Environmental Efficiency of Chemical Processes. Dr. Anuj Kumar Mittal, Head-R&D PI Industries Ltd. IGCW Convention - December 2013

Size: px
Start display at page:

Download "Environmental Efficiency of Chemical Processes. Dr. Anuj Kumar Mittal, Head-R&D PI Industries Ltd. IGCW Convention - December 2013"

Transcription

1 Environmental Efficiency of Chemical Processes Dr. Anuj Kumar Mittal, Head-R&D PI Industries Ltd. IGCW Convention - December 2013

2 Prelude

3 WHAT IS GREEN CHEMISTRY? Green Chemistry is essentially a way of thinking rather than a new branch of chemistry and is about utilizing a set of principles that seek to reduce the environmental impact of chemical processes and products - Royal Society of Chemistry Green Chemistry aims to improve the way that chemicals are both produced and used in chemical processes in order to reduce any impact on man and the environment. It is not just about industrial production. The principles involved apply equally to the use of chemicals in for example laboratories and education. Promotion of Green Chemistry is one of the most important ways in which chemistry and chemists can contribute to sustainable development 1/15/2014 3

4 WHAT CONSTITUTE ENVIRONMENTAL EFFICIENCY? Atom Efficiency designing processes to maximize the amount of raw material that is converted into the product Energy Conservation designing more energy efficient processes Waste Minimization recognizing that the best form of waste disposal is not to create waste in the first place Substitution using safer, more environmentally benign raw materials and solvents or solvent free processes. By improving resource efficiency, Green Chemistry provides financial benefits from lower material usage, energy and capital expenditure costs in addition to the environmental benefits. 1/15/2014 4

5 Efficiency of a Chemical Process

6 WHAT IS AN EFFICIENT PROCESS? Is it high yielding? No. Yield alone does not characterize process efficiency Then what else does? Let us look at the example below: (NH 3 ) 2 PtI 2 + Ag 2 SO KCl (NH 3 ) 2 PtCl AgI + K 2 SO 4 If one started with 100mg and isolated 50 mg of the main product: the mass yield is 50% based on the base raw material the theory yield is 80.5% based on the base raw material One may call this a good process 1/15/2014 6

7 PROCESS EFFICIENCY Let us look closely at the balanced equation : (NH 3 ) 2 PtI 2 + Ag 2 SO KCl (NH 3 ) 2 PtCl 2 + K 2 SO AgI Which of the reactants is the limiting reactant? Look at the table below (actual process quantities) Compound molecular wt milligrams millimoles (NH 3 ) 2 PtI Ag 2 SO KCl (NH 3 ) 2 PtCl Used a large excess of KCl (only two equivalents were required by the reaction stoichiometry). Should have used a bit more silver sulfate. The silver sulfate thus serves as the limiting reagent ; theoretical yield of cisplatin was actually only millimoles, or 60.6 mg, and our actual yield then is (50 mg/60.6 mg)*100% = 82.5% of the theoretically possible amount of product Is the process efficient? 1/15/2014 7

8 WHAT IS ATOM EFFICIENCY? 82.5% yield based on the limiting raw material that is good! Or is it? ATOM IS TOO PRECIOUS A RESOURCE TO WASTE BARRY TROST Professor Barry Trost, a chemist at Stanford University, felt that reliance on yield as a measure of reaction efficiency represented an inappropriate measure Reliance on yield as a measure of efficiency suggests that we are better at carrying out chemical transformations than we in fact are. He developed a concept called atom economy, looking at a chemical reaction from the perspective of how many input atoms are incorporated in the desired product, vs. how many are discarded as waste. One should design a process to maximize the amount of raw material that is converted into the product 1/15/2014 8

