Hristina Nikolova, Miguel Angel Aguirre, Montserrat Hidalgo and Antonio Canals. 5-6 June 2012, Plovdiv, Bulgaria. 5-6 June 2012, Plovdiv, Bulgaria

Size: px
Start display at page:

Download "Hristina Nikolova, Miguel Angel Aguirre, Montserrat Hidalgo and Antonio Canals. 5-6 June 2012, Plovdiv, Bulgaria. 5-6 June 2012, Plovdiv, Bulgaria"

Transcription

1 Green analytical chemistry: Trace elemental analysis on water samples by liquid-liquid microextration (LLME)-laser- induced breakdown spectroscopy (LIBS) Hristina Nikolova, Miguel Angel Aguirre, Montserrat Hidalgo and Antonio Canals

2 Overview Introduction Green chemistry Green analytical chemistry Sample preparation Miniaturization on sample preparation Liquid-liquid microextraction (LLME) Detection techniques for LLME Laser-induced breakdown spectroscopy (LIBS) for trace elemental analysis Evaluating LIBS for the analysis of Mn in microdroplets Direct microdroplets on aluminium substrates Testing the combination of LLME-LIBS: preliminary results

3 Introduction

4 Introduction Green Chemistry Sustainable development protection of the environment a form of development that meets the needs of the present without compromising the ability of future generations to meet their own needs

5 Introduction Green Analytical Chemistry(I) it is an unfortunate irony that environmental analytical methods often contribute to further environmental problems through the chemicals used in the analysis From : P.T. Anastas, Crit. Rev. Anal. Chem., 29(3), (1999)

6 Introduction Green Analytical Chemistry(II) The goal of Green Analytical Chemistry is to use analytical procedures that generate less hazardous waste and that are safer to use and more benign to the environment

7 Twelve Principles of Green Chemistry on Analytical Chemistry Introduction The elimination (or at least, the significant reduction) of reagents, particularly organic solvents, from analytical procedures Reduced emissions of vapours and gases, as well as liquid and solid wastes generated in analytical laboratories The elimination of highly toxic and/or eco-toxic reagents from analytical procedures (e.g., the substitution of benzene with other solvents) Reduced labour and energy consumption of analytical procedures (per single analyte) Reduced time gap between sampling and the desired information becoming available (i.e., real time analysis) From: M. Tobiszewski, A. Mechlinska, J. Namiesnik, Chem. Soc. Rev., 39, (21)

8 Introduction Challenges in Green Analytical Chemistry From: M.Tobiszewski, A. Mechlinska, J. Namiesnik, Chem. Soc. Rev., 39, (21)

9 Introduction

10 Sample preparation

11 Sample preparation Sample conditioning: Adapt the physical or chemical state to the requirements of the instrument. Removal of interfering species: Masking or separation techniques (e.g., adsorption, absorption, dialysis, precipitation, supercritical fluid extraction, liquid-liquid extraction (LLE), solid phase extraction (SPE), etc.) Additional operations: Dilution, (pre)concentration, chemical transformations and derivatization, etc.

12 Sample preparation Sample preparation is the Achilles Heel of total analytical process!!!!

13 Sample preparation Sample preparation Publications Solid phase extraction Microextraction/miniaturization Liquid-liquid extraction Heating Digestion Mixing Derivatization Automation Centrifugation Filtration Enrichment Membrane extraction/dialysis Drying Precipitation Homogenization Stirring Weighing Headspace Purge-trap Evaporation Organic extraction Soxhlet extraction Solid-liquid extraction Supercritical fluid extraction Cooling Distilation Thermal desorption Lixiviation Combustion 2 1 (Source: SciFinder Scolar 21)

14 Sample preparation Sample preparation and miniaturization N. of publicat tions/year Year Source: SciFinder (26/5/212)

15 Classification of main extraction techniques: Headspace extraction techniques: Static Headspace (SH) Purge & Trap (dynamic headspace, P&T) Membrane extraction techniques Sorptive extraction techniques: Solid-phase extraction (SPE) Stir bar sorptive extraction (SBSE) Solid-phase microextraction (SPME) Solvent extraction techniques: Liquid-liquid extraction (LLE) Liquid-liquid microextraction (LLME) Hollow fiber-liquid phase microextraction (HF-LPME) Single drop microextraction (SDME) Dispersive liquid-liquid microextraction (DLLME) Sample preparation

16 SDME Sample preparation

17 Detection techniques for LLME

18 Detection techniques for LLME Detection techniques for LLME Organic analytes HPLC, GC, CE before FID, ECD, UV-Vis, MS, etc. Inorganic analytes ETAAS, ETV-ICP-OES/MS, others (FAAS, CV-AFS, ICP-MS and ICP-OES)

19 Detection techniques for LLME THIS IS NOT PORTABLE INSTRUMENTATION!!!

20 Detection techniques for LLME Laser-induced breakdown spectroscopy (LIBS) for trace elemental analysis

21 Detection techniques for LLME LIBS Disadvantage: low sensitivity high LODs Advantages: Multielement analysis Fast Portability Easy to automate Capability to analyze very small quantities (microdroplets) of sample LLME and LIBS could be combined for trace metal analysis

22 2x1 3 1x1 3 5x Wavelength (A) Detection techniques for LLME Evaluating LIBS for the analysis of Mn in microdroplets LIBS system ns Nd:YAG laser (164 nm) Avantes modular spectrometer (Czerny-turner configuration + CCD - covering from 3 nm 4 nm) Delay system (pulse generators) for acquisition time delay control Oscilloscope and photodiode to monitor plasma formation and acquisition delay Oscilloscope Photodiode PC Avantes spectrometer Optic fiber Micro-sample Q-Switch Pulse generator Nd:YAG Laser Flash lamp Pulse generator Experimental procedure Synthetic samples with different Mn 2+ concentration were prepared Microvolumes of the prepared samples were analyzed by using two different LIBS experimental strategies: Analysis by direct laser irradiation of microdroplets Analysis by laser irradiation of microdroplets on a metallic (aluminium) substrate

