Announcements. Primary (1 ) Structure. Lecture 7 & 8: PROTEIN ARCHITECTURE IV: Tertiary and Quaternary Structure

Size: px
Start display at page:

Download "Announcements. Primary (1 ) Structure. Lecture 7 & 8: PROTEIN ARCHITECTURE IV: Tertiary and Quaternary Structure"

Transcription

1 Announcements TA Office Hours: Brian Eckenroth Monday 3-4 pm Thursday 11 am-12 pm Lecture 7 & 8: PROTEIN ARCHITECTURE IV: Tertiary and Quaternary Structure Margaret Daugherty Fall 2003 Homework II posted on website Primary (1 ) Structure Linear sequence of AAs linked by peptide bonds 1 M R L A F C V L L C A G S L G L C L A F P K E T V R W C T V 31 S S Q E A S K C S S F R H N M K K I L P V E G P H V S C V K 61 R T S Y L E C I R A I L A N E A D A V T I D G G L V F E A G 91 L A P Y N L K P V V A E F Y G S K D D P Q T H Y Y A V A V V Covalent interactions give rise to 1 o structure; Information for folding & function contained in amino acid sequence Structure arises from rotation about the Cα bond Peptide bond characteristics Defined bond lengths and angles Partial double bond character no rotation about C-N! Planar (CO & NH are parallel) Dipolar (δ - on O; δ + on N) Peptide bond consequences Rotation only about Cα ψ angle: rotation about Cα-C(O) bond φ angle: rotation about Cα-N(H) bond Not all ψφ angles are allowed Steric hinderance with R group Steric hinderance with backbone atoms Electrostatic repulsion between like charges (CO-CO or NH-NH) Ramachandran plots Reveal permitted regions of ψφ space Smaller amino acids can occupy more ψφ space Secondary structures assigned to allowed regions.

2 Secondary structures: local structures stabilized by hydrogen bonds How to tell a left- vs. right-handed a-helix Point your thumb up in the direction of the α-helix (N-->C). Look where the base of the helix spirals are. If they match the knuckles on your right hand it is a righthanded helix or residues/turn; rise = 1.5Å; pitch = 5.4Å left-handed α-helix right-handed α-helix If the helix spirals up in a counterclockwise direction, it is a right-handed helix. Secondary structures: local structures stabilized by hydrogen bonds Human Serum Albumin: Dimensions of a 585 residue polypeptide chain antiparallel β-sheet rise = 3.47 Å ideal hydrogen bonds parallel β-sheets rise = 3.25 Å non-ideal hydrogen bonds

3 Parallel vs. antiparallel β-sheets need different connectors Turns: provide tight compact means of changing the direction of the polypeptide chain usually α-helix Hydrogen bonding between CO of residue n & NH of residue n+3 Often have proline - forces chain to turn Often have glycine - good residue for a compact structure. Also a turn equivalent to a 3 10 helix (more compact than α-helix) Supersecondary structure Motif= small secondary structure elements; not stable folding units, however are often important parts of the functional sites of proteins Helix loop helix Domain= independently folding structural element; can be a protein in and of itself, oftentime are repeated in proteins Characteristic Compositions Does the AA sidechain (R) really matter in the formation of any of the secondary structures? Troponin-C

4 Important fact #1: Amino acids are not utilized equally by proteins Important fact #2: How to quickly calculate the MW of a protein Molecular weight is a summation of the masses of the individual AAs; average MW of an AA ~ 110 Daltons (rough estimate of MW = # AA * 110) Units (grams/mole) are expressed as daltons (Da) or kilo-daltons (kda). Tertiary Structure Tertiary structure describes how the secondary structure units associate within a single polypeptide chain to give a threedimensional structure flavodoxin Tertiary Structure: Basic Tenets - the truths 1). All information for folding is contained in the primary sequence. 2). Secondary structure formation is spontaneous - a consequence of the formation of hydrogen bonds. 3). No protein is stable as a single layer - hence secondary structural elements pack together in sheets. 4). Connections between structural elements are short - minimization of degrees of freedom - keeps structures compact. Consequences 1). Secondary structures are arranged in a few common patterns - i.e, resulting in protein families. 2). Proteins fold to form the most stable structure. Stability arises from: formation of large number of intramolecular hydrogen bonds Secondary structure formation reduction in hydrophobic surface area from solvent Association of secondary structure to form tertiary structure

5 Tertiary Structures Note that some parts of a protein structure are not regular (i.e., helicallike or sheet-like). These are often referred to as disordered or random coil regions. However a better nomenclature All betais (retinol natively binding random. protein) All alpha (human growth hormone) Alpha-beta barrel (triose isomerase) Fibrous proteins: Filamentous; play a major structural role in cells & tissues insoluble in H 2 O Tertiary Structures Globular proteins: compact structures; different folds for different functions Hydrophobes inside, hydrophiles outside Membrane Proteins: found associated with various membrane systems inside out insoluble in H 2 0 soluble in detergents Fibrous Proteins Share properties that give strength &/or flexibility to the structures in which they occur; Fundamental unit is a simple repeating element of secondary structure; Insoluble in water; large percentage of hydrophobic amino acids; Usually the hydrophobic surfaces are hidden in the elaborate supramolecular complexes; mechanically strong ; perform important structural functions Strength is enhanced by cross-links (disulfide bonds). Secondary Structures and Properties of Fibrous Proteins Structure α-helix, Cross-linked by disulfide bonds Characteristics Tough, insoluble protective structures of varying hardness and flexibility Examples of occurrence α Keratin of hair, feathers and nails β-conformation Soft, flexible filaments Silk fibroin Collagen triple helix High tensile strength, without stretch Collagen of tendons, bone matrix

