Fluid Dynamics of the Solid Earth

Size: px
Start display at page:

Download "Fluid Dynamics of the Solid Earth"

Transcription

1 Fluid Dynamics of the Solid Earth Jerome A. Neufeld, M. Grae Worster MWF, , MR13

2 Patterns of global seismicity Earthquake Magnitude Earthquake Depth (km) Plate Boundaries Active Volcanoes Global Earthquakes

3 Structure of Earth s interior from seismic tomography

4 Structure of Earth s interior Oceanic crust (6 km) Athenosphere 410 km 660 km 2900 km Sea water (0 8 km) Continental crust (20 90 km) D Lower mantle Lithosphere ( km) Upper mantle Transition zone depth (km) V p,v s (km/s) upper mantle transition zone lower mantle outter core crust D laterally heterogenious Mohorovicic discontinuity phase change to high pressure polymorphs velocity increase primarily from pressure increase laterally heterogenious (Temp. & composition) core mantle boundary convecting liquid Iron nickle sulphur mixture lithosphere "rigid" asthenosphere "plastic" 5100 km 6371 km Outer core Inner core 6000 inner core solid anisotropic (kg/m 3) ρ

5 Solidification of Earth s inner core and the magnetic field Magnetism geomagnetic field

6 sea ice formation ammonium chloride mushy layer

7 Solidification driven by cooling, convection by salt (some heat) ammonium chloride sea ice

8 Growth and waning of Arctic sea ice

9 Large scale flow of glacial ice Axel Heiberg Island, Canadian Arctic

10 LETTERS On the eve of the international polar year, international space agencies worked together to enable a complete InSAR survey of Antarctica. We used spring 2009 data from RADARSAT-2 [Canadian Space Agency (CSA) and MacDonald, Dettwiler, and Associates Limited (MDA)]; spring 2007, 2008, and 2009 data from Envisat ASAR [European Space Agency n (ESA)]; and fall 2007 to 2008 data from the Advanced Land Observing Satellite (ALOS) PALSAR [Japan Aerospace Exploration Agency (JAXA)], complemented by patches of CSA s RADARSAT-1 data from fall 2000 (7) and ESA s Earth Remote-Sensing Satellites 1 and 2 (ERS-1/2) data from spring 1996 (2). Each radar instrument contributes its unique coverage and performance level (fig. S1). The final mosaic assembles 900 satellite tracks and more than 3000 orbits of radar data (Fig. 1). The data are georeferenced with a precision better than one pixel, here 300 m, to an Earth-fixed grid by using a digital elevation model (DEM) 0.02 (8). Absolute calibration of the surface velocity data relies on control points of zero motion dis0.0tributed yr 1 along the coast (stagnant areas near ice domes or emergent mountains) and along major ice divides (areas of zero surface slope in the DEM) in a set of coast-to-coast advanced syn 0.02 thetic aperture radar (ASAR) tracks (fig. S1) s 1 yr 1precision varies with instrument, Themmapping location, technique of analysis, repeat cycle, time period, and data stacking. Nominal errors range from 1 m/year along major ice divides with high data stacking to about 17 m/year in areas affected by ionospheric perturbations (fig. S2). In terms of strain rate, or changes in velocity per unit length, data noise is at the per year level, which is sufficient to reveal effective strain rates along tributary shear margins over the vast majority of the continent (Fig. 2A). Ice velocity ranges from a few cm/year near divides to a few km/year on fast-moving glaciers and floating ice shelves, or 5 orders of magnitude. The histogram in surface velocity has a bimodal distribution with a main peak at 4 to 5 m/year, corresponding to slow motion in East Antarctica, and a second peak at 250 m/year, driven by the fast flow of glaciers and ice shelves. The fastest glaciers, Pine Island and Thwaites, are several times faster than any other glacier Antarctic sea ice (conc, vel) a b 1428 wide ice motion accurately. Figure 1 reveals a wealth of new information. For instance, the exact pathway of ice along the coastline is not without surprise. In Queen Maud Land, the main trunk of Jutulstraumen is not to the south through Penck trough but to the east of Neumayer Cliffs (10). The Sør Rondane Mountains were known to deflect ice flow to the east and to the west massive rates of basal ablation of the ice shelves by the underlying warm ocean (13). An interesting aspect is the spatial pattern of tributary flow. Each major glacier is the merger of several tributaries that extend hundreds of km inland. Although this was observed in the pardoi: /NGEO tial mapping of Siple Coast (14) and Pine Island (15), this is now observed over the entire ice sheet. NATURE GEOSCIENCE Antarctic glacial ice (vel) waters in the ice-melting zone. In areas of mean northerly w (Bellingshausen, Cosmonaut and Dumont D Urville seas; Fig southward advection opposes thermodynamic growth of th cover, and freezing extends closer to the ice edge. The mean concentration difference over autumn is domin by freezing, with advection and divergence being minor con utors during this period (Supplementary Fig. S2). Howeve the Pacific sector and Weddell Sea, trends in the autumn centration difference seem to be strongly influenced by dyna (Supplementary Fig. S3). In contrast, trends in the King H Sea are controlled by thermodynamics. Supplementary Fig shows the proportion of the autumn concentration differ trend that is explained by trends in dynamical processes. The is noisy, but after heavy smoothing, it confirms that dyn trends dominate in the Pacific sector. Trends in freezing in sector can actually oppose the ice-concentration changes, bec dynamical processes are progressively replacing thermodyna Ice-concentration losses in the Weddell Sea also seem to be ca by decreased northward advection, but the concentration inc in King Håkon Sea and other changes around East Antar contain a strong thermodynamic component. The wind tren these regions suggest that changes in cold- and warm-air adve explain thevelocity thermodynamic trends. Fig. 1. Antarctic ice derived from ALOS PALSAR, Envisat ASAR, RADARSAT-2, and ERS-1/2 satellite radar interferometry, color-coded on a logarithmic scale, and overlaid on a MODISlies mosaic The ultimate cause of the wind and ice changes inofthe l Antarctica (22), with geographic names discussed in the text. Pixel spacing is 300 m. Projection is polar scale atclimate oflines thedelineate Southern stereographic 71 S secantvariability plane. Thick black major icehemisphere. divides (2). Thin blackantarcti lines outlineice subglacial lakes discussed in the text. Thick black lines along the coast are interferometrically can contain 3 5-year cyclic anomalies that might be p derived ice sheet grounding lines (23). aliased into our calculations1,16,21, but our trends cover se suchvolcycles and are consistent with longer-term studies18. As 9 SEPTEMBER SCIENCE of the wind trends (and therefore ice-motion trends) ca