23 Direct microdroplets on aluminium substrates Experimental procedure 1 µl microdroplets were placed on an aluminium substrate and left to dry for 15 minutes Laser radiation was focused on the dried microdroplet to create the LIBS plasma Plasma emission was detected by the Avantes spectrometer Five spectra were taken for each single droplet. Spectra of one single droplet were averaged Several laser shots on a single, dried, 1 µl sample droplet Results Sample microdroplets having different Mn 2+ concentration Aluminium substrate Since laser radiation can be focused on a extremely low sample area, this configuration allows several replicate measurements to be carried out in a single microdroplet. LIBS emission signal markedly improves when microdroplets are analyzed by using aluminium substrates. Detection techniques for LLME 15 min Intensity (counts) 6x1 3 5x1 3 4x1 3 3x1 3 2x1 3 1x1 3 Laser radiation Focusing lens Plasma emission to AvaSpec Mn II (259.37nm).1% Mn micro-droplet on aluminum substrate 1% Mn direct analysis of the micro-droplet Wavelength (nm) Direct analysis of microdroplets vs. the use of aluminium substrates Orange spectrum corresponds to an analyte concentration 1 times lower than that of green spectrum Mn II (26.57nm)

24 Detection techniques for LLME Results Direct microdroplets on aluminium substrates Higher reproducibility and better linearity (R 2 =.9969 compared to direct analysis of droplets Limit of detection was found to be 6x1-4 % of Mn (6 ppm) Considering that microextraction methodologies can lead to micro-volumes of extractants and high enrichment factors (more than 2, in some cases) (Mn II) m /(Al I) m y = x +.3 R 2 = x1-4 4x1-4 6x1-4 8x1-4 1x1-3 Mn (%, w/w) Analysis of microdroplets on aluminium substrates (Al was used as internal standard) LIBS analysis of microdroplets on solid substrates appears to be a promising alternative to be combined with LLME methodologies for trace elemental (a) analysis Intensity (counts) 1 ppm Mn Blank (1% Triton) Wavelength (nm) LIBS signal of a 1 ppm Mn sample

25 Detection techniques for LLME Testing the combination LLME-LIBS: preliminary results After SDME Drying LIBS analysis Spectrometer Mirror Focusing lens Optical system LIBS plasma

26 Detection techniques for LLME Testing the combination LLME-LIBS: preliminary results Univariate optimization Variables Molar ratio (APDC/analytes) ph Extraction time Stirring speed Droplet volume

27 Detection techniques for LLME Testing the combination LLME-LIBS: preliminary results Variable Molar ratio (APDC/analytes) CuI Constants 5 1 Molar ratio ph = 1 Extraction time = 1 min Stirring speed = 17 r.p.m. Droplet volume = 5 µl

28 Detection techniques for LLME Testing the combination LLME-LIBS: preliminary results ZnII Molar ratio MnII Molar ratio CuI Molar ratio 35 NiI CrI Molar ratio 5 1 Molar ratio

29 Detection techniques for LLME Testing the combination LLME-LIBS: preliminary results Variable ph 7 6 CuI Constants Molar ratio (APDC/analytes) = 5 Extraction time = 1 min Stirring speed = 17 r.p.m. Droplet volume = 5 µl ph

30 Detection techniques for LLME Testing the combination LLME-LIBS: preliminary results 7 ZnII MnII CuI ph ph ph 12 NiI CrI ph 1 2 ph ph ph

31 Detection techniques for LLME Testing the combination LLME-LIBS: preliminary results Variable Extraction time CuI Constants Time (min) Molar ratio (APDC/analytes) = 5 ph = 1 Stirring speed = 17 r.p.m. Droplet volume = 5 µl

32 Detection techniques for LLME Testing the combination LLME-LIBS: preliminary results 12 ZnII MnII CuI Time (min) Time (min) Time (min) 18 NiI CrI Time (min) Time (min)

33 Detection techniques for LLME Testing the combination LLME-LIBS: preliminary results Variable Stirring speed 7 6 CuI Constants Molar ratio (APDC/analytes) = 5 ph = 1 Extraction time = 1 min Droplet volume = 5 µl rpm

34 Detection techniques for LLME Testing the combination LLME-LIBS: preliminary results 25 ZnII MnII CuI rpm 1 2 rpm 1 2 rpm NiI CrI rpm rpm

35 Detection techniques for LLME Testing the combination LLME-LIBS: preliminary results Variable Droplet volume CuI Constants Droplet volume (µl) Molar ratio (APDC/analytes) = 5 ph = 1 Extraction time = 1 min Stirring speed = 17 r.p.m.

36 Detection techniques for LLME Testing the combination LLME-LIBS: preliminary results 25 ZnII MnII CuI Droplet volume (µl) Droplet volume (µl) Droplet volume (µl) 7 NiI CrI Droplet volume (µl) Droplet volume (µl)

37 Detection techniques for LLME Testing the combination LLME-LIBS: preliminary results Optimized values Molar ratio (APDC/analytes) = 5 ph = 1 Extraction time = 1 min Stirring speed = 17 r.p.m. Droplet volume = 7.5 µl

38 Detection techniques for LLME Testing the combination LLME-LIBS: preliminary results ZnII 26.2 nm With SDME 1 5 Blank ppb Without SDME

39 Detection techniques for LLME Testing the combination LLME-LIBS: preliminary results Without SDME With SDME Emission line (nm) Slope (ppb -1 ) LOD (ppb) Slope (ppb -1 ) LOD (ppb) ZnII (26.2) 7.6± ±3 23 MnII ( ) 29± ±4 31 CuI ( ) 26± ±5 54 NiI ( ) 2.± ±.6 67 CrI ( ) 7.± ±1.2 5

40 Conclusions Conclusions I. For the first time, the capability for elemental analysis of LLME + LIBSAcknowledgments has been experimentally proved II. Nevertheless, much work is still needed in order to definitively assess the analytical capabilities of LIBS to be coupled with several microextraction methodologies

41 Future work Future work Study and optimization of the best solid substrate to be used as solid-sample holder Study of the influence of the extraction solvent (concentration and nature surfactants, ionic liquids, organic solvents, etc.) on LIBS signal Study of the double pulse LIBS methodology as a mean to obtain further emission intensity and S/N enhancement Miniaturized/portable LIBS system

42 Acknowledgements Acknowledgements I. The Spanish Government (projects CTQ C2-1 and CTQ ) Acknowledgments II. NSF of Bulgaria (GAMA project DO 2-7) III. European Union Seventh Framework Programme (FP7). Program Capacities (REGPOT). BioSupport project

