Single-bond forming reactions Grignard reaction

Size: px
Start display at page:

Download "Single-bond forming reactions Grignard reaction"

Transcription

1 Appendix I: Named Reactions Covered in 235 / 335 Featured in 432 / 533 synthesis / problem set Single-bond forming reactions Grignard reaction various Radical couplings Conjugate addition / Michael reaction strychnine Stork enamine additions Aldol-type reactions (incl. Mukaiyama aldol) (aldol / Claisen / Knoevenagel / Mannich / Henry etc.) various Asymmetric aldol reactions: Evans / Carreira etc. Organocatalytic asymmetric aldol Pseudoephedrine glycinamide alkylation Prins reaction Prins-pinacol reaction Morita-Baylis-Hillman reaction problem set # 2 McMurry condensation Gabriel synthesis problem set #3 Double-bond forming reactions Wittig reaction Horner-Wadsworth-Emmons reaction Still-Gennari olefination general discussion Julia olefination and heteroaryl variants within the Corey-Winter olefination Peterson olefination synthesis Barton extrusion reaction Tebbe olefination / other methylene-forming reactions Selenoxide elimination / Burgess dehydration problem set # 3 Electrocyclic reactions and related transformations Diels-Alder reaction problem set # 1 Asymmetric Diels-Alder reaction Ene reaction problem set # 3 1,3-dipolar cycloadditions various [2,3] sigmatropic rearrangement various Cope rearrangement periplanone Claisen rearrangement Oxidations Also See Handout # 1 Swern-type oxidations (Swern / Moffatt / Parikh-Doering etc. Jones oxidation TPAP / NMO oxidation PCC oxidation Dess-Martin oxidation Allylic oxidations General epoxidation reactions Asymmetric epoxidations: Sharpless / Jacobsen / Shi etc. Sharpless asymmetric dihydroxylation Ozonolysis Lemieux-Von Rudloff oxidation Baeyer-Villiger oxidation progesterone dragmacidin periplanone / progesterone

2 Rubottom oxidation Phenol oxidation (quinone formation) Tamao-Fleming oxidation Reductions - Also See Handout # 3 CBS reduction Luche reduction Stryker reduction Barton-McCombie deoxygenation and tin-free variant Barton decarboxylation Diazene-mediated deoxygenation Reductive amination Hydrosilation reactions Radical dehalogenation Hydrogenation reactions Clemmensen reduction Woff-Kishner reduction Birch reduction Organometallic coupling reactions - Also See Handout # 2 Stille coupling Heck coupling Suzuki coupling Sonogashira coupling Negishi coupling Tsuji-Trost coupling Pd- Pt- & Au-mediated cycloisomerisations Buchwald-Hartwig coupling Olefin metathesis Pd-mediated carbonylation Carbene C-H insertion reactions Hydrozirconation Other key ring-forming reactions Robinson annelation Fischer indole synthesis Pictet-Spengler reaction Dieckmann condensation Other reactions at carbonyl groups Schiff base formation Shapiro reaction Bamford-Stevens reaction Other reactions at carboxylic acids, esters, or amides Fischer esterifications Amide couplings with DCC / EDC / HATU etc. Acid chloride / fluoride formation Iodolactonization / selenolactonization periplanone and handout # 3 see handout # 3 general discussion, illustrated by several syntheses virantmycin xanthatin xanthatin strychnine strychnine various problem set # 3 trivial virantmycin / Other reactions at alcohols or alkyl halides Metal-Halogen exchange reactions Reformatsky reaction problem set # 2 Mitsunobu reaction Finkelstein reaction Darzens condensation problem set # 3 Other reactions at aromatic rings Electrophilic aromatic substitution Nucleophilic aromatic substitution Sandmeyer reaction

3 Ring expansions and contractions Favorskii rearrangement Beckmann rearrangement / Photo-Beckmann Tiffeneau-Demjanov rerrangement Schmidt reaction Notable rearrangements Curtius rearrangement virantmycin Pinacol rearrangement problem set # 2 Gröb fragmentation [2,3] Wittig rearrangement problem set # 3 Nazarov reaction Bergman rearrangement Miscellaneous reactions Directed metallation reactions problem set # 3 Hydroboration Asymmetric hydroboration Oxymercuration / demurcuration Simmons-Smith cyclopropanation Carbene / carbenoid cyclopropanation Asymmetric cyclopropanation zincophorin zincophorin Krapcho decarboxylation virantmycin Ugi 4-component coupling problem set # 3 Strecker amino acid synthesis Corey-Fuchs reaction Glaser reaction Schmidt reaction Staudinger reaction problem set # 2

4 Appendix Ib: Other stuff you should be learning along the way. Protecting Groups see Greene for many others. TBS TBDPS (and selective removal in presence of TBS) TiPS (and selective removal in presence of TBS) TES TMS (and lability thereof) Bn Bz PMB (and removal under oxidative conditions) Ac MOM trimethylsilylethyl esters and carbamates CBZ Boc Fmoc (and gentle removal under basic conditions) acetal / ketal protecting groups thioacetal / thioketal protecting groups (and use as umpolung nucleophiles THP Esters as protected carboxylic acids Protected alcohols as good, unreactive precursors to aldehydes, esters or acids Pivalates Some other useful reagents DCC / EDC / HATU etc. Carbonyl diimidazole Weinreb amides (for mono-addition to carbonyls) Various ligands for Pd coupling (BINAP, DPPF, dba, etc.) Various bases (Hünig s base, DBU,etc.) Higher-order cuprates, Gilman reagents, etc. Lawesson s reagent AIBN Sulfur ylides for cyclopropanation DPPA for initiating Curtius rearrangements Cyanuric fluoride / oxalyl chloride, thionyl chloride, etc. for making acyl halides Grubbs catalysts Amino-acids as useful chiral building blocks Carbohydrates as useful chiral building blocks Hypervalent iodine reagents Admix α/β TBAF, buffered TBAF, HF-pyridine, etc. for removing silyl groups Nucleophilic catalysts (DABCO, DMAP) LiH 2 NBH 3 for reducing amides alcohols LiCl / LiBr as very gentle Lewis acids for enhancing reactivity Stryker reagent Vocabulary Key intermediate Synthetic equivalent Total synthesis vs. semi-synthesis Oxidative addition Reductive elimination Transmetallation Metathesis Migratory aptitude

