Quantitative Analysis of Carbon Content in Bituminous Coal by Laser-Induced Breakdown Spectroscopy Using UV Laser Radiation

Size: px
Start display at page:

Download "Quantitative Analysis of Carbon Content in Bituminous Coal by Laser-Induced Breakdown Spectroscopy Using UV Laser Radiation"

Transcription

1 Quantitative Analysis of Carbon Content in Bituminous Coal by Laser-Induced Breakdown Spectroscopy Using UV Laser Radiation LI Xiongwei ( ) 1,3, MAO Xianglei ( ) 2, WANG Zhe ( ) 1, Richard E. RUSSO 2 1 State Key Lab of Power Systems, Department of Thermal Engineering, Tsinghua-BP Clean Energy Center, Tsinghua University, Beijing , China 2 Lawrence Berkeley National Laboratory, University of California, Berkeley 94720, United States 3 Guodian New Energy Technology Research Institute, Beijing , China Abstract The carbon content of bituminous coal samples was analyzed by laser-induced breakdown spectroscopy. The 266 nm laser radiation was utilized for laser ablation and plasma generation in air. The partial least square method and the dominant factor based PLS method were used to improve the measurement accuracy of the carbon content of coal. The results showed that the PLS model could achieve good measurement accuracy, and the dominant factor based PLS model could further improve the measurement accuracy. The coefficient of determination and the root-mean-square error of prediction of the PLS model were 0.97 and 2.19%, respectively; and those values for the dominant factor based PLS model were 0.99 and 1.51%, respectively. The results demonstrated that the 266 nm wavelength could accurately measure the carbon content of bituminous coal. Keywords: LIBS, coal, carbon content, PLS, quantitative measurement PACS: Fi, Kz DOI: / /17/11/07 (Some figures may appear in colour only in the online journal) 1 Introduction Bituminous coal is the main fuel for coal-fired power plants. As the heat value can be quickly evaluated from the carbon content for bituminous coal, the on-line or fast measurement of carbon content of bituminous coal is very helpful for power plants to realize combustion optimization and coal pricing in real time [1]. Laserinduced breakdown spectroscopy (LIBS) has great potential for the on-line or fast measurement of carbon content of coal because of its merits, including nearly no sample preparation, rapid analysis, simultaneous multielement measurement, and so on [2 4]. Up to now, the analysis of carbon content of bituminous coal by LIBS has been performed in several studies [5 8]. The commonly used partial least square (PLS) method has been utilized for quantitatively measuring the carbon content of bituminous coal [7,8], but the results are not satisfactory because of matrix effects, variations in the experimental condition, and so on [9 11]. Other data processing methods, such as the spectrum standardization method and the dominant factor based PLS method, have also been proposed to improve the measurement precision and accuracy of carbon content of bituminous coal [12 14]. Laser irradiance at 532 nm wavelength was mainly utilized for measuring the carbon content of bituminous coal in previous studies [7,8,12 14]. Their results showed that the atomic carbon emission line intensity for coal samples that have high volatile content is obviously reduced by the matrix effect, resulting in a poor linearity between the carbon content and the atomic carbon emission line intensity [12]. LIBS measurements can be influenced by the laser wavelength, which has close relationship with the processes of laser ablation and plasma generation [15]. As shown in previous studies, the ultraviolet (UV) wavelength can improve the coupling efficiency and, therefore, it has better performance than the longer wavelengths (i.e., 532 nm and 1064 nm), in the qualitative or quantitative analysis by LIBS [16,17]. Besides, in nanosecond laser-induced breakdown, the plasma shielding that is caused by the interaction of laser radiation with expanding plume, can be better reduced by the UV wavelength compared to the longer supported by National Natural Science Foundation of China (No ) and the National Basic Research Program of China (973 Program) (No. 2013CB228501). The authors also thank the financial funding from the U. S. Department of Energy, Office of Basic Energy Sciences, Chemical Science Division at Lawrence Berkeley National Laboratory (No. 2013CB228501) 928

2 LI Xiongwei et al.: Quantitative Analysis of Carbon Content in Bituminous Coal by LIBS wavelengths [18]. In this study, the 266 nm laser irradiance was used for measuring the carbon content of bituminous coal to investigate whether the UV laser ablation can achieve good quantitative results. The PLS method and the dominant factor based PLS method were used to establish the calibration model. 2 Description of the dominant factor based PLS model A previously established model that combines the spectrum standardization method and the dominant factor based PLS method was utilized for the measurement of carbon content in coal [14]. As the combination model utilized the spectrum standardization method to build the dominant factor model, it could still be regarded as a dominant factor based PLS model, which will be described in this section. In the previously proposed dominant factor based PLS model [7], most related spectral information was explicitly extracted to express the main part of elemental content. As the explicitly extracted spectral information expressed the dominant part in the model, it was called the dominant factor. There was still a difference between the true value of the elemental concentration and the value calculated by the dominant factor, which was caused by the fluctuations in plasma temperature and electron number density, inter-element interference and so on. The whole spectrum, containing some useful information about the sources of the difference, was utilized to further reduce the difference using PLS. It is essential to find the most related spectral line intensities to the carbon content to establish an accurate dominant factor model. Besides the atomic carbon emission line, the molecular emission lines of C 2 and CN can also be found in the coal s LIBS spectrum. C 2 can be produced either from the direct laser ablation of the coal or from the recombination of carbon atomics in the plasma [19,20], and CN can be produced either from the direct laser ablation of coal or from the reaction between C and N if the coal is measured in air. The production of C 2 and CN shows that a portion of the ablated carbon cannot radiate the atomic carbon emission, so the molecular emission of C 2 and CN should also be used to express the carbon content. A previous study has shown that the two molecular emission line intensities could be utilized to compensate the atomic carbon emission line intensity for those coal samples that have high volatile content, and the compensated carbon emission line intensity had better linearity with the carbon content compared with the atomic carbon emission line intensity [12]. Therefore, the atomic carbon emission line intensity is compensated by the two molecular emission line intensities. The carbon content can be calculated as follows: C = l 1 I C + l 2 I C2 + l 3 I CN + l 4, (1) where C is the carbon content, I C is the atomic carbon emission line intensity, I C2 is the emission line intensity of C 2 ( nm ), I CN is the emission line intensity of CN ( nm), and l 1, l 2, l 3, and l 4 are the regression coefficients calculated by PLS. The compensated carbon intensity can be expressed as follows: I ij = I C + l 2 l 1 I C2 + l 3 l 1 I CN, (2) where I ij is compensated carbon line intensity. The compensated carbon intensity can be influenced by the variations of plasma parameters, including the plasma temperature, the plasma electron number density, and the total number density of the measured species. The spectrum standardization method is utilized to further correct the compensated carbon line intensity [12]. In the spectrum standardization method, it is assumed that there exists a standard plasma state, in which the plasma parameters are constants. The plasma state in the measurement is regarded as a state deviated from the assumed standard state. Therefore, the deviation of the compensated carbon intensity from its value at the standard state results from the deviations of the plasma parameters from their values at the standard state. The standardized carbon intensity is calculated by Taylor expansion as follows: I ij (n s0, T 0, n e0 ) I ij (n s, T, n e ) (k 1 dn s + k 2 CdT + k 3 Cdn e ), (3) where n s0, T 0, n e0 are the standard plasma parameters; I ij (n s0, T 0, n e0 ) is the standardized carbon intensity; and, k 1, k 2, and k 3 are the coefficients. The deviations in the plasma parameters are further expressed by the measured spectral information [12]. The deviation in the total carbon number density, dn s, is calculated using the segmental spectral areas, which is k dn s = n s n s0 = k 1i I T i C + k 21 C, (4) i=1 where I T i is the segmental spectral area, k 1i and k 21 are constants. The deviation in the plasma temperature, dt, is related to the intensity ratio of two atomic emission lines according to the Boltzmann distribution principle. The full width of half maximum (FWHM) of a spectral line can be assumed to be proportional to the plasma electron number density, since for typical LIBS measurements the Stark broadening is the main cause of the spectral line broadening. The deviation in the plasma electron number density, dn e, can be calculated by the FWHM of the H α spectral line. The standardized carbon line intensity is calculated as follows: I ij (n s0, T 0, n e0 ) = I ij + +b 3 {ln k b 1i I T i C + b 2 C i=1 ( I2 I 1 ) [ ln ( I2 I 1 )] 0 } C +b 4 [ λ stark ( λ stark ) 0 ] C, (5) 929