43 The SP-BG team

44 The BG-SP team

45 Thank you for your attention

Green Sample Preparation Techniques for Chromatographic Determination of Small Organic Compounds

Green Sample Preparation Techniques for Chromatographic Determination of Small Organic Compounds Green Sample Preparation Techniques for Chromatographic Determination of Small Organic Compounds Jacek Namieśnik, Agata Spietelun, and Łukasz Marcinkowski Abstract Accurate monitoring of the state of the

More information

Basic Digestion Principles

Basic Digestion Principles Basic Digestion Principles 1 From Samples to Solutions Direct Analytical Method Solid Sample Problems: Mech. Sample Preparation (Grinding, Sieving, Weighing, Pressing, Polishing,...) Solid Sample Autosampler

More information

LIBSlab ANALYZERS ANALYZERS

LIBSlab ANALYZERS ANALYZERS ANALYZERS ANALYZERS Chemical multi-elemental analysis with LIBS in modular benchtop design LIBSlab LIBSpector compact sample chamber for the LIBS analysis of solid, liquid and gaseous samples. Sample chamber

More information

Atomic Absorption Spectrometer ZEEnit P series

Atomic Absorption Spectrometer ZEEnit P series Atomic Absorption Spectrometer ZEEnit P series Technical Data ZEEnit series Update 07/2014 OBue 1/ 5 ZEEnit P series Variable high-end AA Spectrometer with Deuterium and Zeeman Background Correction with

More information

What type of samples are common? Time spent on different operations during LC analyses. Number of samples? Aims. Sources of error. Sample preparation

What type of samples are common? Time spent on different operations during LC analyses. Number of samples? Aims. Sources of error. Sample preparation What type of samples are common? Sample preparation 1 2 Number of samples? Time spent on different operations during LC analyses 3 4 Sources of error Aims Sample has to be representative Sample has to

More information

Atmospheric Analysis Gases. Sampling and analysis of gaseous compounds

Atmospheric Analysis Gases. Sampling and analysis of gaseous compounds Atmospheric Analysis Gases Sampling and analysis of gaseous compounds Introduction - External environment (ambient air) ; global warming, acid rain, introduction of pollutants, etc - Internal environment

More information

Outline. LIBS Background. LIBS Developments. LIBS Overview. Atomic Emission Spectroscopy

Outline. LIBS Background. LIBS Developments. LIBS Overview. Atomic Emission Spectroscopy Introduction to Laser Induced Breakdown Spectroscopy (LIBS) for Glass Analysis Module 4 José R. Almirall, Erica Cahoon, Maria Perez, Ben Naes, Emily Schenk and Cleon Barnett Department of Chemistry and

More information

Atomic Spectroscopy AA/ICP/ICPMS:

Atomic Spectroscopy AA/ICP/ICPMS: Atomic Spectroscopy AA/ICP/ICPMS: A Comparison of Techniques VA AWWA/VWEA Lab Practices Conference July 25, 2016 Dan Davis Shimadzu Scientific Instruments AA/ICP/ICPMS: A Comparison of Techniques Topics

More information

TOTALLY INNOVATIVE MULTIMODE AUTOSAMPLER NEW KONIK ROBOKROM Laboratory Gas Generators An Overview +8 OPERATIONAL MODES MAIN FEATURES

TOTALLY INNOVATIVE MULTIMODE AUTOSAMPLER NEW KONIK ROBOKROM Laboratory Gas Generators An Overview +8 OPERATIONAL MODES MAIN FEATURES ROBOKROM 1 TOTALLY INNOVATIVE MULTIMODE AUTOSAMPLER NEW KONIK ROBOKROM Laboratory Gas Generators An Overview ROBOKROM 2 +8 OPERATIONAL MODES HRGC+HRGC-MS HRGC+HPLC-MS STATIC HEAD SPACE PURGE & TRAP SMPE

More information

AppNote 2/2000. Stir Bar Sorptive Extraction (SBSE) applied to Environmental Aqueous Samples

AppNote 2/2000. Stir Bar Sorptive Extraction (SBSE) applied to Environmental Aqueous Samples AppNote 2/2 Stir Bar Sorptive Extraction (SBSE) applied to Environmental Aqueous Samples Pat Sandra Department of Organic Chemistry, University of Gent, Krijgslaan 281 S4, B-9 Gent, Belgium Erik Baltussen

More information

Advanced Analytical Microextraction Techniques and There Applications: A Review

Advanced Analytical Microextraction Techniques and There Applications: A Review Advanced Analytical Microextraction Techniques and There Applications: A Review Kassa Belay Department of Chemistry, College of Natural and computational sciences, Adigrat University Abstract In recent

More information

Laser Ablation for Chemical Analysis: 50 Years. Rick Russo Laser Damage Boulder, CA September 25, 2012

Laser Ablation for Chemical Analysis: 50 Years. Rick Russo Laser Damage Boulder, CA September 25, 2012 Laser Ablation for Chemical Analysis: 50 Years Rick Russo Lawrence Berkeley National Laboratory Applied Spectra, Inc 2012 Laser Damage Boulder, CA September 25, 2012 Laser Ablation for Chemical Analysis:

More information

SUPPORTING INFORMATION. A New Approach for the Surface Enhanced Resonance Raman Scattering (SERRS)

SUPPORTING INFORMATION. A New Approach for the Surface Enhanced Resonance Raman Scattering (SERRS) SUPPORTING INFORMATION A New Approach for the Surface Enhanced Resonance Raman Scattering (SERRS) Detection of Dopamine at Picomolar (pm) Levels in the Presence of Ascorbic Acid Murat Kaya, Mürvet Volkan

More information

Chapter 9. Atomic emission and Atomic Fluorescence Spectrometry Emission spectrophotometric Techniques

Chapter 9. Atomic emission and Atomic Fluorescence Spectrometry Emission spectrophotometric Techniques Chapter 9 Atomic emission and Atomic Fluorescence Spectrometry Emission spectrophotometric Techniques Emission Spectroscopy Flame and Plasma Emission Spectroscopy are based upon those particles that are

More information

Determination of Iron by Dispersive Liquid-Liquid Microextraction Procedure in Environmental Samples

