Fishery Bay, D.Shefi 12 Feb. 2006

Size: px
Start display at page:

Download "Fishery Bay, D.Shefi 12 Feb. 2006"

Transcription

1 Fishery Bay, D.Shefi 12 Feb Flinders University Maritime Archaeology Field School Arch 8103 Mount Dutton Bay, Eyre Peninsula, South Australia 1-15 February 2006 Dianna Zwart

2 Table of contents 1 Introduction History Site Location Site description Equipment Methodology Downloading Magnetometer data Constraints Results Conclusion References

3 1 Introduction During the Maritime archaeology Field School every one had to do a personal project. My first idea was to do an underwater magnetometer survey, but the equipment was not working properly, so decided to do a land survey. It is basically the same and I wanted to learn how to use a magnetometer. This project was done at Fishery Bay. The rest of my team assisted me with my project. 2 History Fishery bay was used as a whaling station. They would drag the whale onto the rocks and cook the blubber of the whale into big pots to retrieve the oil. The actual whaling site with the try works was excavated in 2001 and parts of the try works and barrel hoops were found. About 300 meter further is a site where the whalers probably lived. Whaling was as seasonal activity and they only used this site for a short time. 3 Site Location The Sleaford bay Whaling station is in Fishery Bay. Fishery bay is located in Sleaford Bay. It is approximately 30km from Port Lincoln on the Eyre Peninsula (see Fig. 1). Position using the Australian map grid WGS 84 Position: Easting and Northing Fig. 1 Fishery Bay location on a map 3

4 4 Site description The site is situated close to the beach. The actual survey area was situated past the dunes in a sort of valley. It was surrounded by two clifs and the dunes (see fig. 2). The area was covered by bushes and the actual house sites were not visible anymore. Taking a closer look under the bushes the stones of the building could still be seen there. Fig. 2 Fishery Bay mud map and survey pattern 4

5 5 Equipment GPS Garmin Magnetometer Geometrix G-856 Tapemeasures Camera Nikon D70s Digital Portable radio 6 Methodology The first thing to do when conducting a mag survey is setting the parameters of the area to survey. In this case there were already three natural boundaries that could be used. Dunes on the south side, cliff on the north side and a cliff on the eastside. The western parameter was set parallel to the cliff and from the dunes a line to a distinctive stone on the other cliff. Normally you would take a grid spacing of 1m, but for this a spacing of 5m. was used. The reason for this was that the terrain was really rough and the GPS usually has an accuracy of 5m. This way you still have enough data for this area. The starting point was next to the dunes in the SW corner of the area. The first line to walk went parallel with the dunes to the East cliff. All the lines would run parallel to the dunes. After the first line would move over 5 meters to start with the next line. To maintain the 5 meter spacing between the lines a person would stand on the East cliff and another one at the opposite side. They had a tape measure to measure out the 5 meters. In Fig. 2 a survey pattern can be found. Fig. 3 Magnetometer track with person as marker on the cliff, D.Shefi, 12 Feb

6 Before starting with the survey the magnetometer had to be set. The first thing to do is to tune the magnetometer to the background magnetic intensity. The value for South Australia is 6000nT. Next step is to set the time and date. The time changes if you don t use the magnetometer for a while. You have to synchronize the time of the magnetometer and the GPS. The GPS retrieves the time from the satellite, so that is the correct time. During the survey you want to acquire the data automatically, so the next step is to set the GPS and Magnetometer. For this survey an interval of 5 seconds is enough. The GPS makes a track on the screen and takes a waypoint every 5 seconds. You can follow this track on the screen of the GPS. All settings are correct, so the survey can start. The magnetometer and the GPS are set on automatically so you don t really have to do anything during the survey. The few things that are important are: the sensor should always point north, the tracks should be as straight as possible and check if the magnetometer and the GPS are collecting data. Fig. 4 Pointing the sensor north, D. Shefi, 12 Feb Downloading Magnetometer data The data can be downloaded onto the computer by using the MagMap2000 software. The GPS and Magnetometer data have to be combined and synchronized. In this report not details are give how to do this. To create a grid map out of the data the Magpick survey is used. Both programs can be downloaded for free from the Geometrix website ( 6

7 8 Constraints For this survey the biggest constraint were the bushes. Most of the times it was possible to go trough the bushes, but sometimes not. This resulted in not really straight lines. Near the eastern cliff there was a pretty big slope. Sometimes it was hard to keep the sensor pointing north during the climbing of this slope. It was also hard to see the person at the other side of the line. Using another person to stand in the middle of the line as guidance solved this. Another difficulty is the interpretation of the data. As an archaeologist you are not really trained in interpreting the data. To have a really good interpretation of the data you need a geophysicist to do this. 9 Results Figure 4 shows the grid map of the GPS and Magnetometer data from the survey. The red lines show the pattern walked with the GPS. The different colours represent the magnetometer intensity. In this map blue is the lowest intensity and green the highest. See also the scales bar on the map. When there is a big difference in intensity this means there is an anomaly there. In this map there are two spots of interest these are marked in the map with green circles. 7