3 where I ij (n s0, T 0, n e0 ) is the standardized carbon line intensity, I 2 /I 1 is the intensity ratio of two silicon atomic lines ( nm and nm), λ stark is the FWHM of the H α spectral line through Stark broadening, both [ln(i 2 /I 1 )] 0 and ( λ stark ) 0 are calculated from all the measured spectra averages, which are utilized to express their standard state values, and b 1i, b 2, b 3, and b 4 are the coefficients determined by an iterative regression process [12]. The main portion of the carbon content is expressed by the standardized carbon line intensity. By establishing a relationship between the carbon content and the standardized carbon line intensity, the dominant factor model can be established as follows: C i = ki ij (n s0, T 0, n e0 ) + b, (6) where C i is the carbon concentration calculated from the dominant factor; I ij (n s0, T 0, n e0 ) is the standard carbon line intensity; and, k and b are regressed coefficients. The deviation between the true value of the carbon content and the value calculated from Eq. (6) was compensated by the whole spectrum information using PLS to further improve the inadequacies of the dominant factor, inter-element interference, and other unknown factors. The final expression of the combined model is C = ki ij (n s0, T 0, n e0 ) + b + e 0 + e 1 x 1 + e 2 x e n x n, (7) where C is the calculated carbon concentration of the combination model; x 1, x 2,..., x n are the spectral intensities at different wave lengths; and, e 0, e 1, e 2,..., e n are the regression coefficients calculated by PLS. 3 Experimental setup The carbon content of bituminous coal was measured by the RT100-EC LIBS system (ASI Inc., USA). The 266 nm laser irradiance with a 5 ns pulse duration was emitted by a Q-switched Nd:YAG laser. The laser energy was 9 mj/pulse. The diameter of the laser spot on the sample surface was 100 µm. Six Czerny-Turner spectrographs and charge coupled device (CCD) detectors in the LIBS system covered an overall range (nm) from 190 to 309, 309 to 460, 460 to 588, 588 to 692, 692 to 884, and 884 to 1041, respectively. The nominal spectral resolution was 0.07 nm. The gate delay time was 0.1 µs. The integration time was fixed to 1 ms. The samples used in the experiment were 24 bituminous coal samples, which were certified by the China Coal Research Institute. As shown in Table 1, the carbon content in these coal samples ranged from 42% to 82%, and the volatile matter content in these coal samples ranged from 11% to 35%. Coal powders were firstly placed in an aluminum pellet die with a diameter of 30 mm and a height of 3 mm, and then pressed into coal pellets at a pressure of 20 tons for subsequent measurement. The twenty-four bituminous coal samples were divided into a calibration set and a validation set to establish the calibration model and evaluating the performance of the calibration model. Sixteen samples were used for calibration, and eight samples were used for validation. The samples were arranged by the carbon content, and then one of every three samples was chosen for validation, ensuring an even and wide range distribution of the carbon content in both sets. Each coal pellet was measured at twenty-five locations on the pellet surface. The aerosol particles produced from each laser shot were blown off to eliminate the aerosol influence on the measurement. The emission line intensity was calculated by integrating the spectral intensities of an emission line after subtracting the background emission intensities. The system was warmed up for at least half an hour before the experiment. 4 Results and discussion A previous study has shown that the result of calibration between the carbon content and the atomic carbon emission line intensity at 247 nm for bituminous coal samples was not good, and the coefficient of determination (R 2 ) was only 0.46 [12]. As shown in Fig. 1, the R 2 of the calibration curve is 0.60 in this study. The improvement in R 2 shows that the linearity between the carbon content and the atomic carbon emission line intensity at 247 nm is improved compared with the previous study. When only those coal samples whose volatile matter content is less than 23% as the calibration samples were selected, the R 2 can be further increased to 0.80, as shown in Fig. 2. Yet, there is still a clear diminution of atomic carbon emission intensity for some of those coal samples that have a high volatile content, indicating that the matrix effect is not completely eliminated by using the UV laser for ablation. Table 1. Carbon content of 24 bituminous coal samples Calibration set Validation set No. C(%) Volatile matter (%) No. C(%) Volatile matter (%) No. C(%) Volatile matter (%)