Determination of Iron by Dispersive Liquid-Liquid Microextraction Procedure in Environmental Samples American Journal of Chemistry 2012, 2(1): 28-32 DOI: 10.5923/j.chemistry.20120201.07 Determination of Iron by Dispersive Liquid-Liquid Microextraction Procedure in Environmental Samples F. Sánchez Rojas

More information

Quantitative Analysis of Carbon Content in Bituminous Coal by Laser-Induced Breakdown Spectroscopy Using UV Laser Radiation

Quantitative Analysis of Carbon Content in Bituminous Coal by Laser-Induced Breakdown Spectroscopy Using UV Laser Radiation Quantitative Analysis of Carbon Content in Bituminous Coal by Laser-Induced Breakdown Spectroscopy Using UV Laser Radiation LI Xiongwei ( ) 1,3, MAO Xianglei ( ) 2, WANG Zhe ( ) 1, Richard E. RUSSO 2 1

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018. Supporting Information for Small, DOI: 10.1002/smll.201801523 Ultrasensitive Surface-Enhanced Raman Spectroscopy Detection Based

More information

Behavior and Energy States of Photogenerated Charge Carriers

Behavior and Energy States of Photogenerated Charge Carriers S1 Behavior and Energy States of Photogenerated Charge Carriers on Pt- or CoOx-loaded LaTiO2N Photocatalysts: Time-resolved Visible to mid-ir Absorption Study Akira Yamakata, 1,2* Masayuki Kawaguchi, 1

More information

Liquid-phase microextraction

Liquid-phase microextraction Trends in Analytical Chemistry, Vol. 29, No. 1, 2010 Trends Liquid-phase microextraction Ali Sarafraz-Yazdi, Amirhassan Amiri The development of faster, simpler, inexpensive and more environmentally-friendly

More information

high temp ( K) Chapter 20: Atomic Spectroscopy

high temp ( K) Chapter 20: Atomic Spectroscopy high temp (2000-6000K) Chapter 20: Atomic Spectroscopy 20-1. An Overview Most compounds Atoms in gas phase high temp (2000-6000K) (AES) (AAS) (AFS) sample Mass-to-charge (ICP-MS) Atomic Absorption experiment

More information

PAL SPME Arrow The Better SPME

PAL SPME Arrow The Better SPME PAL The Better SPME PAL The new dimension for Solid-Phase Micro SPME has become one of the most widely used extraction technologies for environmental, food and clinical analyses. It is well suited for

More information

PRINCIPLE OF ICP- AES

PRINCIPLE OF ICP- AES INTRODUCTION Non- flame atomic emission techniques, which use electrothermal means to atomize and excite the analyte, include inductively coupled plasma and arc spark. It has been 30 years since Inductively

More information

PAL SPME Arrow The Better SPME

PAL SPME Arrow The Better SPME PAL The Better SPME PAL The new dimension for Solid-Phase Micro SPME has become one of the most widely used extraction technologies for environmental, food and clinical analyses. It is well suited for

More information

Final Report. Characterisation of Sample Report. Job No 2016/11/12-34 AS No. 1234A. Client Example Contact Sample. Signed Date 2017.

Final Report. Characterisation of Sample Report. Job No 2016/11/12-34 AS No. 1234A. Client Example Contact Sample. Signed Date 2017. Final Report Title Characterisation of Job No 2016/11/12-34 AS No. 1234A Client Contact Sample Author report Signed Date 2017 Easy Reach Report 2017 v2.docx 1 of 33 Contents 1. Study Summary Page 3 2.

More information

Elemental analysis of river sediment using the Agilent 4200 MP-AES

Elemental analysis of river sediment using the Agilent 4200 MP-AES Elemental analysis of river sediment using the Agilent 4200 MP-AES Application note Environmental: Soils, sludges & sediments Authors Neli Drvodelic Agilent Technologies, Melbourne, Australia Introduction

More information

atomic absorption spectroscopy general can be portable and used in-situ preserves sample simpler and less expensive

atomic absorption spectroscopy general can be portable and used in-situ preserves sample simpler and less expensive Chapter 9: End-of-Chapter Solutions 1. The following comparison provides general trends, but both atomic absorption spectroscopy (AAS) and atomic absorption spectroscopy (AES) will have analyte-specific

More information

Chemical Analysis Problem

Chemical Analysis Problem Chemical Analysis Problem Hair analysis is frequently used for the long-term monitoring of drug and alcohol users. You are working at a forensics laboratory and have been given the task of developing a

More information

Determination of major, minor and trace elements in rice fl our using the 4200 Microwave Plasma- Atomic Emission Spectrometer (MP-AES) Authors

Determination of major, minor and trace elements in rice fl our using the 4200 Microwave Plasma- Atomic Emission Spectrometer (MP-AES) Authors Determination of major, minor and trace elements in rice flour using the 4200 Microwave Plasma- Atomic Emission Spectrometer (MP-AES) Application note Food testing Authors John Cauduro Agilent Technologies,

More information

Supplementary information for Organically doped palladium: a highly efficient catalyst for electroreduction of CO 2 to methanol

Supplementary information for Organically doped palladium: a highly efficient catalyst for electroreduction of CO 2 to methanol Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2015 Supplementary information for rganically doped palladium: a highly efficient catalyst for

More information

Supporting Information

Supporting Information Supporting Information Decorating Graphene Sheets with Gold Nanoparticles Ryan Muszynski, Brian Seeger and, Prashant V. Kamat* Radiation Laboratory, Departments of Chemistry & Biochemistry and Chemical

More information

Research Article Use of Dispersive Liquid-Liquid Microextraction and UV-Vis Spectrophotometry for the Determination of Cadmium in Water Samples

Research Article Use of Dispersive Liquid-Liquid Microextraction and UV-Vis Spectrophotometry for the Determination of Cadmium in Water Samples Spectroscopy, Article ID 832398, 4 pages http://dx.doi.org/10.1155/2014/832398 Research Article Use of Dispersive Liquid-Liquid Microextraction and UV-Vis Spectrophotometry for the Determination of Cadmium

More information

Some Recent Developments in Headspace Gas Chromatography

Some Recent Developments in Headspace Gas Chromatography Current Analytical Chemistry, 2005, 1, 79-83 79 Some Recent Developments in Headspace Gas Chromatography J. Y. Zhu*,1 and X.-S. Chai 2 1 USDA Forest Service, Forest Products Laboratory, One Gifford Pinchot

