Return Exam 3 Review for final exam: kinetics, equilibrium, acid-base

Size: px
Start display at page:

Download "Return Exam 3 Review for final exam: kinetics, equilibrium, acid-base"

Transcription

1 Chem 106 Thurs Return Exam 3 Review for final exam: kinetics, equilibrium, acid-base Hour Ex 3; Ave=64, Hi=94 5/5/2011 1

2 ACS Final exam question types Topic # Calcul n Qualitative Intermol forces Solids Kinetics Equilibrium Acid-base Aqueous solution Free Ener/Entropy Electrochemistry Nuclear Other /5/2011 2

3 Kinetics 1) Obtaining rate law from initial rate data 2) Using integrated rate equations (these are given) 3) Using the Arrhenius equation (this is given) 4) including definitions of activation energy 5) Chemical mechanisms, intermediates, catalysts 5/5/2011 3

4 Concentration (mol/liter) R P The rate of the reaction (moles per liter per min) rate r Change in product concentration per unit time P t x Δ[P] Δt x Δ[P] Rate can be defined as (1) Average rate over some time interval Δt or (2) Instantaneous rate at some time = slope of a tangent 2/22/ Δt Time This one is the initial rate, which is the slope right at time = 0. 4

5 There are many known rate laws. We will study only THREE: zero order rate = k*r+ 0 =k first order rate = k[r] 1 second order rate = k*r+ 2 With more complex stoichiometry, any of these might apply, given the weird things that can happen in chemistry! For example,for: A + B C + D These are known for different A,B,C,D: Rate = k Rate = k[b] 1 +1 = 2 Rate = k[b] 2 Rate = k[a][b] Rate =.. Rate =. The kinetic order = SUM of exponents of concentration factors in the Rate Law. 2/22/2011 5

6 Rate = k [NO 2 ] 1 [F 2 ] e Homework: Determining the Rate Equation - Initial Rates Rate = k [NO 2 ] x [F 2 ] y x1 x 2 x 2 x 2 x1 x 2 rate k [ NO rate k [ NO ][ F ] k k x 10 4 ][ F 4 2 ] x 10 M s M M M s 1 2/22/2011 6

7 Summary of kinetic orders for Chem 106 Order Rate = -d[r]/dt = Integrated rate law (linear form) y = mx + b Alternate form Zero k [R] = -kt + [R] o First k[r] ln[r] = -kt + ln[r] o Second k[r] 2 2/24/2011 7

8 Intermediate. Product of 1 st step Reactant in 2 nd step Cancels out when you add 1st and 2nd steps (example C + reaction) Catalyst. Reactant in 1 st step Product of 2 nd step Cancels out when add 1 st and 2 nd steps (example H + reaction) 2/24/2011 8

9 Equilibrium -Is reaction at equilibrium? ( Q vs K) -Properly treat liquids and solids -K p vs K c -Calculate concentrations after equilibrium reached (ICE table) -Use Le Chatelier s principle to predict shifts in equilibrium with adding or removing reactants/products, changing pressure, or temperature. 5/5/2011 9

10 CH 2 Cl 2 (g) CH 4 (g) + CCl 4 (g) Initial (M) Change (M) Equilibrium (M) -2x +x +x x +x +x K c K c products reactants [ CH 4 ][ CCl [ CH Cl ] x ( x ) 2 2 ] 2 2 x ( x ) x x x /3/

11 Consider the following system at equilibrium, 2 NO(g) + Br 2 (g) 2 NOBr(g) If the volume of the system was suddenly increased, how would the system respond to re-establish equilibrium? 1. React forward, increasing [Br 2 ] 2. React forward, decreasing [Br 2 ] 3. React reverse direction, increasing [Br 2 ] 4. React reverse direction, decreasing [Br 2 ] /3/

12 Rule of thumb For an endothermic reaction, if T increases, remove heat by increasing K (makes more product) if T decreases, add heat by decreasing K For an exothermic reaction, if T increases, remove heat by decreasing K if T decreases, add heat by increasing K. 3/3/

13 Acid-Base -Ion product of water Kw -define ph and poh -Ionization constants K a for acid; K b for base (hydrolysis) -Remember the strong acids -Calculate ph from weak acid or base using ICE table 5/5/

14 AUTOIONIZATION = pure water reacting with itself to a small extent. H 2 O(l) + H 2 O(l) H 3 O + (aq) + HO - (aq) [H 3 O + ] = [HO - ] = 1.00 x 10-7 M (experimentally determined) To preserve electric neutrality, these must be equal concentrations. The equilibrium constant for autoionization is K w, also called the ION PRODUCT of water. products [H 3 O ][OH ] K w [H 3 O reactants 1 K w = (1.0 x 10-7 ) 2 = 1.00 x ][OH ] [H 2 O] (l) = 1 because it is the bulk solvent phase. [H 2 O] is essentially constant at 55 M. 3/8/

15 A common way to express acidity (and basicity) is with ph Define: ph = - log [H 3 O + ] (= - log 10 [H 3 O + ]) In a neutral solution, [H 3 O + ] = 1.00 x 10-7 at 25 o C ph = -log (1.00 x 10-7 ) = - (-7.000) = /8/

16 In general Other p Scales px = -log 10 X and so poh = - log [OH - ] K w = [H 3 O + ] [OH - ] = 1.00 x at 25 o C Take the -log of both sides -log (10-14 ) = - log [H 3 O + ] + (-log [OH - ]) pk w = 14 = ph + poh 3/8/

17 Acid dissociation constant K a acetic acid, CH 3 CO 2 H (HOAc) HOAc(aq) + H 2 O(l) H 3 O + (aq) + OAc - (aq) Acid Conj. Base (acetate ion) K a = [ H 3 O + ] [ O A c - ] [ H O A c ] = 1. 8 x /8/

