Reassessing the New Madrid Seismic Zone

Size: px
Start display at page:

Download "Reassessing the New Madrid Seismic Zone"

Transcription

1 Atkinson et al., Eos Trans. AGU, v. 81, 2000 Reassessing the New Madrid Seismic Zone Atkinson, G., B. Bakun, P. Bodin, D. Boore, C. Cramer, A. Frankel, P. Gasperini, J. Gomberg, T. Hanks, B. Herrmann, S. Hough, A. Johnston, S. Kenner, C. Langston, M. Linker, P. Mayne, M. Petersen, C. Powell, W. Prescott, E. Schweig, P. Segall, S. Stein, B. Stuart, M. Tuttle, R. VanArsdale Introduction For many, the central enigma of the large mid-continent seismic region known as New Madrid Seismic Zone (NMSZ, Fig. 1) involves understanding the mechanisms that operate to permit recurrent great earthquakes remote from plate boundaries. Underlying this question is the more fundamental one of whether great earthquakes have, in fact, recurred there. Given the lack of significant topographic relief that is the hallmark of tectonic activity in most actively deforming regions, most of us feel a need to pinch ourselves and see if we are dreaming when confronted with evidence that, at some risk levels, the zone might represent a hazard locally as high as areas near the San Andreas fault. There certainly is room for argument on the subject. Direct physical examination of the active faults is not possible, because they are buried by up to a kilometer of Mississippi Embayment unconsolidated sediments (Fig. 1). Flowing across the surface, the Mississippi River tends to erase surface evidence of faulting. Current microseismicity reveals a pattern of active crustal faults, yet even collectively the three major segments it illuminates appear too short to support the assignment of M~8 for the three earthquakes in the sequence (Johnston, 1996). Modern seismic networks have not been in place long enough to constrain larger earthquake recurrence rates or magnitudes. We must, therefore, rely on historical records of earthquake effects (intensities), paleoseismic traces of strong shaking (mostly sandblows), scant geomorphological evidence, and geodetic observations to provide data to constrain models of recurrence. Applying interpretive models, and seismic source theory (i.e. what we think we know about earthquake mechanics), to turn these basic observations into useful constraints, we must also draw on evidence from outside of the central US. Additional uncertainty arises from not being sure how applicable these external constraints. 1

2 Figure 1. Schematic map of the New Madrid seismic zone showing major tectonic features (see text), modern seismicity (pluses), state boundaries and major rivers. The shaded oval approximately covers the area of mapped liquefaction features created during the earthquake sequence. Illustrating some of the difficulties, Figure 2 compares isoseismals from the 1994 Northridge, California, earthquake and the 1895 Charleston, Missouri, earthquake, thought to be of similar magnitudes. There are no recordings of ground motion from 1895, but intensity Mo relations trained on instrumentally recorded eastern US earthquakes yield a well-constrained estimate. The larger eastern US isoseismals may represent the combined effects of lower intrinsic attenuation, systematically higher eastern US stress-drops, and stronger site amplification. The effect of site amplification of ground motions in river sediments can be seen in the damage (inner) isoseismals. Figure 2. Although earthquakes in the central and eastern United States are less frequent than in the western United States, they affect much larger areas. This is shown by two areas affected by earthquakes of similar magnitudethe 1895 Charleston, Missouri, earthquake in the New Madrid seismic zone and the 1994 Northridge, California, earthquake. Darker shading indicates 2

3 minor to major damage to buildings and their contents. Outer, lighter shading indicates shaking felt, but little or no damage to objects, such as dishes. A workshop, sponsored by the US Geological Survey and the Mid-America Earthquake Center, was held recently at the University of Memphis to discuss these issues, to come to some consensus on our understanding of them. To continue this consensus building process we herein summarize the workshop findings, and seek input from the wider community (see our website at: We review the various classes of observations, starting with the fundamental data and then moving to the interpretive data. Instrumental and Historical Seismicity Synoptic seismic network coverage of New Madrid began in the mid-1970s, and modern broadband recording only began about one year ago. The pattern of microearthqakes reveals a zigzag pattern of planar faults, surrounded by a "halo" of earthquakes not clearly associated with any known structure(s) (Fig. 1). Almost all the focal depths are above ~15 km with the exception of a few at ~25 km just outside the NMSZ in southern Illinois. Within the NMSZ only two Mw>5 have occurred this century. The most recent M~5 earthquake occurred near Marked Tree, AR in Moment-magnitudes and intensity information exists for all M>4.5 events since the 1960s. The bottom line seems to be that the instrumental seismic catalog is insufficient to assess the question of recurrence of large earthquakes. However, the uncertainty of extrapolating the occurrence statistics to large magnitude almost certainly overwhelms the uncertainties in producing the instrumental catalog (see later discussion). Nevertheless, microseismicity is useful for highlighting active structures. That said, there is a widespread feeling that structures other than those highlighted by microearthquakes may represent potential earthquake sources. Other potentially significant faults include the Reelfoot Rift boundaries, the Commerce Geophysical Lineament, the Crittendon County fault zone, and the Bootheel Lineament (Fig. 1). The latter is delineated by flower structures that cut Quaternary strata, identified in reflection profiles. Approximate lengths of faults delineated by microearthquakes are ~150 km on lower SW/NE seismicity trend, ~50 km on upper SW/NE seismicity trend, and ~70km on central reverse seismicity trend or the Reelfoot fault. The Blytheville Arch underlying the longer SW/NE seismicity trend has been imaged in reflection data and is consistent with a fault-deformed zone. To better constrain the seismicity rate at higher magnitudes than the instrumental catalog reaches, it is necessary to augment it with seismic intensity reports (with some events constrained by sparse instrumental recordings in this century). A number of authoritative catalogs exist and a discussion of these may be found in Mueller et al. (1997), which reports completeness levels of M >~3 since 1924, M>~4 since 1860, and M>~5 since The rates of occurrence of historic earthquakes are generally consistent with those expected based on the rather brief instrumental catalog and a stationary "b-value". However to estimate magnitudes of the historic earthquakes precisely is difficult and the accuracy and precision of such estimates remain controversial. As will be discussed later, this is especially problematic for the earthquakes. 3

4 The most widely used estimates of the earthquake magnitudes are based on intensity reports compiled by Nuttli (1973), Street (1982, 1984) and Street and Nuttli (1984). To estimate moment magnitudes from the intensity data, an empirically derived relationship must be employed. Because of low intraplate seismicity rates, Johnston (1996) used a global dataset to constrain isoseismal area Mw regressions. The uncertainties Johnston reported only account for the scatter in the data and thus do not represent any systematic effects. Examples of relevant systematic effects might include whether the earthquakes were significantly deeper than, or had significantly higher stress drops than, the regressed examples. Residual isoseismal areas (observed minus regression estimates) plotted against published stress drops showed a clear systematic correlation positive residuals corresponding to larger stress drop events (Fig.12, Johnston, 1996). Another sort of systematic error might appear in intensity observations if site effects were treated differently for events on which the regressions were based and events to which they were applied. In the case of the isoseismals reflect the population distribution and its concentration in areas of probable site-amplification (i.e. in alluviated valleys). Depending on how such a systematic bias was treated, it could result in estimates of Mw as much as one unit smaller (~M7; Hough et al, 1999). However, additional constraints on a lower bound for the earthquakes magnitudes include comparing their effects (intensities) with other eastern North America M~7 earthquakes that were either widely felt (i.e Charleston) or recorded instrumentally (e.g Grand Banks, 1933 Baffin Bay). Intensities for Charleston and New Madrid events reported in New Madrid and Charleston, respectively, indicate that New Madrid was more strongly felt in Charleston than the reverse. Liquefaction was much more severe for New Madrid than Charleston, even though the materials seem to be less susceptible in New Madrid (Casey et al., 1999), and accounting for the fact that there were three New Madrid events. Of course if systematic biases bedevil the intensity Mo estimates, then the magnitude estimated for Charleston might be subject to similar systematic biases as NMSZ earthquakes. A promising method to evaluate the size of historical earthquakes eschews the use of felt areas together (Bakun and Wentworth, 1992). This method relies on deriving empirical functions describing the variation of intensity observations with distance from earthquakes with known locations and magnitudes. Preliminary work shows clear difference between regressions done for a small set of central and eastern U.S. earthquakes with those from California earthquakes that plausibly result from regional attenuation differences. Apart from the potential for bias due to site response and sampling already discussed, there is another hypothesis that earthquake source scaling may have affected the magnitude estimates. The earthquakes (or NMSZ earthquakes in general?) may have been more enriched in high frequencies relative to the long periods at which seismic moment is defined, than are other earthquakes. Assuming that the effects upon which intensity reports are based are more sensitive to high frequency content (Atkinson, 1993), then such a high-frequency earthquake could be mistaken as a large magnitude earthquake. One way for this to happen is if there was a second corner frequency in larger earthquakes (Atkinson and Boore, 1995), which permitted the radiation of more high frequency energy than predicted by standard earthquake source 4

