Chem 222 #20 Ch 11 Nov 1, 2004

Size: px
Start display at page:

Download "Chem 222 #20 Ch 11 Nov 1, 2004"

Transcription

1 Chem 222 #20 Ch 11 Nov 1, 2004

2 Announcement The answers for Midterm will be uploaded sometime tomorrow. Please check your grade and talk to your TA about general questions If you have specific questions about grading, talk to the following persons: Q1. Koy, Q2. Amanda, Q3. Chris, Q4. Medhat, Q5-6. Ishii Please complete correction by next Wednesday. We do not accept any corrections after that. Do not modify your midterm if you want us to correct your grade.

3 Histogram for Midterm Series < Average ~ Cf. Average of quiz ~ 68

4 Q5 1) Consider the titration of ml of M Ce 4+ in 1 M HClO 4 by M Fe 2+ to give Ce 3+ and Fe 3+, using Pt and calomel reference Hg Hg 2 Cl 2 electrodes to find the end point. E = Log([Fe 2+ ]/[Fe 3+ ]) (V) E = Log([Ce 3+ ]/[Ce 4+ ]) (V) a) Calculate E at the following volume (V Fe ) of Fe 2+, V Fe = 2 ml and 30.0 ml. a) First, obtain V Fe at the equivalence point (V e ). V e = C Ce4+ V Ce4+ /C Fe2+ = ml*0.0100m/ M =20.0 ml (2 points) When V = 2 ml, Use [Ce 3+ ]/[Ce 4+ ] and obtain the ratio. E = Log([Ce 3+ ]/[Ce 4+ ]) = Log{(V/(V-V e )) = Log{(2/18)} (2 point) Note: No points if the equation for F e is used or the concentration ratio is incorrect. E = V (Correct calculation 1 points) When V = 30 ml, Use [Fe 2+ ]/[Fe 3+ ] and obtain the ratio E = Log([Fe 2+ ]/[Fe 3+ ]) = Log((V-V e )/V e ) = Log((10.0 ml)/(20.0 ml) (2 points; No points if the equation for Ce is used) E = V (1 point)

5 How we calculate the titration? Ce 4+ + Fe 2+ Ce 3+ + Fe 3+ Titrant Analyte What must be changed? Before equivalence Excess Fe 2+ & Fe 3+ Little Ce 4+ After equivalence Excess Ce 4+ &Ce 3+ Little Fe 2+ Potential (V versus S. C. E)

6 Q5 1b) Consider the titration of ml of M Ce 4+ in 1 M HClO 4 by M Fe 2+ to give Ce 3+ and Fe 3+, using Pt and calomel reference Hg Hg 2 Cl 2 electrodes to find the end point. b) Calculate the concentration of Ce 3+ when V Fe = 10.0 ml. At V Fe = V e /2, [Ce 4+ ] = [Ce 3+ ]. So [Ce 3+ ] = /2 *(100.0/110.0) = mm

7 Q5. 2) Find the ph and concentration of (CH 3 )N and (CH 3 )NH + in a M solution of trimethylaminium chloride ((CH 3 )NH + Cl - ). The pk a of (CH 3 )NH + is You can neglect the effect of Cl - K a = 10 -pka = = (px = -logx X = 10 -px ) (2 points; No points if the definition of pka is incorrect) (CH 3 )NH + (CH 3 )N + H + F x x x F = M K a = x 2 /(F-x) ~ x 2 /F (assume F >> x) x = (K a F) 1/2 = ( ) 1/2 (3 points) = M ( 1 point) (F-x) ~ F ph = -logx = (2 points) Or ph = pka + log[ch 3 N]/[CH 3 NH + ] (2 points) (10-16) ph = pka - ph log(f-x) (ph = px = -logx) ph = {pka -log(f-x)}/2 (4 points) ~ (pka - logf)/2 = {9.800 log(0.080)} = X= 10 -ph = (2 point) If you just answer [(CH 3 )N ] = F, I will give 2 points.

8 Q6 Q6. Extra question Total 5 points g sample contained only NaCl and KBr. It was dissolved in water and required 2.00 L of M AgNO3 to precipitate all Cl- and Br-. The molecular weights of NaCl and KBr are 58.4 and 119.0, respectively. Calculate how many moles of KBr are contained in the solid sample. The question is from Home work Assume the contained KBr is x mmol. Ag- +Cl- AgCl Ag- +Br- AgBr Total Ag moles is 2.00 L M = 3.00 mmol (2 points) Total weight of NaCl and KBr is x mg (3.00 x) mg = mg (2 points) ( )x = x = 90.9/( ) = 1.50 mmol (1 point) No points will be given to 3.00 mmol/ 2 =1.5 mmol. The assumption that the AgCl and AgBr are equal in the number of moles is incorrect.

9 Mixing a weak acid and its conjugated base (slide 4 on Oct 21) HA H + +A - pk a = 4.00 K a = 10 [Q1] F- x x x F = 0.01 M x 2 /(F-x) = K a x = Fraction of dissociation α =[A - ]/{[A - ] +[HA]} = x/f = =3.1 % Remember Le Chatelier s principle? (p103) What happens if you add A - to the solution HA H + +A - How much fraction of A - reacts with water in a solution containing 0.10 M of A -? A - +H 2 O HA + OH - pk b =[Q2] F y y y y 2 /(F -y) = K b y = & α =

10 P206 Compositions of 0.05 M Solution The acidic form H 2 L + Leucine hydrochloride contains protonated species. Because K 1 = , H 2 L + is a weak acid. HL is an even weaker acid: k 2 = It appears that the H 2 L + will dissociate only partly, and the resulting HL will hardly dissociate. H 2 L + HL + H + F x x x K 1 = [Q1]/(F x) x= M K a2 = [H + ][L - ]/[HL] Basic Form L - The species, L -, is found in a salt such as sodium leucinate. In solution, the salt gives L -. L - +H 2 O HL + OH - K b1 = K w /K a2 = 5.59 x 10-5 HL +H 2 O H 2 L + + OH - K b2 = K w /K a1 = 2.13 x K b1 shows that L - will not hydrolyze very much to give HL. K b2 shows H 2 L + is generated even less. L - +H 2 O HL + OH - K b1 = [Q1] F-x x x K b2 = [H 2 L + ][OH - ]/[HL]