6 FIBROUS PROTEINS: α-keratin What: Part of the intermediate filament proteins which have major structural roles in nuclei, cytoplasm and cell surfaces Where: Found in hair, fingernails, claws, horns, animal skin Composition: Long stretches of α-helices (> 300 residues) monomer: α-keratin type I or II coiled-coil: α-keratin type I + II; parallel protofilament: coiled-coil pair Coiled-Coils Interactions are stabilized by hydrophobic interactions between the α- helices; Heptad repeat ( a-b-c-d-e-f-g) n where a & d are nonpolar & lie in the center of the coiled coil; Evolved for strength; helical nature confers flexibility Coiled-coil is a super twist left-handed helix Distortion of helix to 3.5 residues/turn Hydrophobic faces interacting in a close interlocking pattern filament: 4 protofilaments α-keratin: A Human Hair Contact side chains (red balls) interlock

7 The Keratin Beauty Parlor Disulfides between molecules make the overall structure more rigid; The numbers & positions of these disulfides determine the amount of curling; Getting a permanent involves reducing these disulfides, reorganizing the hair & allowing the disulfides to reform; Blow drying just rearranges H-bonding. Why is rhino horn so strong? Strength of Keratin Results from the number of disulfides! In rhino horn, 18% of the AAs are Cys and involved in disulfides! Stephen Everse 2002 Stephen Everse 2002 FIBROUS PROTEINS: β-keratin COLLAGEN What: Part of the fibroin proteins Where: silk, bird feathers Composition: stacked anti-parallel β-sheets; strength Sequence: Alternating Gly-Ala/Ser Gly face interacts with another gly face Ala/Ser faces interact with one another What: Greek for glue; defined as that constituent of connective tissue which yields gelatin on boiling Where: Principal component of mammalian tissue; constitutes ~25% of a mammals protein content; more than 30 varieties Composition: Triple helix Sequence: Gly-X-Y; X usually Pro, Y usually Pro/HyPro > 3000Å long; 15Å in diameter

8 Collagen Primary Structure Approx 1000 AA/chain Repeats of Gly-X-Y where X is often Pro and Y is often hydroxyproline or proline MODIFIED AMINO ACIDS post-translational modifications add functionality to amino acid Composition G ~ 35% A ~ 11% P/HP ~ 30% Hyp: stabilizes tropocollagen via intrachain H-bonds Hyl: stabilizes fibrils via its ability to crosslink; attachment of CHO groups Consequences of Collagen Primary Structure Consequences of Collagen Primary Structure Distortion of backbone due to high content of glycines and prolines Can t form normal secondary structures Forms triple helix Every third residue faces inside Interior is compact; hence interior residue is glycine For comparison α-helix Fit occurs because Gly strand1 lies adjacent to X strand2 and Y strand3 Stabilization from hydrogen bonds Gly strand1 N-H to X strand2 C=O hydrogen bond Hydroxyproline forms hydrogen bonds

BCH 4053 Spring 2003 Chapter 6 Lecture Notes

BCH 4053 Spring 2003 Chapter 6 Lecture Notes BCH 4053 Spring 2003 Chapter 6 Lecture Notes 1 CHAPTER 6 Proteins: Secondary, Tertiary, and Quaternary Structure 2 Levels of Protein Structure Primary (sequence) Secondary (ordered structure along peptide

More information

Outline. Levels of Protein Structure. Primary (1 ) Structure. Lecture 6:Protein Architecture II: Secondary Structure or From peptides to proteins

Outline. Levels of Protein Structure. Primary (1 ) Structure. Lecture 6:Protein Architecture II: Secondary Structure or From peptides to proteins Lecture 6:Protein Architecture II: Secondary Structure or From peptides to proteins Margaret Daugherty Fall 2004 Outline Four levels of structure are used to describe proteins; Alpha helices and beta sheets

More information

Outline. Levels of Protein Structure. Primary (1 ) Structure. Lecture 6:Protein Architecture II: Secondary Structure or From peptides to proteins

Outline. Levels of Protein Structure. Primary (1 ) Structure. Lecture 6:Protein Architecture II: Secondary Structure or From peptides to proteins Lecture 6:Protein Architecture II: Secondary Structure or From peptides to proteins Margaret Daugherty Fall 2003 Outline Four levels of structure are used to describe proteins; Alpha helices and beta sheets

More information

Biomolecules: lecture 10

Biomolecules: lecture 10 Biomolecules: lecture 10 - understanding in detail how protein 3D structures form - realize that protein molecules are not static wire models but instead dynamic, where in principle every atom moves (yet

More information

Introduction to Protein Folding

Introduction to Protein Folding Introduction to Protein Folding Chapter 4 Proteins: Three Dimensional Structure and Function Conformation - three dimensional shape Native conformation - each protein folds into a single stable shape (physiological

More information

4 Proteins: Structure, Function, Folding W. H. Freeman and Company

4 Proteins: Structure, Function, Folding W. H. Freeman and Company 4 Proteins: Structure, Function, Folding 2013 W. H. Freeman and Company CHAPTER 4 Proteins: Structure, Function, Folding Learning goals: Structure and properties of the peptide bond Structural hierarchy