5 models. For example, comparing observed acceleration spectra for eastern North American earthquakes and those predicted by various theoretical models reveals good agreement at and above ~5 Hz but considerable difference at 1 Hz and below. A second way is if the earthquakes had systematically higher stress drops than other earthquakes. Again assuming intensity is proportional to high frequency acceleration, that is in turn proportional to the product of the cube root of moment times the stress drop to the 2/3 power (Atkinson and Hanks, 1995), for the same intensity value one can decrease the moment while increasing the stress drop. A modest change in stress drop is needed to affect a significant change in moment. Alternative fault models with different lengths, width and stress drop may all produce the same intensities. For example, restricting the width to 15 km, earthquake ruptures with lengths of 140, 48, 20 km, and stress drops of 367, 150, 300 bars, respectively, would yield moment magnitudes of 8.1, 7.6, 7.2, respectively. One significant consequence of this dependence is that if the moment release rate is kept constant, relative to recurring M8.1 events, smaller earthquakes just as damaging recur approximately 4 and 16 times more often, thus potentially raising the hazard! Paleoseismicity In the central US, geologists have found few Quaternary active surface faults. Although the Reelfoot reverse fault (~coincident with northwest trending seismicity lineation, Fig. 1) is thought to form a scarp within the Mississippi River alluvium, the fault itself has never been exposed. Therefore, recurrence estimates in the region have relied on observations of earthquake effects, such as sand blows presumably associated with strong motion. Paleoliquefaction observations may be used to constrain the timing and sizes of the causative events. Repeated liquefaction events observed at ~40 sites in the region confirm that large earthquakes have shaken the area at least several times in the past 1000 years. The characteristics of individual sandblows and their spatial distribution (Fig. 1) serve in some sense as calibrations for pre-historic events. Characteristics of the individual sand blow features, such as the volume of sand ejected or the size of the feeder dykes provide a rough yardstick for relating these features to the severity of ground shaking, and hence loosely to magnitude (although this is not without some argument!). Many things may affect liquefaction and the size of sandblow features. While few in number, geotechnical investigations have consistently revealed the shallow sub-surface materials in the NMSZ to be only moderately liquefiable (Casey et al., 1999). Perhaps the best indicator of the physical size of a liquefaction-inducing pre-historic earthquake is the spatial distribution of such features. Of course, correlating individual paleoliquefaction events in non-contiguous trench exposures means relying on dating limits from a combination of archeological and radiometric dating of horizons on either side of the liquefaction feature. In addition to having overlapping formation date ranges, liquefaction features are associated with one another based on the size of the sandblows. Two pre-1811 episodes of major liquefaction appear to be documented by the observations, both comparable to the earthquakes (regardless of their magnitudes) in both their areal extend and in the size of the individual sandblow features. Best estimates of the dates of these are 1530 and 900 AD (Fig. 3). 5

6 Figure 3. Dates of paleoliquefaction features (vertical axis) arranged by site location, from north (left) to south (right); thick segments indicate most probable ages with bars showing approximate two standard deviation uncertainties. Horizontal bars indicate the most probable dates of paleo-earthquakes. The enormous size of the individual sandblows and their areal extent may be indicative of very strong shaking given the moderate susceptibility of the sediments. The sediments are essentially always saturated, so climatic variability should not be a problem. Most experienced observers feel the features could not have been formed by moderate local events, because of the enormity of the volume of sand mobilized. The paleoseismic interpretations favored currently suggest that large earthquakes like those in recur more frequently than is suggested by historic and instrumental data and thus, may be characteristic earthquakes. Moreover, an absence of paleoliquefaction features that can be associated with moderate earthquakes further suggests a cut-off in Gutenberg-Richter magnitude/frequency behavior. This also is consistent with a complete lack of M>~6 earthquakes in the last century and a recurrence period of even 1000 years for New Madrid sized events (i.e., a Gutenberg-Richter relation and b-value ~1 predicts that the rate of M6 events should be tenfold that of M7s). A final reason for not extrapolating from M<~5 seismicity rates to estimate recurrence of larger events is based on a physical model, that has been well tested with a variety of data (Wesnousky, 1999). It demonstrates that Gutenberg-Richter behavior arises from failure on a population of faults with a well-organized distribution of sizes. To apply such a model to just the few major faults of the NMSZ clearly violates this well-accepted model. Finally, the paleoseismic record suggests that the clustering in occurred in prior events. Sub-units of liquefied material have been seen in many of the sandblows, 6

7 and interpreted as resulting from major events occurring within weeks to months of each other. The lack of soil development but evidence of bioturbation in materials between the sub-units constrains the timing between clustered events. Three sub-units are observed for the features, 2 sub-units for the 1530 event and 3 for the 900 event. Geodetic Observations Only a few geodetically determined deformation rate constraints have been estimated for the NMSZ, and they all have high associated uncertainties. Deformation rates in the eastern US as a whole (from CORS continuous GPS data) appear to be less than 10-9 /yr. Various strategies have been attempted recently to refine the deformation rate for the NMSZ, including re-surveying older triangulation networks with Campaign GPS, and Campaign GPS Campaign GPS ties over a few years duration. A 10-site continuous GPS network is in the process of being deployed. Illustrating the state of measurements, a recent study by the Stanford team yields strains of ~0+.10 for all the data combined and ~ mrad/yr for a smaller net centered on the southern arm of seismicity. This result is consistent with GPS GPS tie results from the Northwestern team (Newman et al., 1999) which used different data sets and different analytical techniques. The Northwestern team has analyzed the survey data in terms of crustal velocities parallel to the NE trend of the seismicity. They report average fault parallel velocities of mm/yr for near field sites, and mm/yr for all sites combined. Until more precise measurements of the continuous network are available, the actual magnitude of the deformation rates depends on how one interprets the uncertainties. On the one hand, the uncertainty is sufficiently large that a fairly large systematic signal could be obscured within the noise. The other argument has been made that each new technology employed shrinks the error bars but always include zero, suggesting a NMSZ deformation rate not different from the surrounding crust. The model one chooses to apply in order to interpret geodetic observations has a major effect in the conclusions one obtains. The Northwestern team s analyses represent the low-rate endpoint. They estimated the equivalent slip on an infinitely long fault, locked above mid-crustal depths, and driven by remote displacement boundary conditions. Treated thus, the observations do not allow one to reject the null hypothesis that there is no loading deformation. Although this model only requires the fitting of two parameters (locking depth and displacement rate) it also implicitly assumes an infinitely long fault, and hence is the model with the lowest long-term slip rate and recurrence rate. While this model may be appropriate to apply to plate boundaries, employing it in a midplate setting is controversial. One objection is that New Madrid is not a plate boundary of infinite length driven by far field displacements, as evident in the Northwestern group s results, which show no relative displacement across the New Madrid seismic zone. In addition, the fault system clearly is not infinite. Another point of controversy was assumption of constant deformation rates. Strain rates estimated as a function of time after the 1906 earthquake in California, show clearly that the rate decays with time. Other models, which employ finite faults, yield higher estimates earthquake recurrence rates. For example, deformations might be driven by stress boundary conditions and concentrated beneath the New Madrid seismic zone by a structure in the lower crust approximating a rift pillow interpreted in some geophysical data (Stuart et 7