5 Syn elimination Enantiselective Diastereoselective Epimerization Useful Concepts Retrosynthetic analysis Nucleophiles and electrophiles = HOMO + LUMO Hard and soft nucleophiles and electrophiles Woodward-Hoffmann rules Indole addition to 3- or 2-position Substructure recognition Formation of oxonium ions and synthetic utility thereof Formation of imines and synthetic utility thereof Catalytic cycles Electron counting Use of crown ethers in synthesis Ways you know to control relative stereochemistry Aldol reactions (E/Z enolate 1,2-anti/syn product) Local steric control (esp. approach of nucleophiles or enolates), particularly in rings Geometric approach of reacting groups (esp. with respect to nitrene insertion reactions) Stereospecific transformations from stereochemically fixed substrates (Curtius rrgmt, etc.) Inversion reactions (S N 2, Mitsunobu, epoxide opening, etc.) Tsuji-Trost couplings (double inversion = retention) Various ways to make E/Z olefins Chirality transfer in sigmatropic rearrangement reactions (esp. Ireland-Claisen) Ways you know to control absolute stereochemistry Asymmetric Diels-Alder CBS reduction Asymmetric epoxidations (Sharpless, Jacobsen, Shi) Asymmetric dihydroxylation (Sharpless) Asymmetric acylations (Evans, Carreira, organocatalytic) Asymmetric alkylation (Myers) Pd coupling strategies with chiral ligands (esp. Suzuki, Heck) Desymmetrization reactions (e.g. by enzymatic hydrolysis) Hydroboration with chiral boranes (e.g. IPC 2 BH) Asymmetric cyclopropanation (e.g. Charette, or diazo w/ chiral Ru)

6 Appendix II: Syntheses 1. Strychnine Woodward, 1954 Classics I, 21 (also see: J. Am. Chem. Soc. 2001, 123, 9324) Fischer indole synthesis Indole addition Dieckmann condensation Allylic rearrangement Retrosynthesis Substructure recognition 2. Progesterone Handout #1: Oxidation Marker, 1944 Oxidative degredations, including General metal oxide degradations Lemieux-Von Rudloff oxidation Ozonolysis Jones oxidation Semisynthesis Commercial synthesis 3. Prostaglandin E 2 Corey, 1969 and onward Classics I, 65 General discussion of olefin-forming reactions, including: Wittig reaction Horner-Wadsworth Emmons reaction Still-Gennari olefination Julia olefination Corey-Winter olefination Peterson olefination Barton extrusion reaction Asymmetric Diels-Alder reaction Baeyer-Villiger oxidation CBS reduction Iodolactonization

7 4. Periplanone B Still, 1979 Classics I, 211 Anionic oxy-cope Rubottom oxidation Selective epoxidations 5. Palladium-Mediated Coupling Strategies Handout #2: Palladium Coupling parts of various syntheses will be used to illustrate key transformations General discussion of: Stille coupling Heck coupling Suzuki coupling Sonogashira coupling Negishi coupling Tsuji-Trost coupling Pd- Pt- & Au-mediated cycloisomerizations Catalytic cycles oxidative addition, reductive elimination, etc. Increased synthetic efficiency using organometallic coupling strategies. 6. Virantmycin Back, 2004 Angew. Chemie Int. Ed , 43, 6493 Buchwald-Hartwig coupling Acid chloride / fluoride formation Curtius rearrangement Krapcho decarboxylation Stereodivergent synthesis 7. Xanthatin Martin, 2006 Tetrahedron 2006, 62, General discussion of olefin metathesis: Ring-opening metathesis polymerization Ring-closing metathesis Cross metathesis Ene-yne metathesis

8 8. The Ene-diynes: Nicolaou, 1992 Classics I, 523 Myers, 2006 J. Am. Chem. Soc. 2006, 128, Bergman cycloaromatization : Swern-type oxidations Asymmetric epoxidations Asymmetric dihydroxylations Amide couplings with DCC / EDC / HATU etc. Corey-Fuchs reaction Glaser reaction Synthetic planning 9. Tetrodotoxin Du Bois, 2003 J. Am. Chem. Soc. 2003, 125, (also see: Thienamycin; Classics I, 249) Carbene insertion reactions Oxidative degradations Methylene-forming reactions Selenoxide elimination TPAP/NMO oxidations Allylic oxidations 10. Hirstutene Handout #3: Reduction Curran, 1986 Classics I, 382 General discussion of Radical Cyclizations Luche reduction Stryker reduction Ireland-Claisen rearrangement Selenolactonization Radical deoxygenations & decarboxylations Barton-McCombie deoxygenation Tin-free variant of the Barton-McCombie Barton decarboxylation Diazene-mediated deoxygenation Baldwin s rules for radical cyclization

9 11. ent-sparteine Aubé, 2002 asymmetric Org. Lett. 2002, 4, General discussion of ring expansions and contractions: Beckmann rearrangement Favorskii rearrangement Tiffeneau-Demjanov rearrangement Schmidt reaction Finkelstein reaction Mitsunobu reaction 12. Zincophorin Meyer and Cossy, 2004 J. Org. Chem. 2004, 69, General discussion of hydroborations General discussion of cyclopropanation strategies 13. Saframycin A Myers, 1999 J. Am. Chem. Soc. 1999, 121, General discussion of auxiliary-controlled additions: Evans aldol Carreira aldol Pseudoephedrine glycinamide alkylation Pictet-Spengler reaction Strecker reaction Reductive amination 14. Endriandric Acids Nicolaou, 1982 Classics I, 264. Electrocyclic Ring-Closing reaction Woodward-Hoffmann rules

Single-bond forming reactions Grignard reaction

Single-bond forming reactions Grignard reaction Covered in 235 / 335 Featured in 432 / 533 synthesis / problem set Appendix I: Named Reactions Single-bond forming reactions Grignard reaction Radical couplings Conjugate addition / Michael reaction Stork