11 Magma chambers: Dynamics of emplacement and solidification Cuernos del Paine laccolith, Torres del Paine National Park, Chile laccolith elastic overburden feeder dike

12 Continental deformation of Tibetan Plateau Zhang et al. Geology (2004)

13 Representative course calendar L1 Fri, Jan 19 General introduction: plate cooling model of the oceanic lithosphere (JAN) L2 Mon., Jan 22 Onset of convection - mantle convection and the plate cooling model (JAN) L3 Wed., Jan 24 High Ra convection (JAN) L4 Fri, Jan 26 The Stefan condition: similarity solutions, quasi-steady approximation (MGW) L5 Mon, Jan 29 The Stefan condition: external heat flux (MGW) L6 Wed., Jan 31 The Stefan condition: application to the growth of the Earth s inner core (MGW) L7 Fri., Feb 2 Sea ice: radiation, albedo (MGW) L8 Mon., Feb 5 Sea ice: 2 category model, mixed layer ocean (MGW) L9 Wed., Feb 7 Darcy s law: gravity currents in porous media (unconfined) (JAN) L10 Fri., Feb 9 Darcy s law: gravity currents in porous media (confined and with leakage) (JAN) L11 Mon., Feb 12 Darcy s law: leakage from gravity currents (JAN) L12 Wed., Feb 14 Darcy s law: residual trapping and self-similar solutions of the 2nd type (JAN) L13 Fri., Feb 16 Convection in porous media: closed aquifer model, flux o a gravity current (JAN) L14 Mon., Feb 19 Introduction to alloys: phase diagrams (MGW) L15 Wed., Feb 21 melting/dissolution (MGW) L16 Fri., Feb 23 Thermodynamic models of sea ice (MGW) L17 Mon., Feb 26 Multiphase flows: viscous compaction & mantle upwelling (JAN) L18 Wed., Feb 28 Multiphase flows: poroelasticity and pressure di usion (JAN) L19 Fri., Mar 2 Terrestrial ice sheets (MGW) L20 Mon., Mar 5 Ice-shelf dynamics, extensional flows, tabular icebergs (MGW) L21 Wed., Mar 7 Grounding-line dynamics, dynamic flotation condition, confined ice sheets (MGW) L22 Fri., Mar 9 Magma propagation: formation of dykes and laccoliths (JAN) L23 Mon., Mar 12 Fracturing and faulting (JAN) L24 Wed., Mar 14 Mountain building: viscous deformation, post-glacial rebound (MGW) Examples classes: 1400 Feb 5, 1600 Feb 19, 1400 Mar 12, 1400 Apr 30

14

15 Magnetic anomalies and spreading sea floor

16 Sea floor depth with age (distance) Pacific plate Depth (m) Stein & Stein (1992) Pacific, this study, a = 90 km Parsons & Sclater (1977) Age (Ma) Crosby, McKenzie, Sclater. Geophys. J. Int. (2006)

USU 1360 TECTONICS / PROCESSES

USU 1360 TECTONICS / PROCESSES USU 1360 TECTONICS / PROCESSES Observe the world map and each enlargement Pacific Northwest Tibet South America Japan 03.00.a1 South Atlantic Arabian Peninsula Observe features near the Pacific Northwest

More information

10/27/2014. Before We Begin, You Need to Understand These Terms: Earth s Structural Key Elements & the Hazards of Plate Movement

10/27/2014. Before We Begin, You Need to Understand These Terms: Earth s Structural Key Elements & the Hazards of Plate Movement Earth s Structural Key Elements & the Hazards of Plate Movement Before We Begin, You Need to Understand These Terms: Density Convection Currents AICE EM: Lithosphere Key Content 1 & 2 Density: heat rises,

More information

12. The diagram below shows the collision of an oceanic plate and a continental plate.

12. The diagram below shows the collision of an oceanic plate and a continental plate. Review 1. Base your answer to the following question on the cross section below, which shows the boundary between two lithospheric plates. Point X is a location in the continental lithosphere. The depth

More information

THE INTERNAL STRUCTURE OF THE EARTH

THE INTERNAL STRUCTURE OF THE EARTH UNIT 1 THE INTERNAL STRUCTURE OF THE EARTH 1.1.Earth s interior layers The interior of the Earth can be divided into layers according to: -Composition layers ( organized in order of increasing density

More information

Important information from Chapter 1

Important information from Chapter 1 Important information from Chapter 1 Distinguish between: Natural hazard // Disaster // Catastrophe What role does human population play in these categories? Know how to read a Hazard Map, such as Figure

More information

Plate Tectonics CHAPTER 17

Plate Tectonics CHAPTER 17 Plate Tectonics CHAPTER 17 Layers of the Earth A. Crust- solid, 5-70 km thick Moho Two Types of Crust: Oceanic- ocean floor, more dense then because of more iron Continental-dry land (mostly silicates

More information

Chapter 1 Section 2. Land, Water, and Climate

Chapter 1 Section 2. Land, Water, and Climate Chapter 1 Section 2 Land, Water, and Climate Vocabulary 1. Landforms- natural features of the Earth s land surface 2. Elevation- height above sea level 3. Relief- changes in height 4. Core- most inner

More information

TAKE HOME EXAM 8R - Geology

TAKE HOME EXAM 8R - Geology Name Period Date TAKE HOME EXAM 8R - Geology PART 1 - Multiple Choice 1. A volcanic cone made up of alternating layers of lava and rock particles is a cone. a. cinder b. lava c. shield d. composite 2.