8 al., 1997). In such a model M8 earthquakes could occur on a fault overlying the rift pillow with a recurrence rate of 1000 years, and predict the observed geodetic data. Another plausible model is presented in the final section. Geologic/Geophysical Constraints Because of the inaccessibility of the microseismically active faults, geological techniques to estimate slip rates are mostly based on the identification and characteristics of secondary features. These have made assumptions about the sense of slip on the faults that are therefore impossible to verify by direct examination. For example, slip estimates of ~2 mm/yr published recently (Mueller et al.,1999) were derived assuming there was no strike-slip motion on the Reelfoot fault (which is hard to reconcile with the geometry of the NE-SW striking faults). Relaxation of this assumption increases the slip rate estimates by a factor of ~2.5 Consider now the seismic potential of other faults in the region. While it seems unlikely that very large seismically active faults remain to be identified, the involvement of such enigmatic features as the Reelfoot rift boundaries, buried rift-pillow decollement, or the Bootheel Lineament cannot be ruled out (Fig. 1). Moreover, within the last years and even months, Quaternary active surface faulting has been revealed at marginal sites (Benton Hills, Porter Gap). While the observations reveal minimal faulting (a few meters slip?????) of (as yet) indeterminate age, they do suggest the potential for areas beyond the central NMSZ to produce moderate to large earthquakes. Tectonic Models Any viable tectonic model to explain New Madrid must satisfy at least several criteria: large events, comparable to those in , have recurred every years; the active fault system probably isn t any longer than ~200 km; today s strain rates are low; and prior to the Holocene large earthquakes occurred with a frequency lower by orders of magnitude than today. An example of a model (being developed by Kenner and Segall,) which attempts to explain these constraints involves remote driving stresses that load an elongate zone of low viscosity in the lower crust beneath the New Madrid seismic zone. This zone concentrates stresses above it, causing earthquakes, which in turn reload the zone below. The cycle repeats but the repeat time lengthens until the whole process eventually ceases. Surface deformation rates are significantly higher early in the interseismic period (10s of years) than later (100s of years). A model of the NMSZ yielded large recurrent earthquakes (though fewer through time) without measurable strain accumulation later in the mid-interseismic period, similar to that observed in the New Madrid geodetic data. The presence of a low viscosity body within NMSZ remains to be verified. Perhaps the greatest enigma of the NMSZ is what would cause the process to begin so geologically recently. Loading changes or fault state changes that might possibly explain a recent increase in seismicity are related to the Holocene climate regime. Since the start of the Holocene, deglaciation has removed a large load of ice as close as 100 km from the NMSZ, which would have been in the forebulge. Also, the Mississippi river captured the Ohio river, and the hydrological system directly above the NMSZ was radically altered. Clearly, these are as yet wild speculations, with the basic challenge remaining of designing ways to turn them into testable hypotheses. 8

9 References Atkinson, G., 1993, Source spectra for earthquakes in eastern North America, Bull. Seism. Soc. Am., 83, Atkinson, G. and D. Boore, 1995, New ground motion relations for eastern North America, Bull. Seism. Soc. Am., 85, Atkinson, G.M. and T.C. Hanks, 1995, A high-frequency magnitude scale, Bull. Seism. Soc. Am., 85, Bakun, W. H. and C.M. Wentworth, 1997, Estimating earthquake location and magnitude from seismic intensity data, Bull. Seism. Soc. Am., 87, Casey, T., A. McGillvray, and P.W. Mayne (1999), "Results of Seismic Piezocone Penetration Tests Performed in Memphis, Tennessee," Georgia Institute of Technology, GTRC Project E-20-E87. Hough, S.E., J.G. Armbruster, L. Seeber, and J.F. Hough, 1999, On the modified Mercalli intensities and magnitudes of the New Madrid, Central United States earthquakes, U.S. Geol. Surv. Open-File Rep., , 46 pp. Johnston, A.C., 1996, Seismic moment assessment of earthquakes in stable continental regions II. Historical seismicity, Geophys. J. Int., 125, Mueller, C., Hopper, M. and Frankel, A., Preparation of Earthquake Catalogs for the National Seismic-Hazard Maps: Contiguous 48 States, U.S. Geol. Surv. Open-File Rept , 13 p, Mueller, K., J. Champion, M. Guccione, and K. Kelson, 1999, Fault slip rates in the modern New Madrid seismic zone, Science, 286, Newman, A., S. Stein, J. Weber, J. Engeln, A. Mao, and T. Dixon, 1999, Slow deformation and lower seismic hazard at the New Madrid seismic zone, Science, 284, Nuttli, O.W., 1973, The Mississippi Valley earthquakes of 1811 and 1812; intensities, ground motion and magnitudes, Bull. Seism. Soc. Am., 63, Street, R., 1982, A contribution to the documentation of the Mississippi valley earthquake sequence, Earthquake. Notes, 53, Street, R., 1984, The Historical Seismicity of the Central United States: Final Rept., Contract , U.S. Geol. Surv. Append. A., 316 p. Street, R. and O. Nuttli, 1984, The central Mississippi Valley earthquakes of In Proc. Symp. On The New Madrid Seismic Zone., U.S. Geol. Surv. Open-File Rept , Stuart, W.D., T.G. Hildenbrand, and R. W. Simpson, 1997, Stressing of the New Madrid seismic zone by a lower crustal detachment fault, J. Geophys. Res., 102, Wesnousky, S.G., 1999, Crustal deformation processes and the stability of the Gutenberg-Richter relationship, Bull. Seism. Soc. Am., 89,

General Geologic Setting and Seismicity of the FHWA Project Site in the New Madrid Seismic Zone

General Geologic Setting and Seismicity of the FHWA Project Site in the New Madrid Seismic Zone General Geologic Setting and Seismicity of the FHWA Project Site in the New Madrid Seismic Zone David Hoffman University of Missouri Rolla Natural Hazards Mitigation Institute Civil, Architectural & Environmental

More information

Mid-Continent Earthquakes As A Complex System

Mid-Continent Earthquakes As A Complex System SRL complex earthquakes 5/22/09 1 Mid-Continent Earthquakes As A Complex System Niels Bohr once observed How wonderful that we have met with a paradox. Now we have some hope of making progress. This situation

More information

GENERATION OF NEAR-FIELD ROCK MOTIONS WITH A COMPOSITE SOURCE MODEL WITHIN THE NEW MADRID SEISMIC ZONE

GENERATION OF NEAR-FIELD ROCK MOTIONS WITH A COMPOSITE SOURCE MODEL WITHIN THE NEW MADRID SEISMIC ZONE 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 24 Paper No. 244 GENERATION OF NEAR-FIELD ROCK MOTIONS WITH A COMPOSITE SOURCE MODEL WITHIN THE NEW MADRID SEISMIC ZONE

More information

I. Locations of Earthquakes. Announcements. Earthquakes Ch. 5. video Northridge, California earthquake, lecture on Chapter 5 Earthquakes!