More information

Chemistry 432 Lecture Notes Updated: Spring Nucleophiles and Electrophiles: The Basis of Organic Chemistry

Chemistry 432 Lecture Notes Updated: Spring Nucleophiles and Electrophiles: The Basis of Organic Chemistry Chemistry 432 Lecture Notes Updated: Spring 2016 Course Organization: Things You Need to Know 1. Named Reactions and Reagents 2. Vocabulary 3. Concepts 4. HOW TO DO SYNTHESIS Nucleophiles and Electrophiles:

More information

Lectures: Optional Texts (on reserve at MD Anderson Library) Model Sets: Other relevant texts and references: Problem Sets: EVERYONE

Lectures: Optional Texts (on reserve at MD Anderson Library) Model Sets: Other relevant texts and references: Problem Sets: EVERYONE CHEM 6352 Organic Reactions & Synthesis Fall 2014 Jeremy A. May Office: 5025 SERC Office hours: T/Th 10-11 am or by appointment (email me) Email: jmay@uh.edu Website: http://mynsm.uh.edu/groups/maygroup/wiki/b24dc/classes.html

More information

Organic Chemistry Curriculum Content Outline

Organic Chemistry Curriculum Content Outline Organic Chemistry 2014-15 Curriculum Content Outline CHEM 0203: Organic Structure and Reactivity 1. Structure & Bonding (Brief Review from General Chemistry) a. Ionic & Covalent Bonding b. Lewis Structures

More information

II. Special Topics IIA. Enolate Chemistry & the Aldol Reaction

II. Special Topics IIA. Enolate Chemistry & the Aldol Reaction P. Wipf - Chem 2320 1 3/20/2006 II. Special Topics IIA. Enolate Chemistry & the Aldol Reaction Boger Notes: p. 147-206 (Chapter VIII) Carey/Sundberg: B p. 57-95 (Chapter B 2.1) Problem of the Day: Wang,

More information

New bond. ph 4.0. Fischer esterification. New bond 2 O * New bond. New bond H 2N. New C-C bond. New C-C bond. New C-C bond. O Cl.

New bond. ph 4.0. Fischer esterification. New bond 2 O * New bond. New bond H 2N. New C-C bond. New C-C bond. New C-C bond. O Cl. Iverson C 0N KRE Table: For use in synthesis problems, count carbons in products and starting materials then identify location(s) of new s, especially C-C or C=C s. With that information, use the following

More information

Advanced Organic Chemistry

Advanced Organic Chemistry Reinhard Bruckner Advanced Organic Chemistry Reaction Mechanisms An Imprint of Elsevier San Diego San Francisco New York Boston London Sydney Tokyo -- Foreword Preface to the English Edition Preface to

More information

Amphoteric Molecules < Chemistry of Andrei K. Yudin > Hyung Min Chi 17 JUNE 2014

Amphoteric Molecules < Chemistry of Andrei K. Yudin > Hyung Min Chi 17 JUNE 2014 Amphoteric Molecules < Chemistry of Andrei K. Yudin > Hyung Min Chi 17 JUNE 2014 1 Amphoteric molecules Amphoteric? Greek word amphoteros (both of two) Amphoterism in acid/base chemistry Amino acids (thermodynatic

More information

KOT 222 Organic Chemistry II

KOT 222 Organic Chemistry II KOT 222 Organic Chemistry II Course Objectives: 1) To introduce the chemistry of alcohols and ethers. 2) To study the chemistry of functional groups. 3) To learn the chemistry of aromatic compounds and

More information

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area 1 CHEMISTRY 263 HOME WORK Lecture Topics: Module7. Hydrogenation of Alkenes The Function of the Catalyst - Syn and anti- addition Hydrogenation of Alkynes - Syn- addition of hydrogen: Synthesis of cis-alkenes

More information

Modern Organic Synthesis an Introduction

Modern Organic Synthesis an Introduction Modern Organic Synthesis an Introduction G. S. Zweifel M. H. Nantz W.H. Freeman and Company Chapter 1 Synthetic Design 1 What is an ideal or viable synthesis, and how does one approach a synthetic project?

More information

Organic Name Reactions (an abbreviated listing)

Organic Name Reactions (an abbreviated listing) C-549 Organic Name Reactions (an abbreviated listing) R.M. Williams 1. Acetoacetic Ester Synthesis 2. Acyloin Condensation 3. Aldol Condensation 4. Allylic Rearrangement 5. Amadori Rearrangement 6. Arbuzov

More information

CHEMISTRY 263 HOME WORK

CHEMISTRY 263 HOME WORK Lecture Topics: CHEMISTRY 263 HOME WORK Module7: Hydrogenation of Alkenes Hydrogenation - syn and anti- addition - hydrogenation of alkynes - synthesis of cis-alkenes -synthesis of trans-alkenes Text sections:

More information

Tips for taking exams in 852

Tips for taking exams in 852 Comprehensive Tactical Methods in rganic Synthesis W. D. Wulff 1) Know the relative reactivity of carbonyl compounds Tips for taking exams in 852 Cl > > ' > > ' N2 eg: 'Mg Et ' 1equiv. 1equiv. ' ' Et 50%

More information

Diels Alder cycloaddition

Diels Alder cycloaddition I p1.1.1 The Diels Alder Cycloaddition Reaction in the Context of Domino Processes J. G. West and E. J. Sorensen The Diels Alder cycloaddition has been a key component in innumerable, creative domino transformations

More information

CHEM 234: Organic Chemistry II Reaction Sheets

CHEM 234: Organic Chemistry II Reaction Sheets EM234:rganichemistry eactionsheets ucleophilic addition at carbonyl groups: Grignards and reducing agents u: u u u: u u = or = or l u u u ucleophilic addition at carbonyl groups: oxygen and nitrogen nucleophiles:

More information

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

REARRANGEMENTS NOTES Mechanistic Aspects of Rearrangements

REARRANGEMENTS NOTES Mechanistic Aspects of Rearrangements - 1 - REARRANGEMENTS NOTES Mechanistic Aspects of Rearrangements Nature of the Rearrangement It can vary from being truly stepwise to migration occurring in concert with initial ionisation. These two situations