More information

Lab 1: Plate Tectonics April 2, 2009

Lab 1: Plate Tectonics April 2, 2009 Name: Lab 1: Plate Tectonics April 2, 2009 Objective: Students will be introduced to the theory of plate tectonics and different styles of plate margins and interactions. Introduction The planet can be

More information

sonar seismic wave basalt granite

sonar seismic wave basalt granite geologist sonar crust geology seismic wave mantle constructive force basalt inner core destructive force granite outer core The solid, rocky, surface layer of the earth. an instrument that can find objects

More information

5. Convergent boundaries produce a relatively low number of earthquakes compared to other boundaries. a. True

5. Convergent boundaries produce a relatively low number of earthquakes compared to other boundaries. a. True 1. Earth s crust is thinner than its mantle. ANSWER: True 2. The concept of isostacy states that high-density rock will stand higher than low-density rock, which explains the formation of subduction zones.

More information

Marine Science and Oceanography

Marine Science and Oceanography Marine Science and Oceanography Marine geology- study of the ocean floor Physical oceanography- study of waves, currents, and tides Marine biology study of nature and distribution of marine organisms Chemical

More information

Chapter Review USING KEY TERMS. asthenosphere uplift continental drift. known as. tectonic plates move. object. UNDERSTANDING KEY IDEAS

Chapter Review USING KEY TERMS. asthenosphere uplift continental drift. known as. tectonic plates move. object. UNDERSTANDING KEY IDEAS Skills Worksheet Chapter Review USING KEY TERMS 1. Use the following terms in the same sentence: crust, mantle, and core. Complete each of the following sentences by choosing the correct term from the

More information

Occurs in Nature SOLID Inorganic (not from a plant or animal) Crystalline (forms crystals) Atoms / Molecules bond in a regular pattern

Occurs in Nature SOLID Inorganic (not from a plant or animal) Crystalline (forms crystals) Atoms / Molecules bond in a regular pattern #12: Mineral Occurs in Nature SOLID Inorganic (not from a plant or animal) Crystalline (forms crystals) Atoms / Molecules bond in a regular pattern Regular Composition EX- Halite (salt) is always NaCl

More information

1. I can describe evidence for continental drift theory (e.g., fossil evidence, mountain belts, paleoglaciation)

1. I can describe evidence for continental drift theory (e.g., fossil evidence, mountain belts, paleoglaciation) Science 10 Review Earth Science Vocabulary asthenosphere continental drift theory converging plates diverging plates earthquakes epicentre fault hot spot inner core lithosphere mantle mantle convection

More information

DLR s TerraSAR-X contributes to international fleet of radar satellites to map the Arctic and Antarctica

DLR s TerraSAR-X contributes to international fleet of radar satellites to map the Arctic and Antarctica DLR s TerraSAR-X contributes to international fleet of radar satellites to map the Arctic and Antarctica The polar regions play an important role in the Earth system. The snow and ice covered ocean and

More information

The Earth. Part II: Solar System. The Earth. 1a. Interior. A. Interior of Earth. A. The Interior. B. The Surface. C. Atmosphere

The Earth. Part II: Solar System. The Earth. 1a. Interior. A. Interior of Earth. A. The Interior. B. The Surface. C. Atmosphere Part II: Solar System The Earth The Earth A. The Interior B. The Surface C. Atmosphere 2 Updated: July 14, 2007 A. Interior of Earth 1. Differentiated Structure 2. Seismography 3. Composition of layers

More information

Directed Reading. Section: The Theory of Plate Tectonics. to the development of plate tectonics, developed? HOW CONTINENTS MOVE

Directed Reading. Section: The Theory of Plate Tectonics. to the development of plate tectonics, developed? HOW CONTINENTS MOVE Skills Worksheet Directed Reading Section: The Theory of Plate Tectonics 1. The theory that explains why and how continents move is called. 2. By what time period was evidence supporting continental drift,

More information

Continental Drift and Plate Tectonics

Continental Drift and Plate Tectonics Continental Drift and Plate Tectonics Continental Drift Wegener s continental drift hypothesis stated that the continents had once been joined to form a single supercontinent. Wegener proposed that the

More information

Earth s s Topographic Regions

Earth s s Topographic Regions Earth s s Topographic Regions Continental Shields GEOLOGY OF THE USA Atlantic Ocean Crustal Ages Clues to Earth s s Surface Mountains only in certain areas Rock types differ regionally Shields in interior

More information

Core. Crust. Mesosphere. Asthenosphere. Mantle. Inner core. Lithosphere. Outer core

Core. Crust. Mesosphere. Asthenosphere. Mantle. Inner core. Lithosphere. Outer core Potter Name: Date: Hour: Score: /21 Learning Check 4.1 LT 4.1 Earth s Interior: I can draw and interpret models of the interior of the earth. Draw the following models (put the words in the right order)

More information

Deep cracks that form between two tectonic plates that are pulling away from each other

Deep cracks that form between two tectonic plates that are pulling away from each other Also the process by which solid rock flows slowly when under pressure, as in the asthenosphere Deep cracks that form between two tectonic plates that are pulling away from each other Also the process by

More information

Plate Tectonics. A. Continental Drift Theory 1. Early development 2. Alfred Wegener s mechanism

Plate Tectonics. A. Continental Drift Theory 1. Early development 2. Alfred Wegener s mechanism Plate Tectonics A. Continental Drift Theory 1. Early development 2. Alfred Wegener s mechanism B. Seafloor Spreading 1. Earthquakes and volcanoes 2. Seafloor maps and dates 3. Continental drift revisited

More information

Moho (Mohorovicic discontinuity) - boundary between crust and mantle

Moho (Mohorovicic discontinuity) - boundary between crust and mantle Earth Layers Dynamic Crust Unit Notes Continental crust is thicker than oceanic crust Continental Crust Thicker Less Dense Made of Granite Oceanic Crust Thinner More Dense Made of Basalt Moho (Mohorovicic