More information

Ablation Dynamics of Tin Micro-Droplet Target for LPP-based EUV light Source

Ablation Dynamics of Tin Micro-Droplet Target for LPP-based EUV light Source 1 Ablation Dynamics of Tin Micro-Droplet Target for LPP-based EUV light Source D. Nakamura, T. Akiyama, K. Tamaru, A. Takahashi* and T. Okada Graduate School of Information Science and Electrical Engineering,

More information

Analysis of domestic sludge using the Agilent 4200 MP-AES

Analysis of domestic sludge using the Agilent 4200 MP-AES Analysis of domestic sludge using the Agilent 4200 MP-AES Application note Environmental Authors Neli Drvodelic Agilent Technologies, Melbourne, Australia Introduction Managing the treatment and disposal

More information

Environmental impact. Improve resource efficiency. Quality secondary raw materials. Pollution. CO 2 emission. Biodiversity. Policy and regulations

Environmental impact. Improve resource efficiency. Quality secondary raw materials. Pollution. CO 2 emission. Biodiversity. Policy and regulations Improve resource efficiency Environmental impact Quality secondary raw materials Pollution CO 2 emission Policy and regulations Biodiversity Waste Resources Overall view of Innovation EOL Building 0-22

More information

Supporting Information

Supporting Information Supporting Information A Generic Method for Rational Scalable Synthesis of Monodisperse Metal Sulfide Nanocrystals Haitao Zhang, Byung-Ryool Hyun, Frank W. Wise, Richard D. Robinson * Department of Materials

More information

Spectroscopy Problem Set February 22, 2018

Spectroscopy Problem Set February 22, 2018 Spectroscopy Problem Set February, 018 4 3 5 1 6 7 8 1. In the diagram above which of the following represent vibrational relaxations? 1. Which of the following represent an absorbance? 3. Which of following

More information

The. Family of Mercury Analyzers. Hydra II AA Atomic Absorption Detection Liquid Samples

The. Family of Mercury Analyzers. Hydra II AA Atomic Absorption Detection Liquid Samples The Hydra II Family of Mercury Analyzers At Teledyne Leeman Labs, atomic spectroscopy is our business our only business. We are industry leading innovators with a proven track record providing systems

More information

ICP-OES Application Note Number 35

ICP-OES Application Note Number 35 ICP-OES Application Note Number 35 Rapid measurement of major, minor and trace levels in soils using the Varian 730-ES Vincent Calderon Varian, Inc. Introduction As part of the global strategy for sustainable

More information

Ionization Techniques Part IV

Ionization Techniques Part IV Ionization Techniques Part IV CU- Boulder CHEM 5181 Mass Spectrometry & Chromatography Presented by Prof. Jose L. Jimenez High Vacuum MS Interpretation Lectures Sample Inlet Ion Source Mass Analyzer Detector

More information

OES - Optical Emission Spectrometer 2000

OES - Optical Emission Spectrometer 2000 OES - Optical Emission Spectrometer 2000 OES-2000 is used to detect the presence of trace metals in an analyte. The analyte sample is introduced into the OES-2000 as an aerosol that is carried into the

More information

Chem 155 Quiz 3 Review Topics: Quiz 3 outline

Chem 155 Quiz 3 Review Topics: Quiz 3 outline Quiz 3 outline 1. Atomic absorption spectrometry a. Principles of FAAS where selectivity and sensitivity arise b. Spectrometer design c. Atomization processes d. Sensitvitiy and atomization: protecting

More information

Surfactant-Free Solution Synthesis of Fluorescent Platinum Subnanoclusters

Surfactant-Free Solution Synthesis of Fluorescent Platinum Subnanoclusters This journal is (c) The Royal Society of Chemistry 21 Surfactant-Free Solution Synthesis of Fluorescent Platinum Subnanoclusters Hideya KAWASAKI,*, Hiroko YAMAMOTO, Hiroki FUJIMORI, Ryuichi ARAKAWA, Mitsuru

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information

INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY Edited by AKBAR MONTASER George Washington University Washington, D.C. 20052, USA WILEY-VCH New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber CH217 Fundamentals of Analytical Chemistry Module Leader: Dr. Alison Willows Electromagnetic spectrum Properties of electromagnetic radiation Many properties of electromagnetic radiation can be described

More information

Determination of Volatile Aromatic Compounds in Soil by Manual SPME and Agilent 5975T LTM GC/MSD

Determination of Volatile Aromatic Compounds in Soil by Manual SPME and Agilent 5975T LTM GC/MSD Determination of Volatile Aromatic Compounds in Soil by Manual SPME and Agilent 5975T LTM GC/MSD Application Note Environmental Author Suli Zhao, Andy Zhai Agilent Technologies Co., Ltd. 412 Yinglun Road

More information

Carbon powder modification. Preparation of NS1, NS2, NS3 and NS4.

Carbon powder modification. Preparation of NS1, NS2, NS3 and NS4. SUPPORTING INFORMATION EXPERIMENTAL SECTION Reagents. Carbon powder (Norit-S50) was purchased from Norit, 4-aminobenzene sulfonic acid (99%), lithium perchlorate (99%, potassium ferricyanide (99%) and

More information

ICP-Mass Spectrometer

ICP-Mass Spectrometer ICP-Mass Spectrometer New Mass Spectrometers The main issue: sequential vs. simultaneous Scanning, peak hopping are sequential Like viewing a photo through a peephole One pixel at a time Other parts of

More information

Atomic Absorption Spectroscopy

Atomic Absorption Spectroscopy CH 2252 Instrumental Methods of Analysis Unit IV Atomic Absorption Spectroscopy Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering

More information

Mercury, total-in-sediment, atomic absorption spectrophotometry, nameless, direct

Mercury, total-in-sediment, atomic absorption spectrophotometry, nameless, direct 1. Application Mercury, total-in-sediment, atomic absorption spectrophotometry, nameless, direct Parameter and Code: Mercury, total, I-6463-86 (µg/g as Hg): none assigned 1.1 This method is used to analyze

More information

a. An emission line as close as possible to the analyte resonance line

a. An emission line as close as possible to the analyte resonance line Practice Problem Set 5 Atomic Emission Spectroscopy 10-1 What is an internal standard and why is it used? An internal standard is a substance added to samples, blank, and standards. The ratio of the signal