I. Locations of Earthquakes. Announcements. Earthquakes Ch. 5. video Northridge, California earthquake, lecture on Chapter 5 Earthquakes! 51-100-21 Environmental Geology Summer 2006 Tuesday & Thursday 6-9:20 p.m. Dr. Beyer Earthquakes Ch. 5 I. Locations of Earthquakes II. Earthquake Processes III. Effects of Earthquakes IV. Earthquake Risk

More information

Seismic Source Characterization in Siting New Nuclear Power Plants in the Central and Eastern United States

Seismic Source Characterization in Siting New Nuclear Power Plants in the Central and Eastern United States Seismic Source Characterization in Siting New Nuclear Power Plants in the Central and Eastern United States ABSTRACT : Yong Li 1 and Nilesh Chokshi 2 1 Senior Geophysicist, 2 Deputy Director of DSER Nuclear

More information

Ground Motions at Memphis and St. Louis from M Earthquakes in the New Madrid Seismic Zone

Ground Motions at Memphis and St. Louis from M Earthquakes in the New Madrid Seismic Zone Bulletin of the Seismological Society of America, Vol. 92, No. 3, pp. 1015 1024, April 2002 Ground Motions at Memphis and St. Louis from M 7.5 8.0 Earthquakes in the New Madrid Seismic Zone by Gail M.

More information

SEISMIC CODE ISSUES IN CENTRAL UNITED STATES

SEISMIC CODE ISSUES IN CENTRAL UNITED STATES 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1843 SEISMIC CODE ISSUES IN CENTRAL UNITED STATES SHAHRAM PEZESHK 1 SUMMARY The Applied Technology Council

More information

Passive margin earthquakes as indicators of intraplate deformation

Passive margin earthquakes as indicators of intraplate deformation Passive margin earthquakes as indicators of intraplate deformation Emily Wolin and Seth Stein Northwestern University April 23, 2010 Seismicity of the North 1920-2009 American Passive Margin 1933 Baffin

More information

Ground displacement in a fault zone in the presence of asperities

Ground displacement in a fault zone in the presence of asperities BOLLETTINO DI GEOFISICA TEORICA ED APPLICATA VOL. 40, N. 2, pp. 95-110; JUNE 2000 Ground displacement in a fault zone in the presence of asperities S. SANTINI (1),A.PIOMBO (2) and M. DRAGONI (2) (1) Istituto

More information

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena Environmental Geology Chapter 8 Earthquakes and Related Phenomena Fall 2013 Northridge 1994 Kobe 1995 Mexico City 1985 China 2008 Earthquakes Earthquake Magnitudes Earthquake Magnitudes Richter Magnitude

More information

Earthquakes Earth, 9th edition, Chapter 11 Key Concepts What is an earthquake? Earthquake focus and epicenter What is an earthquake?

Earthquakes Earth, 9th edition, Chapter 11 Key Concepts What is an earthquake? Earthquake focus and epicenter What is an earthquake? 1 2 3 4 5 6 7 8 9 10 Earthquakes Earth, 9 th edition, Chapter 11 Key Concepts Earthquake basics. "" and locating earthquakes.. Destruction resulting from earthquakes. Predicting earthquakes. Earthquakes

More information

UCERF3 Task R2- Evaluate Magnitude-Scaling Relationships and Depth of Rupture: Proposed Solutions

UCERF3 Task R2- Evaluate Magnitude-Scaling Relationships and Depth of Rupture: Proposed Solutions UCERF3 Task R2- Evaluate Magnitude-Scaling Relationships and Depth of Rupture: Proposed Solutions Bruce E. Shaw Lamont Doherty Earth Observatory, Columbia University Statement of the Problem In UCERF2

More information

The New Madrid seismic zone and its influence on seismic hazard. Robin K. McGuire Reinsurance Association of America Meeting February 14, 2018.

The New Madrid seismic zone and its influence on seismic hazard. Robin K. McGuire Reinsurance Association of America Meeting February 14, 2018. The New Madrid seismic zone and its influence on seismic hazard Robin K. McGuire Reinsurance Association of America Meeting February 14, 2018. USGS PGA hazard map, 500-year return period, B-C site, 2014

More information

Usually, only a couple of centuries of earthquake data is available, much shorter than the complete seismic cycle for most plate motions.

Usually, only a couple of centuries of earthquake data is available, much shorter than the complete seismic cycle for most plate motions. Earthquake Hazard Analysis estimate the hazard presented by earthquakes in a given region Hazard analysis is related to long term prediction and provides a basis to expressed hazard in probabilistic terms.

More information

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes Section 19.1 - Forces Within Earth 8 th Grade Earth & Space Science - Class Notes Stress and Strain Stress - is the total force acting on crustal rocks per unit of area (cause) Strain deformation of materials

More information

Knowledge of in-slab earthquakes needed to improve seismic hazard estimates for southwestern British Columbia

Knowledge of in-slab earthquakes needed to improve seismic hazard estimates for southwestern British Columbia USGS OPEN FILE REPORT #: Intraslab Earthquakes 1 Knowledge of in-slab earthquakes needed to improve seismic hazard estimates for southwestern British Columbia John Adams and Stephen Halchuk Geological

More information

Comments on Preliminary Documentation for the 2007 Update of the. United States National Seismic Hazard Maps. Zhenming Wang

Comments on Preliminary Documentation for the 2007 Update of the. United States National Seismic Hazard Maps. Zhenming Wang Comments on Preliminary Documentation for the 2007 Update of the United States National Seismic Hazard Maps By Zhenming Wang Kentucky Geological Survey 228 Mining and Mineral Resource Building University

More information

Paleoseismic Investigations for Determining the Design Ground Motions for Nuclear Power Plants

Paleoseismic Investigations for Determining the Design Ground Motions for Nuclear Power Plants Paleoseismic Investigations for Determining the Design Ground Motions for Nuclear Power Plants Russell A. Green Department of Civil and Environmental Engineering Purdue Geotechnical Society Workshop May

More information

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating.

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating. CH Earthquakes Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating Earthquakes Section 19.4: Earthquakes and Society Section 19.1 Forces

More information

Magnitude 6.3 SOUTH ISLAND OF NEW ZEALAND

Magnitude 6.3 SOUTH ISLAND OF NEW ZEALAND A magnitude 6.3 earthquake shook the southern New Zealand city of Christchurch. At least 100 people are reported dead, and there are reports of collapsed buildings, cracked streets and flooding due to

More information

Synthetic Near-Field Rock Motions in the New Madrid Seismic Zone

Synthetic Near-Field Rock Motions in the New Madrid Seismic Zone Synthetic Near-Field Rock Motions in the New Madrid Seismic Zone Genda Chen*, Ph.D., P.E., and Mostafa El-Engebawy Engebawy,, Ph.D. *Associate Professor of Civil Engineering Department of Civil, Architecture

More information

EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE MECHANISMS SHOW MOTION

EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE MECHANISMS SHOW MOTION 6-1 6: EARTHQUAKE FOCAL MECHANISMS AND PLATE MOTIONS Hebgen Lake, Montana 1959 Ms 7.5 1 Stein & Wysession, 2003 Owens Valley, California 1872 Mw ~7.5 EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE

More information

Guidelines for Site-Specific Seismic Hazard Reports for Essential and Hazardous Facilities and Major and Special-Occupancy Structures in Oregon