More information

UNIT SIX: Earth s Structure. Chapter 18 Earth s History and Rocks Chapter 19 Changing Earth Chapter 20 Earthquakes and Volcanoes

UNIT SIX: Earth s Structure. Chapter 18 Earth s History and Rocks Chapter 19 Changing Earth Chapter 20 Earthquakes and Volcanoes UNIT SIX: Earth s Structure Chapter 18 Earth s History and Rocks Chapter 19 Changing Earth Chapter 20 Earthquakes and Volcanoes Chapter Nineteen: Changing Earth 19.1 Inside Earth 19.2 Plate Tectonics 19.3

More information

Plate Tectonics. I. The Discovery of Plate Tectonics II. A Mosaic of Plates III. Types of Plate Boundaries IV. How Plates Move

Plate Tectonics. I. The Discovery of Plate Tectonics II. A Mosaic of Plates III. Types of Plate Boundaries IV. How Plates Move Plate Tectonics I. The Discovery of Plate Tectonics II. A Mosaic of Plates III. Types of Plate Boundaries IV. How Plates Move I. The Discovery of Plate Tectonics A. Continental Drift (Alfred Wegener) Proposed

More information

1. The process by which the ocean floor sinks beneath a deep-ocean trench and back into the mantle is known as

1. The process by which the ocean floor sinks beneath a deep-ocean trench and back into the mantle is known as Sample questions 1. The process by which the ocean floor sinks beneath a deep-ocean trench and back into the mantle is known as b. continental drift c. subduction d. conduction 2. The transfer of thermal

More information

Unit Topics. Topic 1: Earth s Interior Topic 2: Continental Drift Topic 3: Crustal Activity Topic 4: Crustal Boundaries Topic 5: Earthquakes

Unit Topics. Topic 1: Earth s Interior Topic 2: Continental Drift Topic 3: Crustal Activity Topic 4: Crustal Boundaries Topic 5: Earthquakes The Dynamic Earth Unit Topics Topic 1: Earth s Interior Topic 2: Continental Drift Topic 3: Crustal Activity Topic 4: Crustal Boundaries Topic 5: Earthquakes Topic 1: Earth s Interior Essential Question:

More information

UNIT SIX: Earth s Structure. Chapter 18 Earth s History and Rocks Chapter 19 Changing Earth Chapter 20 Earthquakes and Volcanoes

UNIT SIX: Earth s Structure. Chapter 18 Earth s History and Rocks Chapter 19 Changing Earth Chapter 20 Earthquakes and Volcanoes UNIT SIX: Earth s Structure Chapter 18 Earth s History and Rocks Chapter 19 Changing Earth Chapter 20 Earthquakes and Volcanoes Chapter Nineteen: Changing Earth 19.1 Inside Earth 19.2 Plate Tectonics

More information

A Living Planet. Chapter PHYSICAL GEOGRAPHY. What you will learn in this chapter. Summary of the chapter

A Living Planet. Chapter PHYSICAL GEOGRAPHY. What you will learn in this chapter. Summary of the chapter QUIT Main Ideas What you will learn in this chapter Summary Summary of the chapter Test your geographic knowledge by playing the. Main Ideas Section 1: The Earth Inside and Out The earth is the only habitable

More information

The surface of the ocean floor is as varied as the land. The five major oceans, from largest to smallest, are

The surface of the ocean floor is as varied as the land. The five major oceans, from largest to smallest, are 11.1 Ocean Basins The surface of the ocean floor is as varied as the land. The five major oceans, from largest to smallest, are w the Pacific w the Atlantic w the Indian w the Southern w the Arctic The

More information

ANOTHER MEXICAN EARTHQUAKE! Magnitude 7.1, Tuesday Sept. 19, 2017

ANOTHER MEXICAN EARTHQUAKE! Magnitude 7.1, Tuesday Sept. 19, 2017 ANOTHER MEXICAN EARTHQUAKE! Magnitude 7.1, Tuesday Sept. 19, 2017 Why is there no oceanic crust older than 200 million years? SUBDUCTION If new oceanic crust is being continuously created along the earth

More information

Geography of the world s oceans and major current systems. Lecture 2

Geography of the world s oceans and major current systems. Lecture 2 Geography of the world s oceans and major current systems Lecture 2 WHY is the GEOMORPHOLOGY OF THE OCEAN FLOOR important? (in the context of Oceanography) WHY is the GEOMORPHOLOGY OF THE OCEAN FLOOR important?

More information

Chapter 02 The Sea Floor

Chapter 02 The Sea Floor Chapter 02 The Sea Floor Multiple Choice Questions 1. One of the following is not one of the world's major ocean basins: A. Atlantic Ocean B. Arctic Ocean C. Indian Ocean D. Antarctic Ocean E. Pacific

More information

Crustal Boundaries. As they move across the asthenosphere and form plate boundaries they interact in various ways. Convergent Transform Divergent

Crustal Boundaries. As they move across the asthenosphere and form plate boundaries they interact in various ways. Convergent Transform Divergent Name: Date: Period: Plate Tectonics The Physical Setting: Earth Science CLASS NOTES Tectonic plates are constantly moving and interacting As they move across the asthenosphere and form plate boundaries

More information

Seismotectonics of intraplate oceanic regions. Thermal model Strength envelopes Plate forces Seismicity distributions

Seismotectonics of intraplate oceanic regions. Thermal model Strength envelopes Plate forces Seismicity distributions Seismotectonics of intraplate oceanic regions Thermal model Strength envelopes Plate forces Seismicity distributions Cooling of oceanic lithosphere also increases rock strength and seismic velocity. Thus

More information

Earthquakes. Earthquakes are caused by a sudden release of energy

Earthquakes. Earthquakes are caused by a sudden release of energy Earthquakes Earthquakes are caused by a sudden release of energy The amount of energy released determines the magnitude of the earthquake Seismic waves carry the energy away from its origin Fig. 18.1 Origin