8 Fig.5 Un-interpreted grid map Fig.5 Interpreted grid map with four anomalies

9 10 Conclusion In figure 5 the interpreted map can be seen that there are four anomalies. With a magnetometer survey it is impossible to say what they are, so the anomalies have to be further investigated. Position of the anomalies: Nr Easting Northing In the part where the remains of the houses are no anomalies were found. This indicates that probably only the stone structures are left and that the Whalers took all the others items back home. It was not possible to put the GPS track on the map, because the software for that is not available at the moment of writing the report. The parts on the map were there are no data labels is not surveyed. This was a really good learning experience, although especially the interpretation of the data is really hard, so this definitely needs some more practice. 9

10 11 References Moffat, I. (2006). Introduction to archaeological Geophysics. University of Adelaide. Paterson A. (2004). Understanding the Sleaford Bay tryworks: an interpretive approach to the industrial archaeology of shore based whaling. Maritime archaeology monograph and report series no.3. Flinders University. 10

MAGNETOMETER SURVEY REPORT CLIFTON SPRINGS BOTTLE DUMP: FEBRUARY 2008

MAGNETOMETER SURVEY REPORT CLIFTON SPRINGS BOTTLE DUMP: FEBRUARY 2008 MAGNETOMETER SURVEY REPORT CLIFTON SPRINGS BOTTLE DUMP: FEBRUARY 2008 MATTHEW J. HARDER ARCH 3304: MARITIME ARCHAEOLOGY FIELD SCHOOL TABLE OF CONTENTS: Section Page Introduction 2 Site Location 2-3 Site

More information

Report on Geophysical Survey Na Vrsku, Sahy, Slovakia Coordinates: 48⁰,4,45 N 18⁰,56,23 E. April 2018

Report on Geophysical Survey Na Vrsku, Sahy, Slovakia Coordinates: 48⁰,4,45 N 18⁰,56,23 E. April 2018 Report on Geophysical Survey Na Vrsku, Sahy, Slovakia Coordinates: 48⁰,4,45 N 18⁰,56,23 E April 2018 Mark Graham BA(Hons), BSc, MA Grampus Heritage and Training Ltd, Ashgill, Threapland, Wigton, Cumbria,

More information

Assignment #0 Using Stellarium

Assignment #0 Using Stellarium Name: Class: Date: Assignment #0 Using Stellarium The purpose of this exercise is to familiarize yourself with the Stellarium program and its many capabilities and features. Stellarium is a visually beautiful

More information

THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY

THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY Background Remember graphs are not just an evil thing your teacher makes you create, they are a means of communication. Graphs are a way of communicating

More information

EROSIONAL FEATURES. reflect

EROSIONAL FEATURES. reflect reflect Have you ever looked at the land around you and wondered what processes shaped what you see? Perhaps you see mountains, valleys, rivers, or canyons. Do you know how long these geologic features

More information

1. In Activity 1-1, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 2-1 below:

1. In Activity 1-1, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 2-1 below: PRE-LAB PREPARATION SHEET FOR LAB 1: INTRODUCTION TO MOTION (Due at the beginning of Lab 1) Directions: Read over Lab 1 and then answer the following questions about the procedures. 1. In Activity 1-1,

More information

Erosional Features. What processes shaped this landscape?

Erosional Features. What processes shaped this landscape? Have you ever looked at the land around you and wondered what processes shaped what you see? Perhaps you see mountains, valleys, rivers, or canyons. Do you know how long these geologic features have been

More information

LAB 2 - ONE DIMENSIONAL MOTION

LAB 2 - ONE DIMENSIONAL MOTION Name Date Partners L02-1 LAB 2 - ONE DIMENSIONAL MOTION OBJECTIVES Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise To learn how to use a motion detector and gain more familiarity

More information

BUSH NAV BUSH NAV DAY Navigation for Bush Navigation Day. November. WhitehorseD AY. Section 1 Registration, Maps & Checkpoints

BUSH NAV BUSH NAV DAY Navigation for Bush Navigation Day. November. WhitehorseD AY. Section 1 Registration, Maps & Checkpoints BUSH DAY Navigation for Bush Navigation Day Robert Kirwan, Nunawading SES W NW N NE E If you have little or no bush navigation experience then you will have been teamed up with members that have that experience

More information

In order to be adequately prepared for a test on this topic you should be able to:-

In order to be adequately prepared for a test on this topic you should be able to:- Topic 2: MAPPING In order to be adequately prepared for a test on this topic you should be able to:- 1. Find and also provide both FOUR and SIX figure Area and Grid References 2. Calculate distances both

More information

Relative and Absolute Directions

Relative and Absolute Directions Relative and Absolute Directions Purpose Learning about latitude and longitude Developing math skills Overview Students begin by asking the simple question: Where Am I? Then they learn about the magnetic