More information

Protein Structure Basics

Protein Structure Basics Protein Structure Basics Presented by Alison Fraser, Christine Lee, Pradhuman Jhala, Corban Rivera Importance of Proteins Muscle structure depends on protein-protein interactions Transport across membranes

More information

Biochemistry: Concepts and Connections

Biochemistry: Concepts and Connections Biochemistry: Concepts and Connections Dean R. Appling Spencer J. Anthony-Cahill Christopher K. Mathews Chapter 6 The Three Dimensional Structure of Proteins Cartoon representation of myoglobin, showing

More information

Protein Structure. W. M. Grogan, Ph.D. OBJECTIVES

Protein Structure. W. M. Grogan, Ph.D. OBJECTIVES Protein Structure W. M. Grogan, Ph.D. OBJECTIVES 1. Describe the structure and characteristic properties of typical proteins. 2. List and describe the four levels of structure found in proteins. 3. Relate

More information

Protein Structure. Hierarchy of Protein Structure. Tertiary structure. independently stable structural unit. includes disulfide bonds

Protein Structure. Hierarchy of Protein Structure. Tertiary structure. independently stable structural unit. includes disulfide bonds Protein Structure Hierarchy of Protein Structure 2 3 Structural element Primary structure Secondary structure Super-secondary structure Domain Tertiary structure Quaternary structure Description amino

More information

Biochemistry Prof. S. DasGupta Department of Chemistry Indian Institute of Technology Kharagpur. Lecture - 06 Protein Structure IV

Biochemistry Prof. S. DasGupta Department of Chemistry Indian Institute of Technology Kharagpur. Lecture - 06 Protein Structure IV Biochemistry Prof. S. DasGupta Department of Chemistry Indian Institute of Technology Kharagpur Lecture - 06 Protein Structure IV We complete our discussion on Protein Structures today. And just to recap

More information

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lectures 3-4. Based on Profs. Kevin Gardner & Reza Khayat

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lectures 3-4. Based on Profs. Kevin Gardner & Reza Khayat Biochemistry - I Mondays and Wednesdays 9:30-10:45 AM (MR-1307) SPRING 2017 Lectures 3-4 Based on Profs. Kevin Gardner & Reza Khayat 1 Outline Overview of protein structure Peptide bonds Secondary structure

More information

Dana Alsulaibi. Jaleel G.Sweis. Mamoon Ahram

Dana Alsulaibi. Jaleel G.Sweis. Mamoon Ahram 15 Dana Alsulaibi Jaleel G.Sweis Mamoon Ahram Revision of last lectures: Proteins have four levels of structures. Primary,secondary, tertiary and quaternary. Primary structure is the order of amino acids

More information

D Dobbs ISU - BCB 444/544X 1

D Dobbs ISU - BCB 444/544X 1 11/7/05 Protein Structure: Classification, Databases, Visualization Announcements BCB 544 Projects - Important Dates: Nov 2 Wed noon - Project proposals due to David/Drena Nov 4 Fri PM - Approvals/responses

More information

From Amino Acids to Proteins - in 4 Easy Steps

From Amino Acids to Proteins - in 4 Easy Steps From Amino Acids to Proteins - in 4 Easy Steps Although protein structure appears to be overwhelmingly complex, you can provide your students with a basic understanding of how proteins fold by focusing

More information

The Structure and Functions of Proteins

The Structure and Functions of Proteins Wright State University CORE Scholar Computer Science and Engineering Faculty Publications Computer Science and Engineering 2003 The Structure and Functions of Proteins Dan E. Krane Wright State University

More information

CHAPTER TWO INTRODUCTION TO GELATIN

CHAPTER TWO INTRODUCTION TO GELATIN CAPTER TWO NTRODUCTON TO GELATN 21 CAPTER - NTRODUCTON TO GELATN Gelatin is a biopolymer. Gelatins are a class of proteinaceous substance that have no existence in nature, but derived from a parent protein,

More information

Protein Structure and Function. Protein Architecture:

Protein Structure and Function. Protein Architecture: BCHS 6229 Protein Structure and Function Lecture 2 (October 13, 2011) Protein Architecture: Symmetry relationships and protein structure Primary & Secondary Structure Motifs & Super-secondary Structure

More information

Lecture 26: Polymers: DNA Packing and Protein folding 26.1 Problem Set 4 due today. Reading for Lectures 22 24: PKT Chapter 8 [ ].

Lecture 26: Polymers: DNA Packing and Protein folding 26.1 Problem Set 4 due today. Reading for Lectures 22 24: PKT Chapter 8 [ ]. Lecture 26: Polymers: DA Packing and Protein folding 26.1 Problem Set 4 due today. eading for Lectures 22 24: PKT hapter 8 DA Packing for Eukaryotes: The packing problem for the larger eukaryotic genomes

More information

Physiochemical Properties of Residues

Physiochemical Properties of Residues Physiochemical Properties of Residues Various Sources C N Cα R Slide 1 Conformational Propensities Conformational Propensity is the frequency in which a residue adopts a given conformation (in a polypeptide)

More information

Lecture 10 (10/4/17) Lecture 10 (10/4/17)

Lecture 10 (10/4/17) Lecture 10 (10/4/17) Lecture 10 (10/4/17) Reading: Ch4; 125, 138-141, 141-142 Problems: Ch4 (text); 7, 9, 11 Ch4 (study guide); 1, 2 NEXT Reading: Ch4; 125, 132-136 (structure determination) Ch4; 12-130 (Collagen) Problems:

More information

BIRKBECK COLLEGE (University of London)

BIRKBECK COLLEGE (University of London) BIRKBECK COLLEGE (University of London) SCHOOL OF BIOLOGICAL SCIENCES M.Sc. EXAMINATION FOR INTERNAL STUDENTS ON: Postgraduate Certificate in Principles of Protein Structure MSc Structural Molecular Biology

More information

titin, has 35,213 amino acid residues (the human version of titin is smaller, with only 34,350 residues in the full length protein).

titin, has 35,213 amino acid residues (the human version of titin is smaller, with only 34,350 residues in the full length protein). Introduction to Protein Structure Proteins are large heteropolymers usually comprised of 50 2500 monomer units, although larger proteins are observed 8. The monomer units of proteins are amino acids. Proteins

More information

Secondary and sidechain structures

Secondary and sidechain structures Lecture 2 Secondary and sidechain structures James Chou BCMP201 Spring 2008 Images from Petsko & Ringe, Protein Structure and Function. Branden & Tooze, Introduction to Protein Structure. Richardson, J.

More information

Introduction to" Protein Structure

Introduction to Protein Structure Introduction to" Protein Structure Function, evolution & experimental methods Thomas Blicher, Center for Biological Sequence Analysis Learning Objectives Outline the basic levels of protein structure.

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

Major Types of Association of Proteins with Cell Membranes. From Alberts et al

Major Types of Association of Proteins with Cell Membranes. From Alberts et al Major Types of Association of Proteins with Cell Membranes From Alberts et al Proteins Are Polymers of Amino Acids Peptide Bond Formation Amino Acid central carbon atom to which are attached amino group

More information

Biomolecules: lecture 9

Biomolecules: lecture 9 Biomolecules: lecture 9 - understanding further why amino acids are the building block for proteins - understanding the chemical properties amino acids bring to proteins - realizing that many proteins

More information

Proteins. Division Ave. High School Ms. Foglia AP Biology. Proteins. Proteins. Multipurpose molecules

Proteins. Division Ave. High School Ms. Foglia AP Biology. Proteins. Proteins. Multipurpose molecules Proteins Proteins Multipurpose molecules 2008-2009 Proteins Most structurally & functionally diverse group Function: involved in almost everything u enzymes (pepsin, DNA polymerase) u structure (keratin,

More information

AP Biology. Proteins. AP Biology. Proteins. Multipurpose molecules

AP Biology. Proteins. AP Biology. Proteins. Multipurpose molecules Proteins Proteins Multipurpose molecules 2008-2009 1 Proteins Most structurally & functionally diverse group Function: involved in almost everything u enzymes (pepsin, DNA polymerase) u structure (keratin,

More information

Conformational Geometry of Peptides and Proteins:

Conformational Geometry of Peptides and Proteins: Conformational Geometry of Peptides and Proteins: Before discussing secondary structure, it is important to appreciate the conformational plasticity of proteins. Each residue in a polypeptide has three

More information

Basics of protein structure

Basics of protein structure Today: 1. Projects a. Requirements: i. Critical review of one paper ii. At least one computational result b. Noon, Dec. 3 rd written report and oral presentation are due; submit via email to bphys101@fas.harvard.edu

More information

Advanced Certificate in Principles in Protein Structure. You will be given a start time with your exam instructions

Advanced Certificate in Principles in Protein Structure. You will be given a start time with your exam instructions BIRKBECK COLLEGE (University of London) Advanced Certificate in Principles in Protein Structure MSc Structural Molecular Biology Date: Thursday, 1st September 2011 Time: 3 hours You will be given a start

More information

Biochemistry Quiz Review 1I. 1. Of the 20 standard amino acids, only is not optically active. The reason is that its side chain.

Biochemistry Quiz Review 1I. 1. Of the 20 standard amino acids, only is not optically active. The reason is that its side chain. Biochemistry Quiz Review 1I A general note: Short answer questions are just that, short. Writing a paragraph filled with every term you can remember from class won t improve your answer just answer clearly,

More information

Supersecondary Structures (structural motifs)

Supersecondary Structures (structural motifs) Supersecondary Structures (structural motifs) Various Sources Slide 1 Supersecondary Structures (Motifs) Supersecondary Structures (Motifs): : Combinations of secondary structures in specific geometric

More information

BME Engineering Molecular Cell Biology. Structure and Dynamics of Cellular Molecules. Basics of Cell Biology Literature Reading

BME Engineering Molecular Cell Biology. Structure and Dynamics of Cellular Molecules. Basics of Cell Biology Literature Reading BME 42-620 Engineering Molecular Cell Biology Lecture 05: Structure and Dynamics of Cellular Molecules Basics of Cell Biology Literature Reading BME42-620 Lecture 05, September 13, 2011 1 Outline Review:

More information

Protein Structure Marianne Øksnes Dalheim, PhD candidate Biopolymers, TBT4135, Autumn 2013

Protein Structure Marianne Øksnes Dalheim, PhD candidate Biopolymers, TBT4135, Autumn 2013 Protein Structure Marianne Øksnes Dalheim, PhD candidate Biopolymers, TBT4135, Autumn 2013 The presentation is based on the presentation by Professor Alexander Dikiy, which is given in the course compedium:

More information

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure Bioch/BIMS 503 Lecture 2 Structure and Function of Proteins August 28, 2008 Robert Nakamoto rkn3c@virginia.edu 2-0279 Secondary Structure Φ Ψ angles determine protein structure Φ Ψ angles are restricted

More information

Ch 3: Chemistry of Life. Chemistry Water Macromolecules Enzymes

Ch 3: Chemistry of Life. Chemistry Water Macromolecules Enzymes Ch 3: Chemistry of Life Chemistry Water Macromolecules Enzymes Chemistry Atom = smallest unit of matter that cannot be broken down by chemical means Element = substances that have similar properties and

More information

Denaturation and renaturation of proteins

Denaturation and renaturation of proteins Denaturation and renaturation of proteins Higher levels of protein structure are formed without covalent bonds. Therefore, they are not as stable as peptide covalent bonds which make protein primary structure

More information

Problem Set 1

Problem Set 1 2006 7.012 Problem Set 1 Due before 5 PM on FRIDAY, September 15, 2006. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. For each of the following parts, pick

More information

Read more about Pauling and more scientists at: Profiles in Science, The National Library of Medicine, profiles.nlm.nih.gov

Read more about Pauling and more scientists at: Profiles in Science, The National Library of Medicine, profiles.nlm.nih.gov 2018 Biochemistry 110 California Institute of Technology Lecture 2: Principles of Protein Structure Linus Pauling (1901-1994) began his studies at Caltech in 1922 and was directed by Arthur Amos oyes to

More information

Protein Struktur (optional, flexible)

Protein Struktur (optional, flexible) Protein Struktur (optional, flexible) 22/10/2009 [ 1 ] Andrew Torda, Wintersemester 2009 / 2010, AST nur für Informatiker, Mathematiker,.. 26 kt, 3 ov 2009 Proteins - who cares? 22/10/2009 [ 2 ] Most important

More information

UNIT TWELVE. a, I _,o "' I I I. I I.P. l'o. H-c-c. I ~o I ~ I / H HI oh H...- I II I II 'oh. HO\HO~ I "-oh

UNIT TWELVE. a, I _,o ' I I I. I I.P. l'o. H-c-c. I ~o I ~ I / H HI oh H...- I II I II 'oh. HO\HO~ I -oh UNT TWELVE PROTENS : PEPTDE BONDNG AND POLYPEPTDES 12 CONCEPTS Many proteins are important in biological structure-for example, the keratin of hair, collagen of skin and leather, and fibroin of silk. Other

More information

Dental Biochemistry Exam The total number of unique tripeptides that can be produced using all of the common 20 amino acids is

Dental Biochemistry Exam The total number of unique tripeptides that can be produced using all of the common 20 amino acids is Exam Questions for Dental Biochemistry Monday August 27, 2007 E.J. Miller 1. The compound shown below is CH 3 -CH 2 OH A. acetoacetate B. acetic acid C. acetaldehyde D. produced by reduction of acetaldehyde

More information

Student Questions and Answers October 8, 2002

Student Questions and Answers October 8, 2002 Student Questions and Answers October 8, 2002 Q l. Is the Cα of Proline also chiral? Answer: FK: Yes, there are 4 different residues bound to this C. Only in a strictly planar molecule this would not hold,

More information

Model Mélange. Physical Models of Peptides and Proteins

Model Mélange. Physical Models of Peptides and Proteins Model Mélange Physical Models of Peptides and Proteins In the Model Mélange activity, you will visit four different stations each featuring a variety of different physical models of peptides or proteins.

More information

Protein Structure. Role of (bio)informatics in drug discovery. Bioinformatics

Protein Structure. Role of (bio)informatics in drug discovery. Bioinformatics Bioinformatics Protein Structure Principles & Architecture Marjolein Thunnissen Dep. of Biochemistry & Structural Biology Lund University September 2011 Homology, pattern and 3D structure searches need

More information

Peptides And Proteins

Peptides And Proteins Kevin Burgess, May 3, 2017 1 Peptides And Proteins from chapter(s) in the recommended text A. Introduction B. omenclature And Conventions by amide bonds. on the left, right. 2 -terminal C-terminal triglycine

More information

What is the central dogma of biology?

What is the central dogma of biology? Bellringer What is the central dogma of biology? A. RNA DNA Protein B. DNA Protein Gene C. DNA Gene RNA D. DNA RNA Protein Review of DNA processes Replication (7.1) Transcription(7.2) Translation(7.3)

More information

Overview. The peptide bond. Page 1

Overview. The peptide bond. Page 1 Overview Secondary structure: the conformation of the peptide backbone The peptide bond, steric implications Steric hindrance and sterically allowed conformations. Ramachandran diagrams Side chain conformations

More information

PROTEIN STRUCTURE AMINO ACIDS H R. Zwitterion (dipolar ion) CO 2 H. PEPTIDES Formal reactions showing formation of peptide bond by dehydration:

PROTEIN STRUCTURE AMINO ACIDS H R. Zwitterion (dipolar ion) CO 2 H. PEPTIDES Formal reactions showing formation of peptide bond by dehydration: PTEI STUTUE ydrolysis of proteins with aqueous acid or base yields a mixture of free amino acids. Each type of protein yields a characteristic mixture of the ~ 20 amino acids. AMI AIDS Zwitterion (dipolar