11 11-1 Diprotic Acids and Bases H 3 N + - O 2 C \ CH-R Substituent / where R is a different group for each amino acid. ph = pka + Log[A - ]/[AH] [A - ]/[AH] = 10 (ph-pka)

12 Unusual serine sidechain in serine protease (trypsin) Catalytic triad in trypsin (Ser195)-O-H + His (Ser)-O - + H-His Serine protease: subtilisin, chymotrypsin,

13

14 Intermediate Form, HL A solution prepared from leucine, HL, is more complicated. HL H + +L - ; K a2 = (11-8) HL + H 2 O H 2 L + +OH - ; K b2 = (11-9) A molecule that can both donate and accept a proton is said to be amphiprotic. To solve (11-8) & (11-9), we use charge [Q1] [H + ] +[H 2 L + ] = [L - ] +[OH - ] [H 2 L + ] = [HL][H + ]/K a1 [L - ] = [HL]K a2 /[H + ] [OH - ] = K w /[H + ] [H + ] + [HL][H + ]/K a1 = [HL]K a2 /[H + ] + K w /[H + ] {1+([HL]/K a1 )}[H + ] 2 = ([HL]K a2 +K w ) Major species is [HL] [HL] ~ F [H + ] = {(FK a2 +K w )/{1+(F/K a1 )}} 1/2 = 1/ 2 (11-11) FK a2 K K a1 a1 + K + F a1 K w

15 [H + ] = FK a2 K K a1 a1 + K + F a1 K w 1/ 2 Two additional assumptions K a2 F >> K w [H + ] = FK K a2 a1 K +F a1 1/ 2 K a1 << F [H + ] = FKa2K F a1 1/ 2 = ( K K ) 1/ 2 a1 ph = -Log[H + ] = -Log(K a1 K a2 ) 1/2 = {-LogK a1 LogK a2 }/2 = [Q1] (11-12) a2

16 Ex. ph of the Intermediate Form of a Diprotic Acid (p210) KPH is a salt of the intermediate form of phathalic acid. Calculate the ph of both 0.10 M and M KPH. F >> K 1 = 10 [Q1] & FK 2 >> K W = ph = [Q2] = 4.18

17 Intermediate Form, HA - Summary A solution prepared from the intermediate A a1 form HA -, is more complicated. HA - H + +A 2- K a2 (11-8) HA - + H + H 2 ; 1/K (11-9) ph = (pk a1 + pk a2 )/2 [H + ] = 10 -ph [HA - ] = F K a2 = [H + ][A 2- ]/[HA - ] [A 2- ] = K a2 [HA - ]/[H + ] 1/K a1 = [H 2 A]/[HA - ][H + ] [H 2 A] = [H + ][HA - ]/K a1

18 Read the summary p211

19

20

21 11-2 Diprotic Buffers H 2 A HA - A 2- You can use either or both of the equations ph = pk 1 + Log[HA - ]/[H 2 A] ph = pk 2 + Log[A 2- ]/[HA - ] Ex. Find the ph of a solution prepared by dissolving 1.0 mmol of KHP and 2.0 mmol of Na 2 P in a 1L of H 2 O. ph = pk 2 + Log{[P 2- ]/[HP - ]} [P 2- ]/[HP] =

22 Ex2. How much volume of M NaOH should be added to 0.80 L of 0.50 M KHP solution to give a solution at ph of 6.4. pk 1 = 3.0 & pk 2 = 5.4 Initial moles of KHP is 0.80 L 0.50 M= 0.40moles HP - + OH - P 2- +H 2 O Initial 0.40 x Final 0.40-x ph = pk 2 + Log[P 2- ]/[HP] [P 2- ]/[HP] = 10 {ph-pk 2 } = x

Chem 222 #20 Ch 23, Ch26, Ch11 Mar 29, 2005

Chem 222 #20 Ch 23, Ch26, Ch11 Mar 29, 2005 Chem 222 #20 Ch 23, Ch26, Ch11 Mar 29, 2005 Announcement Your midterm will be returned probably this week. Reports for Exp 13, 15 are due this W/R. Reports for KH 5-1 is due on next M/T. Today we will

More information

Formular weight of K 2 Cr 2 O 7 = 2( ) + 2( ) + 7( ) = (7 S.F.) (1 pt/each factor)

Formular weight of K 2 Cr 2 O 7 = 2( ) + 2( ) + 7( ) = (7 S.F.) (1 pt/each factor) Chem 222. Midterm Exam Answer Key Q1. a) Using the proper number of significant figures what is the formula weight of K 2 Cr 2 O 7 and the uncertainly? Use atomic weights as: K 39.0983 ± 0.0003, Cr 51.9961

More information

Chem 222 #29 Review Apr 28, 2005

Chem 222 #29 Review Apr 28, 2005 Chem 222 #29 Review Apr 28, 2005 Announcement Please meet me after the class if you have any conflicts with the final exam schedule. You can expect similar questions with Quiz 6 in the final exam. If you

More information

Chem 222 #28 Review Dec 2, 2004

Chem 222 #28 Review Dec 2, 2004 Chem 222 #28 Review Dec 2, 2004 Announcement Please receive your quiz from the TAs. If you have any corrections about your quiz, labs, and notebook, please ask for corrections by 5pm of Dec 3. Final exam