More information

Geophysical Surveys at Moncrieffe Hill Fort, Perthshire

Geophysical Surveys at Moncrieffe Hill Fort, Perthshire Geophysical Surveys at Moncrieffe Hill Fort, Perthshire P.Morris Site Type FORT Canmore ID 28058 Site Number NO11NW 7 NGR NO 1313 1988 Council PERTH AND KINROSS Parish DUNBARNEY Geophysical Surveys at

More information

GPS Mapping. Teacher Instructions. Overview: Objectives: Materials: Answers to Student Worksheets:

GPS Mapping. Teacher Instructions. Overview: Objectives: Materials: Answers to Student Worksheets: Overview: Scientists use Global Positioning System (GPS) receivers to map lava flows. GPS data are compiled by computer Geographic Information System (GIS) software into a digital map. Digital maps can

More information

Create your own map for tidepooling, beach field trips, boating, camping, kayaking, fishing, and exploring the beaches in Southcentral Alaska.

Create your own map for tidepooling, beach field trips, boating, camping, kayaking, fishing, and exploring the beaches in Southcentral Alaska. Create your own map for tidepooling, beach field trips, boating, camping, kayaking, fishing, and exploring the beaches in Southcentral Alaska. Here s an opportunity to download and customize your own free

More information

Available online Journal of Scientific and Engineering Research, 2016, 3(2):1-7. Research Article

Available online   Journal of Scientific and Engineering Research, 2016, 3(2):1-7. Research Article Available online www.jsaer.com, 2016, 3(2):1-7 Research Article ISSN: 2394-2630 CODEN(USA): JSERBR Assessment of the Reliability of Magnetic Method to Delineate Geologic Features in a Basement Complex:

More information

Land Navigation Table of Contents

Land Navigation Table of Contents Land Navigation Table of Contents Preparatory Notes to Instructor... 1 Session Notes... 5 Learning Activity: Grid Reference Four Figure... 7 Learning Activity: Grid Reference Six Figure... 8 Learning Activity:

More information

Navigating for Scouts A Self-teaching Guide to Navigation with Map and Compass

Navigating for Scouts A Self-teaching Guide to Navigation with Map and Compass Don Burgess, November 2003 Materials topographic maps Navigating for Scouts A Self-teaching Guide to Navigation with Map and Compass metric ruler orienteering compass 30 M/5 Hamilton-Burlington 41 I/13

More information

Surveying Prof. Bharat Lohani Department of Civil Engineering Indian Institute of Technology, Kanpur. Module - 11 Lecture No. # 01 Project surveys

Surveying Prof. Bharat Lohani Department of Civil Engineering Indian Institute of Technology, Kanpur. Module - 11 Lecture No. # 01 Project surveys Surveying Prof. Bharat Lohani Department of Civil Engineering Indian Institute of Technology, Kanpur Module - 11 Lecture No. # 01 Project surveys (Refer Slide Time: 00:24) Welcome to this video lecture,

More information

Magnetics: Fundamentals and Parameter Extraction

Magnetics: Fundamentals and Parameter Extraction : Fundamentals and Parameter Extraction Stephen Billings Magnetic module outline fundamentals Sensor systems Data examples and demo Parameter extraction Concepts Real-world examples Classification Using

More information

Experiment 1: The Same or Not The Same?

Experiment 1: The Same or Not The Same? Experiment 1: The Same or Not The Same? Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to collect data and calculate statistics (mean and standard deviation). 2. Explain

More information

56H. This system allows definition of points on the Earth s surface to within 100 meters. Page 20. Navigation Systems Basics of Maps

56H. This system allows definition of points on the Earth s surface to within 100 meters. Page 20. Navigation Systems Basics of Maps Grid References Many maps are provided with the standard grid overlaying them. This provides a simple and accurate method for finding features on the map. It is a network of intersecting parallel lines

More information

Carbon Cycle Sample Site Set- up - Student Field Guide. Sample Site Corner Team

Carbon Cycle Sample Site Set- up - Student Field Guide. Sample Site Corner Team 1) Start at the center of the sample site. Sample Site Corner Team 2) Select one person to stand at center with the compass. Turn the housing to an azimuth of one of the sample site corners (e.g. 315).

More information

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION Name: Partner s Name: EXPERIMENT 500-2 MOTION PLOTS & FREE FALL ACCELERATION APPARATUS Track and cart, pole and crossbar, large ball, motion detector, LabPro interface. Software: Logger Pro 3.4 INTRODUCTION

More information

Butte County Fire Department

Butte County Fire Department Butte County Fire Department Basic Land Navigation Verification Sheet I verify that Print Supervisor s name has completed the Print Employee s name Basic Land Navigation self study guide on. Date Attached

More information

Conservation of Momentum

Conservation of Momentum Learning Goals Conservation of Momentum After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Use the equations for 2-dimensional

More information

Map reading made easy

Map reading made easy Map reading made easy 1. What is a map? A map is simply a drawing or picture (in 2-D) of a landscape or area of a country (in 3-D). It could be anything from a sketch map for a visitor to find your school