4 LI Xiongwei et al.: Quantitative Analysis of Carbon Content in Bituminous Coal by LIBS Fig.1 Calibration plot of the atomic carbon emission line intensity at 247 nm versus the carbon content Fig.3 Calibration and validation results of the PLS model Fig.2 Calibration plot for those coal samples that have low volatile content To achieve a good quantitative analysis result, the PLS model and the dominant factor based PLS model were established. The PLS model was established using the whole spectral information, which included all the intensities at each wavelength in the whole spectrum. The number of principle components in the PLS model was evaluated by the leave-one-out cross validation (LOO-CV) method to avoid noise over-fitting. The calibration and validation results of the established PLS model are shown in Fig. 3, which shows that R 2 and root-mean-square error of prediction (RMSEP) of the PLS model are 0.97 and 2.19%, respectively. The results show that when the PLS method is utilized to build the calibration model, the 266 nm wavelength can accurately measure the carbon content of coal. Fig. 4 demonstrates the calibration and validation results of the dominant factor based PLS model. As shown in Fig. 4, R 2 is 0.99, and RMSEP is 1.51%. The R 2 is improved and the RMSEP is reduced compared with the PLS model, indicating that the prediction accuracy can be improved by explicitly extracting the most related spectral information and utilizing the whole spectrum information to further reduce the deviations. Fig. 4 also shows that the 266 nm wavelength is capable of good performance in measuring the carbon content of coal. Fig.4 Calibration and validation results of the dominant factor based PLS model 5 Conclusions The carbon content of bituminous coal samples was measured by LIBS using the 266 nm laser wavelength. Compared with the previous study, the linearity between the carbon content and the atomic carbon emission line intensity at 247 nm was improved. Yet, the calibration plot of the atomic carbon emission line intensity at 247 nm versus the carbon content still showed that the matrix effect in the measurement of carbon content of coal was not completely eliminated. The PLS model was established to measure the carbon content of bituminous coal. The dominant factor based PLS model was also established to further improve the measurement accuracy of the carbon content of coal. The results showed that when the two multivariate calibration models were utilized, the 266 nm wavelength was capable of good performance in measuring the carbon content of coal. References 1 Yuan T B, Wang Z, Lui S L, et al. 2013, J. Anal. At. Spectrom., 28: Russo R E, Mao X L, Liu H C, et al. 2002, Talanta, 57:

5 3 Wang Z, Yuan T B, Hou Z Y, et al. 2014, Front. Phys. 9: Russo R E, Mao X L, Gonzalez J J, et al. 2013, Anal. Chem., 85: Yin W B, Zhang L, Dong L, et al Appl. Spectrosc., 63: Li J, Lu J D, Lin Z X, et al. 2009, Optics & Laser Technology, 41: Feng J, Wang Z, West L, et al. 2011, Anal. Bioanal. Chem., 400: Wang Z, Yuan T B, Lui S L, et al. 2012, Front. Phys., 7: Ma Q L, Motto-Ros V, Lei W Q, et al. 2010, Spectrochim. Acta B, 65: Castle B C, Talabardon K, Smith B W, et al. 1998, Appl. Spectrosc., 52: Yu J, Ma Q L, Motto-Ros V, et al. 2012, Front. Phys., 7: Li X W, Wang Z, Fu Y T, et al. 2014, Appl. Spectrosc., 68: Feng J, Wang Z, Li L, et al. 2013, Appl. Spectrosc., 67: Li X W, Wang Z, Fu Y T, et al. 2014, Spectrochim. Acta B, 99: Shaikh N M, Kalhoro M S, Hussain A, et al. 2013, Spectrochim. Acta B, 88: Barnett C, Cahoon E, Almirall J R, et al. 2008, Spectrochim. Acta B, 63: Cahoon E M, Almirall J R. 2010, Appl. Opt., 49: Ma Q L, Motto-Ros V, Laye F, et al. 2012, Appl. Phys., 111: Dong M R, Mao X L, Gonzalez J J, et al. 2013, Anal. Chem., 85: Dong M R, Chan George C-Y, Mao X L, et al. 2014, Spectrochim. Acta B, 100: 62 (Manuscript received 25 April 2015) (Manuscript accepted 12 June 2015) address of LI Xiongwei: lixiongwei@cgdc.com.cn 932

The application of spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy

The application of spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy The application of spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy Xiongwei Li, Zhe Wang *, Yangting Fu, Zheng Li, Jianming Liu, Weidou Ni State Key

More information

MICHAEL J. WITTE 1 AND CHRISTIAN G. PARIGGER 1,a

MICHAEL J. WITTE 1 AND CHRISTIAN G. PARIGGER 1,a I R A M P Measurement and Analysis of Carbon Swan Spectra Following Laser-induced Optical Breakdown International in AirScience Press ISSN: 2229-3159 4(1), June 2013, pp. 63-67 Measurement and Analysis

More information

Laser Ablation for Chemical Analysis: 50 Years. Rick Russo Laser Damage Boulder, CA September 25, 2012

Laser Ablation for Chemical Analysis: 50 Years. Rick Russo Laser Damage Boulder, CA September 25, 2012 Laser Ablation for Chemical Analysis: 50 Years Rick Russo Lawrence Berkeley National Laboratory Applied Spectra, Inc 2012 Laser Damage Boulder, CA September 25, 2012 Laser Ablation for Chemical Analysis:

More information

Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions

Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions PRAMANA c Indian Academy of Sciences Vol. 74, No. 6 journal of June 2010 physics pp. 983 993 Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy

More information

DIAGNOSTIC OF A LASER-INDUCED OPTICAL BREAKDOWN BASED ON HALF-WIDTH AT HALF AREA OF H LINES , H , AND H

DIAGNOSTIC OF A LASER-INDUCED OPTICAL BREAKDOWN BASED ON HALF-WIDTH AT HALF AREA OF H LINES , H , AND H INTERNATIONAL REVIEW OF ATOMIC AND MOLECULAR PHYSICS (IRAMP) Volume 1, No. 2, July-December 2010, pp. 129-136, International Science Press, ISSN: 2229-3159 RESEARCH ARTICLE DIAGNOSTIC OF A LASER-INDUCED

More information

Measurements of egg shell plasma parameters using laser-induced breakdown spectroscopy

Measurements of egg shell plasma parameters using laser-induced breakdown spectroscopy PRAMANA c Indian Academy of Sciences Vol. 85, No. 1 journal of July 2015 physics pp. 105 114 Measurements of egg shell plasma parameters using laser-induced breakdown spectroscopy WENFENG LUO 1,, XIAOXIA

More information

Differential Spectral Imaging of the CN Violet Band in Laser-Induced Plasmas on TNT Simulant Molecules

Differential Spectral Imaging of the CN Violet Band in Laser-Induced Plasmas on TNT Simulant Molecules Publications 214 Differential Spectral Imaging of the CN Violet Band in Laser-Induced Plasmas on TNT Simulant Molecules J. Merten Arkansas State University - Main Campus M. Jones Anton Paar S. Hoke Arkansas

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information

Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas

Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas Plasma Science and Technology, Vol.15, No.6, Jun. 2013 Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas M. L. SHAH, A. K. PULHANI, B. M. SURI, G. P. GUPTA Laser and Plasma Technology

More information

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Laser heating of noble gas droplet sprays: EUV source efficiency considerations Laser heating of noble gas droplet sprays: EUV source efficiency considerations S.J. McNaught, J. Fan, E. Parra and H.M. Milchberg Institute for Physical Science and Technology University of Maryland College

More information

Magnetic fields applied to laser-generated plasma to enhance the ion yield acceleration