More information

Organic Reactions and Mechanisms

Organic Reactions and Mechanisms Organic Reactions and Mechanisms Organic reactions are chemical reactions involving organic compounds. The basic organic chemistry reaction types are addition reactions, elimination reactions, substitution

More information

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry A. Loupy, B.Tchoubar Salt Effects in Organic and Organometallic Chemistry 1 Introduction - Classification of Specific Salt Effects 1 1.1 Specific Salt Effects Involving the Salt's Lewis Acid or Base Character

More information

Lecture 3: Aldehydes and ketones

Lecture 3: Aldehydes and ketones Lecture 3: Aldehydes and ketones I want to start by talking about the mechanism of hydroboration/ oxidation, which is a way to get alcohols from alkenes. This gives the anti-markovnikov product, primarily

More information

CHM 292 Final Exam Answer Key

CHM 292 Final Exam Answer Key CHM 292 Final Exam Answer Key 1. Predict the product(s) of the following reactions (5 points each; 35 points total). May 7, 2013 Acid catalyzed elimination to form the most highly substituted alkene possible

More information

Cape Cod Community College

Cape Cod Community College Cape Cod Community College Departmental Syllabus Prepared by the Department of Natural Sciences & Applied Technology Date of Departmental Approval: February 3, 2014 Date Approved by Curriculum and Programs:

More information

KJM 3200 Required Reading (Pensum), Fall 2016

KJM 3200 Required Reading (Pensum), Fall 2016 KJM 3200 Required Reading (Pensum), Fall 2016 John McMurry: Organic Chemistry 8 nd ed. or Paula Y. Bruice, Organic Chemistry 7 nd ed. as specified below, as specified below. Lise-Lotte Gundersen KJM 3200.

More information

Keynotes in Organic Chemistry

Keynotes in Organic Chemistry Keynotes in Organic Chemistry Second Edition ANDREW F. PARSONS Department of Chemistry, University of York, UK Wiley Contents Preface xi 1 Structure and bonding 1 1.1 Ionic versus covalent bonds 1 1.2

More information

Rhodium Catalyzed Alkyl C-H Insertion Reactions

Rhodium Catalyzed Alkyl C-H Insertion Reactions Rhodium Catalyzed Alkyl C-H Insertion Reactions Rh Rh Jeff Kallemeyn 5/17/05 1. Cyclopropanation The Versatile and Reactive Rhodium Carbene R + Et Rh 2 (Ac) 4 R C 2 Et N 2 2. [2,3] sigmatropic rearrangement

More information

Exam 1 (Monday, July 6, 2015)

Exam 1 (Monday, July 6, 2015) Chem 231 Summer 2015 Assigned Homework Problems Last updated: Friday, July 24, 2015 Problems Assigned from Essential Organic Chemistry, 2 nd Edition, Paula Yurkanis Bruice, Prentice Hall, New York, NY,

More information

Massachusetts Institute of Technology Organic Chemistry Problem Set 1. Functional Group Transformations Study Guide

Massachusetts Institute of Technology Organic Chemistry Problem Set 1. Functional Group Transformations Study Guide Massachusetts Institute of Technology rganic Chemistry 5.511 Problem Set 1 September, 2007 Prof. Rick L. Danheiser Functional Group Transformations Study Guide The purpose of this three-part study guide

More information

ORGANIC - CLUTCH CH ADDITION REACTIONS.

ORGANIC - CLUTCH CH ADDITION REACTIONS. !! www.clutchprep.com CONCEPT: GENERAL MECHANISM Addition reactions are ones in which 1 bond is broken and 2 new bonds are formed. They are the inverse of reactions EXAMPLE: Provide the mechanism for the

More information

Suggested solutions for Chapter 28

Suggested solutions for Chapter 28 s for Chapter 28 28 PBLEM 1 ow would you make these four compounds? Give your disconnections, explain why you chose them and then give reagents for the. 2 2 Me S Exercises in basic one- group C X disconnections.

More information

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

COURSE UNIT DESCRIPTION. Dept. Organic Chemistry, Vilnius University. Type of the course unit

COURSE UNIT DESCRIPTION. Dept. Organic Chemistry, Vilnius University. Type of the course unit Course unit title Organic Chemistry II Lecturer(s) Rimantas Vaitkus COURSE UNIT DESCRIPTION Department Dept. Organic Chemistry, Vilnius University Cycle First Type of the course unit Mode of delivery Period

More information

Chemistry 335 Supplemental Slides: Interlude 1. Reduction: addition of hydrogen to the substrate. Oxidation: addition of oxygen to the substrate

Chemistry 335 Supplemental Slides: Interlude 1. Reduction: addition of hydrogen to the substrate. Oxidation: addition of oxygen to the substrate Interlude 1: Oxidations, Reductions & Other Functional Group Interconversions (FGI) 1. Definition of Oxidation and Reduction For practical purposes in organic chemistry, oxidation and reduction are defined

More information

Julio Alvarez-Builla, Juan Jose Vaquero,

Julio Alvarez-Builla, Juan Jose Vaquero, Edited by Julio Alvarez-Builla, Juan Jose Vaquero, and Jose Barluenga Modern Heterocyclic Chemistry Volume 1 WILEY- VCH WILEY-VCH Verlag GmbH & Co. KG aa List of Contributors XV Volume 1 1 Heterocyclic

More information

September [KV 804] Sub. Code: 3804

September [KV 804] Sub. Code: 3804 September 2009 [KV 804] Sub. Code: 3804 (Regulations 2008-2009) (Candidates admitted from 2008-2009 onwards) Paper IV PHARMACEUTICAL ORGANIC CHEMISTRY Time : Three hours Maximum : 70 marks Answer All questions

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II 5 Credit Hours Prepared by: Richard A. Pierce Revised Date: January 2008 by Ryan H. Groeneman Arts & Science Education Dr. Mindy Selsor, Dean