More information

Acid and Base. Properties of Umass Boston

Acid and Base. Properties of Umass Boston Acid and Base Dissociation of diprotic acid For the solution of H 2 L H 2 L HL H a = 4.69 x 0-3 HL L - H a2 =.79 x 0-0 Assumption: since a >> a2 so the dissociation of HL is insignificant comparing with

More information

CHM 112 Dr. Kevin Moore

CHM 112 Dr. Kevin Moore CHM 112 Dr. Kevin Moore Reaction of an acid with a known concentration of base to determine the exact amount of the acid Requires that the equilibrium of the reaction be significantly to the right Determination

More information

Reference: Chapter 4 in textbook. PART 6B Precipitate. textbook

Reference: Chapter 4 in textbook. PART 6B Precipitate. textbook PART 6A Solution Reference: Chapter 4 in textbook PART 6B Precipitate Reference: Chapter 16.5 16.8 in the textbook 1 Solution Solute, Solvent, and Solution Saturated solution and Solubility Saturated solution:

More information

Ch. 9: Polyprotic Acid-Base Equilibria

Ch. 9: Polyprotic Acid-Base Equilibria Ch. 9: Polyprotic Acid-Base Equilibria Outline: 9-1 Diprotic Acids and Bases 9-2 Diprotic buffers 9-3 Polyprotic Acids and Bases 9-4 Which is the Principal Species? 9-5 Fraction Compositions 9-6 Isoelectric

More information

Chem 222 #18 Ch 10, Review Mar 10, 2005

Chem 222 #18 Ch 10, Review Mar 10, 2005 Chem 222 #18 Ch 10, Review Mar 10, 2005 Announcement Next Tuesday Review Class (Lecture note will be probably uploaded on this Saturday) Midterm Exam on the next Thursday this room in the same time (50

More information

Chem Chapter 18: Sect 1-3 Common Ion Effect; Buffers ; Acid-Base Titrations Sect 4-5 Ionic solubility Sect 6-7 Complex Formation

Chem Chapter 18: Sect 1-3 Common Ion Effect; Buffers ; Acid-Base Titrations Sect 4-5 Ionic solubility Sect 6-7 Complex Formation Chem 106 3--011 Chapter 18: Sect 1-3 Common Ion Effect; Buffers ; Acid-Base Titrations Sect 4-5 Ionic solubility Sect 6-7 Complex Formation 3//011 1 The net ionic equation for the reaction of KOH(aq) and

More information

Chapter 16: Applications of Aqueous Equilibrium Part 2. Acid-Base Titrations

Chapter 16: Applications of Aqueous Equilibrium Part 2. Acid-Base Titrations Chapter 16: Applications of Aqueous Equilibrium Part 2 Acid-Base Titrations When you add an acid and a base together, a neutralization rxn occurs. In the lab, we do neutralization rxns all the time as

More information

Introduction to Acids & Bases. Packet #26

Introduction to Acids & Bases. Packet #26 Introduction to Acids & Bases Packet #26 Review I Svante Arrhenius was the first person to recognize the essential nature of acids and bases. Review II Arrhenius postulated that: Acids produce hydrogen

More information

Advanced Placement Chemistry Chapters Syllabus

Advanced Placement Chemistry Chapters Syllabus As you work through the chapter, you should be able to: Advanced Placement Chemistry Chapters 14 16 Syllabus Chapter 14 Acids and Bases 1. Describe acid and bases using the Bronsted-Lowry, Arrhenius, and

More information

Triprotic H3A, H2A -, HA 2-, A 3-

Triprotic H3A, H2A -, HA 2-, A 3- Today Quick solubility question Polyprotic Acids determining something about an unknown by reacting it with a known solution Silver Nitrate (AgNO3) and Potassium Chloride (KCl) are both soluble salts.

More information

Chapter 15 - Applications of Aqueous Equilibria

Chapter 15 - Applications of Aqueous Equilibria Neutralization: Strong Acid-Strong Base Chapter 15 - Applications of Aqueous Equilibria Molecular: HCl(aq) + NaOH(aq) NaCl(aq) + H 2 O(l) SA-SB rxn goes to completion (one-way ) Write ionic and net ionic

More information

Introduction to Acids & Bases II. Packet #26

Introduction to Acids & Bases II. Packet #26 Introduction to Acids & Bases II Packet #26 1 Review I Svante Arrhenius was the first person to recognize the essential nature of acids and bases. 2 Review II Arrhenius postulated that: Acids produce hydrogen

More information

Acid-Base Equilibria and Solubility Equilibria

Acid-Base Equilibria and Solubility Equilibria Acid-Base Equilibria and Solubility Equilibria Acid-Base Equilibria and Solubility Equilibria Homogeneous versus Heterogeneous Solution Equilibria (17.1) Buffer Solutions (17.2) A Closer Look at Acid-Base

More information

Chemical Equilibrium. What is the standard state for solutes? a) 1.00 b) 1 M c) 100% What is the standard state for gases? a) 1 bar b) 1.

Chemical Equilibrium. What is the standard state for solutes? a) 1.00 b) 1 M c) 100% What is the standard state for gases? a) 1 bar b) 1. Chemical Equilibrium Equilibrium constant for the reaction: aa + bb + cc + dd + [C ] c [D ] d... equilibrium constant K = [ A] a [B ] b... [] = concentration relative to standard state molarity (M): for

More information

Acid-Base Equilibria. And the beat goes on Buffer solutions Titrations

Acid-Base Equilibria. And the beat goes on Buffer solutions Titrations Acid-Base Equilibria And the beat goes on Buffer solutions Titrations 1 Common Ion Effect The shift in equilibrium due to addition of a compound having an ion in common with the dissolved substance. 2

More information

Buffer Solutions. Buffer Solutions

Buffer Solutions. Buffer Solutions Buffer Solutions A buffer solution is comprised of a mixture of an acid (base) with its conjugate base (acid) that resists changes in ph when additional acid or base is added The Henderson-Hasselbalch

More information

Name AP CHEM / / Chapter 15 Outline Applications of Aqueous Equilibria

Name AP CHEM / / Chapter 15 Outline Applications of Aqueous Equilibria Name AP CHEM / / Chapter 15 Outline Applications of Aqueous Equilibria Solutions of Acids or Bases Containing a Common Ion A common ion often refers to an ion that is added by two or more species. For

More information

BCIT Winter Chem Exam #2

BCIT Winter Chem Exam #2 BCIT Winter 2016 Chem 0012 Exam #2 Name: Attempt all questions in this exam. Read each question carefully and give a complete answer in the space provided. Part marks given for wrong answers with partially

More information

IB Chemistry ABS Introduction An acid was initially considered a substance that would produce H + ions in water.