More information

Electronic Supplementary Information. Ultrafast Charge Separation in Supramolecular Tetrapyrrole- Graphene Hybrids

Electronic Supplementary Information. Ultrafast Charge Separation in Supramolecular Tetrapyrrole- Graphene Hybrids Electronic Supplementary Information Ultrafast Charge Separation in Supramolecular Tetrapyrrole- Graphene Hybrids Chandra Bikram, K.C, a Sushanta Das, a Kei Ohkubo, b Shunichi Fukuzumi, b,c,* and Francis

More information

novaa 800 D Atomic Absorption Spectrometer

novaa 800 D Atomic Absorption Spectrometer Technical Data Atomic Absorption Spectrometer Cpt : +27 (0) 21 905 0476 Jhb : +27 (0) 11 794 Dbn : +27 (0) 31 266 2454 1/7 General The is a compact atomic absorption spectrometer with deuterium background

More information

Sampling, Storage and Pre-Treatment Techniques

Sampling, Storage and Pre-Treatment Techniques 1. Sampling Protocol Sample needs to be representative of the body of water (or other matrix) from where it originates. Sampling Considerations A. Location B. Frequency (hourly, daily) C. Spatial and temporal

More information

CH. 21 Atomic Spectroscopy

CH. 21 Atomic Spectroscopy CH. 21 Atomic Spectroscopy 21.1 Anthropology Puzzle? What did ancient people eat for a living? Laser Ablation-plasma ionization-mass spectrometry CH. 21 Atomic Spectroscopy 21.2 plasma In Atomic Spectroscopy

More information

Fragrances Sampling and Analysis

Fragrances Sampling and Analysis Fragrances Sampling and Analysis Picture: Roman Kaiser at field work Picture source: Givaudan Marco Stöckli, Eva Gleißner 17.11.2015 1 http://www.wysinfo.com/perfume/picts/0_wysinfo-smell%20drawing2_550_1.jpg,

More information

AppNote 2/2000. Stir Bar Sorptive Extraction (SBSE) applied to En vi ron men tal Aqueous Samples INTRODUCTION

AppNote 2/2000. Stir Bar Sorptive Extraction (SBSE) applied to En vi ron men tal Aqueous Samples INTRODUCTION AppNote 2/2 Stir Bar Sorptive Extraction (SBSE) applied to En vi ron men tal Aqueous Samples Pat Sandra Department of Organic Chemistry, University of Gent, Krijgslaan 281 S4, B-9 Gent, Belgium Erik Baltussen

More information

Rapid and precise calcium isotope ratio determinations using the Apex-ACM desolvating inlet system with sector-field ICP-MS in low resolution

Rapid and precise calcium isotope ratio determinations using the Apex-ACM desolvating inlet system with sector-field ICP-MS in low resolution APEX-ACM Ca Ratios Rapid and precise calcium isotope ratio determinations using the Apex-ACM desolvating inlet system with sector-field ICP-MS in low resolution Abstract High resolution ICP-MS is used

More information

Determination of volatiles in Food sample preparation strategies and techniques Dr Kathy Ridgway

Determination of volatiles in Food sample preparation strategies and techniques Dr Kathy Ridgway Determination of volatiles in Food sample preparation strategies and techniques Dr Kathy Ridgway Who are Anatune/what do we do? Established over 20 years Our Focus: Sell and Support Solutions - wide number

More information

*Author for Correspondence

*Author for Correspondence SEPARATION AND PRECONCENTRATION OF ULTRA TRACE AMOUNTS OF Cr (III) IN ENVIROMENTAL WATER SAMPLES BY DISPERSIVE LIQUID-LIQUID MICROEXTRACTION AND ELECTROTHERMAL ATOMIC ABSORPTION SPECTROMETRY * Jafar Burromandpiroze

More information

Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy

Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy Hiroshi Onodera Application & Research Center, JEOL Ltd. Introduction um, PBB and PBDE) are subject to usage restrictions in Europe.

More information

Synthesis of 2 ) Structures by Small Molecule-Assisted Nucleation for Plasmon-Enhanced Photocatalytic Activity

Synthesis of 2 ) Structures by Small Molecule-Assisted Nucleation for Plasmon-Enhanced Photocatalytic Activity Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Synthesis of Au@UiO-66(NH 2 ) Structures by Small Molecule-Assisted

More information

BATTERY INDUSTRY STANDARD ANALYTICAL METHOD

BATTERY INDUSTRY STANDARD ANALYTICAL METHOD BATTERY INDUSTRY STANDARD ANALYTICAL METHOD For the Determination of Mercury, Cadmium and Lead in Alkaline Manganese Cells Using AAS, ICP-AES and "Cold Vapour" European Portable Battery Association (EPBA)

More information

Sensitive Detection of 2-MIB and Geosmin in Drinking Water

Sensitive Detection of 2-MIB and Geosmin in Drinking Water Sensitive Detection of -MIB and Geosmin in Drinking Water Application Note Environmental Author Yean-Woong You Agilent Technologies, Inc. Seoul, Korea Abstract An automated SPME extraction method for easy

More information

CHAPTER V ANALYTICAL METHODS ESTIMATION OF DICLOFENAC. Diclofenac (gift sample from M/s Micro Labs Ltd., Pondicherry)

CHAPTER V ANALYTICAL METHODS ESTIMATION OF DICLOFENAC. Diclofenac (gift sample from M/s Micro Labs Ltd., Pondicherry) CHAPTER V ANALYTICAL METHODS ESTIMATION OF DICLOFENAC A UV spectrophotometric method based on the measurement of absorbance at 276nm in phosphate buffer of p H 7.4 was used in the present study of the

More information

Xiufang Chen, Jinshui Zhang, Xianzhi Fu, Markus Antonietti, and Xinchen Wang*

Xiufang Chen, Jinshui Zhang, Xianzhi Fu, Markus Antonietti, and Xinchen Wang* -Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light Xiufang Chen, Jinshui Zhang, Xianzhi Fu, Markus Antonietti, and Xinchen Wang* Supporting Information: Synthesis of :

More information

9/13/10. Each spectral line is characteristic of an individual energy transition

9/13/10. Each spectral line is characteristic of an individual energy transition Sensitive and selective determination of (primarily) metals at low concentrations Each spectral line is characteristic of an individual energy transition 1 Atomic Line Widths Why do atomic spectra have