Guidelines for Site-Specific Seismic Hazard Reports for Essential and Hazardous Facilities and Major and Special-Occupancy Structures in Oregon Guidelines for Site-Specific Seismic Hazard Reports for Essential and Hazardous Facilities and Major and Special-Occupancy Structures in Oregon By the Oregon Board of Geologist Examiners and the Oregon

More information

Project 17 Development of Next-Generation Seismic Design Value Maps

Project 17 Development of Next-Generation Seismic Design Value Maps Project 17 Development of Next-Generation Seismic Design Value Maps Geo Structures 2016 16 February 2016 R.O. Hamburger, SE, SECB www.sgh.com Some History Prior to 1988 - maps provided broad seismic zones

More information

to: Interseismic strain accumulation and the earthquake potential on the southern San

to: Interseismic strain accumulation and the earthquake potential on the southern San Supplementary material to: Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system by Yuri Fialko Methods The San Bernardino-Coachella Valley segment of the

More information

SURFACE GEOLOGY AND LIQUEFACTION SUSCEPTIBILITY IN THE INNER RIO GRANDE VALLEY NEAR ALBUQUERQUE, NEW MEXICO

SURFACE GEOLOGY AND LIQUEFACTION SUSCEPTIBILITY IN THE INNER RIO GRANDE VALLEY NEAR ALBUQUERQUE, NEW MEXICO SURFACE GEOLOGY AND LIQUEFACTION SUSCEPTIBILITY IN THE INNER RIO GRANDE VALLEY NEAR ALBUQUERQUE, NEW MEXICO Keith I. Kelson, Christopher S. Hitchcock, and Carolyn E. Randolph William Lettis & Associates,

More information

Scientific Research on the Cascadia Subduction Zone that Will Help Improve Seismic Hazard Maps, Building Codes, and Other Risk-Mitigation Measures

Scientific Research on the Cascadia Subduction Zone that Will Help Improve Seismic Hazard Maps, Building Codes, and Other Risk-Mitigation Measures Scientific Research on the Cascadia Subduction Zone that Will Help Improve Seismic Hazard Maps, Building Codes, and Other Risk-Mitigation Measures Art Frankel U.S. Geological Survey Seattle, WA GeoPrisms-Earthscope

More information

Pilot Seismic Hazard Assessment of the Granite City, Monks Mound, and Columbia Bottom Quadrangles, St. Louis Metropolitan Area

Pilot Seismic Hazard Assessment of the Granite City, Monks Mound, and Columbia Bottom Quadrangles, St. Louis Metropolitan Area Pilot Seismic Hazard Assessment of the Granite City, Monks Mound, and Columbia Bottom Quadrangles, St. Louis Metropolitan Area Research Proposal Submitted by Deniz Karadeniz Ph.D. Candidate in Geological

More information

Plate Boundary Observatory Working Group for the Central and Northern San Andreas Fault System PBO-WG-CNSA

Plate Boundary Observatory Working Group for the Central and Northern San Andreas Fault System PBO-WG-CNSA Plate Boundary Observatory Working Group for the Central and Northern San Andreas Fault System PBO-WG-CNSA Introduction Our proposal focuses on the San Andreas fault system in central and northern California.

More information

ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT

ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT Edward H FIELD 1 And SCEC PHASE III WORKING GROUP 2 SUMMARY Probabilistic seismic hazard analysis

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lecture 20, 30 Nov. 2017 www.geosc.psu.edu/courses/geosc508 Seismic Spectra & Earthquake Scaling laws. Seismic Spectra & Earthquake Scaling laws. Aki, Scaling law

More information

Module 7: Plate Tectonics and Earth's Structure Topic 4 Content : Earthquakes Presentation Notes. Earthquakes

Module 7: Plate Tectonics and Earth's Structure Topic 4 Content : Earthquakes Presentation Notes. Earthquakes Earthquakes 1 Topic 4 Content: Earthquakes Presentation Notes Earthquakes are vibrations within the Earth produced by the rapid release of energy from rocks that break under extreme stress. Earthquakes

More information

PALEOSEISMOLOGY: SITES (17)

PALEOSEISMOLOGY: SITES (17) GG 454 February 8, 2002 1 PALEOSEISMOLOGY: SITES (17) Schedule Updates and Reminders: Reading for this lecture: Big Picture - Skim "Applications" in PP 1360 Reading for next lecture: Handouts from Active

More information

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Kazuki Koketsu 1, Hiroe Miyake 2, Srinagesh Davuluri 3 and Soma Nath Sapkota 4 1. Corresponding

More information

Estimation of Regional Seismic Hazard in the Korean Peninsula Using Historical Earthquake Data between A.D. 2 and 1995

Estimation of Regional Seismic Hazard in the Korean Peninsula Using Historical Earthquake Data between A.D. 2 and 1995 Bulletin of the Seismological Society of America, Vol. 94, No. 1, pp. 269 284, February 2004 Estimation of Regional Seismic Hazard in the Korean Peninsula Using Historical Earthquake Data between A.D.

More information

Kinematics of the Southern California Fault System Constrained by GPS Measurements

Kinematics of the Southern California Fault System Constrained by GPS Measurements Title Page Kinematics of the Southern California Fault System Constrained by GPS Measurements Brendan Meade and Bradford Hager Three basic questions Large historical earthquakes One basic question How

More information

Occurrence of negative epsilon in seismic hazard analysis deaggregation, and its impact on target spectra computation

Occurrence of negative epsilon in seismic hazard analysis deaggregation, and its impact on target spectra computation Occurrence of negative epsilon in seismic hazard analysis deaggregation, and its impact on target spectra computation Lynne S. Burks 1 and Jack W. Baker Department of Civil and Environmental Engineering,

More information

What will a Magnitude 6.0 to 6.8 Earthquake do to the St. Louis Metro Area?

What will a Magnitude 6.0 to 6.8 Earthquake do to the St. Louis Metro Area? What will a Magnitude 6.0 to 6.8 Earthquake do to the St. Louis Metro Area? J. David Rogers Natural Hazards Mitigation Center University of Missouri-Rolla USGS Mid-Continent Geographic Science Center Missouri

More information

Identification of Lateral Spread Features in the Western New Madrid Seismic Zone J. David Rogers and Briget C. Doyle

Identification of Lateral Spread Features in the Western New Madrid Seismic Zone J. David Rogers and Briget C. Doyle Identification of Lateral Spread Features in the Western New Madrid Seismic Zone J. David Rogers and Briget C. Doyle Department of Geological Engineering University of Missouri-Rolla rogersda@umr.edu doyle@hope.edu

More information

New Madrid Earthquakes

New Madrid Earthquakes Seismic Hazard Maps A presentation by Dr. Chris Cramer, U.S. Geological Survey, Memphis, TN at University of Memphis, TN November 22, 2004 1811-12 New Madrid Earthquakes 1 1886 Charleston Earthquake 2

More information

Integration of Probabilistic Seismic Hazard Analysis with Nonlinear Site Effects and Application to the Mississippi Embayment

Integration of Probabilistic Seismic Hazard Analysis with Nonlinear Site Effects and Application to the Mississippi Embayment Integration of Probabilistic Seismic Hazard Analysis with Nonlinear Site Effects and Application to the Mississippi Embayment Duhee Park and Youssef M.A. Hashash ABSTRACT An integrated probabilistic seismic

More information

The Earthquake Cycle Chapter :: n/a

The Earthquake Cycle Chapter :: n/a The Earthquake Cycle Chapter :: n/a A German seismogram of the 1906 SF EQ Image courtesy of San Francisco Public Library Stages of the Earthquake Cycle The Earthquake cycle is split into several distinct