18 Acids K a Conjugate Bases Increase acid strength Increase base strength 3/8/

19 Strong acids ionize completely in water: HCl(aq) + H 2 O (l) H 3 O + (aq) + Cl - (aq) Weak acids ionize partially in water: HF(aq) + H 2 O (l) H 3 O + (aq) + Cl - (aq) Strong acids you should know HCl, HBr, HI HNO 3 HClO 4 H 2 SO 4 3/8/

20 Strong bases ionize completely in water: NaOH(aq) Na + (aq) + HO - (aq) Weak bases ionize partially in water: F - (aq) + H 2 O (l) HF(aq) + HO - (aq) Strong bases you should know Group I Group II LiOH NaOH KOH Ca(OH) 2 (s) slightly soluble Sr(OH) 2 Ba(OH) 2 3/8/

21 Types of Acid/Base Reactions 1. Strong Acid + Strong Base ----> Water + salt.. ph = Neutral Example: HCl + NaOH ----> H 2 O + NaCl Net Ionic Equation: H 3 O + + OH- ----> 2 H 2 O Weak Acid + Strong Base ----> Water + weak base... ph = Basic Example: HF + NaOH ----> H 2 O + NaF Net Ionic Equation: HF + OH > H 2 O + F - (Conjugate base of a weak acid = Basic.) Strong Acid + Weak Base ----> Water + Weak Acid... ph = Acidic Example: HCl + F > HF Net Ionic Equation: H 3 O + + F > HF + H 2 O (Conjugate acid of a weak base = Acidic.) Weak Acid + Weak Base ----> Weak Acid + Weak Base.. Net Ionic Equ: HCN + F > HF + CN - ( ph depends on K a s ) /10/

22 A M solution of hydrogen cyanate HOCN has a ph = What is K a for HOCN? [H 3 O + ] = = M HOCN + H 2 O H 3 O+ + OCN - I C M M M E M M M = 3.56 x /10/

23 Other Aqueous Equilibria - Henderson-Hasselbalch equation and buffers - Solubility Product, K sp 5/5/

24 Definition A buffer is an aqueous solution containing a mixture of a weak acid and its conjugate base, (or a weak base and its conjugate acid). The function of a buffer is to absorb H + or OH - ions, minimizing the change in ph that might otherwise occur. HA + H 2 O A - + H 3 O + B + H 2 O BH + + OH - (Notice that either equilibrium can absorb H + or OH - ions) 3/22/

25 Logic of the H-H equation ph pk a [ A ] log [ HA ] Please remember this equation and know how to use it. Say 1/5 [A - ], 4/5 [HA] Then log(1/4) = ph = pk a Say [A - ] = [HA] Then log(1) = 0 ph = pk a + 0 = pk a Say 2/3 [A - ] and 1/3 [HA] Then log(2/1) = 0.30 ph = pk a or [H 3 O + ] > K a or [H 3 O + ] = K a or [H 3 O + ] < K a 3/22/

26 Say you prepared a buffer using equal moles of sodium nitrite NaNO 2 and nitrous acid HNO 2 (K a = 3.2 x 10-4 ). What is the ph of the resulting solution? (Try using pencil and paper, and not a calculator ) ph = pk a + log(a-/ha) = pk a ph = -log(3.2 x 10-4 ) ph = -[log3.2 + log(10-4 )] ph = -(~0.5-4) ph = -(-3.5) = 3.5 3/22/

27 ph Titrating a weak acid (1.0 M, K a = 1 x 10-6 ) with strong base NaOH HA + OH - A - + H 2 O 14 Acid 2 ph of NaOH solutions buffer of weak acid & its conjugate base ph of conjugate base ph of weak acid *weak acid+=*conjugate base+ ph = pk a Mol OH-/mol HA titration equivalence pt 3/22/

Chem Chapter 18: Sect 1-3 Common Ion Effect; Buffers ; Acid-Base Titrations Sect 4-5 Ionic solubility Sect 6-7 Complex Formation

Chem Chapter 18: Sect 1-3 Common Ion Effect; Buffers ; Acid-Base Titrations Sect 4-5 Ionic solubility Sect 6-7 Complex Formation Chem 106 3--011 Chapter 18: Sect 1-3 Common Ion Effect; Buffers ; Acid-Base Titrations Sect 4-5 Ionic solubility Sect 6-7 Complex Formation 3//011 1 The net ionic equation for the reaction of KOH(aq) and

More information

Chem 105 Tuesday March 8, Chapter 17. Acids and Bases

Chem 105 Tuesday March 8, Chapter 17. Acids and Bases Chem 105 Tuesday March 8, 2011 Chapter 17. Acids and Bases 1) Define Brønsted Acid and Brønsted Base 2) Proton (H + ) transfer reactions: conjugate acid-base pairs 3) Water and other amphiprotic substances

More information

Chem 106 Thursday, March 10, Chapter 17 Acids and Bases

Chem 106 Thursday, March 10, Chapter 17 Acids and Bases Chem 106 Thursday, March 10, 2011 Chapter 17 Acids and Bases K a and acid strength Acid + base reactions: Four types (s +s, s + w, w + s, and w + w) Determining K from concentrations and ph ph of aqueous

More information

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33 Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33 Review acid-base theory and titrations. For all titrations, at the equivalence point, the two reactants have completely reacted with

More information

Chapter 10. Acids, Bases, and Salts

Chapter 10. Acids, Bases, and Salts Chapter 10 Acids, Bases, and Salts Topics we ll be looking at in this chapter Arrhenius theory of acids and bases Bronsted-Lowry acid-base theory Mono-, di- and tri-protic acids Strengths of acids and

More information

The Chemistry of Acids and Bases Separately Chapter 14 Part I

The Chemistry of Acids and Bases Separately Chapter 14 Part I Page III-14a-1 / Chapter Fourteen Part I Lecture Notes The Chemistry of Acids and Bases Separately Chapter 14 Part I Strong and Weak Acids/Bases Generally divide acids and bases into STRONG or WEAK categories.