More information

Experiment P-9 An Inclined Plane

Experiment P-9 An Inclined Plane 1 Experiment P-9 An Inclined Plane Objectives To understand the principles of forces on an inclined plane. To measure the parallel component of the gravitational force and compare it to the calculated

More information

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test AP Physics 1 Unit 2: 2 Dimensional Kinematics Name: Date In Class Homework to completed that evening (before coming to next class period) 9/6 Tue (B) 9/7 Wed (C) 1D Kinematics Test Unit 2 Video 1: Vectors

More information

OBSERVING PROJECT PARTNER ELECTION

OBSERVING PROJECT PARTNER ELECTION Name(s) Section Day/Time OBSERVING PROJECT PARTNER ELECTION Fill in either Part 1 or Part 2. Part I. SOLO OBSERVER I will do the observing project by myself. I will not copy someone else's paper or show

More information

Ground Penetrating Radar Survey Report: Follow-up Ground Truth Study

Ground Penetrating Radar Survey Report: Follow-up Ground Truth Study Ground Penetrating Radar Survey Report: Follow-up Ground Truth Study 2005 Tell es-safi/gath Archaeological Project Figure 1: Tell es-safi GPR ground-truth study. Data Acquired August 4, 2005 Report compiled

More information

Airborne Geophysical Survey Report River Jordan Property

Airborne Geophysical Survey Report River Jordan Property Airborne Geophysical Survey Report River Jordan Property Prepared for: Inc. September 3, 2009 Precision GeoSurveys Inc. 520-355 Burrard Street, Vancouver, Canada V6C 2G8 www.precisiongeosurveys.com Table

More information

Earth and Space: Topographic Maps Satellite Images

Earth and Space: Topographic Maps Satellite Images Earth and Space: Topographic Maps Satellite Images Earth and Space: Formative Assessment Activities for Earth and Space Topographic Maps Satellite Images Teacher Pages Purpose The purpose of this station

More information

Unexploded Ordnance on Auckland s Doorstep. WasteMINZ November 2017

Unexploded Ordnance on Auckland s Doorstep. WasteMINZ November 2017 Unexploded Ordnance on Auckland s Doorstep WasteMINZ November 2017 Scope Site Background. Site Assessment. Geophysical Survey. Investigation. Findings. Challenges. Key Points. Weiti Bay Site Access Road

More information

Archaeology and Geophysics at the Chillicothe Site, Ohio, USA

Archaeology and Geophysics at the Chillicothe Site, Ohio, USA info@gemsys.on.ca Archaeology and Geophysics at the Chillicothe Site, Ohio, USA In this short paper, we summarize the recent procedings of the National Parks Service Archaeology Workshop in Chillicothe,

More information

Two Dimensional Kinematics Challenge Problems

Two Dimensional Kinematics Challenge Problems Two Dimensional Kinematics Challenge Problems Problem 1: Suppose a MIT student wants to row across the Charles River. Suppose the water is moving downstream at a constant rate of 1.0 m/s. A second boat

More information

GRID REFERENCES. Grid references are always given as a 6-digit number, the first three digits represent the easting and the second three the northing.

GRID REFERENCES. Grid references are always given as a 6-digit number, the first three digits represent the easting and the second three the northing. ESSENTIAL MATHEMATICS 4 WEEK 14 NOTES TERM 4 GRID REFERENCES The latitude/longitude system can become unwieldy when we are working in a small area particularly on land. A system was developed to cope with

More information

MAP. Contours: Walk before you run! Four figure grid reference: e.g. Dot is at Six figure grid reference: e.g.

MAP. Contours: Walk before you run! Four figure grid reference: e.g. Dot is at Six figure grid reference: e.g. MAP Page 2 Walk before you run! Four figure grid reference: e.g. Dot is at 4665 Six figure grid reference: e.g. Dot is at 463654 Compass points for direction Contours: Measure from sea level in meters

More information

Digital Land Surveying And Mapping(DLS&M) Dr. Jayanta Kumar Ghosh Department of Civil Engineering Indian Institute of Technology, Roorkee

Digital Land Surveying And Mapping(DLS&M) Dr. Jayanta Kumar Ghosh Department of Civil Engineering Indian Institute of Technology, Roorkee Digital Land Surveying And Mapping(DLS&M) Dr. Jayanta Kumar Ghosh Department of Civil Engineering Indian Institute of Technology, Roorkee Lecture - 17 Total Station Introduction Welcome students, this

More information

EOSC 110 Reading Week Activity, February Visible Geology: Building structural geology skills by exploring 3D models online

EOSC 110 Reading Week Activity, February Visible Geology: Building structural geology skills by exploring 3D models online EOSC 110 Reading Week Activity, February 2015. Visible Geology: Building structural geology skills by exploring 3D models online Geological maps show where rocks of different ages occur on the Earth s

More information

Map reading made easy

Map reading made easy Map reading made easy 1. What is a map? A map is simply a drawing or picture (in 2-D) of a landscape or area of a country (in 3-D). It could be anything from a sketch map for a visitor to find your school