Magnetic fields applied to laser-generated plasma to enhance the ion yield acceleration Magnetic fields applied to laser-generated plasma to enhance the ion yield acceleration L. Torrisi, G. Costa, and G. Ceccio Dipartimento di Scienze Fisiche MIFT, Università di Messina, V.le F.S. D Alcontres

More information

No. 9 Experimental study on the chirped structure of the construct the early time spectra. [14;15] The prevailing account of the chirped struct

No. 9 Experimental study on the chirped structure of the construct the early time spectra. [14;15] The prevailing account of the chirped struct Vol 12 No 9, September 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(09)/0986-06 Chinese Physics and IOP Publishing Ltd Experimental study on the chirped structure of the white-light continuum generation

More information

Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy

Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Department of Electrical and Computer Engineering Electrical & Computer Engineering, Department

More information

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan , China

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan , China Research of the EUV radiation and CO 2 Laser produced tin plasma Wang Xinbing 1 *, Zuo DouLuo 1, Lu Peixiang 2, Wu Tao 3 1 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science

More information

Comparative study of two new commercial echelle spectrometers equipped with intensified CCD for analysis of laser-induced breakdown spectroscopy

Comparative study of two new commercial echelle spectrometers equipped with intensified CCD for analysis of laser-induced breakdown spectroscopy Comparative study of two new commercial echelle spectrometers equipped with intensified CCD for analysis of laser-induced breakdown spectroscopy Mohamad Sabsabi, Vincent Detalle, Mohamed A. Harith, Walid

More information

The importance of longer wavelength reheating in dual-pulse laser-induced breakdown spectroscopy

The importance of longer wavelength reheating in dual-pulse laser-induced breakdown spectroscopy Appl Phys B (2012) 107:873 880 DOI 10.1007/s00340-012-4997-6 The importance of longer wavelength reheating in dual-pulse laser-induced breakdown spectroscopy R.W. Coons S.S. Harilal S.M. Hassan A. Hassanein

More information

Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy

Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy X.N. He, 1 W. Hu, 1 C.M. Li, 1,2 L.B. Guo, 1,2 and Y.F. Lu 1,* 1 Department

More information

Title duration on laser ablation in liqui. Rightc 2009 Elsevier B.V. All rights res

Title duration on laser ablation in liqui.   Rightc 2009 Elsevier B.V. All rights res Title Spectral profile of atomic emission duration on laser ablation in liqui Author(s) Sakka, Tetsuo; Masai, Satoru; Fukam H. Citation Spectrochimica Acta Part B: 64(10): 981-985 Atomic Issue Date 2009-10

More information

Outline. LIBS Background. LIBS Developments. LIBS Overview. Atomic Emission Spectroscopy

Outline. LIBS Background. LIBS Developments. LIBS Overview. Atomic Emission Spectroscopy Introduction to Laser Induced Breakdown Spectroscopy (LIBS) for Glass Analysis Module 4 José R. Almirall, Erica Cahoon, Maria Perez, Ben Naes, Emily Schenk and Cleon Barnett Department of Chemistry and

More information

Development of advanced optical techniques for verification measurements Igor Jovanovic University of Michigan

Development of advanced optical techniques for verification measurements Igor Jovanovic University of Michigan Development of advanced optical techniques for verification measurements Igor Jovanovic University of Michigan Outline 1. Impetus and technical approach 2. Isotopic measurements from atomic and molecular

More information

Thermodynamic evolution of phase explosion during high-power nanosecond laser ablation

Thermodynamic evolution of phase explosion during high-power nanosecond laser ablation Thermodynamic evolution of phase explosion during high-power nanosecond laser ablation Quanming Lu* School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China

More information

Aluminum Monoxide Emission Measurements Following Laser-Induced Breakdown for Plasma Characterization

Aluminum Monoxide Emission Measurements Following Laser-Induced Breakdown for Plasma Characterization University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2014 Aluminum Monoxide Emission Measurements Following Laser-Induced Breakdown for Plasma

More information

The near-infrared spectra and distribution of excited states of electrodeless discharge rubidium vapour lamps

The near-infrared spectra and distribution of excited states of electrodeless discharge rubidium vapour lamps The near-infrared spectra and distribution of excited states of electrodeless discharge rubidium vapour lamps Sun Qin-Qing( ) a)b), Miao Xin-Yu( ) a), Sheng Rong-Wu( ) c), and Chen Jing-Biao( ) a)b) a)

More information

LIBSlab ANALYZERS ANALYZERS

LIBSlab ANALYZERS ANALYZERS ANALYZERS ANALYZERS Chemical multi-elemental analysis with LIBS in modular benchtop design LIBSlab LIBSpector compact sample chamber for the LIBS analysis of solid, liquid and gaseous samples. Sample chamber

More information

Investigation of fundamental mechanisms related to ambient gas heating and hydrodynamics of laser-induced plasmas

Investigation of fundamental mechanisms related to ambient gas heating and hydrodynamics of laser-induced plasmas Investigation of fundamental mechanisms related to ambient gas heating and hydrodynamics of laser-induced plasmas P. J. Skrodzki Acknowledgements This work is supported by the DOE/NNSA Office of Nonproliferation

More information

Optimally enhanced optical emission in laserinduced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation

Optimally enhanced optical emission in laserinduced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Department of Electrical and Computer Engineering Electrical & Computer Engineering, Department

More information

Optical time-domain differentiation based on intensive differential group delay

Optical time-domain differentiation based on intensive differential group delay Optical time-domain differentiation based on intensive differential group delay Li Zheng-Yong( ), Yu Xiang-Zhi( ), and Wu Chong-Qing( ) Key Laboratory of Luminescence and Optical Information of the Ministry

More information

EFFECT OF LASER INTENSITY AND DYNAMICS OF PLASMA ON LASER INDUCED BREAKDOWN SPECTROSCOPY

EFFECT OF LASER INTENSITY AND DYNAMICS OF PLASMA ON LASER INDUCED BREAKDOWN SPECTROSCOPY EFFECT OF LASER INTENSITY AND DYNAMICS OF PLASMA ON LASER INDUCED BREAKDOWN SPECTROSCOPY V. N. Rai and Jagdish P. Singh, 3 Raja Ramanna Centre for Advanced Technology Indore-4503 (INDIA) vnrai@rrcat.gov.in

More information

Cesium Dynamics and H - Density in the Extended Boundary Layer of Negative Hydrogen Ion Sources for Fusion

Cesium Dynamics and H - Density in the Extended Boundary Layer of Negative Hydrogen Ion Sources for Fusion Cesium Dynamics and H - Density in the Extended Boundary Layer of Negative Hydrogen Ion Sources for Fusion C. Wimmer a, U. Fantz a,b and the NNBI-Team a a Max-Planck-Institut für Plasmaphysik, EURATOM

More information

JAAS Accepted Manuscript

JAAS Accepted Manuscript JAAS Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published

More information

Optimization of laser-produced plasma light sources for EUV lithography

Optimization of laser-produced plasma light sources for EUV lithography page 1 of 17 Optimization of laser-produced plasma light sources for EUV lithography M. S. Tillack and Y. Tao 1 University of California, San Diego Center for Energy Research 1 Currently at Cymer Inc.

