE FOR MOTION OF THE PACIFIC PLATE FROM LEG 32 BASALTS AND MAGNETIC ANOMALIES 1 22. PALEOMAGNETIC EVIDENCE FOR MOTION OF THE PACIFIC PLATE FROM LEG 32 BASALTS AND MAGNETIC ANOMALIES 1 Roger L. Larson and William Lowrie, Lamont-Doherty Geological Observatory, Palisades, New York ABSTRACT

More information

The Olsen Rotating Dipole Revisited

The Olsen Rotating Dipole Revisited The Olsen Rotating Dipole Revisited Leif Svalgaard 1, Douglas O. Gough 2, Phil H. Scherrer 1 1 Stanford University 2 University of Cambridge AGU Fall 2016, SH31B-2548, 14 Dec. 2016 1 The Story Begins Here

More information

THE H- AND A-INDEXES IN ASTRONOMY

THE H- AND A-INDEXES IN ASTRONOMY Organizations, People and Strategies in Astronomy I (OPSA I), 245-252 Ed. A. Heck,. THE H- AND A-INDEXES IN ASTRONOMY HELMUT A. ABT Kitt Peak National Observatory P.O. Box 26732 Tucson AZ 85726-6732, U.S.A.

More information

V.L.F. Emissions and Geomagnetic Disturbances at the Auroral Zone

V.L.F. Emissions and Geomagnetic Disturbances at the Auroral Zone V.L.F. Emissions and Geomagnetic Disturbances at the Auroral Zone By Hachiroe ToKUDA Geophysical Institute, Kyoto University (Read, November 22, 1961; Received Feb. 28, 1962) Abstract Some studies of the

More information

A reappraisal of instrumental magnetic measurements made in Western Europe before AD 1750: confronting historical geomagnetism and archeomagnetism

A reappraisal of instrumental magnetic measurements made in Western Europe before AD 1750: confronting historical geomagnetism and archeomagnetism A reappraisal of instrumental magnetic measurements made in Western Europe before AD 1750: confronting historical geomagnetism and archeomagnetism Maxime Le Goff, Yves Gallet To cite this version: Maxime

More information

Updating the Historical Sunspot Record

Updating the Historical Sunspot Record **FULL TITLE** ASP Conference Series, Vol. **VOLUME**, c **YEAR OF PUBLICATION** **NAMES OF EDITORS** Updating the Historical Sunspot Record Leif Svalgaard HEPL, Via Ortega, Stanford University, Stanford,

More information

25. PALEOMAGNETISM OF IGNEOUS SAMPLES 1

25. PALEOMAGNETISM OF IGNEOUS SAMPLES 1 25. PALEOMAGNETISM OF IGNEOUS SAMPLES William Lowrie and Neil D. Opdyke, Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York ASTRACT Remanent magnetization measurements were

More information

(ii) Observational Geomagnetism. Lecture 5: Spherical harmonic field models

(ii) Observational Geomagnetism. Lecture 5: Spherical harmonic field models (ii) Observational Geomagnetism Lecture 5: Spherical harmonic field models Lecture 5: Spherical harmonic field models 5.1 Introduction 5.2 How to represent functions on a spherical surface 5.3 Spherical

More information

Title Hydrogen-Like Ions by Heavy Charged.

Title Hydrogen-Like Ions by Heavy Charged. Title Relativistic Calculations of the Ex Hydrogen-Like Ions by Heavy Charged Author(s) Mukoyama, Takeshi Citation Bulletin of the Institute for Chemi University (1986), 64(1): 12-19 Issue Date 1986-03-25

More information

Research Institute of Atmospherics, Nagoya University, Toyokawa, Aichi 442, Japan. (Received August 20, 1982; Revised February 2, 1983)

Research Institute of Atmospherics, Nagoya University, Toyokawa, Aichi 442, Japan. (Received August 20, 1982; Revised February 2, 1983) J. Geomag. Geoelectr., 35, 29-38, 1983 Recent Measurements of Electrical Conductivity and Ion Pair Production Rate, and the Ion-Ion Recombination Coefficient Derived from Them in the Lower Stratosphere