More information

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition 1. Radical Substitution on Alkanes Only Cl and Br are useful at the laboratory level. Alkane reactivity: tertiary > secondary > primary > methyl Numbers below products give their relative yield. Relative

More information

Reactions at α-position

Reactions at α-position Reactions at α-position In preceding chapters on carbonyl chemistry, a common reaction mechanism observed was a nucleophile reacting at the electrophilic carbonyl carbon site NUC NUC Another reaction that

More information

CHO. OMe. endo. xylene, 140 o C, 2 h 70% 1. CH 2 (OMe) 2, MeOH TsOH, rt 2. Bu 2 O, 1,2-dichloroethane 140 o C, 2 h 3. 6 M HCl, THF, rt 44%

CHO. OMe. endo. xylene, 140 o C, 2 h 70% 1. CH 2 (OMe) 2, MeOH TsOH, rt 2. Bu 2 O, 1,2-dichloroethane 140 o C, 2 h 3. 6 M HCl, THF, rt 44% VII Abstracts 2010 p1 2.4.12 Arene rganometallic Complexes of Chromium, Molybdenum, and Tungsten M. Uemura This review is an update to Section 2.4 and covers the literature from 1999 to 2010. (h 6 -Arene)chromium

More information

CATALYSIS MULTICATALYST SYSTEM IN ASYMMETRIC. Wiley. Department of Chemistry

CATALYSIS MULTICATALYST SYSTEM IN ASYMMETRIC. Wiley. Department of Chemistry MULTICATALYST SYSTEM IN ASYMMETRIC CATALYSIS JIAN ZHOU Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai, China Wiley Preface

More information

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes Nomenclature of Aldehydes and Ketones Chapter 16 Aldehydes and Ketones I. Aldehydes replace the -e of the parent alkane with -al The functional group needs no number Nucleophilic Addition to the Carbonyl

More information

Shi Asymmetric Epoxidation

Shi Asymmetric Epoxidation Shi Asymmetric Epoxidation Chiral dioxirane strategy: R 3 + 1 xone, ph 10.5, K 2 C 3, H 2, C R 3 formed in situ catalyst (10-20 mol%) is prepared from D-fructose, and its enantiomer from L-sorbose oxone,

More information

Structure and Reactivity

Structure and Reactivity Structure and Reactivity Fall Semester 2010 Lecture Notes Prof. Jérôme Waser BCH 4306 021 693 93 88 jerome.waser@epfl.ch Assistant: Florian De Nanteuil florian.denanteuil@epfl.ch BCH 4418 021 693 94 50

More information

Double and Triple Bonds. The addition of an electrophile and a

Double and Triple Bonds. The addition of an electrophile and a Chapter 11 Additions to Carbon-Carbon Double and Triple Bonds The addition of an electrophile and a nucleophile to a C-C C double or triple bonds 11.1 The General Mechanism Pi electrons of the double bond

More information

Suggested solutions for Chapter 40

Suggested solutions for Chapter 40 s for Chapter 40 40 PBLEM 1 Suggest mechanisms for these reactions, explaining the role of palladium in the first step. Ac Et Et BS () 4 2 1. 2. K 2 C 3 evision of enol ethers and bromination, the Wittig

More information

ANSWER GUIDE APRIL/MAY 2006 EXAMINATIONS CHEMISTRY 249H

ANSWER GUIDE APRIL/MAY 2006 EXAMINATIONS CHEMISTRY 249H AWER GUIDE APRIL/MAY 2006 EXAMIATI CEMITRY 249 1. (a) PDC / C 2 2 (b) t-bume 2 i (1 equiv) / imidazole (1 equiv) i TBDM protection of the less sterically hindered alcohol (c) BuLi (1 equiv) then (d) 2

More information

ORGANIC - BROWN 8E CH ALDEHYDES AND KETONES.

ORGANIC - BROWN 8E CH ALDEHYDES AND KETONES. !! www.clutchprep.com CONCEPT: ALDEHYDE NOMENCLATURE Replace the suffix of the alkane -e with the suffix On the parent chain, the carbonyl is always terminal, and receive a location As substituents, they

More information

Carbenes and Carbene Complexes I Introduction

Carbenes and Carbene Complexes I Introduction Carbenes and Carbene Complexes I Introduction A very interesting (honest) class of radical-like molecules Steadily becoming more important as they find far more synthetic applications We will primarily

More information

CuI CuI eage lic R tal ome rgan gbr ommon

CuI CuI eage lic R tal ome rgan gbr ommon Common rganometallic eagents Li Et 2 Li Mg Et 2 Li alkyllithium rignard Mg Mg Li Zn TF ZnCl 2 TF dialkylzinc Zn 2 2 Zn Li CuI TF ganocuprate CuI 2 2 CuI common electrophile pairings ' Cl ' '' ' ' ' ' '

More information

Score: Homework Problem Set 9 Iverson CH320N Due Monday, April 17. NAME (Print): Chemistry 320N Dr. Brent Iverson 9th Homework April 10, 2017

Score: Homework Problem Set 9 Iverson CH320N Due Monday, April 17. NAME (Print): Chemistry 320N Dr. Brent Iverson 9th Homework April 10, 2017 omework Problem Set 9 Iverson C0N Due Monday, April 7 NAME (Print): SIGNATURE: Chemistry 0N Dr. ent Iverson 9th omework April 0, 07 Please print the first three letters of your last name in the three boxes

More information

2016/17. Course Guide. CHARLES UNIVERSITY IN PRAGUE Department of Organic Chemistry. Organic Chemistry II. A Guide to the Course

2016/17. Course Guide. CHARLES UNIVERSITY IN PRAGUE Department of Organic Chemistry. Organic Chemistry II. A Guide to the Course Course Guide 2016/17 CHARLES UNIVERSITY IN PRAGUE Department of Organic Chemistry Organic Chemistry II A Guide to the Course Course Guide O R G A N I C C H E M I S T R Y I I F O R E R A S M U S S T U D

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

ORGANIC - CLUTCH CH ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION

ORGANIC - CLUTCH CH ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION !! www.clutchprep.com CONCEPT: ALDEHYDE NOMENCLATURE Replace the suffix of the alkane -e with the suffix On the parent chain, the carbonyl is always terminal, and receive a location As substituents, they

More information

Conjugated Systems & Pericyclic Reactions

Conjugated Systems & Pericyclic Reactions onjugated Systems & Pericyclic Reactions 1 onjugated Dienes from heats of hydrogenation-relative stabilities of conjugated vs unconjugated dienes can be studied: Name 1-Butene 1-Pentene Structural Formula

More information

Chapter 19. Synthesis and Reactions of b-dicarbonyl Compounds: More Chemistry of Enolate Anions. ß-dicarbonyl compounds. Why are ß-dicarbonyls useful?