IB Chemistry ABS Introduction An acid was initially considered a substance that would produce H + ions in water. IB Chemistry ABS Introduction An acid was initially considered a substance that would produce H + ions in water. The Brønsted-Lowry definition of an acid is a species that can donate an H + ion to any

More information

2] What is the difference between the end point and equivalence point for a monobasicmonoacid

2] What is the difference between the end point and equivalence point for a monobasicmonoacid 4 Titrations modified October 9, 2013 1] A solution of 0.100 M AgNO 3 is used to titrate a 100.00 ml solution of 0.100 M KCl. The K sp of AgCl is 1.8e-11 a) What is pag if 50.00 ml of the titrant is added

More information

ph = log[h + ] pk a = logk a = 4.75 K a = HA H + + A K a = [H+ ][A ] [HA] Acid-Base Chemistry: Alpha Fractions, Titrations, Exact Solutions

ph = log[h + ] pk a = logk a = 4.75 K a = HA H + + A K a = [H+ ][A ] [HA] Acid-Base Chemistry: Alpha Fractions, Titrations, Exact Solutions I. Monoprotic Weak Acid Alpha Fractions HA = Acetic Acid: CH3COOH pk a = logk a = 4.75 K a = 10 4.75 HA H + + A K a = [H+ ][A ] [HA] Two Acid Species: HA and A - Alpha Fractions only depend on ph and pka

More information

Chem 222 Quiz 6 Apr 26, Chem 222 Quiz 6

Chem 222 Quiz 6 Apr 26, Chem 222 Quiz 6 Chem 222 Quiz 6 1. Do not open this page until you are asked to start. 2. When you submit the answer, return only page 2-6. 3. After your time is up, please bring the answers to the instructor within 1

More information

x x10. Hydromiun ion already in solution before acid added. NH 3 /NH4+ buffer solution

x x10. Hydromiun ion already in solution before acid added. NH 3 /NH4+ buffer solution 10/15/01 Commonion effect In the last chapter, we calculated the [H 3 O ] of a M O as 6.010 5 M. The percent dissociation for this solution would be: More Acid and Base Chemistry 6.010 5 100 0.089% [H

More information

Today. Solubility The easiest of all the equilibria. Polyprotic Acids determining something about an unknown by reacting it with a known solution

Today. Solubility The easiest of all the equilibria. Polyprotic Acids determining something about an unknown by reacting it with a known solution Today Solubility The easiest of all the equilibria Polyprotic Acids determining something about an unknown by reacting it with a known solution Solubility Equilibria Mg(OH)2 (s) Mg 2+ (aq) + 2OH - (aq)

More information

Equilibrium constant

Equilibrium constant Equilibrium constant Equilibrium constant Many reactions that occur in nature are reversible and do not proceed to completion. They come to an equilibrium where the net velocity = 0 The velocity of forward

More information

Chemistry 222. Start mol End mol

Chemistry 222. Start mol End mol Chemistry Spring 019 Exam 3: Chapters 8-10 Name 80 Points Complete problem 1 and four of problems 6. CLEARLY mark the problem you do not want graded. You must show your work to receive credit for problems

More information

LECTURE #25 Wed. April 9, 2008

LECTURE #25 Wed. April 9, 2008 CHEM 206 section 01 LECTURE #25 Wed. April 9, 2008 LECTURE TOPICS: TODAY S CLASS: 18.1-18.2 NEXT CLASS: finish Ch.18 (up to 18.5) (1) 18.1 The Common Ion Effect basis of all Ch.18 = shift in eqm position

More information

5/10/2017. Chapter 10. Acids, Bases, and Salts

5/10/2017. Chapter 10. Acids, Bases, and Salts Chapter 10. Acids, Bases, and Salts Introduction to Inorganic Chemistry Instructor Dr. Upali Siriwardane (Ph.D. Ohio State) E-mail: upali@latech.edu Office: 311 Carson Taylor Hall ; Phone: 318-257-4941;

More information

Acid-Base Titration Solution Key

Acid-Base Titration Solution Key Key CH3NH2(aq) H2O(l) CH3NH3 (aq) OH - (aq) Kb = 4.38 x 10-4 In aqueous solution of methylamine at 25 C, the hydroxide ion concentration is 1.50 x 10-3 M. In answering the following, assume that temperature

More information

CHAPTER 7 Acid Base Equilibria

CHAPTER 7 Acid Base Equilibria 1 CHAPTER 7 Acid Base Equilibria Learning Objectives Acid base theories Acid base equilibria in water Weak acids and bases Salts of weak acids and bases Buffers Logarithmic concentration diagrams 2 ACID

More information

HW 16-10: Review from textbook (p.725 #84, 87, 88(mod), 89, 95, 98, 101, 102, 110, 113, 115, 118, 120, SG#23,A)

HW 16-10: Review from textbook (p.725 #84, 87, 88(mod), 89, 95, 98, 101, 102, 110, 113, 115, 118, 120, SG#23,A) HW 6: Review from textbook (p.75 #84, 87, 88(mod), 89, 95, 98,,,, 3, 5, 8,, SG#3,A) 6.84 The pk a of the indicator methyl orange is 3.46. Over what ph range does this indicator change from 9 percent HIn