More information

Physical Science Context Lecture 2 The Earth and Sun's Magnetic Fields

Physical Science Context Lecture 2 The Earth and Sun's Magnetic Fields Physical Science Context Lecture 2 The Earth and Sun's Magnetic Fields The earth is a huge magnetic and close to its surface it can be approximated as a bar magnet (a magnetic dipole) that is positioned

More information

Geomagnetism. The Earth s Magnetic field. Magnetization of rocks. The Earth s magnetic record. Proof of continental drift.

Geomagnetism. The Earth s Magnetic field. Magnetization of rocks. The Earth s magnetic record. Proof of continental drift. Geomagnetism The Earth s Magnetic field. The Earth s magnetic record Magnetization of rocks C Gary A. Glatzmaier University of California, Santa Cruz Proof of continental drift Magnetism Magnetic Force

More information

APPLICATION OF ROCK MAGNETISM IN ESTIMATING THE AGE OF SOME NORWEGIAN DIKES

APPLICATION OF ROCK MAGNETISM IN ESTIMATING THE AGE OF SOME NORWEGIAN DIKES NORSK GEOLOGISK TIDSSKRIFT 46 APPLICATION OF ROCK MAGNETISM IN ESTIMATING THE AGE OF SOME NORWEGIAN DIKES BY K. M. STORETVEDT (Department of Geophysics, University of Bergen) Abstract. Directions of remanent

More information

The geodynamo. Previously The Earth s magnetic field. Reading: Fowler Ch 8, p Glatzmaier et al. Nature 401,

The geodynamo. Previously The Earth s magnetic field. Reading: Fowler Ch 8, p Glatzmaier et al. Nature 401, The geodynamo Reading: Fowler Ch 8, p373-381 Glatzmaier et al. Nature 401, 885-890 1999 Previously The Earth s magnetic field TODAY: how is the Earth s field generated? 1 Generating the Earth s magnetic

More information

First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field

First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field GEOPHYSICAL RESEARCH LETTERS, VOL. 29, NO. 14, 10.1029/2001GL013685, 2002 First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field S. Maus, M. Rother, R. Holme, H.

More information

On the Earth s magnetic field and the Hall effect

On the Earth s magnetic field and the Hall effect On the Earth s magnetic field and the Hall effect J. E. Allen To cite this version: J. E. Allen. On the Earth s magnetic field and the Hall effect. Nonlinear rocesses in Geophysics, European Geosciences

More information

Monthly Magnetic Bulletin

Monthly Magnetic Bulletin BRITISH GEOLOGICAL SURVEY Port Stanley Observatory Monthly Magnetic Bulletin July 2011 11/07/PS Jason Islands West Falkland King George Bay Queen Charlotte Bay Weddell Island Caracass Island Saunders Island

More information

KING EDWARD POINT OBSERVATORY MAGNETIC DATA

KING EDWARD POINT OBSERVATORY MAGNETIC DATA BRITISH GEOLOGICAL SURVEY King Edward d Point Observatory Monthly Magnetic Bulletin May 2018 18/05/KE King Edward Point (UK) Maps British Antarctic Survey KING EDWARD POINT OBSERVATORY MAGNETIC DATA 1.

More information

Combined Geophysical Survey of an Ancient Hittite Dam: New and Old High-Tech

Combined Geophysical Survey of an Ancient Hittite Dam: New and Old High-Tech Geophysical Prospecting 1 Ercan Erkul Andreas Hüser Harald Stümpel Tina Wunderlich Combined Geophysical Survey of an Ancient Hittite Dam: New and Old High-Tech Abstract: Investigating ancient living conditions

More information

Preliminary Report of the Paleomagnetism of the Twin Sisters Dunite Intrusion, Washington, L.S.A.