9 ATOM EFFICIENCY = ATOM ECONOMY Look at the table below Compound atoms used in pdt wt used atoms discarded wt discarded (NH 3 ) 2 PtI 2 (NH 3 ) 2 Pt I Ag 2 SO Ag 2 SO KCl Cl K Totals (NH 3 ) 2 PtCl I 2 K 2 Ag 2 SO We now see less than a third of the atoms in the starting materials is converted to the product Atom Economy for this process = /( )*100% = 31.8% Considering the excess KCl used in actual experiment and lower than 100% theoretical yield, actual atom economy = (actual yield/mass of all reactants)*100% = [50 mg/(100 mg + 63 mg mg)]*100% = 10.1%. Conclusion: 89.9% of atoms used in the process are converted to waste!!! 1/15/2014 9

10 TAKEAWAY Waste is increasingly expensive to dispose of and is a major source of pollution arising from the chemical industry. Maximizing atom efficiency is linked to waste reduction. This means designing chemical reactions so that as many atoms of starting material as possible end up in useful product. In an ideal process, all reactant atoms end up within the useful product molecule. Hence, no waste is produced! Inefficient, wasteful reactions have low atom economy Efficient processes have high atom economy and are important for sustainable development. They conserve natural resources and create less waste Better Atom Economy = Lower Product Cost 1/15/

11 EXAMPLE Freidel-Craft reactions using Lewis acid catalyst such as AlCl 3 are very Atom Uneconomic New catalysts for this process such as zeolites change these reactions to more atom economic and environmentally friendly 1/15/

12 WHAT IS E-FACTOR? E-Factor is the number of kilograms of waste generated for making one kg of the product It is a direct indicator of the environmental efficiency of a chemical process Obviously, E-factor calculation takes into account all the inputs and outputs in a process including solvents and catalysts Solvents contribute negatively to E-factor if they are not efficiently recovered and recycled. Hydrocarbon solvents are very high on the negative list. Efficient Process: High Atom Economy + Low E-Factor 1/15/

13 Environmental Efficiency

14 ENERGY CONSERVATION Our focus should not only be on using alternative, environmentally friendly chemicals in synthetic routes but also to increase reaction rates and lower reaction temperatures to save energy. The environmental footprint is more to do with energy consumption, the climate crisis and depleting natural resources. Chemists must recognize that until now there was very little thought to energy requirements in chemical synthetic chemical processes. Designing more efficient methods is a necessity and if possible, synthetic methods should be conducted at room temperature and pressure to reduce energy requirements. There is an urgent need to design more energy efficient processes 1/15/

15 WASTE MINIMIZATION In the last decades, million tones of chemical materials are produced every year (excluding fossil fuels, fertilizers and medicines) from the chemical industries of the world. One can imagine the amount of waste that was generated due to this. Green Chemistry looks very carefully on reaction efficiency, use of less toxic solvents, minimizing the hazards of feedstocks & products and reduction of waste. In order to achieve Waste Minimization and Prevention, we may make use of catalysts instead of stoichiometric quantities, reduce the use of chemical derivatives and use renewable feedstocks It is better to prevent than to clean or to treat afterwards 1/15/

16 SUBSTITUTION Green Chemistry must strive, wherever practical, to design safer synthetic methods by using less toxic substances as well as the products of the synthesis. Less toxic materials mean lower hazards to workers in industry and research laboratories and less pollution to the environment. Solvents, separation agents and auxiliary chemicals used in synthetic chemistry must be replaced or reduced with less toxic chemicals. We must strive to use safer, more environmentally benign raw materials and solvents or solvent free processes. Replace more toxic raw materials and solvents with eco-friendly chemicals 1/15/

17 SUMMARY Atom economy and E-Factor of a process are important criteria for process chemists Atom Economic processes are more efficient than simply high yielding processes Such processes are also more environment friendly as they generate less waste Wherever possible, process chemists should evaluate atom economy of a reaction and use the best option rather than look only at yields. Once the process is established at commercial scale it is important to continuously review and look into possibilities of improvement w.r.t. 3R principle. Environmentally efficient processes are cost efficient and energy efficient too. Atom Efficiency, Energy Conservation, Waste Minimization and Substitution are key to achieve Environmental Efficiency in a Chemical Process 1/15/