More information

Acids, Bases, and ph. ACIDS, BASES, & ph

Acids, Bases, and ph. ACIDS, BASES, & ph I. Arrhenius Acids and Bases ACIDS, BASES, & ph Acid any substance which delivers hydrogen ion (H + ) _ to the solution. Base any substance which delivers hydroxide ion (OH ) to the solution. II ph ph

More information

Chapter 14 Acid- Base Equilibria Study Guide

Chapter 14 Acid- Base Equilibria Study Guide Chapter 14 Acid- Base Equilibria Study Guide This chapter will illustrate the chemistry of acid- base reactions and equilibria, and provide you with tools for quantifying the concentrations of acids and

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which one of the following is the weakest acid? 1) A) HF (Ka = 6.8 10-4) B) HNO2 (Ka

More information

The ph of aqueous salt solutions

The ph of aqueous salt solutions The ph of aqueous salt solutions Sometimes (most times), the salt of an acid-base neutralization reaction can influence the acid/base properties of water. NaCl dissolved in water: ph = 7 NaC 2 H 3 O 2

More information

*In every acid-base reaction, equilibrium favors transfer of a proton from the stronger acid to the stronger base.

*In every acid-base reaction, equilibrium favors transfer of a proton from the stronger acid to the stronger base. 16.2 Bronsted-Lowry Acids and Bases An acid is a substance that can transfer a proton to another substance. A base is a substance that can accept a proton. A proton is a hydrogen ion, H +. Proton transfer

More information

ph + poh = 14 G = G (products) G (reactants) G = H T S (T in Kelvin)

ph + poh = 14 G = G (products) G (reactants) G = H T S (T in Kelvin) JASPERSE CHEM 210 PRACTICE TEST 3 VERSION 2 Ch. 17: Additional Aqueous Equilibria Ch. 18: Thermodynamics: Directionality of Chemical Reactions Key Equations: For weak acids alone in water: [H + ] = K a

More information

Aqueous Reactions and Solution Stoichiometry (continuation)

Aqueous Reactions and Solution Stoichiometry (continuation) Aqueous Reactions and Solution Stoichiometry (continuation) 1. Electrolytes and non-electrolytes 2. Determining Moles of Ions in Aqueous Solutions of Ionic Compounds 3. Acids and Bases 4. Acid Strength

More information

Lecture #11-Buffers and Titrations The Common Ion Effect

Lecture #11-Buffers and Titrations The Common Ion Effect Lecture #11-Buffers and Titrations The Common Ion Effect The Common Ion Effect Shift in position of an equilibrium caused by the addition of an ion taking part in the reaction HA(aq) + H2O(l) A - (aq)

More information

Unit 2 Acids and Bases

Unit 2 Acids and Bases Unit 2 Acids and Bases 1 Topics Properties / Operational Definitions Acid-Base Theories ph & poh calculations Equilibria (Kw, K a, K b ) Indicators Titrations STSE: Acids Around Us 2 Operational Definitions

More information

Exam 2 Sections Covered: (the remaining Ch14 sections will be on Exam 3) Useful Information Provided on Exam 2:

Exam 2 Sections Covered: (the remaining Ch14 sections will be on Exam 3) Useful Information Provided on Exam 2: Chem 101B Study Questions Name: Chapters 12,13,14 Review Tuesday 2/28/2017 Due on Exam Thursday 3/2/2017 (Exam 2 Date) This is a homework assignment. Please show your work for full credit. If you do work

More information

Chapter 15. Acid-Base Equilibria

Chapter 15. Acid-Base Equilibria Chapter 15 Acid-Base Equilibria The Common Ion Effect The common-ion effect is the shift in an ionic equilibrium caused by the addition of a solute that provides an ion already involved in the equilibrium

More information

Acid-Base Titration Solution Key

Acid-Base Titration Solution Key Key CH3NH2(aq) H2O(l) CH3NH3 (aq) OH - (aq) Kb = 4.38 x 10-4 In aqueous solution of methylamine at 25 C, the hydroxide ion concentration is 1.50 x 10-3 M. In answering the following, assume that temperature

More information

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B Chemical Equilibrium Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product formation,

More information

Homework #7 Chapter 8 Applications of Aqueous Equilibrium

Homework #7 Chapter 8 Applications of Aqueous Equilibrium Homework #7 Chapter 8 Applications of Aqueous Equilibrium 15. solution: A solution that resists change in ph when a small amount of acid or base is added. solutions contain a weak acid and its conjugate

More information

AP Chapter 15 & 16: Acid-Base Equilibria Name

AP Chapter 15 & 16: Acid-Base Equilibria Name AP Chapter 15 & 16: Acid-Base Equilibria Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 15 & 16: Acid-Base Equilibria 2 Warm-Ups (Show

More information

Acids and Bases Written Response

Acids and Bases Written Response Acids and Bases Written Response January 1999 4. Consider the salt sodium oxalate, Na2C2O4. a) Write the dissociation equation for sodium oxalate. (1 mark) b) A 1.0M solution of sodium oxalate turns pink

More information

Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute)

Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute) CHAPTER 16: ACID-BASE EQUILIBRIA Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute) A. Weak Monoprotic Acids. (Section 16.1) 1. Solution of Acetic Acid: 2. See Table

More information

CHEM 1412 Answers to Practice Problems Chapters 15, 16, & 17

CHEM 1412 Answers to Practice Problems Chapters 15, 16, & 17 CHEM 1412 Answers to Practice Problems Chapters 15, 16, & 17 1. Definitions can be found in the end-of-chapter reviews and in the glossary at the end of the textbook! 2. Conjugate Base Conjugate Acid Compound

More information

Unit 9: Acid and Base Multiple Choice Practice

Unit 9: Acid and Base Multiple Choice Practice Unit 9: Acid and Base Multiple Choice Practice Name June 14, 2017 1. Consider the following acidbase equilibrium: HCO3 H2O H2CO3 OH In the reaction above, the BrönstedLowry acids are: A. H2O and OH B.