More information

Lead and Arsenic concentration in the Marseille Calanques measured by Laser Induced Breakdown Spectroscopy. by T. Sarnet and J.

Lead and Arsenic concentration in the Marseille Calanques measured by Laser Induced Breakdown Spectroscopy. by T. Sarnet and J. Atelier du Réseau des Observatoires Hommes-Milieux "Contaminations métalliques" 21 Novembre 2016 Technopôle de l'environnement Arbois-Méditerranée, AIX en Provence Lead and Arsenic concentration in the

More information

Quantitative analysis of high purity metals using laser ablation coupled to an Agilent 7900 ICP-MS

Quantitative analysis of high purity metals using laser ablation coupled to an Agilent 7900 ICP-MS Quantitative analysis of high purity metals using laser ablation coupled to an Agilent 7900 ICP-MS Application note Metals Analysis & Production Authors Naoki Sugiyama and Mineko Omori Agilent Technologies,

More information

Effect of applying static electric field on the physical parameters and dynamics of laser-induced plasma

Effect of applying static electric field on the physical parameters and dynamics of laser-induced plasma Journal of Advanced Research (2010) 1, 129 136 Cairo University Journal of Advanced Research ORIGINAL ARTICLE Effect of applying static electric field on the physical parameters and dynamics of laser-induced

More information

Laser and pinching discharge plasmas spectral characteristics in water window region

Laser and pinching discharge plasmas spectral characteristics in water window region Laser and pinching discharge plasmas spectral characteristics in water window region P Kolar 1, M Vrbova 1, M Nevrkla 2, P Vrba 2, 3 and A Jancarek 2 1 Czech Technical University in Prague, Faculty of

More information

CARBON NANOTUBE ANALYSIS USING THE TSI LIBS DESKTOP ANALYZER

CARBON NANOTUBE ANALYSIS USING THE TSI LIBS DESKTOP ANALYZER CARBON NANOTUBE ANALYSIS USING THE TSI LIBS DESKTOP ANALYZER APPLICATION NOTE LIBS-019 Carbon Nanotubes (CNTs) are used in an ever increasing number of applications, from engineering applications (lighter,

More information

Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis

Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis Spectrochimica Acta Part B 62 (2007) 1329 1334 www.elsevier.com/locate/sab Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis Matthieu Baudelet a, Myriam Boueri

More information

Laser-induced plasma electron number density: Stark broadening method versus the Saha Boltzmann equation

Laser-induced plasma electron number density: Stark broadening method versus the Saha Boltzmann equation Plasma Science and Technology PAPER Laser-induced plasma electron number density: Stark broadening method versus the Saha Boltzmann equation To cite this article: Arnab Sarkar and Manjeet Singh 2017 Plasma

More information

Laser-produced extreme ultraviolet (EUV) light source plasma for the next generation lithography application

Laser-produced extreme ultraviolet (EUV) light source plasma for the next generation lithography application Laser-produced extreme ultraviolet (EUV) light source plasma for the next generation lithography application EUV light source plasma Tin icrodroplet Main pulse (CO2 laser pulse) Pre-pulse (Nd:YAG laser

More information

Spectral analysis of K-shell X-ray emission of magnesium plasma produced by ultrashort high-intensity laser pulse irradiation

Spectral analysis of K-shell X-ray emission of magnesium plasma produced by ultrashort high-intensity laser pulse irradiation PRAMANA c Indian Academy of Sciences Vol. 82, No. 2 journal of February 2014 physics pp. 365 371 Spectral analysis of K-shell X-ray emission of magnesium plasma produced by ultrashort high-intensity laser

More information

Experimental Study on Light Flash Radiant Intensity Generated by Strong Shock 2A12 Aluminum Plate

Experimental Study on Light Flash Radiant Intensity Generated by Strong Shock 2A12 Aluminum Plate Experimental Study on Light Flash Radiant Intensity Generated by Strong Shock 2A12 Aluminum Plate TANG Enling ( ) 1, ZHANG Lijiao ( ) 1, ZHANG Qingming ( ) 2, SHI Xiaohan ( ) 1, WANG Meng ( ) 1, WANG Di

More information

Thermal Radiation of Blackbodies Lab Partner 1 & Lab Partner 2 12 May 2011

Thermal Radiation of Blackbodies Lab Partner 1 & Lab Partner 2 12 May 2011 Thermal Radiation of Blackbodies Lab Partner 1 & Lab Partner 2 12 May 2011 We report on experiments investigating the thermal radiation from a blackbody. By finding the electromagnetic spectra emitted

More information

Thesis: Theoretical analysis of the flow past a single sphere moving in a micro-tube National Taiwan University, Taipei, Taiwan

Thesis: Theoretical analysis of the flow past a single sphere moving in a micro-tube National Taiwan University, Taipei, Taiwan Sy-Bor Wen, Ph. D. Assistant Professor, Department of Mechanical Engineering TAMU 3123, Texas A&M University College Station, TX 77843 (979)458-0110; syborwen@tamu.edu Education: 2002-2006 University of

More information

Hydrodynamics of Exploding Foil X-Ray Lasers with Time-Dependent Ionization Effect

Hydrodynamics of Exploding Foil X-Ray Lasers with Time-Dependent Ionization Effect Hydrodynamics of Exploding Foil X-Ray Lasers with Time-Dependent Ionization Effect WANG Yu ( ), SU Dandan ( ), LI Yingjun ( ) State Key Laboratory for GeoMechanics and Deep Underground Engineering, China

More information

A tunable corner-pumped Nd:YAG/YAG composite slab CW laser

A tunable corner-pumped Nd:YAG/YAG composite slab CW laser Chin. Phys. B Vol. 21, No. 1 (212) 1428 A tunable corner-pumped Nd:YAG/YAG composite slab CW laser Liu Huan( 刘欢 ) and Gong Ma-Li( 巩马理 ) State Key Laboratory of Tribology, Center for Photonics and Electronics,

More information

Measured Stark shifts of Kr I line profiles in the 5s 5p and 5s 5p transitions

Measured Stark shifts of Kr I line profiles in the 5s 5p and 5s 5p transitions Mem. S.A.It. Vol. 7, 192 c SAIt 2005 Memorie della Supplementi Measured Stark shifts of Kr I line profiles in the 5s 5p and 5s 5p transitions V. Milosavljević 1,2 1 Faculty of Physics, University of Belgrade,