Preliminary Report of the Paleomagnetism of the Twin Sisters Dunite Intrusion, Washington, L.S.A. JOURNAL OF GEOMAGNETISM AND GEOELECTRICITY VOL. 23, No. 3, 4, 1971 Preliminary Report of the Paleomagnetism of the Twin Sisters Dunite Intrusion, Washington, L.S.A. (Received November 4, 1971) This letter

More information

Equatorial Electrojet Strengths in the Indian and American Sectors Part I. During Low Solar Activity

Equatorial Electrojet Strengths in the Indian and American Sectors Part I. During Low Solar Activity J. Geomag. Geoelectr., 42, 801-811,1990 Equatorial Electrojet Strengths in the Indian and American Sectors Part I. During Low Solar Activity A. R. PATIL, D. R. K. RAO, and R. G. RASTOGI Indian Institute

More information

KING EDWARD POINT OBSERVATORY MAGNETIC DATA

KING EDWARD POINT OBSERVATORY MAGNETIC DATA BRITISH GEOLOGICAL SURVEY King Edward d Point Observatory Monthly Magnetic Bulletin September 2018 18/09/KE King Edward Point (UK) Maps British Antarctic Survey KING EDWARD POINT OBSERVATORY MAGNETIC DATA

More information

Gravity in the Ryukyu Arc*

Gravity in the Ryukyu Arc* Journal of the Geodetic Society of Japan Vol. 22, No. 1, (1976), pp. 23-39 Gravity in the Ryukyu Arc* Jiro SEGAWA Ocean Research Institute, University of Tokyo (Received March 31, 1976; Revised May 22,

More information

Methods in Rock Magnetism and Palaeomagnetism. Techniques and instrumentation

Methods in Rock Magnetism and Palaeomagnetism. Techniques and instrumentation Methods in Rock Magnetism and Palaeomagnetism Techniques and instrumentation Methods in Rock Magnetism and Palaeomagnetism Techniques and instrumentation D. W. Collinson Department of Geophysics and Planetary

More information

CHALLENGES TO THE SWARM MISSION: ON DIFFERENT INTERNAL SHA MAGNETIC FIELD MODELS OF THE EARTH IN DEPENDENCE ON SATELLITE ALTITUDES

CHALLENGES TO THE SWARM MISSION: ON DIFFERENT INTERNAL SHA MAGNETIC FIELD MODELS OF THE EARTH IN DEPENDENCE ON SATELLITE ALTITUDES CHALLENGES TO THE SWARM MISSION: ON DIFFERENT INTERNAL SHA MAGNETIC FIELD MODELS OF THE EARTH IN DEPENDENCE ON SATELLITE ALTITUDES Wigor A. Webers Helmholtz- Zentrum Potsdam, Deutsches GeoForschungsZentrum,

More information

Advances in Science & Research Roald Amundsen s contributions to our knowledge of the magnetic fields of the Earth and the Sun

Advances in Science & Research Roald Amundsen s contributions to our knowledge of the magnetic fields of the Earth and the Sun CMYK doi:10.5194/hgss-2-99-2011 Author(s) 2011. CC Attribution 3.0 License. Open Access History of Geo- and Space Sciences Advances in Science & Research Roald Amundsen s contributions to our knowledge

More information

The Geodynamo and Paleomagnetism Brown and Mussett (1993) ch. 6; Fowler p

The Geodynamo and Paleomagnetism Brown and Mussett (1993) ch. 6; Fowler p In this lecture: The Core The Geodynamo and Paleomagnetism Brown and Mussett (1993) ch. 6; Fowler p. 32-50 Problems Outer core Physical state Composition Inner core Physical state Composition Paleomagnetism

More information

Understanding Projections

Understanding Projections GEOGRAPHY SKILLS 1 Understanding Projections The earth is a sphere and is best shown as a globe. For books and posters, though, the earth has to be represented as a flat object. To do this, mapmakers create

More information