More information

Ch 15, Applications of Aq Equilibria

Ch 15, Applications of Aq Equilibria Ch 15, Applications of Aq Equilibria We will focus on 3 areas: 1) buffers (incl. Henderson-Hasselbalch Transformation) 2) titrations 3) solubility equilibria 1 I. Neutralization Reactions A. Strong acid-strong

More information

EXAM 3 REVIEW LBS 172 REACTION MECHANISMS

EXAM 3 REVIEW LBS 172 REACTION MECHANISMS EXAM 3 REVIEW LBS 172 REACTION MECHANISMS GENERAL -Step by step process of bond making and breaking by which reactants become products -Summation of steps must be equal to overall reaction -Example: NO

More information

Lecture 10. Professor Hicks Inorganic Chemistry II (CHE152) Scale of [H 3 O + ] (or you could say [H + ]) concentration

Lecture 10. Professor Hicks Inorganic Chemistry II (CHE152) Scale of [H 3 O + ] (or you could say [H + ]) concentration Lecture 10 Professor Hicks Inorganic Chemistry II (CHE152) ph Scale of [H 3 O + ] (or you could say [H + ]) concentration More convenient than scientific notation ph = log [H 3 O + ] still not sure? take

More information

Chapter 15 - Applications of Aqueous Equilibria

Chapter 15 - Applications of Aqueous Equilibria Neutralization: Strong Acid-Strong Base Chapter 15 - Applications of Aqueous Equilibria Molecular: HCl(aq) + NaOH(aq) NaCl(aq) + H 2 O(l) SA-SB rxn goes to completion (one-way ) Write ionic and net ionic

More information

-a base contains an OH group and ionizes in solutions to produce OH - ions: Neutralization: Hydrogen ions (H + ) in solution form

-a base contains an OH group and ionizes in solutions to produce OH - ions: Neutralization: Hydrogen ions (H + ) in solution form NOTES Acids, Bases & Salts Arrhenius Theory of Acids & Bases: an acid contains hydrogen and ionizes in solutions to produce H+ ions: a base contains an OH group and ionizes in solutions to produce OH ions:

More information

CHEM Dr. Babb s Sections Exam #3 Review Sheet

CHEM Dr. Babb s Sections Exam #3 Review Sheet CHEM 116 Dr. Babb s Sections Exam #3 Review Sheet Acid/Base Theories and Conjugate AcidBase Pairs 111. Define the following terms: Arrhenius acid, Arrhenius base, Lewis acid, Lewis base, BronstedLowry

More information

ph + poh = 14 G = G (products) G (reactants) G = H T S (T in Kelvin) 1. Which of the following combinations would provide buffer solutions?

ph + poh = 14 G = G (products) G (reactants) G = H T S (T in Kelvin) 1. Which of the following combinations would provide buffer solutions? JASPERSE CHEM 210 PRACTICE TEST 3 VERSION 3 Ch. 17: Additional Aqueous Equilibria Ch. 18: Thermodynamics: Directionality of Chemical Reactions Key Equations: For weak acids alone in water: [H + ] = K a

More information

Representative Exam Questions On The Topic of Equilibrium (Includes Acid / Base Equilibria)

Representative Exam Questions On The Topic of Equilibrium (Includes Acid / Base Equilibria) Representative Exam Questions On The Topic of Equilibrium (Includes Acid / Base Equilibria) 1. If a chemical equilibrium very much favors the products over the reactants, what would we expect its equilibrium

More information

Chapter 10. Acids and Bases

Chapter 10. Acids and Bases Chapter 10 Acids and Bases 1 Properties of Aqueous Solutions of Acids and Bases Aqueous acidic solutions have the following properties: 1. They have a sour taste.. They change the colors of many indicators.

More information

Dynamic equilibrium: rate of evaporation = rate of condensation II. In a closed system a solid obtains a dynamic equilibrium with its dissolved state

Dynamic equilibrium: rate of evaporation = rate of condensation II. In a closed system a solid obtains a dynamic equilibrium with its dissolved state CHEMISTRY 111 LECTURE EXAM III Material PART 1 CHEMICAL EQUILIBRIUM Chapter 14 I Dynamic Equilibrium I. In a closed system a liquid obtains a dynamic equilibrium with its vapor state Dynamic equilibrium:

More information

Chemistry 12 Provincial Exam Workbook Unit 04: Acid Base Equilibria. Multiple Choice Questions

Chemistry 12 Provincial Exam Workbook Unit 04: Acid Base Equilibria. Multiple Choice Questions R. Janssen, MSEC Chemistry 1 Provincial Workbook (Unit 0), P. 1 / 69 Chemistry 1 Provincial Exam Workbook Unit 0: Acid Base Equilibria Multiple Choice Questions 1. Calculate the volume of 0.00 M HNO needed

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Many reactions are reversible, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product