More information

Evaluation/Monitoring Report No. 259

Evaluation/Monitoring Report No. 259 SITE 100M EAST OF 16 LEARMORE ROAD CASTLEGORE CASTLEDERG COUNTY TYRONE LICENCE NO.: AE/13/36E NAOMI CARVER 1 Site Specific Information Site Name: 100m east of 16 Learmore Road, Castlederg, Co. Tyrone Townland:

More information

Survey of the Bwlch of Craig Bron-banog

Survey of the Bwlch of Craig Bron-banog Survey of the Bwlch of Craig Bron-banog 31 October 2014 The Team: John Barnard, Graham Jackson, and Myrddyn Phillips 1) Introduction Craig Bron-banog (Hill Number 3358, Section 30C, 1:50000 OS Map 116,

More information

Map reading made easy

Map reading made easy Map reading made easy Maps can be great fun and they can lead you to all sorts of discoveries. They can help you get to know an area really well, because they pinpoint interesting places that are often

More information

Topographic Maps Lab

Topographic Maps Lab Geoscience 190 Environmental Geoscience Topographic Maps Lab To represent mountain belts and landforms, geologists work extensively with maps. A very important type of map used for scientific, engineering,

More information

Chapter 3 Models of the Earth. 3.1 Finding Locations on the Earth. 3.1 Objectives

Chapter 3 Models of the Earth. 3.1 Finding Locations on the Earth. 3.1 Objectives Chapter 3 Models of the Earth 3.1 Finding Locations on the Earth 3.1 Objectives Explain latitude and longitude. How can latitude and longitude be used to find locations on Earth? How can a magnetic compass

More information

Mapping Earth. How are Earth s surface features measured and modeled?

Mapping Earth. How are Earth s surface features measured and modeled? Name Mapping Earth How are Earth s surface features measured and modeled? Before You Read Before you read the chapter, think about what you know about maps Record your thoughts in the first column Pair

More information

The Ocean s Tides. Standards. Ocean Literacy. 46 Rocky Shore Lesson 5. Focus Question. Overview. Objectives. Materials Needed. Teacher Preparation

The Ocean s Tides. Standards. Ocean Literacy. 46 Rocky Shore Lesson 5. Focus Question. Overview. Objectives. Materials Needed. Teacher Preparation The Ocean s Tides Topic Tides, Change Duration One session Vocabulary gravitational force neap tides orbit rotation spring tides tides Standards Practices Planning and Carrying Out Investigations Core

More information

PHY 111L Activity 2 Introduction to Kinematics

PHY 111L Activity 2 Introduction to Kinematics PHY 111L Activity 2 Introduction to Kinematics Name: Section: ID #: Date: Lab Partners: TA initials: Objectives 1. Introduce the relationship between position, velocity, and acceleration 2. Investigate

More information

Blowin in the Wind. Making a Ping-Pong Anemometer

Blowin in the Wind. Making a Ping-Pong Anemometer Temperature s Rising! Materials: Rulers (one per student) String (8-inch length, dark colors preferred) Ping-pong ball (one per student) One or two-liter bottles (2 per student) Tornado tube coupler (1

More information

Remote Sensing/Reflectance Spectrometer

Remote Sensing/Reflectance Spectrometer Remote Sensing/Reflectance Spectrometer REMOTE SENSING / REFLECTANCE SPECTROMETER TEACHER NOTES The remote sensing experiment is designed to take a full hour to complete, and can be undertaken using just

More information

GPS Measurement Protocol

GPS Measurement Protocol GPS Measurement Protocol Purpose To determine the latitude, longitude, and elevation of your school and of all your GLOBE sites Overview The GPS receiver will be used to determine the latitude, longitude

More information

Saskatchewan s Mineral Resources Lesson: Exploring for Minerals in Saskatchewan: Geophysics Using Magnetics to Find a Mine

Saskatchewan s Mineral Resources Lesson: Exploring for Minerals in Saskatchewan: Geophysics Using Magnetics to Find a Mine Saskatchewan s Mineral Resources Lesson: Exploring for Minerals in Saskatchewan: Geophysics Using Magnetics to Find a Mine Overview In this activity, students use the magnetic properties of iron nails

More information

Topic 6A: Geographical Investigations fieldwork Investigating coastal landscapes

Topic 6A: Geographical Investigations fieldwork Investigating coastal landscapes Topic 6A: Geographical Investigations fieldwork Investigating coastal landscapes Enquiry question When completing a geographical study, it is important to have an aim. We can do this by asking a task question,

More information

What is a map? Understanding your map needs

What is a map? Understanding your map needs What is a map? A map is simply a drawing or picture of a landscape or location. Maps usually show the landscape as it would be seen from above, looking directly down. As well as showing the landscape of

More information

THE$DISH$ A$Working$Model$of$a$Radio$Telescope$

THE$DISH$ A$Working$Model$of$a$Radio$Telescope$ THE$DISH$ A$Working$Model$of$a$Radio$Telescope$ Calum$Kennedy$ Class$3W$Seaforth$PS$ Radio Telescope Project By Calum Kennedy 3W SPS Project Outline: The aim of this project is to build a radio telescope

More information

The 7th Annual SARGIS Workshop and Meeting. Welcome to SARGIS7!