18 Thank you

Design for Environment : Green Chemistry Principles for Product Design

Design for Environment : Green Chemistry Principles for Product Design Design for Environment : Green Chemistry Principles for Product Design ecologic Technologies Ltd We shall require a substantially new manner of thinking if mankind is to survive. Transforming industrial

More information

Greening The Pharmaceutical Industry To Afford Good Laboratory Practice. Presented By Prof. Dr. Salwa Elmeligie Faculty of Pharmacy, Cairo University

Greening The Pharmaceutical Industry To Afford Good Laboratory Practice. Presented By Prof. Dr. Salwa Elmeligie Faculty of Pharmacy, Cairo University Greening The Pharmaceutical Industry To Afford Good Laboratory Practice Presented By Prof. Dr. Salwa Elmeligie Faculty of Pharmacy, Cairo University 1 Iam so glade to be here in this International Conference

More information

Green Chemistry & Engineering for Pharmacuetical Industry Impact of Process Research / Route Scouting towards the Environment during API Life Cycle

Green Chemistry & Engineering for Pharmacuetical Industry Impact of Process Research / Route Scouting towards the Environment during API Life Cycle Green Chemistry & Engineering for Pharmacuetical Industry Impact of Process Research / Route Scouting towards the Environment during API Life Cycle Dhileep Krishnamurthy, Ph.D. Outline Introduction Green

More information

THE ROLE OF CHEMICAL SYNTHESIS IN SUPPORT OF THE SUBSTITUTION PRINCIPLE Ferdinando Fiorino Elisa Perissutti

THE ROLE OF CHEMICAL SYNTHESIS IN SUPPORT OF THE SUBSTITUTION PRINCIPLE Ferdinando Fiorino Elisa Perissutti Unit of Medicinal Chemistry LIFE-EDESIA workshop Milan, Dicember 10 th 2014 THE ROLE OF CHEMICAL SYNTHESIS IN SUPPORT OF THE SUBSTITUTION PRINCIPLE Ferdinando Fiorino Elisa Perissutti Università degli

More information

Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as:

Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as: Rates of Reaction Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as: Rate = change in concentration units: mol

More information

Green Chemistry: A Greener Clean

Green Chemistry: A Greener Clean Green Chemistry: A Greener Clean Chicago ACS Chemistry Day Mary Kirchhoff Green Chemistry Institute What is Green Chemistry? Green Chemistry is the design of chemical products and processes that reduce

More information

Green Chemistry The atom economy

Green Chemistry The atom economy Green Chemistry The atom economy Tutor summary Divide the students of your tutorial group (ca nine students) up into three subgroups (ca three students) right at the beginning of the group session so they

More information

Chapter 13. This ratio is the concentration of the solution.

Chapter 13. This ratio is the concentration of the solution. Concentration Calculation Concentration In a solution, the solute is distributed evenly throughout the solvent. This means that any part of a solution has the same ratio of solute to solvent as any other

More information

Chemistry Introduction to Green Chemistry

Chemistry Introduction to Green Chemistry Chemistry 471-671 Introduction to Green Chemistry Contact Information Timothy Dransfield (atmospheric chemistry) timothy.dransfield@umb.edu S-1-85 7-6143 Jason Evans (alternative energy) Wei Zhang(Green

More information

Green Chemistry: What Does Green Mean? Dr. Evan Beach and Dr. Karolina Mellor

Green Chemistry: What Does Green Mean? Dr. Evan Beach and Dr. Karolina Mellor Green Chemistry: What Does Green Mean? Dr. Evan Beach and Dr. Karolina Mellor NSF/GCI/ANSI 355 What green chemistry is not Banning/restricGng chemicals Making poligcal/value judgments Dogma Green Chemistry:

More information

Chemicals and petroleum industries account for 50% of industrial energy usage.