More information

Fundamental investigation on CO 2 laser-produced Sn plasma for an EUVL source

Fundamental investigation on CO 2 laser-produced Sn plasma for an EUVL source Fundamental investigation on CO 2 laser-produced Sn plasma for an EUVL source Yezheng Tao*, Mark Tillack, Kevin Sequoia, Russel Burdt, Sam Yuspeh, and Farrokh Najmabadi University of California, San Diego

More information

Ch 313 FINAL EXAM OUTLINE Spring 2010

Ch 313 FINAL EXAM OUTLINE Spring 2010 Ch 313 FINAL EXAM OUTLINE Spring 2010 NOTE: Use this outline at your own risk sometimes a topic is omitted that you are still responsible for. It is meant to be a study aid and is not meant to be a replacement

More information

A novel AgIO 4 semiconductor with ultrahigh activity in photodegradation of organic dyes: insights into the photosensitization mechanism

A novel AgIO 4 semiconductor with ultrahigh activity in photodegradation of organic dyes: insights into the photosensitization mechanism Supporting Information for: A novel AgIO 4 semiconductor with ultrahigh activity in photodegradation of organic dyes: insights into the photosensitization mechanism Jianting Tang*, Datang Li*, Zhaoxia

More information

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES Chemistry 524--Final Exam--Keiderling May 4, 2011 3:30 -?? pm -- 4286 SES Please answer all questions in the answer book provided. Calculators, rulers, pens and pencils are permitted. No open books or

More information

Analytical Chemistry. The Analytical Process Sample Preparation. Dr. A. Jesorka, 6112,

Analytical Chemistry. The Analytical Process Sample Preparation. Dr. A. Jesorka, 6112, Analytical Chemistry The Analytical Process Sample Preparation Dr. A. Jesorka, 6112, aldo@chalmers.se Lecture Summary 1. The analytical process. More than measurement! Several steps from problem to report.

More information

Sub-10-nm Au-Pt-Pd Alloy Trimetallic Nanoparticles with. High Oxidation-Resistant Property as Efficient and Durable

Sub-10-nm Au-Pt-Pd Alloy Trimetallic Nanoparticles with. High Oxidation-Resistant Property as Efficient and Durable Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Sub-10-nm Au-Pt-Pd Alloy Trimetallic Nanoparticles with High

More information

Product Descriptions and Offerings

Product Descriptions and Offerings Product Descriptions and Offerings Teledyne Leeman Labs is a leading innovator of analytical instrumentation for elemental analysis. Laboratories in industries ranging from environmental science, oil and

More information

Gas Sensors and Solar Water Splitting. Yang Xu

Gas Sensors and Solar Water Splitting. Yang Xu Gas Sensors and Solar Water Splitting Yang Xu 11/16/14 Seite 1 Gas Sensor 11/16/14 Seite 2 What are sensors? American National Standards Institute (ANSI) Definition: a device which provides a usable output

More information

UV Spectroscopy Determination of Aqueous Lead and Copper Ions in Water

UV Spectroscopy Determination of Aqueous Lead and Copper Ions in Water UV Spectroscopy Determination of Aqueous Lead and Copper Ions in Water C. H. Tan a, Y. C. Moo a, M. Z. Matjafri a and H. S. Lim a a School of Physics, Universiti Sains Malaysia, 118 Pulau Pinang, Malaysia.

More information

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Laser heating of noble gas droplet sprays: EUV source efficiency considerations Laser heating of noble gas droplet sprays: EUV source efficiency considerations S.J. McNaught, J. Fan, E. Parra and H.M. Milchberg Institute for Physical Science and Technology University of Maryland College

More information

Low cost, rapid and in situ accurate quantification of chloramines and ammonia

Low cost, rapid and in situ accurate quantification of chloramines and ammonia Low cost, rapid and in situ accurate quantification of chloramines and ammonia National Environmental Monitoring Conference 2018 Merwan Benhabib, PhD VP Engineering Chlorine + Ammonia Rate of formation

More information

Determination the elemental composition of soil samples

Determination the elemental composition of soil samples 4. Experiment Determination the elemental composition of soil samples Objectives On this practice you will determine the elemental composition of soil samples by Inductively Coupled Plasma Optical Emission

More information

Product Safety Reference Manual. Book 5 - Laboratory Policies and Procedures C

Product Safety Reference Manual. Book 5 - Laboratory Policies and Procedures C Book 5 - Laboratory Policies and Procedures C03-1 2009-06-15 1 Scope 1.1 This method describes a general procedure for the determination of leachable arsenic, selenium, cadmium, antimony, and barium in

More information

Optimization of laser-produced plasma light sources for EUV lithography

Optimization of laser-produced plasma light sources for EUV lithography page 1 of 17 Optimization of laser-produced plasma light sources for EUV lithography M. S. Tillack and Y. Tao 1 University of California, San Diego Center for Energy Research 1 Currently at Cymer Inc.

More information

Test Method: CPSC-CH-E

Test Method: CPSC-CH-E UNITED STATES CONSUMER PRODUCT SAFETY COMMISSION DIRECTORATE FOR LABORATORY SCIENCES DIVISION OF CHEMISTRY 10901 DARNESTOWN RD GAITHERSBURG, MD 20878 Test Method: CPSC-CH-E1001-08 Standard Operating Procedure

More information

Supporting Information. Facile design of phase separation for microfluidic. droplet-based liquid phase microextraction as a front end to

Supporting Information. Facile design of phase separation for microfluidic. droplet-based liquid phase microextraction as a front end to Supporting Information Facile design of phase separation for microfluidic droplet-based liquid phase microextraction as a front end to electrothermal vaporization-icpms for the analysis of trace metals

More information

Chem 310 rd. 3 Homework Set Answers

Chem 310 rd. 3 Homework Set Answers -1- Chem 310 rd 3 Homework Set Answers 1. A double line labeled S 0 represents the _ground electronic_ state and the _ground vibrational_ state of a molecule in an excitation state diagram. Light absorption

More information

HPLC Winter Webinars Part 2: Sample Preparation for HPLC

HPLC Winter Webinars Part 2: Sample Preparation for HPLC HPLC Winter Webinars Part 2: Sample Preparation for HPLC Jon Bardsley, Application Chemist Thermo Fisher Scientific, Runcorn/UK The world leader in serving science What am I Going to Talk About? What do