More information

Yanbu University College. General Studies Department. PHSC001 Course. Chapter9 (Basic Geology: Earthquakes and volcanoes ) Worksheet Solutions

Yanbu University College. General Studies Department. PHSC001 Course. Chapter9 (Basic Geology: Earthquakes and volcanoes ) Worksheet Solutions Yanbu University College General Studies Department PHSC001 Course Chapter9 (Basic Geology: Earthquakes and volcanoes ) Worksheet Solutions Phsc001 worksheet9 solutions, yuc Page 1-6 Chapter 9 worksheet

More information

Chapter 2 Geography. Getting to know Earth

Chapter 2 Geography. Getting to know Earth Chapter 2 Geography Getting to know Earth Our Solar System Sun is at the center of our solar system Contains a lot of Mass» Mass gives the Sun gravitational pull» This keeps the planets in our solar system

More information

Name Class Date. 1. What is the outermost layer of the Earth called?. a. core b. lithosphere c. asthenosphere d. mesosphere

Name Class Date. 1. What is the outermost layer of the Earth called?. a. core b. lithosphere c. asthenosphere d. mesosphere Name Class Date Assessment Geology Plate Tectonics MULTIPLE CHOICE Write the letter of the correct answer in the space provided. 1. What is the outermost layer of the Earth called?. a. core b. lithosphere

More information

Unit: 4 Plate Tectonics LT 4.1 Earth s Interior: I can draw and interpret models of the interior of the earth.

Unit: 4 Plate Tectonics LT 4.1 Earth s Interior: I can draw and interpret models of the interior of the earth. Unit: 4 Plate Tectonics LT 4.1 Earth s Interior: I can draw and interpret models of the interior of the earth. 1. Can you draw the 3-layer model and the 5-layer model of the Earth? #1 Yes I can: 2. Can

More information

PLATE TECTONICS REVIEW GAME!!!!

PLATE TECTONICS REVIEW GAME!!!! PLATE TECTONICS REVIEW GAME!!!! Name the four layers of the earth - crust - mantle - outer core - inner core Which part of Earth s structure contains tectonic plates? LITHOSPHERE Name one reason why the

More information

An Introduction to the Seafloor and Plate Tectonics 1

An Introduction to the Seafloor and Plate Tectonics 1 An Introduction to the Seafloor and Plate Tectonics 1 Objectives 1) Investigate the components of the lithosphere and lithospheric plates. 2) Identify the associations among various seafloor features,

More information

I. Earth s Layers a. Crust: Earth s outside layer. Made of mostly rock. i. Continental: er; made of mostly granite, forms the continents and shallow

I. Earth s Layers a. Crust: Earth s outside layer. Made of mostly rock. i. Continental: er; made of mostly granite, forms the continents and shallow I. Earth s Layers a. Crust: Earth s outside layer. Made of mostly rock. i. Continental: er; made of mostly granite, forms the continents and shallow sea beds, floats! ii. Oceanic: er; dense rock such as

More information

Origin of the Oceans II. Earth A Living Planet. Earthquakes and Volcanoes. Plate Tectonics II

Origin of the Oceans II. Earth A Living Planet. Earthquakes and Volcanoes. Plate Tectonics II Origin of the Oceans II Plate Tectonics II Earth A Living Planet Heat of formation of the planet is trapped at center, gradually escaping Center is nickel and iron Earthquakes and Volcanoes 1 Tracing the

More information

Plate Tectonics. Structure of the Earth

Plate Tectonics. Structure of the Earth Plate Tectonics Structure of the Earth The Earth can be considered as being made up of a series of concentric spheres, each made up of materials that differ in terms of composition and mechanical properties.

More information

Chapter. Graphics by Tasa Graphic Arts. Inc.

Chapter. Graphics by Tasa Graphic Arts. Inc. Earth Chapter Plate Science 9 Tectonics Graphics by Tasa Graphic Arts. Inc. 1 I. Earth s surface is made up of lithospheric plates. A. Lithospheric plates are composed of the crust and part of the upper

More information

Chapter 2. The Planet Oceanus

Chapter 2. The Planet Oceanus Chapter 2 The Planet Oceanus Composition of the Earth The Earth consists of a series of concentric layers or spheres which differ in chemistry and physical properties. There are two different ways to describe

More information

Plate Tectonics. Earth has distinctive layers - Like an onion

Plate Tectonics. Earth has distinctive layers - Like an onion Plate Tectonics Earth has distinctive layers - Like an onion Earth s Interior Core: Metallic (Iron, Nickel) Inner (hot, solid, dense, Iron, Nickel) Outer (cooler, liquid, less dense) Crust (outermost layer):

More information

Hafeet mountain. Earth structure

Hafeet mountain. Earth structure Hafeet mountain Earth structure What is the earth structure? The earth structure has been classified according to two main criteria's 1- the chemical composition 2- the physical properties Earth structure

More information

FORCES ON EARTH. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth.

FORCES ON EARTH. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. FORCES ON EARTH An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. GEOLOGY Geologists scientists who study the forces that make and shape the Earth Geologists

More information

Chapter Seven: Heat Inside the Earth

Chapter Seven: Heat Inside the Earth Chapter Seven: Heat Inside the Earth 7.1 Sensing the Interior of the Earth 7.2 Earth s Interior 7.3 Density and Buoyancy Inside the Earth Investigation 7A All Cracked up What is a good way to model Earth?