More information

11: CONTINENTAL INTRAPLATE EARTHQUAKES: A SCIENCE, HAZARD, AND POLICY CHALLENGE

11: CONTINENTAL INTRAPLATE EARTHQUAKES: A SCIENCE, HAZARD, AND POLICY CHALLENGE 11: CONTINENTAL INTRAPLATE EARTHQUAKES: A SCIENCE, HAZARD, AND POLICY CHALLENGE Most earthquakes occur on either narrow plate boundaries or broad plate boundary zones DIFFUSE BOUNDARY ZONES INTRAPLATE

More information

New Madrid and Central U.S. Region Earthquake Hazard

New Madrid and Central U.S. Region Earthquake Hazard New Madrid and Central U.S. Region Earthquake Hazard Rob Williams U.S. Geological Survey, Golden, CO March 16, 2017 Reelfoot Lake, TN U.S. Department of the Interior U.S. Geological Survey 1811-12 New

More information

On May 4, 2001, central Arkansas experienced an M=4.4 earthquake followed by a

On May 4, 2001, central Arkansas experienced an M=4.4 earthquake followed by a 1. Introduction On May 4, 2001, central Arkansas experienced an M=4.4 earthquake followed by a surprisingly large number of small earthquakes. We recorded about 2500 above the ambient noise level on a

More information

Earthquakes. Pt Reyes Station 1906

Earthquakes. Pt Reyes Station 1906 Earthquakes Pt Reyes Station 1906 Earthquakes Ground shaking caused by the sudden release of accumulated strain by an abrupt shift of rock along a fracture in the earth. You Live in Earthquake Country

More information

MAR110 Lecture #5 Plate Tectonics-Earthquakes

MAR110 Lecture #5 Plate Tectonics-Earthquakes 1 MAR110 Lecture #5 Plate Tectonics-Earthquakes Figure 5.0 Plate Formation & Subduction Destruction The formation of the ocean crust from magma that is upwelled into a pair of spreading centers. Pairs

More information

Dependence of Possible Characteristic Earthquakes on Spatial Samph'ng: Illustration for the Wasatch Seismic Zone, Utah

Dependence of Possible Characteristic Earthquakes on Spatial Samph'ng: Illustration for the Wasatch Seismic Zone, Utah Dependence of Possible Characteristic Earthquakes on Spatial Samph'ng: Illustration for the Wasatch Seismic Zone, Utah Seth Stein Northwestern University Anke Friedrich Universitiit Potsdam* Andrew Newman

More information

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College What Is an Earthquake? An earthquake is the vibration of Earth, produced by the rapid release of energy.

More information

Earthquake patterns in the Flinders Ranges - Temporary network , preliminary results

Earthquake patterns in the Flinders Ranges - Temporary network , preliminary results Earthquake patterns in the Flinders Ranges - Temporary network 2003-2006, preliminary results Objectives David Love 1, Phil Cummins 2, Natalie Balfour 3 1 Primary Industries and Resources South Australia

More information

SEISMIC THREAT POSED BY THE NEW MADRID SEISMIC ZONE for Earthquakes Mean Business Seminar AT&T Data Center St. Louis, MO Friday February 3, 2006

SEISMIC THREAT POSED BY THE NEW MADRID SEISMIC ZONE for Earthquakes Mean Business Seminar AT&T Data Center St. Louis, MO Friday February 3, 2006 BRIEF OVERVIEW OF SEISMIC THREAT POSED BY THE NEW MADRID SEISMIC ZONE for Earthquakes Mean Business Seminar AT&T Data Center St. Louis, MO Friday February 3, 2006 J. David Rogers, Ph.D., P.E., R.G. Karl

More information

Foldable Fault Blocks Lesson Plans and Activities

Foldable Fault Blocks Lesson Plans and Activities Foldable Fault Blocks Lesson Plans and Activities By Polly R. Sturgeon Targeted Age: Elementary to High School Activity Structure: Individual assignment Indiana Standards and Objectives: 3.PS.1, 4.ESS.2,

More information

An entire branch of Earth science, called, is devoted to the study of earthquakes.

An entire branch of Earth science, called, is devoted to the study of earthquakes. Lesson One Essential Question Where do earthquakes take place? What causes earthquakes? What are three different types of faults that occur at plate boundaries? How does energy from earthquakes travels

More information

Predicted reversal and recovery of surface creep on the Hayward fault following the 1906 San Francisco earthquake

Predicted reversal and recovery of surface creep on the Hayward fault following the 1906 San Francisco earthquake GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L19305, doi:10.1029/2008gl035270, 2008 Predicted reversal and recovery of surface creep on the Hayward fault following the 1906 San Francisco earthquake D. A. Schmidt

More information

of other regional earthquakes (e.g. Zoback and Zoback, 1980). I also want to find out

of other regional earthquakes (e.g. Zoback and Zoback, 1980). I also want to find out 4. Focal Mechanism Solutions A way to investigate source properties of the 2001 sequence is to attempt finding well-constrained focal mechanism solutions to determine if they are consistent with those

More information

SCEC Earthquake Gates Workshop Central Death Valley Focus Area

SCEC Earthquake Gates Workshop Central Death Valley Focus Area SCEC Earthquake Gates Workshop Central Death Valley Focus Area Fault Gates: Rheology, fault geometry, stress history or directionality? How do we recognize or suspect a fault gate? Paleoseismic or historic

More information

Graves and Pitarka Method

Graves and Pitarka Method Based on Sept 26 meeting, is the output of the BBP consistent with the expectations from your method? Is there anything in the simulations that stand out as problematic? The results shown at the Sept 26

More information

Source parameters II. Stress drop determination Energy balance Seismic energy and seismic efficiency The heat flow paradox Apparent stress drop

Source parameters II. Stress drop determination Energy balance Seismic energy and seismic efficiency The heat flow paradox Apparent stress drop Source parameters II Stress drop determination Energy balance Seismic energy and seismic efficiency The heat flow paradox Apparent stress drop Source parameters II: use of empirical Green function for

More information

CAMPBELL-BOZORGNIA NEXT GENERATION ATTENUATION (NGA) RELATIONS FOR PGA, PGV AND SPECTRAL ACCELERATION: A PROGRESS REPORT

CAMPBELL-BOZORGNIA NEXT GENERATION ATTENUATION (NGA) RELATIONS FOR PGA, PGV AND SPECTRAL ACCELERATION: A PROGRESS REPORT Proceedings of the 8 th U.S. National Conference on Earthquake Engineering April 18-22, 2006, San Francisco, California, USA Paper No. 906 CAMPBELL-BOZORGNIA NEXT GENERATION ATTENUATION (NGA) RELATIONS

More information

Estimating fault slip rates, locking distribution, elastic/viscous properites of lithosphere/asthenosphere. Kaj M. Johnson Indiana University

Estimating fault slip rates, locking distribution, elastic/viscous properites of lithosphere/asthenosphere. Kaj M. Johnson Indiana University 3D Viscoelastic Earthquake Cycle Models Estimating fault slip rates, locking distribution, elastic/viscous properites of lithosphere/asthenosphere Kaj M. Johnson Indiana University In collaboration with:

More information

Introduction Faults blind attitude strike dip

Introduction Faults blind attitude strike dip Chapter 5 Faults by G.H. Girty, Department of Geological Sciences, San Diego State University Page 1 Introduction Faults are surfaces across which Earth material has lost cohesion and across which there

More information

SEISMIC HAZARD ANALYSIS. Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1

SEISMIC HAZARD ANALYSIS. Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1 SEISMIC HAZARD ANALYSIS Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1 Seismic Hazard Analysis Deterministic procedures Probabilistic procedures USGS hazard