More information

Laser-produced extreme ultraviolet (EUV) light source plasma for the next generation lithography application

Laser-produced extreme ultraviolet (EUV) light source plasma for the next generation lithography application Laser-produced extreme ultraviolet (EUV) light source plasma for the next generation lithography application EUV light source plasma Tin icrodroplet Main pulse (CO2 laser pulse) Pre-pulse (Nd:YAG laser

More information

AIMALYTICAL CHEMISTRY

AIMALYTICAL CHEMISTRY Fundamentals of AIMALYTICAL CHEMISTRY Seventh Edition Douglas A. Skoog Stanford University Donald M. West San Jose State University F. James Holler University ;of Kentucky W r SAUNDERS COLLEGE PUBLISHING

More information

Fourier Transform Infrared Spectrometry Prelab Last modified: June 17, 2014

Fourier Transform Infrared Spectrometry Prelab Last modified: June 17, 2014 Fourier Transform Infrared Spectrometry Prelab Recommended reading: AirUCI Lab Manual: Environmental Chemistry Text: FTIR Lab Pages: 6, 7, 13 16 on Light Absorption Pages: 175 177, 184, 185 on Molecular

More information

L E A. Laser Elemental Analyzer

L E A. Laser Elemental Analyzer L E A Laser Elemental Analyzer The Future of handheld analysis The LEA is a hand-held analyzer which uses a low power laser beam to provide instant, on-site, elemental fingerprinting of materials. The

More information

Hydrogen Bonded Dimer Stacking Induced Emission of Amino-Benzoic Acid Compounds

Hydrogen Bonded Dimer Stacking Induced Emission of Amino-Benzoic Acid Compounds Electronic Supplementary Information (ESI) Hydrogen Bonded Dimer Stacking Induced Emission of Amino-Benzoic Acid Compounds Tianlei Zhou, Feng Li, Yan Fan, Weifeng Song, Xiaoyue Mu, Hongyu Zhang* and Yue

More information

ADVANCES IN ANALYTICAL MICROEXTRACTION METHODS TOWARDS GREEN CHEMISTRY

ADVANCES IN ANALYTICAL MICROEXTRACTION METHODS TOWARDS GREEN CHEMISTRY ADVANCES IN ANALYTICAL MICROEXTRACTION METHODS TOWARDS GREEN CHEMISTRY M. Marsin Sanagi,* 1,2 Wan Aini Wan Ibrahim, 2 See Hong Heng, 2 Nurul Auni Zainal Abidin, 2 Yanuardi Raharjo, 2 Mazidatulakmam Miskam,

More information

PROCEDURES. Pharmacopeial Forum 2 Vol. 36(1) [Jan. Feb. 2009]

PROCEDURES. Pharmacopeial Forum 2 Vol. 36(1) [Jan. Feb. 2009] 2 Vol. 36(1) [Jan. Feb. 2009] BRIEFING h233i Elemental Impurities Procedures. This proposed new general test chapter is the second of two being developed to replace the general test chapter Heavy Metals

More information

GC/MS Application Note

GC/MS Application Note GC/MS Application Note Determination of Odor Compounds in Water by SPME Arrow Gas Chromatography/Mass Spectrometry www.palsystem.com Determination of Odor Compounds in Water by SPME Arrow Gas Chromatography/Mass

More information

Evaluation of laser-induced breakdown spectroscopy (LIBS) as a new in situ chemical sensing technique for the deep ocean

Evaluation of laser-induced breakdown spectroscopy (LIBS) as a new in situ chemical sensing technique for the deep ocean Evaluation of laser-induced breakdown spectroscopy (LIBS) as a new in situ chemical sensing technique for the deep ocean Anna P. M. Michel, Norman E. Farr, and Alan D. Chave Department of Applied Ocean

More information

LEAD(II) AND COBALT(III) HEPTHYLDITHIOCARBAMATES AS NEW COFLOTATION REAGENTS FOR PRECONCENTRATION OF CADMIUM BEFORE ITS ETAAS DETERMINATION

LEAD(II) AND COBALT(III) HEPTHYLDITHIOCARBAMATES AS NEW COFLOTATION REAGENTS FOR PRECONCENTRATION OF CADMIUM BEFORE ITS ETAAS DETERMINATION LEAD(II) AND COBALT(III) HEPTHYLDITHIOCARBAMATES AS NEW COFLOTATION REAGENTS FOR PRECONCENTRATION OF CADMIUM BEFORE ITS ETAAS DETERMINATION TRAJČE STAFILOV, GORICA PAVLOVSKA AND KATARINA ČUNDEVA Institute

More information

CARBON NANOTUBE ANALYSIS USING THE TSI LIBS DESKTOP ANALYZER

CARBON NANOTUBE ANALYSIS USING THE TSI LIBS DESKTOP ANALYZER CARBON NANOTUBE ANALYSIS USING THE TSI LIBS DESKTOP ANALYZER APPLICATION NOTE LIBS-019 Carbon Nanotubes (CNTs) are used in an ever increasing number of applications, from engineering applications (lighter,

More information

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS www.arpapress.com/volumes/vol19issue1/ijrras_19_1_06.pdf HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS M. Eslamifar Physics Department, BehbahanKhatamAl-Anbia

More information

Optical Emission Spectroscopy of Diffuse Coplanar Surface Barrier Discharge

Optical Emission Spectroscopy of Diffuse Coplanar Surface Barrier Discharge WDS'13 Proceedings of Contributed Papers, Part II, 144 148, 2013. ISBN 978-80-7378-251-1 MATFYZPRESS Optical Emission Spectroscopy of Diffuse Coplanar Surface Barrier Discharge Z. Tučeková, 1 A. Zahoranová,

More information

Innovative. Intuitive. Concentration (ppb) R = Versatile. Hydra II C Mercury Analyzer

Innovative. Intuitive. Concentration (ppb) R = Versatile. Hydra II C Mercury Analyzer Innovative 0.01 0.1 1 10 Intuitive Concentration (ppb) R = 0.99999 Versatile Hydra II C Mercury Analyzer At Teledyne Leeman Labs; atomic spectroscopy is our business our only business. We are industry

More information