More information

Exam 2 Sections Covered: 14.6, 14.8, 14.9, 14.10, 14.11, Useful Info to be provided on exam: K K [A ] [HA] [A ] [B] [BH ] [H ]=

Exam 2 Sections Covered: 14.6, 14.8, 14.9, 14.10, 14.11, Useful Info to be provided on exam: K K [A ] [HA] [A ] [B] [BH ] [H ]= Chem 101B Study Questions Name: Chapters 14,15,16 Review Tuesday 3/21/2017 Due on Exam Thursday 3/23/2017 (Exam 3 Date) This is a homework assignment. Please show your work for full credit. If you do work

More information

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A)

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Often, there are many equilibria going on in an aqueous solution. So, we must determine the dominant equilibrium (i.e. the equilibrium reaction

More information

Experiment Initial [A] Initial [B] Initial Rate form. C M 0.10 M 4.0 x 10-4 M/min

Experiment Initial [A] Initial [B] Initial Rate form. C M 0.10 M 4.0 x 10-4 M/min Unit 1: Kinetics and Equilibrium ANSWER KEY Chem 1B Kinetics Name 1. What factors affect rates? Give examples of each. 1. Nature of the reactants- physical state, surface area-examples Li, Na, K react

More information

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic Formation of a salt (ionic compound): Neutralization reaction molecular Full ionic Eliminate spect ions to yield net ionic Hydrolysis/ reaction with water Anions of Weak Acids Consider the weak acid HF

More information

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl - (aq) Acid Base Conjugate acid Conjugate

More information

Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations

Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations Sec 1 The Common-Ion Effect: The dissociation of a weak electrolyte decreases when a strong electrolyte that has an ion in common with

More information

Practice test Chapters 15 and 16: Acids and Bases

Practice test Chapters 15 and 16: Acids and Bases Name: Class: Date: Practice test Chapters 15 and 16: Acids and Bases 1. Which of the following pairs of species is not a conjugate acid base pair? A) HOCl, OCl B) HNO 2, NO + 2 C) O 2, OH D) HSO 4, SO

More information

Chem1120pretest2Summeri2015

Chem1120pretest2Summeri2015 Chem1120pretest2Summeri2015 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When the system A + B C + D is at equilibrium, a. the forward reaction has

More information

Properties of Acids and Bases

Properties of Acids and Bases Chapter 15 Aqueous Equilibria: Acids and Bases Properties of Acids and Bases Generally, an acid is a compound that releases hydrogen ions, H +, into water. Blue litmus is used to test for acids. Blue litmus

More information

Advanced Placement Chemistry Chapters Syllabus

Advanced Placement Chemistry Chapters Syllabus As you work through the chapter, you should be able to: Advanced Placement Chemistry Chapters 14 16 Syllabus Chapter 14 Acids and Bases 1. Describe acid and bases using the Bronsted-Lowry, Arrhenius, and

More information

Chem 116 POGIL Worksheet - Week 11 Titration

Chem 116 POGIL Worksheet - Week 11 Titration Chem 116 POGIL Worksheet - Week 11 Titration Why? Titration is the addition of a standard solution of precisely known concentration (the titrant) to a precisely measured volume of a solution with unknown

More information

Solutions are aqueous and the temperature is 25 C unless stated otherwise.

Solutions are aqueous and the temperature is 25 C unless stated otherwise. Solutions are aqueous and the temperature is 25 C unless stated otherwise. 1. According to the Arrhenius definition, an acid is a substance that produces ions in aqueous solution. A. H C. OH B. H + D.

More information

Create assignment, 48975, Exam 2, Apr 05 at 9:07 am 1

Create assignment, 48975, Exam 2, Apr 05 at 9:07 am 1 Create assignment, 48975, Exam 2, Apr 05 at 9:07 am 1 This print-out should have 30 questions. Multiple-choice questions may continue on the next column or page find all choices before making your selection.

More information

Equations. M = n/v. M 1 V 1 = M 2 V 2 if the moles are the same n 1 n 2 you can cancel out the n s. ph = -log [H + ] poh = -log [OH - ] ph + poh = 14

Equations. M = n/v. M 1 V 1 = M 2 V 2 if the moles are the same n 1 n 2 you can cancel out the n s. ph = -log [H + ] poh = -log [OH - ] ph + poh = 14 Equations M = n/v M 1 V 1 = M 2 V 2 if the moles are the same n 1 n 2 you can cancel out the n s. ph = -log [H + ] poh = -log [OH - ] ph + poh = 14 [H 3 O + ] = 10^-pH [OH - ] = 10^-pOH [H 3 O + ] [OH

More information

Chapters 15 & 16 ACIDS & BASES ph & Titrations

Chapters 15 & 16 ACIDS & BASES ph & Titrations PROPERTIES OF ACIDS Chapters 15 & 16 ACIDS & BASES ph & Titrations There are 5 main properties of acids: 1. sour taste 2. change the color of acidbase indicators 3. react with metals to produce H2 gas

More information

EXAM 2 PRACTICE KEY. Leaders: Deborah Course: CHEM 178

EXAM 2 PRACTICE KEY. Leaders: Deborah Course: CHEM 178 Leaders: Deborah Course: CHEM 178 EXAM 2 PRACTICE KEY Instructor: Bonaccorsi/Vela Date: 3/6/18 Make sure you (also) know: Acid-base definitions Arrhenius Bronsted-Lowry Lewis Autoionization process of

More information

Acid-Base Solutions - Applications

Acid-Base Solutions - Applications Acid-Base Solutions - Applications 1 The Common Ion Effect Consider the equilibrium established when acetic acid, HC 2 H 3 O 2, is added to water. CH 3 COOH(aq) + H 2 O(l) CH 3 COO - (aq) + H 3 O + (aq)