More information

Measurements in the Creeping Section of the Central San Andreas Fault

Measurements in the Creeping Section of the Central San Andreas Fault Measurements in the Creeping Section of the Central San Andreas Fault Introduction Duncan Agnew, Andy Michael We propose the PBO instrument, with GPS and borehole strainmeters, the creeping section of

More information

Magnitude 6.9 GULF OF CALIFORNIA

Magnitude 6.9 GULF OF CALIFORNIA A pair of strong earthquakes struck off the coast of Mexico early Thursday only minutes apart. The magnitude 6.9 and 6.2 were centered about 85 miles northeast of Guerrero Negro in the Mexican state of

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/3/eaao4915/dc1 Supplementary Materials for Global variations of large megathrust earthquake rupture characteristics This PDF file includes: Lingling Ye, Hiroo

More information

Extending the magnitude range of seismic reservoir monitoring by Utilizing Hybrid Surface Downhole Seismic Networks

Extending the magnitude range of seismic reservoir monitoring by Utilizing Hybrid Surface Downhole Seismic Networks Extending the magnitude range of seismic reservoir monitoring by Utilizing Hybrid Surface Downhole Seismic Networks Gisela Viegas*, ESG, Kingston, Ontario, Canada Gisela.Fernandes@esgsolutions.com and

More information

Earthquakes Chapter 19

Earthquakes Chapter 19 Earthquakes Chapter 19 Does not contain complete lecture notes. What is an earthquake An earthquake is the vibration of Earth produced by the rapid release of energy Energy released radiates in all directions

More information

State of Stress in Seismic Gaps Along the SanJacinto Fault

State of Stress in Seismic Gaps Along the SanJacinto Fault ELEVEN State of Stress in Seismic Gaps Along the SanJacinto Fault Hirao Kanamori and Harold Magistrale NTRODUCTON Data from the Southern California Seismic Network have been extensively used to map spatial

More information

Earthquakes and Faulting

Earthquakes and Faulting Earthquakes and Faulting Crustal Strength Profile Quakes happen in the strong, brittle layers Great San Francisco Earthquake April 18, 1906, 5:12 AM Quake lasted about 60 seconds San Francisco was devastated

More information

Overview of the Seismic Source Characterization for the Palo Verde Nuclear Generating Station

Overview of the Seismic Source Characterization for the Palo Verde Nuclear Generating Station Overview of the Seismic Source Characterization for the Palo Verde Nuclear Generating Station Scott Lindvall SSC TI Team Lead Palo Verde SSC SSHAC Level 3 Project Tuesday, March 19, 2013 1 Questions from

More information

MAGMATIC, ERUPTIVE AND TECTONIC PROCESSES IN THE ALEUTIAN ARC, ALASKA

MAGMATIC, ERUPTIVE AND TECTONIC PROCESSES IN THE ALEUTIAN ARC, ALASKA MAGMATIC, ERUPTIVE AND TECTONIC PROCESSES IN THE ALEUTIAN ARC, ALASKA Introduction The Aleutian Arc contains roughly ten percent of the world s active volcanoes. Hardly a year goes by without a major eruption

More information

Earthquakes in Ohio? Teacher Directions and Lesson

Earthquakes in Ohio? Teacher Directions and Lesson Earthquakes in Ohio? Teacher Directions and Lesson If I say, earthquake what state do you think of? Answers will vary, but California is a likely answer. What if I asked you, Where could you live in the

More information

Surface Faulting and Deformation Assessment & Mitigation

Surface Faulting and Deformation Assessment & Mitigation Surface Faulting and Deformation Assessment & Mitigation Summary of a Shlemon Specialty Conference sponsored by the Association of Environmental & Engineering Geologists convened on February 19 & 20, 2009

More information

TEGAM s Connection to the EarthScope Project

TEGAM s Connection to the EarthScope Project TEGAM s Connection to the EarthScope Project Introduction The EarthScope Project is an undertaking funded by the National Science Foundation in partnership with the United States Geological Survey and

More information

GEOL/GEOE 344: EARTHQUAKES AND SEISMIC HAZARDS (FALL 2001) FINAL EXAM NAME: TIME AVAILABLE: 120 MINUTES TOTAL POINTS: 110

GEOL/GEOE 344: EARTHQUAKES AND SEISMIC HAZARDS (FALL 2001) FINAL EXAM NAME: TIME AVAILABLE: 120 MINUTES TOTAL POINTS: 110 GEOL/GEOE 344: EARTHQUAKES AND SEISMIC HAZARDS (FALL 2001) FINAL EXAM NAME: TIME AVAILABLE: 120 MINUTES TOTAL POINTS: 110 (yep, that s 10 bonus points, just for showing up!) Instructions: There are several

More information

Earthquakes and Earth s Interior

Earthquakes and Earth s Interior - What are Earthquakes? Earthquakes and Earth s Interior - The shaking or trembling caused by the sudden release of energy - Usually associated with faulting or breaking of rocks - Continuing adjustment

More information

Preview Mode: ON Earthquake Risk in Stable, Intraplate Regions: the Case. of Perth, Australia. Historical Seismicity in the Perth Region

Preview Mode: ON Earthquake Risk in Stable, Intraplate Regions: the Case. of Perth, Australia. Historical Seismicity in the Perth Region Preview Mode: ON Earthquake Risk in Stable, Intraplate Regions: the Case Editor s note: There is often a tendency to discount earthquake risk in of Perth, Australia 02.2010 AIRCurrents regions where earthquakes

More information

Earthquakes. Earthquakes and Plate Tectonics. Earthquakes and Plate Tectonics. Chapter 6 Modern Earth Science. Modern Earth Science. Section 6.

Earthquakes. Earthquakes and Plate Tectonics. Earthquakes and Plate Tectonics. Chapter 6 Modern Earth Science. Modern Earth Science. Section 6. Earthquakes Chapter 6 Modern Earth Science Earthquakes and Plate Tectonics Section 6.1 Modern Earth Science Earthquakes and Plate Tectonics Earthquakes are the result of stresses in Earth s s lithosphere.

More information

DCPP Seismic FAQ s Geosciences Department 08/04/2011 GM1) What magnitude earthquake is DCPP designed for?

DCPP Seismic FAQ s Geosciences Department 08/04/2011 GM1) What magnitude earthquake is DCPP designed for? GM1) What magnitude earthquake is DCPP designed for? The new design ground motions for DCPP were developed after the discovery of the Hosgri fault. In 1977, the largest magnitude of the Hosgri fault was

More information

S. Toda, S. Okada, D. Ishimura, and Y. Niwa International Research Institute of Disaster Science, Tohoku University, Japan

S. Toda, S. Okada, D. Ishimura, and Y. Niwa International Research Institute of Disaster Science, Tohoku University, Japan The first surface-rupturing earthquake in 20 years on a HERP major active fault: Mw=6.2 2014 Nagano, Japan, event along the Itoigawa-Shizuoka Tectonic Line is not characteristic S. Toda, S. Okada, D. Ishimura,

More information

ENTERGY WHITE BLUFF PLANT RECYCLE POND A AND RECYCLE POND B DEMONSTRATION OF COMPLIANCE WITH EPA CCR RULE SITING CRITERIA 257.