Chapter 19. Synthesis and Reactions of b-dicarbonyl Compounds: More Chemistry of Enolate Anions. ß-dicarbonyl compounds. Why are ß-dicarbonyls useful? Chapter 19 Synthesis and Reactions of b-dicarbonyl Compounds: More Chemistry of Enolate Anions ß-dicarbonyl compounds Two carbonyl groups separated by a carbon Three common types ß-diketone ß-ketoester

More information

Answers To Chapter 7 Problems.

Answers To Chapter 7 Problems. Answers To Chapter Problems.. Most of the Chapter problems appear as end-of-chapter problems in later chapters.. The first reaction is an ene reaction. When light shines on in the presence of light and

More information

Synthetic possibilities Chem 315 Beauchamp 1

Synthetic possibilities Chem 315 Beauchamp 1 Synthetic possibilities hem Beauchamp Propose reasonable syntheses f the following target molecules (TM-#). You can use the given starting materials and any typical ganic reagents studied in our course

More information

Aldehydes and Ketones : Aldol Reactions

Aldehydes and Ketones : Aldol Reactions Aldehydes and Ketones : Aldol Reactions The Acidity of the a Hydrogens of Carbonyl Compounds: Enolate Anions Hydrogens on carbons a to carbonyls are unusually acidic The resulting anion is stabilized by

More information

2.222 Practice Problems 2003

2.222 Practice Problems 2003 2.222 Practice Problems 2003 Set #1 1. Provide the missing starting compound(s), reagent/solvent, or product to correctly complete each of the following. Most people in the class have not done this type

More information

AROMATIC & HETEROCYCLIC CHEMISTRY

AROMATIC & HETEROCYCLIC CHEMISTRY - 1 - AROMATIC & HETEROCYCLIC CHEMISTRY Aromatic Chemistry Aromaticity This confers an energetic stability over the equivalent double bond system. This can be explained from an MO point of view. The Huckel

More information

Alpha Substitution and Condensations of Enols and Enolate Ions. Alpha Substitution

Alpha Substitution and Condensations of Enols and Enolate Ions. Alpha Substitution Alpha Substitution and ondensations of Enols and Enolate Ions hap 23 W: 27, 28, 30, 31, 37, 39, 42-44, 47, 51, 54-56 Alpha Substitution Replacement of a hydrogen on the carbon adjacent to the carbonyl,

More information

An Introduction to Ionic Liquids. Michael Freemantle. RSC Publishing

An Introduction to Ionic Liquids. Michael Freemantle. RSC Publishing An to Ionic Liquids Michael Freemantle RSC Publishing Chapter 1 1 1.1 Definition of Ionic Liquids 1 1.2 Synonyms 1 1.3 Attraction of Ionic Liquids 2 1.4 Cations and Anions 3 1.5 Shorthand Notation for

More information

Products from reactions of carbon nucleophiles and carbon electrophiles used in the 14 C Game and our course:

Products from reactions of carbon nucleophiles and carbon electrophiles used in the 14 C Game and our course: synthesis strategies, hem / / Beauchamp roducts from reactions of carbon nucleophiles and carbon electrophiles used in the Game and our course: arbon electrophiles methyl primary organolithium reagents

More information

Carbonyl Chemistry IV: Enolate Alkylations and Aldols. Aldol Madness O O O N M + substrate. aldehyde. (Z)-enolate H

Carbonyl Chemistry IV: Enolate Alkylations and Aldols. Aldol Madness O O O N M + substrate. aldehyde. (Z)-enolate H Carbonyl Chemistry IV: nolate Alkylations and Aldols Paul Bracher Chem 30 Section 9 Section Agenda 1) o office hours Thursday 2) The Great Joe Young is covering section next onday 3) andout: Carbonyl Chemistry

More information

Molecular Rearrangements

Molecular Rearrangements Ø Migration of one the molecule group from one atom to another within Ø Generally the migrating group never leaves the molecule Ø There are five types of skeletal rearrangements- 1. Electron deficient

More information

Highlights from the MacMillan Lab. Kelly Craft Group Meeting Presentation 7/8/15

Highlights from the MacMillan Lab. Kelly Craft Group Meeting Presentation 7/8/15 Highlights from the MacMillan Lab Kelly Craft Group Meeting Presentation 7/8/15 David MacMillan! Born in Bellshill, Scotland (1968)! Undergraduate degree: University of Gaslow (Ernie Colvin)! PhD: University

More information

ORGANIC REACTIONS Chem223 (Winter 2019)

ORGANIC REACTIONS Chem223 (Winter 2019) ORGANIC REACTIONS Chem223 (Winter 2019) Lectures: Mondays 10:30-11:30 am Wednesdays 9:30-10:30 am Fridays 8:30-9:30 am Location: Stirling B (lectures), Che118 (labs) Course instructor: Dr Anne Petitjean

More information

ORGANIC REACTIONS Chem223 (Winter 2018) Chernoff Hall, room 215

ORGANIC REACTIONS Chem223 (Winter 2018) Chernoff Hall, room 215 ORGANIC REACTIONS Chem223 (Winter 2018) Lectures: Mondays 9:30-10:30 am Wednesdays 8:30-9:30 am Thursdays 10:30-11:30 am Location: Stirling C (lectures), Che118 (labs) Voluntary tutorials: Wednesdays 10:30-11:30

More information

Sul Ross State University Syllabus for Organic Chemistry II: CHEM 3408 (Spring 2017)