More information

Evaluation of laser-induced breakdown spectroscopy (LIBS) as a new in situ chemical sensing technique for the deep ocean

Evaluation of laser-induced breakdown spectroscopy (LIBS) as a new in situ chemical sensing technique for the deep ocean Evaluation of laser-induced breakdown spectroscopy (LIBS) as a new in situ chemical sensing technique for the deep ocean Anna P. M. Michel, Norman E. Farr, and Alan D. Chave Department of Applied Ocean

More information

All about sparks in EDM

All about sparks in EDM All about sparks in EDM (and links with the CLIC DC spark test) Antoine Descoeudres, Christoph Hollenstein, Georg Wälder, René Demellayer and Roberto Perez Centre de Recherches en Physique des Plasmas

More information

Supporting information

Supporting information Supporting information Vacuum ultraviolet laser desorption/ionization mass spectrometry imaging of single cells with submicron craters Jia Wang, 1, + Zhaoying Wang, 2, + Feng Liu, 1 Lesi Cai, 2 Jian-bin

More information

Laser Dissociation of Protonated PAHs

Laser Dissociation of Protonated PAHs 100 Chapter 5 Laser Dissociation of Protonated PAHs 5.1 Experiments The photodissociation experiments were performed with protonated PAHs using different laser sources. The calculations from Chapter 3

More information

Spectroscopic Studies of Soft X-Ray Emission from Gadolinium Plasmas

Spectroscopic Studies of Soft X-Ray Emission from Gadolinium Plasmas I. Kambali, G. Atom O Sullivan Indonesia / Atom Vol. Indonesia 4 No. 2 (24) Vol. 47 No. - 2 (24) 7 - Spectroscopic Studies of Soft X-Ray Emission from Gadolinium Plasmas I. Kambali * and G. O Sullivan

More information

Glass surface modification using Nd:YAG laser in SF 6 atmospheres

Glass surface modification using Nd:YAG laser in SF 6 atmospheres J Theor Appl Phys (2015) 9:135 140 DOI 10.1007/s40094-015-0171-y RESEARCH Glass surface modification using Nd:YAG laser in SF 6 atmospheres H. R. Dehghanpour P. Parvin Received: 2 September 2014 / Accepted:

More information

OPTICAL DETECTION OF SLOW EXCITED NEUTRALS IN PLASMA- ASSISTED EXCIMER LASER ABLATION

OPTICAL DETECTION OF SLOW EXCITED NEUTRALS IN PLASMA- ASSISTED EXCIMER LASER ABLATION OPTICAL DETECTION OF SLOW EXCITED NEUTRALS IN PLASMA- ASSISTED EXCIMER LASER ABLATION P. MUKHERJEE, P. SAKTHIVEL AND S. WITANACHCHI Department of Physics, University of South Florida, Tampa, FL 33620,

More information

Studying of the Dipole Characteristic of THz from Photoconductors

Studying of the Dipole Characteristic of THz from Photoconductors PIERS ONLINE, VOL. 4, NO. 3, 8 386 Studying of the Dipole Characteristic of THz from Photoconductors Hong Liu, Weili Ji, and Wei Shi School of Automation and Information Engineering, Xi an University of

More information

Important processes in modeling and optimization of EUV lithography sources

Important processes in modeling and optimization of EUV lithography sources Important processes in modeling and optimization of UV lithography sources T. Sizyuk and A. Hassanein Center for Materials under xtreme nvironment, School of Nuclear ngineering Purdue University, West

More information

Temporally resolved laser induced plasma diagnostics of single crystal silicon effects of ambient pressure

Temporally resolved laser induced plasma diagnostics of single crystal silicon effects of ambient pressure Temporally resolved laser induced plasma diagnostics of single crystal silicon effects of ambient pressure Cowpe, JS, Astin, JS, Pilkington, RD and Hill, AE http://dx.doi.org/10.1016/j.sab.2008.09.007

More information

Assessment of the Upper Particle Size Limit for Quantitative Analysis of Aerosols Using Laser-Induced Breakdown Spectroscopy

Assessment of the Upper Particle Size Limit for Quantitative Analysis of Aerosols Using Laser-Induced Breakdown Spectroscopy Anal. Chem. 2002, 74, 5450-5454 Assessment of the Upper Particle Size Limit for Quantitative Analysis of Aerosols Using Laser-Induced Breakdown Spectroscopy Jorge E. Carranza and David W. Hahn* Department

More information

Supplementary Materials for

Supplementary Materials for Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supplementary Materials for Ultrasensitive nanoparticle enhanced laser-induced breakdown spectroscopy

More information

Remote Raman & Fluorescence Capabilities for Chemical Detection at University of Hawaii

Remote Raman & Fluorescence Capabilities for Chemical Detection at University of Hawaii Remote Raman & Fluorescence Capabilities for Chemical Detection at University of Hawaii Anupam Misra Shiv Sharma HIGP, SOEST, Univ. of Hawaii * Daytime Operation * Long Detection Range (no sample collection)

More information

Environmental impact. Improve resource efficiency. Quality secondary raw materials. Pollution. CO 2 emission. Biodiversity. Policy and regulations

Environmental impact. Improve resource efficiency. Quality secondary raw materials. Pollution. CO 2 emission. Biodiversity. Policy and regulations Improve resource efficiency Environmental impact Quality secondary raw materials Pollution CO 2 emission Policy and regulations Biodiversity Waste Resources Overall view of Innovation EOL Building 0-22

More information

Plasma Temperature Measurements in the Context of Spectral Interference

Plasma Temperature Measurements in the Context of Spectral Interference University of Central Florida Honors in the Major Theses Open Access Plasma Temperature Measurements in the Context of Spectral Interference 2016 Brandon Seesahai University of Central Florida Find similar

More information

Fundamental investigation on CO 2 laser-produced Sn plasma for an EUVL source

Fundamental investigation on CO 2 laser-produced Sn plasma for an EUVL source Fundamental investigation on CO 2 laser-produced Sn plasma for an EUVL source Yezheng Tao*, Mark Tillack, Kevin Sequoia, Russel Burdt, Sam Yuspeh, and Farrokh Najmabadi University of California, San Diego

More information

Hristina Nikolova, Miguel Angel Aguirre, Montserrat Hidalgo and Antonio Canals. 5-6 June 2012, Plovdiv, Bulgaria. 5-6 June 2012, Plovdiv, Bulgaria

Hristina Nikolova, Miguel Angel Aguirre, Montserrat Hidalgo and Antonio Canals. 5-6 June 2012, Plovdiv, Bulgaria. 5-6 June 2012, Plovdiv, Bulgaria Green analytical chemistry: Trace elemental analysis on water samples by liquid-liquid microextration (LLME)-laser- induced breakdown spectroscopy (LIBS) Hristina Nikolova, Miguel Angel Aguirre, Montserrat