More information

Exploring Geography. Chapter 1

Exploring Geography. Chapter 1 Exploring Geography Chapter 1 The Study of Geography Geography is the study of where people, places, and things are located and how they relate to each other. Greek meaning writing about or describing

More information

Plate Tectonics: A Scientific Revolution Unfolds

Plate Tectonics: A Scientific Revolution Unfolds Chapter 2 Lecture Earth: An Introduction to Physical Geology Eleventh Edition Plate Tectonics: A Scientific Revolution Unfolds Tarbuck and Lutgens From Continental Drift to Plate Tectonics Prior to the

More information

Alfred Wegener: continental drift theory Continents move around 200 mya Pangaea (pan = all, gaea= earth) fg 12.8 p. 508

Alfred Wegener: continental drift theory Continents move around 200 mya Pangaea (pan = all, gaea= earth) fg 12.8 p. 508 Sec 12.1 p. 506 Evidence for Continental Drift Alfred Wegener: continental drift theory Continents move around 200 mya Pangaea (pan = all, gaea= earth) fg 12.8 p. 508 Evidence: http://www.youtube.com/watch?v=rqm6n60bneo

More information

NAME HOMEWORK ASSIGNMENT #4 MATERIAL COVERS CHAPTERS 19, 20, 21, & 2

NAME HOMEWORK ASSIGNMENT #4 MATERIAL COVERS CHAPTERS 19, 20, 21, & 2 NAME HOMEWORK ASSIGNMENT #4 MATERIAL COVERS CHAPTERS 19, 20, 21, & 2 Assignment is due the beginning of the class period on December 14, 2004. Mark answers on a scantron sheet, which will be provided.

More information

Test on Chapters 7-11 Monday, April 28, 2014 No Calculator Required

Test on Chapters 7-11 Monday, April 28, 2014 No Calculator Required Test on Chapters 7-11 Monday, April 28, 2014 No Calculator Required Chapter Sections: Oceans: 7.1 7.2 7.4 Bathymetry: 8.3 Earth s Interior: 10.1 10.2 10.3 Plate Tectonics: 11.1 11.2 11.3 Study/Review:

More information

OCN 201 Physiography of the Seafloor

OCN 201 Physiography of the Seafloor OCN 201 Physiography of the Seafloor Hypsometric Curve for Earth s solid surface Note histogram Hypsometric curve of Earth shows two modes. Hypsometric curve of Venus shows only one! Why? Ocean Depth vs.

More information

Lecture notes Bill Engstrom: Instructor Earth s Interior GLG 101 Physical Geology

Lecture notes Bill Engstrom: Instructor Earth s Interior GLG 101 Physical Geology Lecture notes Bill Engstrom: Instructor Earth s Interior GLG 101 Physical Geology We memorized the layers of the Earth early in the semester. So, how do we know what s beneath the Earth s surface. In the

More information

Science 10 PROVINCIAL EXAM STUDY BOOKLET. Unit 4. Earth Science

Science 10 PROVINCIAL EXAM STUDY BOOKLET. Unit 4. Earth Science Science 10 PROVNCAL EXAM STUDY BOOKLET Unit 4 Earth Science Student nstructions 1. Ensure that you have blank paper and a Data Booklet. 2. Record all answers on a separate piece of paper. 3. Answer keys

More information

The Structure of the Earth and Plate Tectonics

The Structure of the Earth and Plate Tectonics The Structure of the Earth and Plate Tectonics Agree or Disagree? 1. The Earth if made up of 4 different layers. 2. The crust (where we live) can be made of either less dense continental crust or the more

More information

1/27/2011 C H A P T E R 4 P L A T E T E C T O N I C S. Plate Tectonics. Highest pt=mt Everest, ft, 8848 m. Lowest pt. Marianas trench, -11,000 m

1/27/2011 C H A P T E R 4 P L A T E T E C T O N I C S. Plate Tectonics. Highest pt=mt Everest, ft, 8848 m. Lowest pt. Marianas trench, -11,000 m C H A P T E R 4 P L A T E T E C T O N I C S Highest pt=mt Everest, 29029 ft, 8848 m Lowest pt. Marianas trench, -11,000 m Plate Tectonics A Revolution in Geology The Plate Tectonic Model 1 A Revolution

More information

Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... )

Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... ) Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... ) 4 Land, biosphere, cryosphere 1. Introduction 2. Atmosphere 3. Ocean 4. Land, biosphere, cryosphere 4.1 Land

More information

Mohorovicic discontinuity separates the crust and the upper mantle.

Mohorovicic discontinuity separates the crust and the upper mantle. Structure of the Earth Chapter 7 The Earth is divided into 3 Main Layers 1. Crust outermost layer 1% of the Earth s mass thickness varies: 5 100 km two types: oceanic denser continental Mohorovicic discontinuity

More information

What are terrestrial planets like on the inside? Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds. Seismic Waves.

What are terrestrial planets like on the inside? Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds. Seismic Waves. Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds What are terrestrial planets like on the inside? Seismic Waves Vibrations that travel through Earth s interior tell us what Earth is

More information

LIGO sees binary neutron star merger on August 17, 2017

LIGO sees binary neutron star merger on August 17, 2017 LIGO sees binary neutron star merger on August 17, 2017 Laser Interferometer Gravitational-Wave Observatory (LIGO) Laser Interferometer Gravitational-Wave Observatory (LIGO) Multi-Messenger Astronomy This

More information

Name Date Class. How have geologists learned about Earth s inner structure? What are the characteristics of Earth s crust, mantle, and core?

Name Date Class. How have geologists learned about Earth s inner structure? What are the characteristics of Earth s crust, mantle, and core? Chapter 4 Plate Tectonics Section 1 Summary Earth s Interior How have geologists learned about Earth s inner structure? What are the characteristics of Earth s crust, mantle, and core? Earth s surface

More information

ATOC OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow

ATOC OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow ATOC 1060-002 OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow cover, permafrost, river and lake ice, ; [3]Glaciers and

More information

MARINE GEOLOGY & GEOGRAPHY

MARINE GEOLOGY & GEOGRAPHY MARINE GEOLOGY MARINE GEOLOGY & GEOGRAPHY Marine Geology 4 LAYERS OF THE EARTH CRUST THICKNESS: VARIES BETWEEN OCEAN & CONTINENTS 5-40 KM STATE: SOLID ELEMENTS: SILICON, ALUMINUM, CALCIUM, SODIUM, POTASSIUM