The 7th Annual SARGIS Workshop and Meeting. Welcome to SARGIS7! The 7th Annual SARGIS Workshop and Meeting Welcome to SARGIS7! The National Alliance for Public Safety GIS Foundation is a 501 (C) (3) not-forprofit organization» OUR VISION A Nation of emergency responders

More information

Topographic Maps. More than a Road Map

Topographic Maps. More than a Road Map Topographic Maps More than a Road Map What is a Topographic Map? Scaled representation of features on the surface of the Earth such as roads, rivers, and plains Provides information about land elevations

More information

Monthly Magnetic Bulletin

Monthly Magnetic Bulletin BRITISH GEOLOGICAL SURVEY Fort McMurray Observatory Monthly Magnetic Bulletin February 2016 16/02/FM Fort McMurray FORT McMURRAY OBSERVATORY MAGNETIC DATA 1. Introduction The British Geological Survey

More information

Momentum in Collisions

Momentum in Collisions Activity 14 PS-2826 Momentum in Collisions Mechanics: momentum, impulse, conservation of momentum GLX setup file: momentum Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002 2 PASPORT

More information

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring 17 Investigating a Mass Oscillating on a Spring A spring that is hanging vertically from a support with no mass at the end of the spring has a length L (called its rest length). When a mass is added to

More information

Introduction to Google Earth

Introduction to Google Earth Introduction to Google Earth Name Goals 1. To become proficient at using the basic features of Google Earth. 2. To recognize differences in coastal features between the east and west coast of North America.

More information

Monthly Magnetic Bulletin

Monthly Magnetic Bulletin BRITISH GEOLOGICAL SURVEY Fort McMurray Observatory Monthly Magnetic Bulletin March 2017 17/03/FM Fort McMurray FORT McMURRAY OBSERVATORY MAGNETIC DATA 1. Introduction The British Geological Survey (BGS)

More information

Map and Compass Skills

Map and Compass Skills Map and Compass Skills Grade levels: 5-12 In a Nutshell Given a map and compass, students will be able to find a location on the map, chart a course to that location with the compass, and find that location

More information

GRAVITY AND MAGNETIC SURVEY NECHAKO BASIN STUDY ACQUISITION AND PROCESSING PHASE

GRAVITY AND MAGNETIC SURVEY NECHAKO BASIN STUDY ACQUISITION AND PROCESSING PHASE GRAVITY AND MAGNETIC SURVEY NECHAKO BASIN STUDY ACQUISITION AND PROCESSING PHASE Report prepared for the B.C. Ministry of Energy and Mines Resource Development Division New Ventures Branch by Bemex Consulting

More information

Navigation. A question. Take a map and remove the actual map and what are you left with?

Navigation. A question. Take a map and remove the actual map and what are you left with? Map reading is part art and part skill. The art comes from practice and the skill from following a few simple rules. Here BGMA will take a step-by-step look at how to become a good (dare we say, skilled)

More information

Map reading made easy

Map reading made easy Map reading made easy 1 1. What is a map? A map is simply a drawing or picture (in 2-D) of a landscape or area of a country (in 3-D). It could be anything from a sketch map for a visitor to find your school

More information

Geophysical Survey of Wisconsin Burial Site BRO-0033 Wixom Cemetery, Rock County, Wisconsin

Geophysical Survey of Wisconsin Burial Site BRO-0033 Wixom Cemetery, Rock County, Wisconsin Lawrence University Lux Archaeological Reports Anthropology Department 6-2015 Geophysical Survey of Wisconsin Burial Site BRO-0033 Wixom Cemetery, Rock County, Wisconsin Peter N. Peregrine Lawrence University

More information

Geophysical Survey Report

Geophysical Survey Report Report Lost Mansion of Nydfwch, Penllergare, Swansea for January 2008 J2449 John Cook BSc. (Hons) Document Title: Client: Stratascan Job No: Techniques: Report Lost Mansion of Nydfwch, Penllergare, Swansea

More information

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2.

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2. Trigonometry Basics Basic Terms θ (theta) variable for any angle. Hypotenuse longest side of a triangle. Opposite side opposite the angle (θ). Adjacent side next to the angle (θ). Which side is opposite?

More information

PHYSICS Kinematics in One Dimension

PHYSICS Kinematics in One Dimension PHYSICS Kinematics in One Dimension August 13, 2012 www.njctl.org 1 Motion in One Dimension Return to Table of Contents 2 Distance We all know what the distance between two objects is... So what is it?