More information

Dougherty Valley High School AP Chemistry Chapters 14 and 15 Test - Acid-Base Equilibria

Dougherty Valley High School AP Chemistry Chapters 14 and 15 Test - Acid-Base Equilibria Dougherty Valley High School AP Chemistry Chapters 14 and 15 Test - Acid-Base Equilibria This is a PRACTICE TEST. Complete ALL questions. Answers will be provided so that you may check your work. I strongly

More information

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B Chemical Equilibrium Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product formation,

More information

Chapter 10. Acids, Bases, and Salts

Chapter 10. Acids, Bases, and Salts Chapter 10 Acids, Bases, and Salts Topics we ll be looking at in this chapter Arrhenius theory of acids and bases Bronsted-Lowry acid-base theory Mono-, di- and tri-protic acids Strengths of acids and

More information

7-4 Systematic Treatment of Equilibrium

7-4 Systematic Treatment of Equilibrium 7-4 Systematic Treatment of Equilibrium The equilibrium problem can be solved by working n equations and n unknowns. n equations n-2 : chemical equilibrium conditions 2 : Charge balance Mass balance 1)

More information

Titration a solution of known concentration, called a standard solution

Titration a solution of known concentration, called a standard solution Acid-Base Titrations Titration is a form of analysis in which we measure the volume of material of known concentration sufficient to react with the substance being analyzed. Titration a solution of known

More information

Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations

Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations Sec 1 The Common-Ion Effect: The dissociation of a weak electrolyte decreases when a strong electrolyte that has an ion in common with

More information

g. Looking at the equation, one can conclude that H 2 O has accepted a proton from HONH 3 HONH 3

g. Looking at the equation, one can conclude that H 2 O has accepted a proton from HONH 3 HONH 3 Chapter 14 Acids and Bases I. Bronsted Lowry Acids and Bases a. According to Brønsted- Lowry, an acid is a proton donor and a base is a proton acceptor. Therefore, in an acid- base reaction, a proton (H

More information

Create assignment, 48975, Exam 2, Apr 05 at 9:07 am 1

Create assignment, 48975, Exam 2, Apr 05 at 9:07 am 1 Create assignment, 48975, Exam 2, Apr 05 at 9:07 am 1 This print-out should have 30 questions. Multiple-choice questions may continue on the next column or page find all choices before making your selection.

More information

More About Chemical Equilibria

More About Chemical Equilibria 1 More About Chemical Equilibria Acid-Base & Precipitation Reactions Chapter 15 & 16 1 Objectives Chapter 15 Define the Common Ion Effect (15.1) Define buffer and show how a buffer controls ph of a solution

More information

Ch. 14/15: Acid-Base Equilibria Sections 14.6, 14.7, 15.1, 15.2

Ch. 14/15: Acid-Base Equilibria Sections 14.6, 14.7, 15.1, 15.2 Ch. 14/15: Acid-Base Equilibria Sections 14.6, 14.7, 15.1, 15.2 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution

More information

Strong Acids and Bases C020

Strong Acids and Bases C020 Strong Acids and Bases C020 Strong Acids and Bases 1 Before discussing acids and bases examine the concept of chemical equilibrium At reaction is at equilibrium when it is proceeding forward and backwards

More information

Buffer Effectiveness, Titrations & ph curves. Section

Buffer Effectiveness, Titrations & ph curves. Section Buffer Effectiveness, Titrations & ph curves Section 16.3-16.4 Buffer effectiveness Buffer effectiveness refers to the ability of a buffer to resist ph change Effective buffers only neutralize small to

More information

1.12 Acid Base Equilibria

1.12 Acid Base Equilibria .2 Acid Base Equilibria BronstedLowry Definition of acid Base behaviour A BronstedLowry acid is defined as a substance that can donate a proton. A BronstedLowry base is defined as a substance that can

More information

Chem 222 #9 Ch 7, 13 Feb 8, 2005

Chem 222 #9 Ch 7, 13 Feb 8, 2005 Chem 222 #9 Ch 7, 13 Feb 8, 2005 Announcement The answer key for quiz 2 is at the web site Quiz 2 2(b) 2(b) John put excess amount of Cu 4 (OH) 6 (SO 4 ) into H 2 O and adjusted ph of the solution at 9.0

More information

Now, the excess strong base will react: HA + OH - A - + H 2 O Start mol End mol

Now, the excess strong base will react: HA + OH - A - + H 2 O Start mol End mol Chemistry Spring 016 Exam 3: Chapters 8-10 Name 80 Points Complete problem 1 and four of problems -6. CLEARLY mark the problem you do not want graded. You must show your work to receive credit for problems

More information

Page 1 of 9 Chem 201 Lecture 6a Summer 09. Announcement: Fluoride experiment will replace the Cu-ASV experiment for those who have not yet done Cu-ASV

Page 1 of 9 Chem 201 Lecture 6a Summer 09. Announcement: Fluoride experiment will replace the Cu-ASV experiment for those who have not yet done Cu-ASV Page 1 of 9 Chem 201 Lecture 6a Summer 09 Announcement: Fluoride experiment will replace the Cu-ASV experiment for those who have not yet done Cu-ASV The protocol will be posted soon as all the typos are

More information

Strong acids and bases

Strong acids and bases h.8 & 9 Systematic Treatment of Equilibrium & Monoprotic Acid-base Equilibrium Strong acids and bases.0 onc. (M) ph 0..0 -.0.0-5 5.0.0-8 8.0? We have to consider autoprotolysis of water: H O Kw OH - H