More information

Survey of EUV Impurity Line Spectra and EUV Bremsstrahlung Continuum in LHD )

Survey of EUV Impurity Line Spectra and EUV Bremsstrahlung Continuum in LHD ) Plasma and Fusion Research: Regular Articles Volume 6, 2402078 (2011) Survey of EUV Impurity Line Spectra and EUV Bremsstrahlung Continuum in LHD ) Chunfeng DONG, Shigeru MORITA 1), Malay Bikas CHOWDHURI

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

DISCHARGE CHARACTERISTICS OF A LASER-ASSISTED PLASMA THRUSTER

DISCHARGE CHARACTERISTICS OF A LASER-ASSISTED PLASMA THRUSTER DISCHARGE CHARACTERISTICS OF A LASER-ASSISTED PLASMA THRUSTER Hideyuki Horisawa *, Masatoshi Kawakami *, Wun-Wei Lin *, Akira Igari *, and Itsuro Kimura # * Department of Aeronautics and Astronautics,

More information

Influence of an intensive UV preionization on evolution and EUV-emission of the laser plasma with Xe gas target (S12)

Influence of an intensive UV preionization on evolution and EUV-emission of the laser plasma with Xe gas target (S12) Influence of an intensive UV preionization on evolution and EUV-emission of the laser plasma with Xe gas target (S12) 2013 Int. Workshop on EUV and Soft X-ray Sources UCD, Dublin, November 4-7, 2013 A.Garbaruk

More information

Study of absorption and re-emission processes in a ternary liquid scintillation system *

Study of absorption and re-emission processes in a ternary liquid scintillation system * CPC(HEP & NP), 2010, 34(11): 1724 1728 Chinese Physics C Vol. 34, No. 11, Nov., 2010 Study of absorption and re-emission processes in a ternary liquid scintillation system * XIAO Hua-Lin( ) 1;1) LI Xiao-Bo(

More information

Study on the Concentration Inversion of NO & NO2 Gas from the Vehicle Exhaust Based on Weighted PLS

Study on the Concentration Inversion of NO & NO2 Gas from the Vehicle Exhaust Based on Weighted PLS Optics and Photonics Journal, 217, 7, 16-115 http://www.scirp.org/journal/opj ISSN Online: 216-889X ISSN Print: 216-8881 Study on the Concentration Inversion of NO & NO2 Gas from the Vehicle Exhaust Based

More information

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor-like by Electrostatic Gating S.-F. Shi, 1,2* T.-T. Tang, 1 B. Zeng, 1 L. Ju, 1 Q. Zhou, 1 A. Zettl, 1,2,3 F. Wang 1,2,3

More information

Spectroscopic Diagnostics of Laser Plasma Plume of Aluminum

Spectroscopic Diagnostics of Laser Plasma Plume of Aluminum Optics 2015; 4(5): 31-36 Published online October 8, 2015 (http://www.sciencepublishinggroup.com/j/optics) doi: 10.11648/j.optics.20150405.11 ISSN: 2328-7780 (Print); ISSN: 2328-7810 (Online) Spectroscopic

More information

Analysis, simulation, and experimental studies of YAG and CO 2 laserproduced plasma for EUV lithography sources

Analysis, simulation, and experimental studies of YAG and CO 2 laserproduced plasma for EUV lithography sources Analysis, simulation, and experimental studies of YAG and CO 2 laserproduced plasma for EUV lithography sources A. Hassanein, V. Sizyuk, S.S. Harilal, and T. Sizyuk School of Nuclear Engineering and Center

More information

Winter College on Optics: Fundamentals of Photonics - Theory, Devices and Applications February 2014

Winter College on Optics: Fundamentals of Photonics - Theory, Devices and Applications February 2014 2572-8 10-21 February 2014 Photonics in surface cleaning processes (II) Luis Ponce Cabrera CICATA - Instituto Politécnico Nacional, Mexico IMRE-Universidad de La Habana Cuba (permanent adress) Photonics

More information

Influence of laser energy on the electron temperature of a laser induced Mg plasma

Influence of laser energy on the electron temperature of a laser induced Mg plasma Appl. Phys. B (2017) 123:22 DOI 10.1007/s00340-016-6617-3 Influence of laser energy on the electron temperature of a laser induced Mg plasma Emmanuel Asamoah 1 Yao Hongbing 1 Received: 6 October 2016 /

More information

Approach to Detection in Laser-Induced Breakdown Spectroscopy

Approach to Detection in Laser-Induced Breakdown Spectroscopy Anal. Chem. 2007, 79, 4419-4426 Approach to Detection in Laser-Induced Breakdown Spectroscopy M. Mueller,*, I. B. Gornushkin, S. Florek, D. Mory, and U. Panne Federal Institute for Materials Research and

More information

JAAS Accepted Manuscript

JAAS Accepted Manuscript JAAS Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published

More information

LIDAR. Natali Kuzkova Ph.D. seminar February 24, 2015

LIDAR. Natali Kuzkova Ph.D. seminar February 24, 2015 LIDAR Natali Kuzkova Ph.D. seminar February 24, 2015 What is LIDAR? Lidar (Light Detection And Ranging) is an optical remote sensing technology that measures distance by illuminating a target with a laser

More information

high temp ( K) Chapter 20: Atomic Spectroscopy

high temp ( K) Chapter 20: Atomic Spectroscopy high temp (2000-6000K) Chapter 20: Atomic Spectroscopy 20-1. An Overview Most compounds Atoms in gas phase high temp (2000-6000K) (AES) (AAS) (AFS) sample Mass-to-charge (ICP-MS) Atomic Absorption experiment

More information

Single-shot measurement of free-electron laser polarization at SDUV-FEL

Single-shot measurement of free-electron laser polarization at SDUV-FEL ingle-shot measurement of free-electron laser polarization at DUV-FEL Lie Feng, Haixiao Deng*, Tong Zhang, Chao Feng, Jianhui Chen, Xingtao Wang, Taihe Lan, Lei hen Wenyan Zhang, Haifeng Yao, Xiaoqing

More information

Laser-Induced Breakdown Spectroscopy: Application to Nuclear Waste Management Seong Yong Oh, Fang Yu Yueh, Jagdish P.