More information

Protein structure (and biomolecular structure more generally) CS/CME/BioE/Biophys/BMI 279 Sept. 28 and Oct. 3, 2017 Ron Dror

Protein structure (and biomolecular structure more generally) CS/CME/BioE/Biophys/BMI 279 Sept. 28 and Oct. 3, 2017 Ron Dror Protein structure (and biomolecular structure more generally) CS/CME/BioE/Biophys/BMI 279 Sept. 28 and Oct. 3, 2017 Ron Dror Please interrupt if you have questions, and especially if you re confused! Assignment

More information

2: CHEMICAL COMPOSITION OF THE BODY

2: CHEMICAL COMPOSITION OF THE BODY 1 2: CHEMICAL COMPOSITION OF THE BODY Although most students of human physiology have had at least some chemistry, this chapter serves very well as a review and as a glossary of chemical terms. In particular,

More information

Charged amino acids (side-chains)

Charged amino acids (side-chains) Proteins are composed of monomers called amino acids There are 20 different amino acids Amine Group Central ydrocarbon N C C R Group Carboxyl Group ALL amino acids have the exact same structure except

More information

Protein Structure & Motifs

Protein Structure & Motifs & Motifs Biochemistry 201 Molecular Biology January 12, 2000 Doug Brutlag Introduction Proteins are more flexible than nucleic acids in structure because of both the larger number of types of residues

More information

Chem. 27 Section 1 Conformational Analysis Week of Feb. 6, TF: Walter E. Kowtoniuk Mallinckrodt 303 Liu Laboratory

Chem. 27 Section 1 Conformational Analysis Week of Feb. 6, TF: Walter E. Kowtoniuk Mallinckrodt 303 Liu Laboratory Chem. 27 Section 1 Conformational Analysis TF: Walter E. Kowtoniuk wekowton@fas.harvard.edu Mallinckrodt 303 Liu Laboratory ffice hours are: Monday and Wednesday 3:00-4:00pm in Mallinckrodt 303 Course

More information

BIOCHEMISTRY Unit 2 Part 4 ACTIVITY #6 (Chapter 5) PROTEINS

BIOCHEMISTRY Unit 2 Part 4 ACTIVITY #6 (Chapter 5) PROTEINS BIOLOGY BIOCHEMISTRY Unit 2 Part 4 ACTIVITY #6 (Chapter 5) NAME NAME PERIOD PROTEINS GENERAL CHARACTERISTICS AND IMPORTANCES: Polymers of amino acids Each has unique 3-D shape Vary in sequence of amino

More information

Tamer Barakat. Razi Kittaneh. Mohammed Bio. Diala Abu-Hassan

Tamer Barakat. Razi Kittaneh. Mohammed Bio. Diala Abu-Hassan 14 Tamer Barakat Razi Kittaneh Mohammed Bio Diala Abu-Hassan Protein structure: We already know that when two amino acids bind, a dipeptide is formed which is considered to be an oligopeptide. When more

More information

Details of Protein Structure

Details of Protein Structure Details of Protein Structure Function, evolution & experimental methods Thomas Blicher, Center for Biological Sequence Analysis Anne Mølgaard, Kemisk Institut, Københavns Universitet Learning Objectives

More information

LS1a Fall 2014 Problem Set #2 Due Monday 10/6 at 6 pm in the drop boxes on the Science Center 2 nd Floor

LS1a Fall 2014 Problem Set #2 Due Monday 10/6 at 6 pm in the drop boxes on the Science Center 2 nd Floor LS1a Fall 2014 Problem Set #2 Due Monday 10/6 at 6 pm in the drop boxes on the Science Center 2 nd Floor Note: Adequate space is given for each answer. Questions that require a brief explanation should

More information

The information in this document is meant to cover IB topic and 7.5.

The information in this document is meant to cover IB topic and 7.5. The information in this document is meant to cover IB topic 3.1-3.3 and 7.5. Functional Groups A functional group is a group of atoms that confers highly specific properties to an organic molecule. The

More information

Section Week 3. Junaid Malek, M.D.

Section Week 3. Junaid Malek, M.D. Section Week 3 Junaid Malek, M.D. Biological Polymers DA 4 monomers (building blocks), limited structure (double-helix) RA 4 monomers, greater flexibility, multiple structures Proteins 20 Amino Acids,

More information

STRUCTURAL BIOINFORMATICS. Barry Grant University of Michigan

STRUCTURAL BIOINFORMATICS. Barry Grant University of Michigan STRUCTURAL BIOINFORMATICS Barry Grant University of Michigan www.thegrantlab.org bjgrant@umich.edu Bergen, Norway 28-Sep-2015 Objective: Provide an introduction to the practice of structural bioinformatics,

More information

1. Amino Acids and Peptides Structures and Properties

1. Amino Acids and Peptides Structures and Properties 1. Amino Acids and Peptides Structures and Properties Chemical nature of amino acids The!-amino acids in peptides and proteins (excluding proline) consist of a carboxylic acid ( COOH) and an amino ( NH

More information

Useful background reading

Useful background reading Overview of lecture * General comment on peptide bond * Discussion of backbone dihedral angles * Discussion of Ramachandran plots * Description of helix types. * Description of structures * NMR patterns

More information

Lecture 11: Protein Folding & Stability

Lecture 11: Protein Folding & Stability Structure - Function Protein Folding: What we know Lecture 11: Protein Folding & Stability 1). Amino acid sequence dictates structure. 2). The native structure represents the lowest energy state for a