More information

Unit The mw of Na 2 CO 3 is : Na=23, O=16, C=12 A) 140 B) 106 C) 96 D) 100 E) 60

Unit The mw of Na 2 CO 3 is : Na=23, O=16, C=12 A) 140 B) 106 C) 96 D) 100 E) 60 Unit 2 1- The mw of Na 2 CO 3 is : Na=23, O=16, C=12 A) 140 B) 106 C) 96 D) 100 E) 60 2- How many grams of Na 2 CO 3 (mw = 106 ) A) 318 B) 0.028 C) 134 D) 201 E) 67 in 3 moles, 3- Calculate the normal

More information

Unit 3: Solubility Equilibrium

Unit 3: Solubility Equilibrium Unit 3: Chem 11 Review Preparation for Chem 11 Review Preparation for It is expected that the student understands the concept of: 1. Strong electrolytes, 2. Weak electrolytes and 3. Nonelectrolytes. CHEM

More information

Chemistry 102 Chapter 17 COMMON ION EFFECT

Chemistry 102 Chapter 17 COMMON ION EFFECT COMMON ION EFFECT Common ion effect is the shift in equilibrium caused by the addition of an ion that takes part in the equilibrium. For example, consider the effect of adding HCl to a solution of acetic

More information

CHAPTER 7.0: IONIC EQUILIBRIA

CHAPTER 7.0: IONIC EQUILIBRIA Acids and Bases 1 CHAPTER 7.0: IONIC EQUILIBRIA 7.1: Acids and bases Learning outcomes: At the end of this lesson, students should be able to: Define acid and base according to Arrhenius, Bronsted- Lowry

More information

Exam Practice. Chapters

Exam Practice. Chapters Exam Practice Chapters 16.6 17 1 Chapter 16 Chemical Equilibrium Concepts of: Weak bases Percent ionization Relationship between K a and K b Using structure to approximate strength of acids Strength of

More information

Ionic Equilibria. weak acids and bases. salts of weak acids and bases. buffer solutions. solubility of slightly soluble salts

Ionic Equilibria. weak acids and bases. salts of weak acids and bases. buffer solutions. solubility of slightly soluble salts Ionic Equilibria weak acids and bases salts of weak acids and bases buffer solutions solubility of slightly soluble salts Arrhenius Definitions produce H + ions in the solution strong acids ionize completely

More information

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY Acids And Bases A. Characteristics of Acids and Bases 1. Acids and bases are both ionic compounds that are dissolved in water. Since acids and bases both form ionic solutions, their solutions conduct electricity

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Many reactions are reversible, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product

More information

Announcements. Print worksheet #21 prior to your Thursday discussion section. LON-CAPA assignment #12 due NEXT Wednesday at 9am

Announcements. Print worksheet #21 prior to your Thursday discussion section. LON-CAPA assignment #12 due NEXT Wednesday at 9am Announcements Print worksheet #21 prior to your Thursday discussion section LON-CAPA assignment #12 due NEXT Wednesday at 9am Dr. Nicely s office hours (205 Chem Annex): Mondays from 3-4pm, Fridays from

More information

Page 1 of 7 Chem 201 Lecture11 Summer 07. Admin: recall all Test #1 s Please turn in Test 1 for regrading. Last time:

Page 1 of 7 Chem 201 Lecture11 Summer 07. Admin: recall all Test #1 s Please turn in Test 1 for regrading. Last time: Page 1 of 7 Chem 201 Lecture11 Summer 07 Admin: recall all Test #1 s Please turn in Test 1 for regrading Last time: 1. calibration methods 2. mixtures 3. Acid Base reactions AcidBase Calculations: ACIDS

More information

Chapter 4 - Types of Chemical Reactions and Solution Chemistry

Chapter 4 - Types of Chemical Reactions and Solution Chemistry Chapter 4 - Types of Chemical Reactions and Solution Chemistry 4.1 Water, the Common Solvent - the water molecule is bent with and H-O-H angles of approx. 105 º - O-H bonds are covalent - O is slightly

More information

Chapter 14 Acid- Base Equilibria Study Guide

Chapter 14 Acid- Base Equilibria Study Guide Chapter 14 Acid- Base Equilibria Study Guide This chapter will illustrate the chemistry of acid- base reactions and equilibria, and provide you with tools for quantifying the concentrations of acids and

More information

Homework #7 Chapter 8 Applications of Aqueous Equilibrium

Homework #7 Chapter 8 Applications of Aqueous Equilibrium Homework #7 Chapter 8 Applications of Aqueous Equilibrium 15. solution: A solution that resists change in ph when a small amount of acid or base is added. solutions contain a weak acid and its conjugate

More information

AP Chemistry Honors Unit Chemistry #4 2 Unit 3. Types of Chemical Reactions & Solution Stoichiometry

AP Chemistry Honors Unit Chemistry #4 2 Unit 3. Types of Chemical Reactions & Solution Stoichiometry HO AP Chemistry Honors Unit Chemistry #4 2 Unit 3 Chapter 4 Zumdahl & Zumdahl Types of Chemical Reactions & Solution Stoichiometry Students should be able to:! Predict to some extent whether a substance

More information

Unit 3: Solubility Equilibrium

Unit 3: Solubility Equilibrium Unit 3: Chem 11 Review Preparation for Chem 11 Review Preparation for It is expected that the student understands the concept of: 1. Strong electrolytes, 2. Weak electrolytes and 3. Nonelectrolytes. CHEM

More information

CHEM 116 Buffers and Titration

CHEM 116 Buffers and Titration CHEM 116 Buffers and Titration Lecture 20 Prof. Sevian Today s agenda Equilibrium in acid-base systems Finish comparing strong vs. weak acids (and strong vs. weak bases) Buffers When approximately equal

More information

Chapter 15 Acid Base Equilibria

Chapter 15 Acid Base Equilibria Buffer Solutions The ph changes by a large amount even when a small amount of acid or base is added to pure water: Chapter 15 Acid Base Equilibria A buffer solution is a solution which resists a change

More information

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions.