More information

CREATING A REPORT ON FIRE (April 2011)

CREATING A REPORT ON FIRE (April 2011) CREATING A REPORT ON FIRE (April 2011) The Fire Report feature on the NAFI website lets you create simple summaries of fire activity for areas of land in far northern Australia (north of 20 degrees where

More information

Volume vs. Diameter. Teacher Lab Discussion. Overview. Picture, Data Table, and Graph

Volume vs. Diameter. Teacher Lab Discussion. Overview. Picture, Data Table, and Graph 5 6 7 Middle olume Length/olume vs. Diameter, Investigation page 1 of olume vs. Diameter Teacher Lab Discussion Overview Figure 1 In this experiment we investigate the relationship between the diameter

More information

A Survey of St Michael and All Angels Churchyard Hamstall Ridware

A Survey of St Michael and All Angels Churchyard Hamstall Ridware Project No 6 A Survey of St Michael and All Angels Churchyard by M R Holland Annie Saunders MA March 2003 Table of Contents Introduction Methods Acknowledgements Appendix A Geophysics 3 3 5 6 Table of

More information

Tenmile Lakes Delta Building Study

Tenmile Lakes Delta Building Study Tenmile Lakes Delta Building Study Since the late 1940 s, Tenmile Lakes has seen a sharp increase in sediment accumulation at the mouths of the tributaries that feed the lake. To monitor this sediment

More information

KING EDWARD POINT OBSERVATORY MAGNETIC DATA

KING EDWARD POINT OBSERVATORY MAGNETIC DATA BRITISH GEOLOGICAL SURVEY King Edward d Point Observatory Monthly Magnetic Bulletin May 2018 18/05/KE King Edward Point (UK) Maps British Antarctic Survey KING EDWARD POINT OBSERVATORY MAGNETIC DATA 1.

More information

What have we learned from the Case Histories

What have we learned from the Case Histories What have we learned from the Case Histories Earth materials have a range of physical properties. Application of geophysics is carried out in a 7 Step process. Physical property of the target must be different

More information

KING EDWARD POINT OBSERVATORY MAGNETIC DATA

KING EDWARD POINT OBSERVATORY MAGNETIC DATA BRITISH GEOLOGICAL SURVEY King Edward d Point Observatory Monthly Magnetic Bulletin September 2018 18/09/KE King Edward Point (UK) Maps British Antarctic Survey KING EDWARD POINT OBSERVATORY MAGNETIC DATA

More information

Monthly Magnetic Bulletin

Monthly Magnetic Bulletin BRITISH GEOLOGICAL SURVEY Ascension Island Observatory Monthly Magnetic Bulletin March 2017 17/03/AS Crown copyright; Ordnance Survey ASCENSION ISLAND OBSERVATORY MAGNETIC DATA 1. Introduction Ascension

More information

Experiment 3. d s = 3-2 t ANALYSIS OF ONE DIMENSIONAL MOTION

Experiment 3. d s = 3-2 t ANALYSIS OF ONE DIMENSIONAL MOTION Experiment 3 ANALYSIS OF ONE DIMENSIONAL MOTION Objectives 1. To establish a mathematical relationship between the position and the velocity of an object in motion. 2. To define the velocity as the change

More information

COOMALIE RIDGES RADIOMETRIC SURVEY, RUM JUNGLE AREA,

COOMALIE RIDGES RADIOMETRIC SURVEY, RUM JUNGLE AREA, COMMONWEALTH OF AUSTRALIA DEPARTMENT OF NATIONAL DEVELOPMENT BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS RECORD No. 1966/51 500917 COOMALIE RIDGES RADIOMETRIC SURVEY, RUM JUNGLE AREA, NORTHERN

More information

Geophysical Investigation of a 19th Century Archeological Site, Boston College K. Corcoran, J. Hager, M. Carnevale

Geophysical Investigation of a 19th Century Archeological Site, Boston College K. Corcoran, J. Hager, M. Carnevale Geophysical Investigation of a 19th Century Archeological Site, Boston College K. Corcoran, J. Hager, M. Carnevale Hager GeoScience, Inc., Waltham, MA ------------------------------------------------------------------------

More information

Lab Topographic Maps. Name: Partner: Purpose. Background Information

Lab Topographic Maps. Name: Partner: Purpose. Background Information Lab Topographic Maps Name: Partner: Purpose The purpose of this lab is to familiarize you with graphic representations of the Earth s surface primarily maps. Simple line maps show the spatial relationship

More information

ORIENTEERING. The challenge is to use the map to decide the best route to complete the course in the quickest time. Orienteering Map. Compass.

ORIENTEERING. The challenge is to use the map to decide the best route to complete the course in the quickest time. Orienteering Map. Compass. ORIENTEERING Orienteering is similar to a cross-country race but you navigate using a map instead of following a set course. It is an outdoor sport where competitors navigate their own way, you can run,

More information

KING EDWARD POINT OBSERVATORY MAGNETIC DATA

KING EDWARD POINT OBSERVATORY MAGNETIC DATA BRITISH GEOLOGICAL SURVEY King Edward d Point Observatory Monthly Magnetic Bulletin October 2018 18/10/KE King Edward Point (UK) Maps British Antarctic Survey KING EDWARD POINT OBSERVATORY MAGNETIC DATA

More information

Motion II. Goals and Introduction

Motion II. Goals and Introduction Motion II Goals and Introduction As you have probably already seen in lecture or homework, and if you ve performed the experiment Motion I, it is important to develop a strong understanding of how to model

More information

The key difference between speed and velocity is the. object s motion, while velocity designates an object s speed plus the direction of its motion.