More information

Chapter Two. Figure 02_02. Geography of the Ocean Basins. The Sea Floor

Chapter Two. Figure 02_02. Geography of the Ocean Basins. The Sea Floor Chapter Two The Sea Floor Geography of the Ocean Basins Figure 02_02 The world ocean is the predominant feature on the Earth in total area. In the Northern Hemisphere, 61% of the total area is ocean. In

More information

WHAT IS THE EARTH MADE OF? LITHOSPHERE AND HYDROSPHERE

WHAT IS THE EARTH MADE OF? LITHOSPHERE AND HYDROSPHERE UNIT 8 WHAT IS THE EARTH MADE OF? LITHOSPHERE AND HYDROSPHERE TABLE OF CONTENTS 1 THE STRUCTURE OF THE EARTH... 2 2 THE FORMATION OF THE RELIEF: INTERNAL AND EXTERNAL FORCES.... 2 2.1 Internal forces:

More information

UNIT 6 PLATE TECTONICS

UNIT 6 PLATE TECTONICS UNIT 6 PLATE TECTONICS CONTINENTAL DRIFT Alfred Wegner proposed the theory that the crustal plates are moving over the mantle. He argued that today s continents once formed a single landmass, called Pangaea

More information

FORCES ON EARTH UNIT 3.2. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth.

FORCES ON EARTH UNIT 3.2. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. FORCES ON EARTH UNIT 3.2 An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. USE THESE NOTES: OUR HOME PLANET EARTH: What do you know about our planet? SO.HOW

More information

Plates Moving Apart Types of Boundaries

Plates Moving Apart Types of Boundaries Plates Moving Apart Types of Boundaries PLATE TECTONICS IS The theory that the Earth s crust is broken into slabs of rock that move around on top of the asthenosphere. How fast are plates moving? The Arctic

More information

Topic 5: The Dynamic Crust (workbook p ) Evidence that Earth s crust has shifted and changed in both the past and the present is shown by:

Topic 5: The Dynamic Crust (workbook p ) Evidence that Earth s crust has shifted and changed in both the past and the present is shown by: Topic 5: The Dynamic Crust (workbook p. 65-85) Evidence that Earth s crust has shifted and changed in both the past and the present is shown by: --sedimentary horizontal rock layers (strata) are found

More information

Introduction to Earth s s Spheres The Benchmark

Introduction to Earth s s Spheres The Benchmark Introduction to Earth s s Spheres The Benchmark Volcanism Volcanic eruptions Effusive: lavas (e.g., Kilauea) Volcanism Volcanic eruptions Explosive: pyroclastic rocks (e.g., Krakatau) Factors Governing

More information

12/3/2014. Plate Tectonics: A Scientific Revolution Unfolds Earth Science, 13e Chapter 7. Continental drift: an idea before its time

12/3/2014. Plate Tectonics: A Scientific Revolution Unfolds Earth Science, 13e Chapter 7. Continental drift: an idea before its time Plate Tectonics: A Scientific Revolution Unfolds Earth Science, 13e Chapter 7 Stanley C. Hatfield Southwestern Illinois College Continental drift: an idea before its time Alfred Wegener First proposed

More information

THE DYNAMIC EARTH NOTES. Scientists divide the Earth into 4 parts or spheres. What are these spheres?

THE DYNAMIC EARTH NOTES. Scientists divide the Earth into 4 parts or spheres. What are these spheres? Hon Environmental Science THE DYNAMIC EARTH NOTES. Scientists divide the Earth into 4 parts or spheres. What are these spheres? 1. geosphere 2. atmosphere 3. hydrosphere 4. biosphere Now, describe each

More information

Amazing Ice: Glaciers and Ice Ages

Amazing Ice: Glaciers and Ice Ages Amazing Ice: Glaciers and Ice Ages Updated by: Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts Based on slides prepared by: Ronald L. Parker, Senior

More information

1. List the 3 main layers of Earth from the most dense to the least dense.

1. List the 3 main layers of Earth from the most dense to the least dense. 1. List the 3 main layers of Earth from the most dense to the least dense. 2. List the 6 layers of earth based on their physical properties from the least dense to the most dense. 3. The thinnest layer

More information

Plate Tectonics. Why Continents and Ocean Basins Exist

Plate Tectonics. Why Continents and Ocean Basins Exist Plate Tectonics Why Continents and Ocean Basins Exist Topics Density Structure of Earth Isostasy Sea-Floor Spreading Mechanical Structure of Earth Driving Mechanism of Plate Tectonics Lithospheric Plate

More information

PHYSICAL GEOLOGY AND THE ENVIRONMENT (2 ND CANADIAN EDITION)

PHYSICAL GEOLOGY AND THE ENVIRONMENT (2 ND CANADIAN EDITION) Chapter 2: Plate Tectonics Chapter Summary: Plate tectonics is a theory that suggests Earth's surface is divided into several large plates that change position and size. Intense geologic activity occurs

More information

EARTH S INTERIOR, EVIDENCE FOR PLATE TECTONICS AND PLATE BOUNDARIES

EARTH S INTERIOR, EVIDENCE FOR PLATE TECTONICS AND PLATE BOUNDARIES EARTH S INTERIOR, EVIDENCE FOR PLATE TECTONICS AND PLATE BOUNDARIES LAYERS OF THE EARTH Crust Inner Core Most Dense Solid Iron & Nickel Mantle Thickest layer Outer Core Liquid Iron & Nickel ANOTHER LOOK

More information

Earth s Interior Earth - Chapter 12 Stan Hatfield Southwestern Illinois College

Earth s Interior Earth - Chapter 12 Stan Hatfield Southwestern Illinois College Earth s Interior Earth - Chapter 12 Stan Hatfield Southwestern Illinois College Probing Earth s Interior Most of our knowledge of Earth s interior comes from the study of earthquake waves. Travel times

More information

Physical Geography A Living Planet

Physical Geography A Living Planet Physical Geography A Living Planet The geography and structure of the earth are continually being changed by internal forces, like plate tectonics, and external forces, like the weather. Iguaçu Falls at

More information

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry Planetary Surfaces Gravity & Rotation Polar flattening caused by rotation is the largest deviation from a sphere for a planet sized object (as

More information

Earth s Structure and Surface

Earth s Structure and Surface Earth s Structure and Surface Structure of the Earth The earth is thought have originated about 4.5 billion years ago from a cloud or clouds of dust. The dust was the remains of a huge cosmic explosion

More information

Directed Reading A. Section: Inside the Earth. 1. The Earth is composed of several. THE COMPOSITION OF THE EARTH. compounds make up the core?