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions. Lecture 12 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

Lecture Presentation. Chapter 16. Aqueous Ionic Equilibrium. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 16. Aqueous Ionic Equilibrium. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 16 Aqueous Ionic Equilibrium Sherril Soman Grand Valley State University The Danger of Antifreeze Each year, thousands of pets and wildlife species die from consuming antifreeze.

More information

Return Exam 3 Review for final exam: kinetics, equilibrium, acid-base

Return Exam 3 Review for final exam: kinetics, equilibrium, acid-base Chem 106 Thurs. 5-5-2011 Return Exam 3 Review for final exam: kinetics, equilibrium, acid-base Hour Ex 3; Ave=64, Hi=94 5/5/2011 1 ACS Final exam question types Topic # Calcul n Qualitative Intermol forces

More information

HA(s) + H 2 O(l) = H 3 O + (aq) + A (aq) b) NH 3 (g) + H 2 O(l) = NH 4 + (aq) + OH (aq) Acid no. H + type base no. OH type

HA(s) + H 2 O(l) = H 3 O + (aq) + A (aq) b) NH 3 (g) + H 2 O(l) = NH 4 + (aq) + OH (aq) Acid no. H + type base no. OH type You are already familiar with some acid and base chemistry. According to the Arrhenius model, acids are substances that when dissolved in water ionize to yield hydrogen ion (H + ) and a negative ion. e.g.

More information

Equilibrium principles in aqueous systems are limited to qualitative descriptions and/or calculations involving:

Equilibrium principles in aqueous systems are limited to qualitative descriptions and/or calculations involving: NCEA Chemistry 3.6 Aqueous Systems AS 91392 Demonstrate understanding of equilibrium principles in aqueous systems Aqueous systems are limited to those involving sparingly soluble ionic solids Equilibrium

More information

Lecture #11-Buffers and Titrations The Common Ion Effect

Lecture #11-Buffers and Titrations The Common Ion Effect Lecture #11-Buffers and Titrations The Common Ion Effect The Common Ion Effect Shift in position of an equilibrium caused by the addition of an ion taking part in the reaction HA(aq) + H2O(l) A - (aq)

More information

Equilibri acido-base ed equilibri di solubilità. Capitolo 16

Equilibri acido-base ed equilibri di solubilità. Capitolo 16 Equilibri acido-base ed equilibri di solubilità Capitolo 16 The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substance.

More information

The ph of aqueous salt solutions

The ph of aqueous salt solutions The ph of aqueous salt solutions Sometimes (most times), the salt of an acid-base neutralization reaction can influence the acid/base properties of water. NaCl dissolved in water: ph = 7 NaC 2 H 3 O 2

More information

= ) = )

= ) = ) Basics of calculating ph 1. Find the ph of 0.07 M HCl. 2. Find the ph of 0.2 M propanoic acid (K a = 10-4.87 ) 3. Find the ph of 0.4 M (CH 3 ) 3 N (K b = 10-4.20 ) 4. Find the ph of 0.3 M CH 3 COO - Na

More information

14-Jul-12 Chemsheets A

14-Jul-12 Chemsheets A www.chemsheets.co.uk 14-Jul-12 Chemsheets A2 009 1 BRONSTED-LOWRY ACIDS & BASES Bronsted-Lowry acid = proton donor (H + = proton) Bronsted-Lowry base = proton acceptor (H + = proton) Bronsted-Lowry acid-base

More information

Chem 112, Fall 05 Exam 3A

Chem 112, Fall 05 Exam 3A Before you begin, make sure that your exam has all 10 pages. There are 32 required problems (3 points each, unless noted otherwise) and two extra credit problems (3 points each). Stay focused on your exam.

More information

Mixtures of Acids and Bases

Mixtures of Acids and Bases Mixtures of Acids and Bases CH202, lab 6 Goals : To calculate and measure the ph of pure acid and base solutions. To calculate and measure the ph of mixtures of acid and base solutions. Safety : Hydrochloric

More information

Kotz 7 th ed. Section 18.3, pp

Kotz 7 th ed. Section 18.3, pp Lecture 15 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates

Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates For Practice 15.1 In each reaction, identify the Brønsted Lowry acid, the Brønsted Lowry base, the conjugate acid, and the conjugate

More information

Questions #4-5 The following two questions refer to the following system: A 1.0L solution contains 0.25M HF and 0.60M NaF (Ka for HF = 7.2 x 10-4 ).

Questions #4-5 The following two questions refer to the following system: A 1.0L solution contains 0.25M HF and 0.60M NaF (Ka for HF = 7.2 x 10-4 ). Multiple Choice 1) A solution contains 0.250 M HA (K a = 1.0 x 10-6 ) and 0.45 M NaA. What is the ph after 0.10 mole of HCl is added to 1.00L of this solution? a. 3.17 b. 3.23 c. 6.00 d. 10.77 e. 10.83

More information

Chapter 12: Chemical Equilibrium The Extent of Chemical Reactions

Chapter 12: Chemical Equilibrium The Extent of Chemical Reactions Chapter 12: Chemical Equilibrium The Extent of Chemical Reactions When a system reaches equilibrium, the [products] and [reactants] remain constant. A + B C + D [5M] [2M] [3M] [1.5M] Rate fwd = Rate rev

More information

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite.