More information

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall Protein Folding: What we know. Protein Folding

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall Protein Folding: What we know. Protein Folding Lecture 11: Protein Folding & Stability Margaret A. Daugherty Fall 2003 Structure - Function Protein Folding: What we know 1). Amino acid sequence dictates structure. 2). The native structure represents

More information

THE UNIVERSITY OF MANITOBA. PAPER NO: _1_ LOCATION: 173 Robert Schultz Theatre PAGE NO: 1 of 5 DEPARTMENT & COURSE NO: CHEM / MBIO 2770 TIME: 1 HOUR

THE UNIVERSITY OF MANITOBA. PAPER NO: _1_ LOCATION: 173 Robert Schultz Theatre PAGE NO: 1 of 5 DEPARTMENT & COURSE NO: CHEM / MBIO 2770 TIME: 1 HOUR THE UNIVERSITY OF MANITOBA 1 November 1, 2016 Mid-Term EXAMINATION PAPER NO: _1_ LOCATION: 173 Robert Schultz Theatre PAGE NO: 1 of 5 DEPARTMENT & COURSE NO: CHEM / MBIO 2770 TIME: 1 HOUR EXAMINATION:

More information

CAP 5510 Lecture 3 Protein Structures

CAP 5510 Lecture 3 Protein Structures CAP 5510 Lecture 3 Protein Structures Su-Shing Chen Bioinformatics CISE 8/19/2005 Su-Shing Chen, CISE 1 Protein Conformation 8/19/2005 Su-Shing Chen, CISE 2 Protein Conformational Structures Hydrophobicity

More information

Interparticle interaction

Interparticle interaction Colloid chemistry for pharmacists Interparticle interaction Levente Novák, István Bányai Dep. of Colloid- and Environmental Chemistry www.kolloid.unideb.hu/ 2. lecture 1 Characterization of colloids colloidal

More information

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron.

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Protein Dynamics The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Below is myoglobin hydrated with 350 water molecules. Only a small

More information

The Structure of Enzymes!

The Structure of Enzymes! The Structure of Enzymes Levels of Protein Structure 0 order amino acid composition Primary Secondary Motifs Tertiary Domains Quaternary ther sequence repeating structural patterns defined by torsion angles

More information

The Structure of Enzymes!

The Structure of Enzymes! The Structure of Enzymes Levels of Protein Structure 0 order amino acid composition Primary Secondary Motifs Tertiary Domains Quaternary ther sequence repeating structural patterns defined by torsion angles

More information

CHAPTER 29 HW: AMINO ACIDS + PROTEINS

CHAPTER 29 HW: AMINO ACIDS + PROTEINS CAPTER 29 W: AMI ACIDS + PRTEIS For all problems, consult the table of 20 Amino Acids provided in lecture if an amino acid structure is needed; these will be given on exams. Use natural amino acids (L)

More information

Full file at

Full file at MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following is an uncharged particle found in the nucleus of 1) an atom and which has

More information

1. What is an ångstrom unit, and why is it used to describe molecular structures?

1. What is an ångstrom unit, and why is it used to describe molecular structures? 1. What is an ångstrom unit, and why is it used to describe molecular structures? The ångstrom unit is a unit of distance suitable for measuring atomic scale objects. 1 ångstrom (Å) = 1 10-10 m. The diameter

More information

Molecular Modelling. part of Bioinformatik von RNA- und Proteinstrukturen. Sonja Prohaska. Leipzig, SS Computational EvoDevo University Leipzig

Molecular Modelling. part of Bioinformatik von RNA- und Proteinstrukturen. Sonja Prohaska. Leipzig, SS Computational EvoDevo University Leipzig part of Bioinformatik von RNA- und Proteinstrukturen Computational EvoDevo University Leipzig Leipzig, SS 2011 Protein Structure levels or organization Primary structure: sequence of amino acids (from

More information

Packing of Secondary Structures

Packing of Secondary Structures 7.88 Lecture Notes - 4 7.24/7.88J/5.48J The Protein Folding and Human Disease Professor Gossard Retrieving, Viewing Protein Structures from the Protein Data Base Helix helix packing Packing of Secondary

More information

Bi 8 Midterm Review. TAs: Sarah Cohen, Doo Young Lee, Erin Isaza, and Courtney Chen

Bi 8 Midterm Review. TAs: Sarah Cohen, Doo Young Lee, Erin Isaza, and Courtney Chen Bi 8 Midterm Review TAs: Sarah Cohen, Doo Young Lee, Erin Isaza, and Courtney Chen The Central Dogma Biology Fundamental! Prokaryotes and Eukaryotes Nucleic Acid Components Nucleic Acid Structure DNA Base

More information

Chapter 4: Amino Acids

Chapter 4: Amino Acids Chapter 4: Amino Acids All peptides and polypeptides are polymers of alpha-amino acids. lipid polysaccharide enzyme 1940s 1980s. Lipids membrane 1960s. Polysaccharide Are energy metabolites and many of

More information

Sec. 2.1 Filaments in the cell 21 PART I - RODS AND ROPES

Sec. 2.1 Filaments in the cell 21 PART I - RODS AND ROPES Sec. 2.1 Filaments in the cell 21 PART I - RODS AND ROPES Sec. 2.1 Filaments in the cell 22 CHAPTER 2 - POLYMERS The structural elements of the cell can be broadly classified as filaments or sheets, where