ENTERGY WHITE BLUFF PLANT RECYCLE POND A AND RECYCLE POND B DEMONSTRATION OF COMPLIANCE WITH EPA CCR RULE SITING CRITERIA 257. ENTERGY WHITE BLUFF PLANT RECYCLE POND A AND RECYCLE POND B DEMONSTRATION OF COMPLIANCE WITH EPA CCR RULE SITING CRITERIA 257.62, FAULT AREAS Prepared for Entergy Arkansas, Inc. PO Box 551 Little Rock,

More information

SEISMIC HAZARD AND SEISMIC RISK ANALYSIS

SEISMIC HAZARD AND SEISMIC RISK ANALYSIS SEISMIC HAZARD AND SEISMIC RISK ANALYSIS Seismotectonics Fault mechanics Ground motion considerations for design Deterministic and probabilistic analysis Estimation of ground motions Scaling of ground

More information

Earthquakes. Building Earth s Surface, Part 2. Science 330 Summer What is an earthquake?

Earthquakes. Building Earth s Surface, Part 2. Science 330 Summer What is an earthquake? Earthquakes Building Earth s Surface, Part 2 Science 330 Summer 2005 What is an earthquake? An earthquake is the vibration of Earth produced by the rapid release of energy Energy released radiates in all

More information

GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise

GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise Strain Analysis Introduction Name: The earthquake cycle can be viewed as a process of slow strain accumulation

More information

Lab 9: Satellite Geodesy (35 points)

Lab 9: Satellite Geodesy (35 points) Lab 9: Satellite Geodesy (35 points) Here you will work with GPS Time Series data to explore plate motion and deformation in California. This lab modifies an exercise found here: http://www.unavco.org:8080/cws/pbonucleus/draftresources/sanandreas/

More information

Elastic Rebound Theory

Elastic Rebound Theory Earthquakes Elastic Rebound Theory Earthquakes occur when strain exceeds the strength of the rock and the rock fractures. The arrival of earthquakes waves is recorded by a seismograph. The amplitude of

More information

A GLOBAL MODEL FOR AFTERSHOCK BEHAVIOUR

A GLOBAL MODEL FOR AFTERSHOCK BEHAVIOUR A GLOBAL MODEL FOR AFTERSHOCK BEHAVIOUR Annemarie CHRISTOPHERSEN 1 And Euan G C SMITH 2 SUMMARY This paper considers the distribution of aftershocks in space, abundance, magnitude and time. Investigations

More information

MMA Memo No National Radio Astronomy Observatory. Seismicity and Seismic Hazard at MMA site, Antofagasta, Chile SERGIO E.

MMA Memo No National Radio Astronomy Observatory. Seismicity and Seismic Hazard at MMA site, Antofagasta, Chile SERGIO E. MMA Memo No. 250 National Radio Astronomy Observatory Seismicity and Seismic Hazard at MMA site, Antofagasta, Chile SERGIO E. BARRIENTOS Departamento de Geofisica Universidad de Chile June, 1996 Seismicity

More information

Probabilistic Earthquake Risk Assessment of Newcastle and Lake Macquarie Part 1 Seismic Hazard.

Probabilistic Earthquake Risk Assessment of Newcastle and Lake Macquarie Part 1 Seismic Hazard. Probabilistic Earthquake Risk Assessment of Newcastle and Lake Macquarie Part 1 Seismic Hazard. T. Dhu, D. Robinson, C. Sinadinovski, T. Jones, A. Jones & J. Schneider Geoscience Australia, Canberra, Australia.

More information

(Seismological Research Letters, July/August 2005, Vol.76 (4): )

(Seismological Research Letters, July/August 2005, Vol.76 (4): ) (Seismological Research Letters, July/August 2005, Vol.76 (4):466-471) Comment on How Can Seismic Hazard around the New Madrid Seismic Zone Be Similar to that in California? by Arthur Frankel Zhenming

More information

Spatial distribution of ground shaking

Spatial distribution of ground shaking Spatial distribution of ground shaking D.J. Dowrick & D.A. Rhoades Institute of Geological & Nuclear Sciences, Lower Hutt. 2005 NZSEE Conference ABSTRACT: In empirical models of attenuation of strong motion,

More information

The Dynamic Earth Section 1. Chapter 3 The Dynamic Earth Section 1: The Geosphere DAY 1

The Dynamic Earth Section 1. Chapter 3 The Dynamic Earth Section 1: The Geosphere DAY 1 Chapter 3 The Dynamic Earth Section 1: The Geosphere DAY 1 The Earth as a System The Earth is an integrated system that consists of rock, air, water, and living things that all interact with each other.

More information

THE EFFECT OF DIRECTIVITY ON THE STRESS PARAMETER DETERMINED FROM GROUND MOTION OBSERVATIONS

THE EFFECT OF DIRECTIVITY ON THE STRESS PARAMETER DETERMINED FROM GROUND MOTION OBSERVATIONS Bulletin of the Seismological Society of America, Vol. 79, No. 6, pp. 1984-1988, December 1989 THE EFFECT OF DIRECTIVITY ON THE STRESS PARAMETER DETERMINED FROM GROUND MOTION OBSERVATIONS BY DAVID M. BOORE

More information

Development of U. S. National Seismic Hazard Maps and Implementation in the International Building Code

Development of U. S. National Seismic Hazard Maps and Implementation in the International Building Code Development of U. S. National Seismic Hazard Maps and Implementation in the International Building Code Mark D. Petersen (U.S. Geological Survey) http://earthquake.usgs.gov/hazmaps/ Seismic hazard analysis

More information

Lecture Outline Wednesday-Monday April 18 23, 2018

Lecture Outline Wednesday-Monday April 18 23, 2018 Lecture Outline Wednesday-Monday April 18 23, 2018 Questions? Lecture Final Exam Lecture Section 1 Friday May 4, 8:00-10:00am Lecture Section 2 Friday May 4, 3:10-5:10 pm Final Exam is 70% new material

More information

GLOBAL SOURCE PARAMETERS OF FINITE FAULT MODEL FOR STRONG GROUND MOTION SIMULATIONS OR PREDICTIONS

GLOBAL SOURCE PARAMETERS OF FINITE FAULT MODEL FOR STRONG GROUND MOTION SIMULATIONS OR PREDICTIONS 13 th orld Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2743 GLOBAL SOURCE PARAMETERS OF FINITE FAULT MODEL FOR STRONG GROUND MOTION SIMULATIONS OR PREDICTIONS

More information

Challenges and Strategies for Monitoring Induced Seismic Activity

Challenges and Strategies for Monitoring Induced Seismic Activity Challenges and Strategies for Monitoring Induced Seismic Activity Designing and operating induced seismic monitoring networks to meet regulations Dario Baturan Geophysical Society of Tulsa 2015 Introduction

More information

Documentation for the 2002 Update of the National Seismic Hazard Maps

Documentation for the 2002 Update of the National Seismic Hazard Maps 1 Documentation for the 2002 Update of the National Seismic Hazard Maps by Arthur D. Frankel 1, Mark D. Petersen 1, Charles S. Mueller 1, Kathleen M. Haller 1, Russell L. Wheeler 1, E.V. Leyendecker 1,

More information

Modelling Strong Ground Motions for Subduction Events in the Wellington Region, New Zealand

Modelling Strong Ground Motions for Subduction Events in the Wellington Region, New Zealand Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society 14-16 April, 2011, Auckland, New Zealand Modelling Strong Ground Motions for Subduction Events

More information

Simulated and Observed Scaling in Earthquakes Kasey Schultz Physics 219B Final Project December 6, 2013

Simulated and Observed Scaling in Earthquakes Kasey Schultz Physics 219B Final Project December 6, 2013 Simulated and Observed Scaling in Earthquakes Kasey Schultz Physics 219B Final Project December 6, 2013 Abstract Earthquakes do not fit into the class of models we discussed in Physics 219B. Earthquakes

More information