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite. Chapter 17 Applying equilibrium 17.1 The Common Ion Effect When the salt with the anion of a is added to that acid, it reverses the dissociation of the acid. Lowers the of the acid. The same principle

More information

CHAPTER 4 AQUEOUS REACTIONS AND SOLUTION STOICHIOMETRY: Electrolyte-a compound that conducts electricity in the melt or in solution (water)

CHAPTER 4 AQUEOUS REACTIONS AND SOLUTION STOICHIOMETRY: Electrolyte-a compound that conducts electricity in the melt or in solution (water) CHAPTER 4 AQUEOUS REACTIONS AND SOLUTION STOICHIOMETRY: Electrolyte-a compound that conducts electricity in the melt or in solution (water) STRONG ELEC. 100% Dissoc. WEAK ELEC..1-10% Dissoc. NON ELEC 0%

More information

Buffer solutions Strong acids and bases dissociate completely and change the ph of a solution drastically. Buffers are solutions that resist changes i

Buffer solutions Strong acids and bases dissociate completely and change the ph of a solution drastically. Buffers are solutions that resist changes i 18.3 ph Curves Buffer solutions Strong acids and bases dissociate completely and change the ph of a solution drastically. Buffers are solutions that resist changes in ph even when acids and bases are added

More information

Chapter 8: Applications of Aqueous Equilibria

Chapter 8: Applications of Aqueous Equilibria Chapter 8: Applications of Aqueous Equilibria 8.1 Solutions of Acids or Bases Containing a Common Ion 8.2 Buffered Solutions 8.3 Exact Treatment of Buffered Solutions 8.4 Buffer Capacity 8.5 Titrations

More information

CHEM*2400/2480 Summer 2004 Assignment 7 ANSWERS

CHEM*2400/2480 Summer 2004 Assignment 7 ANSWERS CHEM*4/48 Summer 4 Assignment 7 ANSWERS 1. This is a buffer question. We simply need to find the ratio of the base-to-acid concentrations and use the Henderson-Hasselbalch equation. What makes this problem

More information

Chem 105 Tuesday March 8, Chapter 17. Acids and Bases

Chem 105 Tuesday March 8, Chapter 17. Acids and Bases Chem 105 Tuesday March 8, 2011 Chapter 17. Acids and Bases 1) Define Brønsted Acid and Brønsted Base 2) Proton (H + ) transfer reactions: conjugate acid-base pairs 3) Water and other amphiprotic substances

More information

For problems 1-4, circle the letter of the answer that best satisfies the question.

For problems 1-4, circle the letter of the answer that best satisfies the question. CHM 106 Exam II For problems 1-4, circle the letter of the answer that best satisfies the question. 1. Which of the following statements is true? I. A weak base has a strong conjugate acid II. The strength

More information

Chemistry 112 Spring 2007 Prof. Metz Exam 3 Each question is worth 5 points, unless otherwise indicated.

Chemistry 112 Spring 2007 Prof. Metz Exam 3 Each question is worth 5 points, unless otherwise indicated. Chemistry 112 Spring 2007 Prof. Metz Exam 3 Each question is worth 5 points, unless otherwise indicated. 1. The ph of a 0.150 M solution of formic acid, HCOOH is (K a (formic acid) = 1.8 x 10-4 ). (A)

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Name Date Chemistry 201: General Chemistry II - Lecture Short-Answer Exam #2, 60 Points Total Form: A Read all directions carefully. Answers not conforming to the directions will be marked as incorrect!

More information

AP Chemistry Unit #4. Types of Chemical Reactions & Solution Stoichiometry

AP Chemistry Unit #4. Types of Chemical Reactions & Solution Stoichiometry AP Chemistry Unit #4 Chapter 4 Zumdahl & Zumdahl Types of Chemical Reactions & Solution Stoichiometry Students should be able to: Predict to some extent whether a substance will be a strong electrolyte,

More information

Do Now May 1, Obj: Observe and describe neutralization reactions. Copy: Balance the neutralization reaction. KCl(aq) + H 2 O(l)

Do Now May 1, Obj: Observe and describe neutralization reactions. Copy: Balance the neutralization reaction. KCl(aq) + H 2 O(l) Do Now May 1, 2017 Obj: Observe and describe neutralization reactions. Copy: Balance the neutralization reaction. HCl + KOH KCl(aq) + H 2 O(l) If I had 100 ml of a 0.01 M HCl solution, what is the ph of

More information

2/4/2016. Chapter 15. Chemistry: Atoms First Julia Burdge & Jason Overby. Acid-Base Equilibria and Solubility Equilibria The Common Ion Effect

2/4/2016. Chapter 15. Chemistry: Atoms First Julia Burdge & Jason Overby. Acid-Base Equilibria and Solubility Equilibria The Common Ion Effect Chemistry: Atoms First Julia Burdge & Jason Overby 17 Acid-Base Equilibria and Solubility Equilibria Chapter 15 Acid-Base Equilibria and Solubility Equilibria Kent L. McCorkle Cosumnes River College Sacramento,

More information

= (CO 2. H) pk a2 = (NH 2. The stronger base is associated with K b1

= (CO 2. H) pk a2 = (NH 2. The stronger base is associated with K b1 Solutions - Chapter 0 3. Proline: pk a =.95 (C H) pk a = 0.640 (NH ) NH H The stronger base is associated with K b ; thus NH stronger base H = - NH - NH H = - NH H weaker base pk a.95 pk a 0.640 pk w 4

More information

Course Notes Chapter 9, 11, 12. Charge balance All solutions must be electrically neutral!!!!!!!! Which means they carry a no net charge.

Course Notes Chapter 9, 11, 12. Charge balance All solutions must be electrically neutral!!!!!!!! Which means they carry a no net charge. Course Notes Chapter 9, 11, 12 Chapter 9 Mass balance Let s look at a triprotic system, such as H 3 PO 4 There are four different species within this system H 3 PO 4 H 2 PO 4 - HPO 4 2- PO 4 3- For a 0.0500

More information

PERIODIC TABLE OF THE ELEMENTS

PERIODIC TABLE OF THE ELEMENTS Chem 114 Exam 3 April 4, 2016 Name: PLEASE print your name on the exam and sign the academic integrity pledge. Print your name and fill in the circles with your I.D. # on side 1 (blue) of the scantron.

More information