Sul Ross State University Syllabus for Organic Chemistry II: CHEM 3408 (Spring 2017) Sul Ross State University Syllabus for Organic Chemistry II: CHEM 3408 (Spring 2017) Class: Organic Chemistry II Instructor: Dr. David J. Leaver Room: WSB 307 Office: WSB 318 Time: MWF 9:00-9:50am Office

More information

Enols and Enolates. A type of reaction with carbonyl compounds is an α-substitution (an electrophile adds to the α carbon of a carbonyl)

Enols and Enolates. A type of reaction with carbonyl compounds is an α-substitution (an electrophile adds to the α carbon of a carbonyl) Enols and Enolates A type of reaction with carbonyl compounds is an α-substitution (an electrophile adds to the α carbon of a carbonyl) E+ E In the preceding chapters, we primarily studied nucleophiles

More information

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July Stereodivergent Catalysis Aragorn Laverny SED Group Meeting July 31 2018 1 Stereodivergent Catalysis In the context of asymmetric synthesis, a stereodivergent process is one that allows access to any given

More information

April 2002 CUME Organic Chemistry Department of Chemistry University of Missouri Columbia Saturday, April 6th, 2002 Dr.

April 2002 CUME Organic Chemistry Department of Chemistry University of Missouri Columbia Saturday, April 6th, 2002 Dr. April 2002 CUME Organic Chemistry Department of Chemistry University of Missouri Columbia Saturday, April 6th, 2002 Dr. Rainer Glaser Announced Reading: Prins Cyclization Reactions 1 Question 1. Aldol-Prins

More information

Chapter 20: Carboxylic Acids

Chapter 20: Carboxylic Acids 1 Chapter 20: Carboxylic Acids I. Introduction: Carboxylic acid structure: Classification of carboxylic acids: A carboxylic acid donates protons by the heterocyclic cleavage of the O-H bond, generating

More information

ORGANIC CHEMISTRY G. MARC LOUDON HOFI. The Benjamin/Cummings Publishing Company, Inc. THIRD EDITION PURDUE UNIVERSITY

ORGANIC CHEMISTRY G. MARC LOUDON HOFI. The Benjamin/Cummings Publishing Company, Inc. THIRD EDITION PURDUE UNIVERSITY :, Juli«ORGANIC CHEMISTRY THIRD EDITION G. MARC LOUDON PURDUE UNIVERSITY HOFI The Benjamin/Cummings Publishing Company, Inc. A Division ofaddison-wesley Publishing Company Redwood City, California Menlo

More information

Chapter 11 Reaction of Alcohols

Chapter 11 Reaction of Alcohols Chapter 11 eaction of Alcohols xidation of alcohols Alcohols are at the same oxidation level as alkenes Therefore alkenes can be converted to alcohols with acidic water PDC or PCC 2 C C 2 3 + X 3 C 3 C

More information

Reporter: Yue Ji. Date: 2016/12/26

Reporter: Yue Ji. Date: 2016/12/26 Literature Report (11) Total Synthesis of Rubriflordilactone B Reporter: Yue Ji Checker: Mu-Wang Chen Date: 2016/12/26 Yang, P.; Yao, M.; Li, J.; Li, Y.; Li, A.* Angew. Chem. Int. Ed. 2016, 55, 6964. Laboratory

More information

Chapter 5B. Functional Group Transformations: The Chemistry. Related Reactions

Chapter 5B. Functional Group Transformations: The Chemistry. Related Reactions Chapter 5B Functional Group Transformations: The Chemistry of fcarbon-carbon C b π-bonds B d and Related Reactions Oxymercuation-Demercuration Markovnikov hydration of a double bond 1 Mechanism Comparision

More information

Chemistry. Organic. A Mechanistic Approach. Penny Chaloner. CRC Press. J Taylor & Francis Group Boca Raton London New York QJ*"

Chemistry. Organic. A Mechanistic Approach. Penny Chaloner. CRC Press. J Taylor & Francis Group Boca Raton London New York QJ* Organic Chemistry A Mechanistic Approach Penny Chaloner ^ QJ*" CRC Press J Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business Contents

More information

David W.C. MacMillan: Career-in-Review. Yan Xu Dong Group Meeting Jan. 2, 2014

David W.C. MacMillan: Career-in-Review. Yan Xu Dong Group Meeting Jan. 2, 2014 David W.C. MacMillan: Career-in-Review Yan Xu Dong Group Meeting Jan. 2, 2014 David W.C. MacMillan: A Brief Introduction Career 1968 Born in Bellshill, Scotland. 1987-1991 Undergraduate degree in chemistry

More information

Appendix A. Common Abbreviations, Arrows, and Symbols. Abbreviations

Appendix A. Common Abbreviations, Arrows, and Symbols. Abbreviations smi97462_apps.qxd 12/6/04 1:09 PM Page A-1 Appendix A ommon Abbreviations, Arrows, and Symbols Abbreviations Ac acetyl, 3 BBN 9-borabicyclo[3.3.1]nonane BINAP 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl

More information

Chem 316/422 Beauchamp 1 Match the step number in the synthesis with the letter of the reagents listed just below.

Chem 316/422 Beauchamp 1 Match the step number in the synthesis with the letter of the reagents listed just below. hem 316/422 Beauchamp 1 Match the step number in the synthesis with the letter of the reagents listed just below. TP l Et step 8 4 5 eagents used in synthesis A B D E F a DMF (solvent) 1. (i-pr) 2 Li (LDA)/TF

More information

Chapter 8 Alkenes and Alkynes II: Addition Reactions

Chapter 8 Alkenes and Alkynes II: Addition Reactions Chapter 8 Alkenes and Alkynes II: Addition Reactions Introduction: Additions to Alkenes Generally the reaction is exothermic because one π and one σ bond are converted to two σ bonds The π electrons of

More information

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito 1 sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito 2016. 1. 30 1. Introduction 2 About Carbene 3 Brief history of carbene (~2000) Carbene Neutral compounds featuring a divalent carbon atom with only