The key difference between speed and velocity is the. object s motion, while velocity designates an object s speed plus the direction of its motion. Article retrieved from Brittanica, Retrieved 6/27/2016 Velocity Velocity has a scientific meaning that is slightly different from that of speed. Speed is the rate of an object s motion, while velocity

More information

Notes and Summary pages:

Notes and Summary pages: Topographic Mapping 8.9C Interpret topographical maps and satellite views to identify land and erosional features and predict how these shapes may be reshaped by weathering ATL Skills: Communication taking

More information

Trail Life USA High Adventure Training Land Navigation Module. Dennis Conte

Trail Life USA High Adventure Training Land Navigation Module. Dennis Conte Trail Life USA High Adventure Training Land Navigation Module Dennis Conte Navigating With GPS and a MAP Let s Talk about your GPS Hand Held Tool. Is a GPS Hand Held the magic bullet? Can it solve all

More information

LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS

LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS This laboratory allows you to continue the study of accelerated motion in more realistic situations. The cars you used in Laboratory I moved in only

More information

CLT/HER/CHP/OG 1- page 29

CLT/HER/CHP/OG 1- page 29 CLT/HER/CHP/OG 1- page 29 MODEL INVENTORY SHEET FOR UNDERWATER CULTURAL HERITAGE COUNTRY REGION, PROVINCE COMPETENT AUTHORITY REGISTERED BY (name, position) Date Email / Tel nº SITE NAME (provide also

More information

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) 121 Textbook Reference: Knight, Chapter 13.1-3, 6. SYNOPSIS In

More information

PHY 221 Lab 7 Work and Energy

PHY 221 Lab 7 Work and Energy PHY 221 Lab 7 Work and Energy Name: Partners: Goals: Before coming to lab, please read this packet and do the prelab on page 13 of this handout. Note: originally, Lab 7 was momentum and collisions. The

More information

Report on the Geophysical survey undertaken at Kouphovouno between 28 th June and 2 nd July.

Report on the Geophysical survey undertaken at Kouphovouno between 28 th June and 2 nd July. Report on the Geophysical survey undertaken at Kouphovouno between 28 th June and 2 nd July. Introduction: A team comprising of two undergraduate students (Anna Moles & James Taylor) and two postgraduates

More information

THE AUSTRALIAN TEMPERATURE RECORD - THE BIG PICTURE. by Ken Stewart

THE AUSTRALIAN TEMPERATURE RECORD - THE BIG PICTURE. by Ken Stewart THE AUSTRALIAN TEMPERATURE RECORD - THE BIG PICTURE by Ken Stewart SPPI REPRINT SERIES August 20, 2010 THE AUSTRALIAN TEMPERATURE RECORD - THE BIG PICTURE by Ken Stewart July 27, 2010 This is part 8, essentially

More information

EOS 350 MIDTERM OCT 4, 2013 STUDENT NAME: TEAM #:

EOS 350 MIDTERM OCT 4, 2013 STUDENT NAME: TEAM #: EOS 350 MIDTERM OCT 4, 2013 STUDENT NAME: TEAM #: Some equations which may, or may not, be useful: Distance from sensor to a dipole z ~ x ½, Distance to line of dipoles z ~ 0.75x ½ B = μh, M = κh Seismic

More information

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time.

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time. Chapter: Chapter 2 Learning Objectives LO 2.1.0 Solve problems related to position, displacement, and average velocity to solve problems. LO 2.1.1 Identify that if all parts of an object move in the same

More information

Earthquakes. Written by: Lillie Hamstick

Earthquakes. Written by: Lillie Hamstick Earthquakes Written by: Lillie Hamstick Table of Contents Meeting an Earthquake. 1 Dangerous Destruction.. 2 Exciting Earthquakes 3 Yo, What Causes an Earthquake... 4 Where Are You Earthquake. 5 How to

More information

Early Exploration Plan Activity Information

Early Exploration Plan Activity Information Early Exploration Plan Activity Information Activities That Require an Early Exploration Plan: Line cutting that is a width of 1.5 metres or less; Geophysical surveys on the ground requiring the use of

More information

What are some properties of interactions involving electrified objects?

What are some properties of interactions involving electrified objects? UNIT SE Developing Ideas ACTIVITY 1: Exploring Static Electric Effects Purpose In the previous unit you explored some magnetic effects and then went on to develop a model that explains these effects in

More information

Introducing IMS. v) Select the Zoom to Full Extent tool. Did you return to the original view?

Introducing IMS. v) Select the Zoom to Full Extent tool. Did you return to the original view? Ocean/ENVIR 260, Winter 2006 Lab 1, Get to Know the Puget Sound Watershed Name Introducing IMS 1) Open your web browser and navigate to http://128.208.23.127/website/lab1. (This link can be found on the

More information