More information

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY Acids And Bases A. Characteristics of Acids and Bases 1. Acids and bases are both ionic compounds that are dissolved in water. Since acids and bases both form ionic solutions, their solutions conduct electricity

More information

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A)

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) What is a dominant equilibrium? How do we define major species? Reactions between acids and bases 1. Strong Acids + Strong Base The reaction

More information

CHM 152/154 HOUR EXAM II Diebolt Summer multiple choice 52 Parts II and III 73 Total Pts 125

CHM 152/154 HOUR EXAM II Diebolt Summer multiple choice 52 Parts II and III 73 Total Pts 125 CHM 152/154 HOUR EXAM II Diebolt Summer 2010 pts earned name pts possible multiple choice 52 Parts II and III 73 Total Pts 125 Part One: Multiple choice. Mark the correct answers on the provided scantron

More information

Homework #6 Chapter 7 Homework Acids and Bases

Homework #6 Chapter 7 Homework Acids and Bases Homework #6 Chapter 7 Homework Acids and Bases 20. a) 2H 2O(l) H 3O (aq) OH (aq) K [H 3 O ][OH ] Or H 2O(l) H (aq) OH (aq) K [H ][OH ] b) HCN(aq) H 2O(l) H 3O (aq) CN (aq) K [H 3O ][CN ] [HCN] Or HCN(aq)

More information

Chapter 15, Applications of Aqueous Equilibria

Chapter 15, Applications of Aqueous Equilibria Chapter 15, Applications of Aqueous Equilibria We will focus on 3 areas: 1) titrations 2) buffers (incl. the Henderson- Hasselbalch Transformation), 3) solubility equilibria. 1 I. Neutralization Reactions

More information

Part One: Acid-Base Concepts. 1. Sour taste. (Examples: vinegar = acetic acid; lemons - citric acid) yellow

Part One: Acid-Base Concepts. 1. Sour taste. (Examples: vinegar = acetic acid; lemons - citric acid) yellow CHAPTER 15: ACIDS AND BASES Part One: Acid-Base Concepts A. Properties of Aqueous Solutions of Acids. 1. Sour taste. (Examples: vinegar = acetic acid; lemons - citric acid) 2. Change the colors of many

More information

ACIDS AND BASES. HCl(g) = hydrogen chloride HCl(aq) = hydrochloric acid HCl(g) H + (aq) + Cl (aq) ARRHENIUS THEORY

ACIDS AND BASES. HCl(g) = hydrogen chloride HCl(aq) = hydrochloric acid HCl(g) H + (aq) + Cl (aq) ARRHENIUS THEORY ACIDS AND BASES A. CHARACTERISTICS OF ACIDS AND BASES 1. Acids and bases are both ionic compounds that are dissolved in water. Since acids and bases both form ionic solutions, their solutions conduct electricity

More information

Name: Per: Date: Unit 11 - Acids, Bases and Salts Chemistry Accelerated Chemistry I Define each of the following: 1. Acidic hydrogens.

Name: Per: Date: Unit 11 - Acids, Bases and Salts Chemistry Accelerated Chemistry I Define each of the following: 1. Acidic hydrogens. Name: Per: Date: Unit 11 - Acids, Bases and Salts Chemistry Accelerated Chemistry I Define each of the following: 1. Acidic hydrogens 2. Binary acids 3. Oxyacids 4. Carboxylic acid 5. Amines Name the following

More information

The Chemistry of Acids and Bases

The Chemistry of Acids and Bases The Chemistry of 1 Acids and Bases 2 Acid and Bases 3 Acid and Bases 4 Acid and Bases 5 Strong and Weak Acids/Bases Generally divide acids and bases into STRONG or WEAK ones. STRONG ACID: HNO 3 (aq) +

More information

Semester 2 Midterm Review (Bluffer s Guide) *Adapted from Paul Groves [South Pasadena HS]

Semester 2 Midterm Review (Bluffer s Guide) *Adapted from Paul Groves [South Pasadena HS] Semester 2 Midterm Review (Bluffer s Guide) *Adapted from Paul Groves [South Pasadena HS] Unit 5: Kinetics How to talk about Reaction Rate rate = Δ[chemical]/Δtime - Common Units: M/s, mol L - s rate of

More information

CHEM 102 Final Mock Exam

CHEM 102 Final Mock Exam CHEM 102 Final Mock Exam 1. A system releases 300 J of heat and does 650 J of work on the surroundings. What is the change in internal energy of the system? a. -950 J b. 350 J c. 950 J d. -350 J 2. Which

More information

AP Chemistry. Chapter 4

AP Chemistry. Chapter 4 AP Chemistry Chapter 4 1 Properties of Aqueous Solution Solutions Definition: Any substance (solid, liquid or gas) EVENLY distributed throughout another substance. Solutions have 2 parts: 1) Solvent the

More information

Acids and Bases. Feb 28 4:40 PM

Acids and Bases. Feb 28 4:40 PM Acids and Bases H O s O Cl H O O H H N H Na O H H Feb 28 4:40 PM Properties of Acids 1. Taste sour 2. Conduct electrical current 3. Liberate H 2 gas when reacted with a metal. 4. Cause certain dyes to

More information

Consider a normal weak acid equilibrium: Which direction will the reaction shift if more A is added? What happens to the % ionization of HA?