More information

REACTION AND SYNTHESIS REVIEW

REACTION AND SYNTHESIS REVIEW REACTION AND SYNTHESIS REVIEW A STUDENT SHOULD BE ABLE TO PREDICT PRODUCTS, IDENTIFY REACTANTS, GIVE REACTION CONDITIONS, PROPOSE SYNTHESES, AND PROPOSE MECHANISMS (AS LISTED BELOW). REVIEW THE MECHANISM

More information

I. Introduction. II. Retrosynthetic Analysis. Andrew Baggett. Liu lab

I. Introduction. II. Retrosynthetic Analysis. Andrew Baggett. Liu lab Total Synthesis of Limonin Shuji Yamashita,* Akito Naruko, Yuki Nakazawa, Le Zhao, Yujiro Hayashi, Masahiro Hirama Tohoku University, Department of Chemistry, Aramaki-aza aoba, Aoba-ku, Sendai 980-8578

More information

به نام خدا. Organic Synthesis 1 سنتز مواد آلی. Dr Morteza Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran

به نام خدا. Organic Synthesis 1 سنتز مواد آلی. Dr Morteza Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran به نام خدا Organic Synthesis 1 سنتز مواد آلی Dr Morteza Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir References: 1. Carey, F. A.; Sundberg, R. J. Advanced Organic

More information

Pericyclic Reactions 6 Lectures Year 3 Handout 2 Michaelmas 2017

Pericyclic Reactions 6 Lectures Year 3 Handout 2 Michaelmas 2017 Pericyclic eactions 6 Lectures Year 3 andout 2 Michaelmas 27 π6 a σ2 s Prof Martin Smith CL 3.87 martin.smith@chem.ox.ac.uk http://msmith.chem.ox.ac.uk/ Cycloadditions: oxyallyl cation P46 ω s σ2 s odd

More information

COWLEY COLLEGE & Area Vocational Technical School

COWLEY COLLEGE & Area Vocational Technical School COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR ORGANIC CHEMISTRY II CHM 4251 5 Credit Hours Student Level: This course is open to students on the college level in the sophomore

More information

J. Rodriguez, D. Bonne, Y. Coquerel, and T. Constantieux

J. Rodriguez, D. Bonne, Y. Coquerel, and T. Constantieux XI 2.1.1 Michael Addition as the Key Step J. Rodriguez, D. onne, Y. Coquerel, and T. Constantieux p1 This chapter focuses on multicomponent reactions involving an Æ,â-unsaturated compound as an electrophilic

More information

Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang!

Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang! 1! Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang! 2! utline! 1. Brief Introduction! 2. ucleophilic Dominoes! 3. Electrophilc Dominoes! 4. Radical

More information

Advanced Organic Chemistry

Advanced Organic Chemistry D. A. Evans, G. Lalic Chem 530A Chemistry 530A Advanced Organic Chemistry Lecture notes part 8 Carbanions Organolithium and Grignard reagents Organocopper reagents 1. Direct metalation 2. From radical

More information

{ReBr(CO) 3 (THF)} 2 (2.5 mol%) 4-Å molecular sieves toluene, 115 o C, 24 h

{ReBr(CO) 3 (THF)} 2 (2.5 mol%) 4-Å molecular sieves toluene, 115 o C, 24 h VII Abstracts 2018 p1 10.2 Product Class 2: Benzo[c]furan and Its Derivatives. Kwiecień This chapter is a revision of the earlier cience of ynthesis contribution describing methods for the synthesis of

More information

C H Bond Functionalization: New Strategies for the Synthesis of Complex Natural Products and Pharmaceuticals. Phil Knutson Ferreira Group 12/3/2015

C H Bond Functionalization: New Strategies for the Synthesis of Complex Natural Products and Pharmaceuticals. Phil Knutson Ferreira Group 12/3/2015 C H Bond Functionalization: New Strategies for the Synthesis of Complex Natural Products and Pharmaceuticals Phil Knutson Ferreira Group 12/3/2015 New strategies in organic synthesis nsf-cchf.com What

More information

CHEM*2700 ORGANIC CHEMISTRY I (Spring/Summer Semester 2009) Information Sheet and Course Outline

CHEM*2700 ORGANIC CHEMISTRY I (Spring/Summer Semester 2009) Information Sheet and Course Outline CHEM*2700 ORGANIC CHEMISTRY I (Spring/Summer Semester 2009) Information Sheet and Course Outline Instructor: Professor William Tam Office: MacN 332 Phone: 824-4120 (Ext.52268) E-mail: wtam@uoguelph.ca

More information

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models CEM 203 Final Exam December 15, 2010 Your name: ANSWERS This a closed-notes, closed-book exam You may use your set of molecular models This test contains 15 pages Time: 2h 30 min 1. / 16 2. / 15 3. / 24

More information

Chapter 7. Alkenes: Reactions and Synthesis

Chapter 7. Alkenes: Reactions and Synthesis Chapter 7. Alkenes: Reactions and Synthesis 1 Synthesis of Alkenes: Elimination Reactions 1. Dehydrohalogenation of alkyl halides. loss of requires CH 2 CH 2 Cl Zaitsev s Rule: CH 2 C 2. Dehydration of

More information

ORGANIC CHEMISTRY. Fifth Edition. Stanley H. Pine

ORGANIC CHEMISTRY. Fifth Edition. Stanley H. Pine ORGANIC CHEMISTRY Fifth Edition Stanley H. Pine Professor of Chemistry California State University, Los Angeles McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London

More information

Tautomerism and Keto Enol Equilibrium

Tautomerism and Keto Enol Equilibrium Tautomerism and Keto Enol Equilibrium Enols & enolates are important nucleophiles in organic & biochemistry. Keto-Enol Equilibrium: Tautomerisation can be catalyzed by either acids or bases. Relative stability

More information

Advanced Organic Chemistry

Advanced Organic Chemistry D. A. Evans, G. Lalic Question of the day: Chemistry 530A TBS Me 2 C Me toluene, 130 C 70% TBS C 2 Me H H Advanced rganic Chemistry Me Lecture 16 Cycloaddition Reactions Diels _ Alder Reaction Photochemical

More information