Laser-Induced Breakdown Spectroscopy: Application to Nuclear Waste Management Seong Yong Oh, Fang Yu Yueh, Jagdish P. Laser-Induced Breakdown Spectroscopy: Application to Nuclear Waste Management -- 9166 Seong Yong Oh, Fang Yu Yueh, Jagdish P. Singh* Institute for Clean Energy Technology Mississippi State University,

More information

ICF Burn-History Measurements Using 17-MeV Fusion Gamma Rays

ICF Burn-History Measurements Using 17-MeV Fusion Gamma Rays V ICF Burn-History Measurements Using 17-MeV Fusion Gamma Rays R. A. Lerche M.D.Cable, P. G. Dendooven This paper was prepared for submittal to the 12th International Conference on Laser Interaction and

More information

I. Measurements of soot - Laser induced incandescence, LII. spectroscopy, LIBS

I. Measurements of soot - Laser induced incandescence, LII. spectroscopy, LIBS 4. Semi-intrusive i i techniques I. Measurements of soot - Laser induced incandescence, LII II. Laser-induced d breakdown spectroscopy, LIBS I. Optical diagnostics of soot in flames Soot formation Soot

More information

Rejection of Recombination and Electron Collision Process in the Laser Plasma Generated by the Nd-YAG Laser Irradiation at Low Pressures

Rejection of Recombination and Electron Collision Process in the Laser Plasma Generated by the Nd-YAG Laser Irradiation at Low Pressures Rejection of Recombination and Electron Collision Process in the Laser Plasma Generated by the Nd-YAG Laser Irradiation at Low Pressures Marincan Pardede 1 and Hendrik Kurniawan 1* 1 Applied Spectroscopy

More information

Multi-diagnostic comparison of femtosecond and nanosecond pulsed laser plasmas

Multi-diagnostic comparison of femtosecond and nanosecond pulsed laser plasmas JOURNAL OF APPLIED PHYSICS VOLUME 92, NUMBER 5 1 SEPTEMBER 2002 Multi-diagnostic comparison of femtosecond and nanosecond pulsed laser plasmas Z. Zhang, a) P. A. VanRompay, J. A. Nees, and P. P. Pronko

More information

Mechanisms of Visible Photoluminescence from Size-Controlled Silicon Nanoparticles

Mechanisms of Visible Photoluminescence from Size-Controlled Silicon Nanoparticles Mat. Res. Soc. Symp. Proc. Vol. 737 23 Materials Research Society F1.5.1 Mechanisms of Visible Photoluminescence from Size-Controlled Silicon Nanoparticles Toshiharu Makino *, Nobuyasu Suzuki, Yuka Yamada,

More information

Enhancement of optical emission from laserinduced plasmas by combined spatial and magnetic confinement

Enhancement of optical emission from laserinduced plasmas by combined spatial and magnetic confinement University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Department of Electrical and Computer Engineering Electrical & Computer Engineering, Department

More information

Double-distance propagation of Gaussian beams passing through a tilted cat-eye optical lens in a turbulent atmosphere

Double-distance propagation of Gaussian beams passing through a tilted cat-eye optical lens in a turbulent atmosphere Double-distance propagation of Gaussian beams passing through a tilted cat-eye optical lens in a turbulent atmosphere Zhao Yan-Zhong( ), Sun Hua-Yan( ), and Song Feng-Hua( ) Department of Photoelectric

More information

ρ. Photoemission is presumed to occur if the photon energy is enough to raise qf πε, where q is the electron charge, F the electric field, and ε 0 φ ω

ρ. Photoemission is presumed to occur if the photon energy is enough to raise qf πε, where q is the electron charge, F the electric field, and ε 0 φ ω Pulsed photoelectric field emission from needle cathodes C. Hernandez Garcia and C. A. Brau Vanderbilt University, Department of Physics, Nashville, TN 37235, USA Experiments have been carried out to measure

More information

Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber

Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber Copyright 2009 by YASHKIR CONSULTING LTD Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber Yuri Yashkir 1 Introduction The

More information

L E A. Laser Elemental Analyzer

L E A. Laser Elemental Analyzer L E A Laser Elemental Analyzer The Future of handheld analysis The LEA is a hand-held analyzer which uses a low power laser beam to provide instant, on-site, elemental fingerprinting of materials. The

More information

Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006

Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006 Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006 1. Examples of advantages and disadvantages with laser-based combustion diagnostic techniques: + Nonintrusive + High

More information

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS www.arpapress.com/volumes/vol19issue1/ijrras_19_1_06.pdf HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS M. Eslamifar Physics Department, BehbahanKhatamAl-Anbia

More information

Temperature-dependent spectroscopic analysis of F 2 + ** and F 2 + **-like color centers in LiF

Temperature-dependent spectroscopic analysis of F 2 + ** and F 2 + **-like color centers in LiF Journal of Luminescence 91 (2000) 147 153 Temperature-dependent spectroscopic analysis of F 2 + ** and F 2 + **-like color centers in LiF Neil W. Jenkins a, *, Sergey B. Mirov a, Vladimir V. Fedorov b

More information

Generation of surface electrons in femtosecond laser-solid interactions

Generation of surface electrons in femtosecond laser-solid interactions Science in China: Series G Physics, Mechanics & Astronomy 2006 Vol.49 No.3 335 340 335 DOI: 10.1007/s11433-006-0335-5 Generation of surface electrons in femtosecond laser-solid interactions XU Miaohua

More information

Electromagnetic Radiation and Scientific Instruments. PTYS April 1, 2008

Electromagnetic Radiation and Scientific Instruments. PTYS April 1, 2008 Electromagnetic Radiation and Scientific Instruments PTYS 206-2 April 1, 2008 Announcements Deep Impact 6 PM Wednesday Night Pizza, no beer Watch at home if you can t watch here. It will be discussed in

More information

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Richard Miles and Arthur Dogariu Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Workshop on Oxygen Plasma Kinetics Sept 20, 2016 Financial support: ONR and MetroLaser

More information

SIZE-SELECTED AEROSOL FILTER ANALYSIS USING ELECTROSTATIC CLASSIFICATION AND LIBS

SIZE-SELECTED AEROSOL FILTER ANALYSIS USING ELECTROSTATIC CLASSIFICATION AND LIBS SIZE-SELECTED AEROSOL FILTER ANALYSIS USING ELECTROSTATIC CLASSIFICATION AND LIBS APPLICATION NOTE LIBS-023 Quantitative elemental composition analysis is possible using size-selected aerosol samples collected

More information

Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films

Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films Xuesong Shi, 1 Xin Li, 1 Lan Jiang, 1,* Liangti Qu, 2 Yang Zhao, 2 Peng Ran, 1 Qingsong

More information

THz experiments at the UCSB FELs and the THz Science and Technology Network.

THz experiments at the UCSB FELs and the THz Science and Technology Network. THz experiments at the UCSB FELs and the THz Science and Technology Network. Mark Sherwin UCSB Physics Department and Institute for Quantum and Complex Dynamics UCSB Center for Terahertz Science and Technology

More information

Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion

Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion Walter R. Lempert, Igor V. Adamovich, J. William Rich, Jeffrey A. Sutton Department of Mechanical

More information