Consider a normal weak acid equilibrium: Which direction will the reaction shift if more A is added? What happens to the % ionization of HA? ch16blank Page 1 Chapter 16: Aqueous ionic equilibrium Topics in this chapter: 1. Buffers 2. Titrations and ph curves 3. Solubility equilibria Buffersresist changes to the ph of a solution. Consider a

More information

Acid-Base Equilibria and Solubility Equilibria

Acid-Base Equilibria and Solubility Equilibria Acid-Base Equilibria and Solubility Equilibria Acid-Base Equilibria and Solubility Equilibria Homogeneous versus Heterogeneous Solution Equilibria (17.1) Buffer Solutions (17.2) A Closer Look at Acid-Base

More information

CHAPTER 8: ACID/BASE EQUILIBRIUM

CHAPTER 8: ACID/BASE EQUILIBRIUM CHAPTER 8: ACID/BASE EQUILIBRIUM Already mentioned acid-base reactions in Chapter 6 when discussing reaction types. One way to define acids and bases is using the Brønsted-Lowry definitions. A Brønsted-Lowry

More information

Chem1120pretest2Summeri2015

Chem1120pretest2Summeri2015 Name: Class: Date: Chem1120pretest2Summeri2015 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When the system A + B C + D is at equilibrium, a. the forward

More information

Chapter 9 Aqueous Solutions and Chemical Equilibria

Chapter 9 Aqueous Solutions and Chemical Equilibria Chapter 9 Aqueous Solutions and Chemical Equilibria At equilibrium, the rate of a forward process or reaction and that of the reverse process are equal. 9A The chemical composition of aqueous solutions

More information

Acid-Base Character of Salt Solutions. Cations. Cations are potentially acidic, but some have no effect on ph.

Acid-Base Character of Salt Solutions. Cations. Cations are potentially acidic, but some have no effect on ph. Acid-Base Character of Salt Solutions The ph of a salt solution will depend on the acidbase nature of both the cation and anion. Cations Cations are potentially acidic, but some have no effect on ph. M(H

More information

Chem1120pretest2Summeri2016

Chem1120pretest2Summeri2016 Chem1120pretest2Summeri2016 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When the system A + B C + D is at equilibrium, a. the forward reaction has

More information

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions.

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions. Lecture 12 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

CHEM 1412 Zumdahl & Zumdahl Practice Exam II (Ch. 14, 15 & 16) Multiple Choices: Please select one best answer. Answer shown in bold.

CHEM 1412 Zumdahl & Zumdahl Practice Exam II (Ch. 14, 15 & 16) Multiple Choices: Please select one best answer. Answer shown in bold. CHEM 1412 Zumdahl & Zumdahl Practice Exam II (Ch. 14, 15 & 16) Multiple Choices: Please select one best answer. Answer shown in bold. 1. Consider the equilibrium: PO -3 4 (aq) + H 2 O (l) HPO 2-4 (aq)

More information

HOMEWORK 1C. (d) 2D + E 2F K eq = 1 x 10 9 I C E

HOMEWORK 1C. (d) 2D + E 2F K eq = 1 x 10 9 I C E HOMEWORK 1A 1. Write the correct equilibriumconstant expressions for the following reactions. (a) 4NH 3 (g) + 7O 2 (g) 4NO 2 (g) + 6H 2 O (g) (b) 2NO 2 (g) + 7H 2 (g) 2NH 3 (g) + 4H 2 O (g) (c) NH 4 Cl

More information

CHEM 142 Exam 3 Study Guide Chapter 15: Acid-Base Equilibria

CHEM 142 Exam 3 Study Guide Chapter 15: Acid-Base Equilibria CHEM 142 Exam 3 Study Guide Chapter 15: AcidBase Equilibria A. Terminologies and Concepts 1. BronstedLowry definitions acids vs. bases; give examples 2. Amphoteric substances define and give examples 3.

More information

Practice Test - Chapter 13, 14, 15

Practice Test - Chapter 13, 14, 15 Practice Test - Chapter 13, 14, 15 1. For which of the following values of the equilibrium constant does the reaction go the farthest to completion? a. 10 5 b. 10 3 c. 10 0 d. 10-3 e. 10-5 2. Carbon disulfide

More information

Chemistry 400 Homework #3, Chapter 16: Acid-Base Equilibria

Chemistry 400 Homework #3, Chapter 16: Acid-Base Equilibria Chemistry 400 Homework #3, Chapter 16: Acid-Base Equilibria I. Multiple Choice (for those with an asterisk, you must show work) These multiple choice (MC) are not "Google-proof", but they were so good

More information

General Chemistry II CHM 1046 E Exam 2

General Chemistry II CHM 1046 E Exam 2 General Chemistry II CHM 1046 E Exam 2 Dr. Shanbhag Name: 1. The formation of ammonia from elemental nitrogen and hydrogen is an exothermic process. N 2 (g) + 3 H 2 (g) 2 NH 3 (g) H= -92.2 kj Which of

More information

Acid-Base Chemistry. Key Considerations

Acid-Base Chemistry. Key Considerations Acid-Base Chemistry Varying Definitions, depends on context/application Arrhenius Acid Base Brönsted/Lowry Lewis 1 Key Considerations Autoprotolysis of Water Water is an amphiprotic substance: can behave

More information

CHM 1046 FINAL REVIEW

CHM 1046 FINAL REVIEW CHM 1046 FINAL REVIEW Prepared & Presented By: Marian Ayoub PART II Chapter Description 14 Chemical Equilibrium 15 Acids and Bases 16 Acid-Base Equilibrium 17 Solubility and Complex-Ion Equilibrium 19

More information

CHAPTER 14 ACIDS AND BASES

CHAPTER 14 ACIDS AND BASES CHAPTER 14 ACIDS AND BASES Topics Definition of acids and bases Bronsted-Lowry Concept Dissociation constant of weak acids Acid strength Calculating ph for strong and weak acids and bases Polyprotic acids