More information

Figures removed for copyright reasons. (2a) (2b) (2c)

Figures removed for copyright reasons. (2a) (2b) (2c) Vanessa Lacey BEH342/442 15 October, 2005 Molecular Structure of Biological Materials: Structure, Function & Self-assembly Take-home Midterm Exam (Due Thursday, Nov. 17) 30% of the total grade. Please

More information

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall How do we go from an unfolded polypeptide chain to a

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall How do we go from an unfolded polypeptide chain to a Lecture 11: Protein Folding & Stability Margaret A. Daugherty Fall 2004 How do we go from an unfolded polypeptide chain to a compact folded protein? (Folding of thioredoxin, F. Richards) Structure - Function

More information

Objective: Students will be able identify peptide bonds in proteins and describe the overall reaction between amino acids that create peptide bonds.

Objective: Students will be able identify peptide bonds in proteins and describe the overall reaction between amino acids that create peptide bonds. Scott Seiple AP Biology Lesson Plan Lesson: Primary and Secondary Structure of Proteins Purpose:. To understand how amino acids can react to form peptides through peptide bonds.. Students will be able

More information

THE TANGO ALGORITHM: SECONDARY STRUCTURE PROPENSITIES, STATISTICAL MECHANICS APPROXIMATION

THE TANGO ALGORITHM: SECONDARY STRUCTURE PROPENSITIES, STATISTICAL MECHANICS APPROXIMATION THE TANGO ALGORITHM: SECONDARY STRUCTURE PROPENSITIES, STATISTICAL MECHANICS APPROXIMATION AND CALIBRATION Calculation of turn and beta intrinsic propensities. A statistical analysis of a protein structure

More information

Chemistry Chapter 22

Chemistry Chapter 22 hemistry 2100 hapter 22 Proteins Proteins serve many functions, including the following. 1. Structure: ollagen and keratin are the chief constituents of skin, bone, hair, and nails. 2. atalysts: Virtually

More information

Macromolecular Structures in Tissues

Macromolecular Structures in Tissues 2 Macromolecular Structures in Tissues 2.1 Introduction The human body is a miraculous dynamic structure. When we are young it grows in size and changes shape depending on genetic inheritance and environmental

More information

BIOCHEMISTRY Course Outline (Fall, 2011)

BIOCHEMISTRY Course Outline (Fall, 2011) BIOCHEMISTRY 402 - Course Outline (Fall, 2011) Number OVERVIEW OF LECTURE TOPICS: of Lectures INSTRUCTOR 1. Structural Components of Proteins G. Brayer (a) Amino Acids and the Polypeptide Chain Backbone...2

More information

Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability

Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Part I. Review of forces Covalent bonds Non-covalent Interactions: Van der Waals Interactions

More information

Central Dogma. modifications genome transcriptome proteome

Central Dogma. modifications genome transcriptome proteome entral Dogma DA ma protein post-translational modifications genome transcriptome proteome 83 ierarchy of Protein Structure 20 Amino Acids There are 20 n possible sequences for a protein of n residues!

More information

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE Examples of Protein Modeling Protein Modeling Visualization Examination of an experimental structure to gain insight about a research question Dynamics To examine the dynamics of protein structures To

More information

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769 Dihedral Angles Homayoun Valafar Department of Computer Science and Engineering, USC The precise definition of a dihedral or torsion angle can be found in spatial geometry Angle between to planes Dihedral

More information

Protein structure and folding

Protein structure and folding Protein structure and folding Levels of protein structure Theory of protein folding: Anfinsen s experiment Levinthal s paradox the folding funnel mode 05.11.2014. Amino acids and protein structure Protein

More information

Biomolecules. Energetics in biology. Biomolecules inside the cell

Biomolecules. Energetics in biology. Biomolecules inside the cell Biomolecules Energetics in biology Biomolecules inside the cell Energetics in biology The production of energy, its storage, and its use are central to the economy of the cell. Energy may be defined as

More information

BIBC 100. Structural Biochemistry

BIBC 100. Structural Biochemistry BIBC 100 Structural Biochemistry http://classes.biology.ucsd.edu/bibc100.wi14 Papers- Dialogue with Scientists Questions: Why? How? What? So What? Dialogue Structure to explain function Knowledge Food

More information

Exam I Answer Key: Summer 2006, Semester C

Exam I Answer Key: Summer 2006, Semester C 1. Which of the following tripeptides would migrate most rapidly towards the negative electrode if electrophoresis is carried out at ph 3.0? a. gly-gly-gly b. glu-glu-asp c. lys-glu-lys d. val-asn-lys

More information

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target.

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target. HOMOLOGY MODELING Homology modeling, also known as comparative modeling of protein refers to constructing an atomic-resolution model of the "target" protein from its amino acid sequence and an experimental

More information

Protein Structure Bioinformatics Introduction

Protein Structure Bioinformatics Introduction 1 Swiss Institute of Bioinformatics Protein Structure Bioinformatics Introduction Basel, 27. September 2004 Torsten Schwede Biozentrum - Universität Basel Swiss Institute of Bioinformatics Klingelbergstr

More information

Review. Membrane proteins. Membrane transport

Review. Membrane proteins. Membrane transport Quiz 1 For problem set 11 Q1, you need the equation for the average lateral distance transversed (s) of a molecule in the membrane with respect to the diffusion constant (D) and time (t). s = (4 D t) 1/2

More information