Directed Reading A. Section: Inside the Earth. 1. The Earth is composed of several. THE COMPOSITION OF THE EARTH. compounds make up the core? Skills Worksheet Directed Reading A Section: Inside the Earth 1. The Earth is composed of several. THE COMPOSITION OF THE EARTH 2. A substance composed of two or more elements is a(n) a. mix. c. compound.

More information

Grounding line mapping in Antarctica using 15 years of DInSAR data

Grounding line mapping in Antarctica using 15 years of DInSAR data Grounding line mapping in Antarctica using 15 years of DInSAR data Jérémie Mouginot 1 Eric Rignot 1,2, Bernd Scheuchl 1 1 University of California, Irvine 2 Jet Propulsion Laboratory Introduction Outline

More information

COMPOSITION and PHYSICAL PROPERTIES GENERAL SUBJECTS. GEODESY and GRAVITY

COMPOSITION and PHYSICAL PROPERTIES GENERAL SUBJECTS. GEODESY and GRAVITY COMPOSITION and PHYSICAL PROPERTIES Composition and structure of the continental crust Composition and structure of the core Composition and structure of the mantle Composition and structure of the oceanic

More information

Section 1: Earth s Interior and Plate Tectonics Section 2: Earthquakes and Volcanoes Section 3: Minerals and Rocks Section 4: Weathering and Erosion

Section 1: Earth s Interior and Plate Tectonics Section 2: Earthquakes and Volcanoes Section 3: Minerals and Rocks Section 4: Weathering and Erosion Section 1: Earth s Interior and Plate Tectonics Section 2: Earthquakes and Volcanoes Section 3: Minerals and Rocks Section 4: Weathering and Erosion Key Terms Crust Mantle Core Lithosphere Plate Tectonics

More information

-Similar geology: mountain: ranges, folds, rock age, -Similar fossils: fg 12.4 p km apart across salt water ocean? Mesosaurus (fresh water)

-Similar geology: mountain: ranges, folds, rock age, -Similar fossils: fg 12.4 p km apart across salt water ocean? Mesosaurus (fresh water) Sec 12.1 p. 506 Evidence for Continental Drift Alfred Wegener: continental drift theory Continents move around 200 mya Pangaea (pan = all, gaea= earth) fg 12.8 p. 508 -world map fig: fg 12.1 p. 506 Jigsaw

More information

Name: Date: Per. Plate Tectonics Study Guide (Ch. 5)

Name: Date: Per. Plate Tectonics Study Guide (Ch. 5) Name: Date: Per. Plate Tectonics Study Guide (Ch. 5) 1. Fill in the Chart about heat Transfer Types Description Examples Where it takes place Radiation Sun s rays reaching earth Heat Transfer between objects

More information

Geology of the Hawaiian Islands

Geology of the Hawaiian Islands Geology of the Hawaiian Islands Class 3 20 January 2004 Any Questions? IMPORTANT Big Island Field Trip We need a firm commitment PLUS $164 payment for airfare BEFORE January 29th Plate Tectonics Fundamental

More information

Earth s Interior StudyGuide

Earth s Interior StudyGuide Name Date Period Earth s Interior StudyGuide 1. The two main elements that make up the Earth s crust are and. 2. The Earth s inner core is made of solid and. 3. When one plates slides under another plate

More information

Distribution of Continents Mid-ocean Ridges Trenches. Deformation Metamorphism Volcanism Earthquakes

Distribution of Continents Mid-ocean Ridges Trenches. Deformation Metamorphism Volcanism Earthquakes Earthquakes and Plate Tectonics Global Problems in Geology Distribution of Continents Mid-ocean Ridges Trenches Orogenic Belts Deformation Metamorphism Volcanism Earthquakes Development of Continental

More information

Earth s Geological Cycle

Earth s Geological Cycle Earth s Geological Cycle What Are the Earth s Major Geological Processes? Main Processes: 1. Plate Tectonics 2. Rock Cycle 3. Soil Formation LITHOSPHERE The Earth s Structure Earth s Interior Core (Nickel

More information

Earth and Space Science Semester 2 Exam Review. Part 1. - Convection currents circulate in the Asthenosphere located in the Upper Mantle.

Earth and Space Science Semester 2 Exam Review. Part 1. - Convection currents circulate in the Asthenosphere located in the Upper Mantle. Earth and Space Science 2015 Semester 2 Exam Review Part 1 Convection -A form of heat transfer. - Convection currents circulate in the Asthenosphere located in the Upper Mantle. - Source of heat is from

More information

Earth. Temp. increases with depth, the thermal gradient is 25 o C/km. Pressure and density also increase with depth.

Earth. Temp. increases with depth, the thermal gradient is 25 o C/km. Pressure and density also increase with depth. Plate Tectonics Earth Earth overall average density = 5.5 g/cm 3. Temp. increases with depth, the thermal gradient is 25 o C/km. Pressure and density also increase with depth. Spheroid: with a longer major

More information

Any Questions? 99.9 % of mass is in the Sun; 99 % of angular momentum is in the planets. Planets in two groups:

Any Questions? 99.9 % of mass is in the Sun; 99 % of angular momentum is in the planets. Planets in two groups: Geology of the Hawaiian Islands Class 2 15 January 2004 Any Questions? Origin of solar system Pick a theory, any theory, but it must be consistent with these facts: Planets all revolve around the Sun in

More information