More information

Name. Practice Test 2 Chemistry 111

Name. Practice Test 2 Chemistry 111 Name Practice Test 2 Chemistry 111 1) In the aqueous reaction of K 2 SO 4 (aq) + Ba(NO 3 ) 2 (aq) BaSO 4 (s) + 2KNO 3 (aq), which ions are the spectator ions? A) Ba 2+ 2- and SO 4 B) Ba 2+ and K + C) Ba

More information

Sect 7.1 Chemical Systems in Balance HMWK: Read pages

Sect 7.1 Chemical Systems in Balance HMWK: Read pages SCH 4UI Unit 4 Chemical Systems and Equilibrium Chapter 7 Chemical Equilibrium Sect 7.1 Chemical Systems in Balance HMWK: Read pages 420-424 *Some reactions are reversible, ie not all reactions are as

More information

X212F Which of the following is a weak base in aqueous solution? A) H 2 CO 3 B) B(OH) 3 C) N 2 H 4 D) LiOH E) Ba(OH) 2

X212F Which of the following is a weak base in aqueous solution? A) H 2 CO 3 B) B(OH) 3 C) N 2 H 4 D) LiOH E) Ba(OH) 2 PX212SP14 Practice Exam II / Spring 2014 1. Which of the following statements are characteristic of acids? 1. They are proton donors. 2. They react with bases to produce a salt and water. 3. They taste

More information

ANALYTICAL CHEMISTRY - CLUTCH 1E CH.8 - MONOPROTIC ACID-BASE EQUILIBRIA.

ANALYTICAL CHEMISTRY - CLUTCH 1E CH.8 - MONOPROTIC ACID-BASE EQUILIBRIA. !! www.clutchprep.com CONCEPT: ARRHENIUS ACIDS AND BASES The most general definition for acids and bases was developed by Svante Arrhenius near the end of the 19 th century. According to him, the cation

More information

CHAPTER 13: ACIDS & BASES. Section Arrhenius Acid & Bases Svante Arrhenius, Swedish chemist ( ).

CHAPTER 13: ACIDS & BASES. Section Arrhenius Acid & Bases Svante Arrhenius, Swedish chemist ( ). CHAPTER 13: ACIDS & BASES Section 13.1 Arrhenius Acid & Bases Svante Arrhenius, Swedish chemist (1839-1927). He understood that aqueous solutions of acids and bases conduct electricity (they are electrolytes).

More information

Chapter 4. Concentration of Solutions. Given the molarity and the volume, the moles of solute can be determined.

Chapter 4. Concentration of Solutions. Given the molarity and the volume, the moles of solute can be determined. Molarity Chapter 4 Concentration of Solutions Molarity (M) = moles of solute liters of solution Given the molarity and the volume, the moles of solute can be determined. Given the molarity and the moles

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The effect of a catalyst on a chemical reaction is to. A) increase the entropy change

More information

ACIDS AND BASES CONTINUED

ACIDS AND BASES CONTINUED ACIDS AND BASES CONTINUED WHAT HAPPENS WHEN AN ACID DISSOLVED IN WATER? Water acts as a Brønsted Lowry base and abstracts a proton (H+) from the acid. As a result, the conjugate base of the acid and a

More information

Chemical Equilibrium Chapter 6

Chemical Equilibrium Chapter 6 Chemical Equilibrium Chapter 6 "When a system is in chemical equilibrium, a change in one of the parameters of the equilibrium produces a shift in such a direction that, were no other factors involved

More information

Chemistry 1A Fall 2013 MWF 9:30 Final Test Form A

Chemistry 1A Fall 2013 MWF 9:30 Final Test Form A Chemistry 1A Fall 2013 MWF 9:30 Final Test Form A 1. How many moles of P 4 molecules are in 141.4 g of phosphorus? A) 4.566 mol B) 1.752 x10 4 mol C) 1.141 mol D) 2.348 x 10 1 mol E) 1.414 x 10 1 mol 2.

More information

The 5 th planet in our solar system, Jupiter. The Mass Action Expression describes a system undergoing a chemical change.

The 5 th planet in our solar system, Jupiter. The Mass Action Expression describes a system undergoing a chemical change. Unit 5 The 5 th planet in our solar system, Jupiter Ch. 15 Chemical equilibrium: This is based on the idea that reactions go forwards and backwards at the same conditions The Mass Action Expression describes

More information

Kotz 7 th ed. Section 18.3, pp

Kotz 7 th ed. Section 18.3, pp Lecture 15 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

TOTAL /103. March 26, 2003

TOTAL /103. March 26, 2003 March 26, 2003 Name Chemistry 122-051 Prof. Mines Exam 2-Practice (103 points) [Questions from exams in Spring 2003] [NOTE: I have stressed certain things this semester that I may not have stressed in

More information

Acids, Bases and Salts

Acids, Bases and Salts (Hebden Unit 4 page 109 182) 182) We will cover the following topics: 1. Definition of Acids and Bases 2. Bronsted-Lowry Acids and Bases 2 1 Arrhenius Definition of Acids and Bases An acid is a substance

More information

Chapter 14 Acids and Bases

Chapter 14 Acids and Bases Properties of Acids and Bases Chapter 14 Acids and Bases Svante Arrhenius (1859-1927) First to develop a theory for acids and bases in aqueous solution Arrhenius Acids Compounds which dissolve (dissociate)

More information

ACID-BASE REACTIONS. Titrations Acid-Base Titrations

ACID-BASE REACTIONS. Titrations Acid-Base Titrations Page III-b-1 / Chapter Fourteen Part II Lecture Notes ACID-BASE REACTIONS Chapter (Part II A Weak Acid + Strong Base Titration Titrations In this technique a known concentration of base (or acid is slowly

More information