Chemicals and petroleum industries account for 50% of industrial energy usage. Chemicals and petroleum industries account for 50% of industrial energy usage. ~1/4 of the energy used is consumed in distillation and drying processes. 15 Biomaterials [Carbohydrates, Proteins, Lipids]

More information

Green organic chemistry and its interdisciplinary applications / Vera M. Kolb. Boca Raton [etc.], cop Spis treści

Green organic chemistry and its interdisciplinary applications / Vera M. Kolb. Boca Raton [etc.], cop Spis treści Green organic chemistry and its interdisciplinary applications / Vera M. Kolb. Boca Raton [etc.], cop. 2016 Spis treści Preface Acknowledgments Author xiii xv xvii Chapter 1 Introduction to Green Chemistry

More information

Selec*vity and Atom Economy: Green Chemistry Metrics. 2 nd Principle of Green Chemistry. Types of selec*vity. Reac*on Efficiency 3/11/12

Selec*vity and Atom Economy: Green Chemistry Metrics. 2 nd Principle of Green Chemistry. Types of selec*vity. Reac*on Efficiency 3/11/12 Selec*vity and Atom Economy: Green Chemistry Metrics Week 4 2 nd Principle of Green Chemistry Synthe*c methods should be designed to maximize the incorpora*on of all materials used in the process into

More information

Combined Science: Trilogy

Combined Science: Trilogy Co-teaching GCSE Chemistry and GCSE Combined Science: Trilogy This high level co-teaching guide will help you plan your route through the course. You ll be able to see what common themes and topics span

More information

Stoichiometry: Chemical Calculations. Chapter 3-4

Stoichiometry: Chemical Calculations. Chapter 3-4 Chapters 3-4 Stoichiometry: Chemical Calculations Slide 1 of 48 Molecular Masses And Formula Masses Molecular Masses Molecular mass is the sum of the masses of the atoms represented in a molecular formula.

More information

Pharma and Suppliers: Collaborating on Green Chemistry. Launch of PMI tool. ACS Green Chemistry Institute Pharmaceutical Roundtable

Pharma and Suppliers: Collaborating on Green Chemistry. Launch of PMI tool. ACS Green Chemistry Institute Pharmaceutical Roundtable Pharma and Suppliers: Collaborating on Green Chemistry. Launch of PMI tool ACS Green Chemistry Institute Pharmaceutical Roundtable Dave Hughes 08-Feb-2011 2011 Copyright American Chemical Society Green

More information

Stoichiometry. Please take out your notebooks

Stoichiometry. Please take out your notebooks Stoichiometry Please take out your notebooks Stoichiometry stochio = Greek for element metry = measurement Stoichiometry is about measuring the amounts of elements and compounds involved in a reaction.

More information

STOICHIOMETRY. Measurements in Chemical Reactions

STOICHIOMETRY. Measurements in Chemical Reactions STOICHIOMETRY Measurements in Chemical Reactions STOICHIOMETRY Stoichiometry is the analysis of the quantities of substances in a chemical reaction. Stoichiometric calculations depend on the MOLE-MOLE

More information

Personalised Learning Checklists AQA Chemistry Paper 2

Personalised Learning Checklists AQA Chemistry Paper 2 AQA Chemistry (8462) from 2016 Topics C4.6 The rate and extent of chemical change Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product

More information

CHAPTER 7 FRIEDEL-CRAFTS ACYLATION OF TOLUENE WITH ACETIC ACID

CHAPTER 7 FRIEDEL-CRAFTS ACYLATION OF TOLUENE WITH ACETIC ACID 113 CHAPTER 7 FRIEDEL-CRAFTS ACYLATION OF TOLUENE WITH ACETIC ACID 7.1 INTRODUCTION Acylation of aromatic compounds are industrially prominent reaction as its products are intermediates in many organic

More information

Catalysis a Key to Sustainability Matthias Beller

Catalysis a Key to Sustainability Matthias Beller Catalysis a Key to Sustainability Matthias Beller Catalysis is the science of accelerating chemical transformations. In general, readily available starting materials are converted to form more complex

More information

KENNETH G. HANCOCK MEMORIAL STUDENT AWARD IN GREEN CHEMISTRY Student Application Package Award: $1,000 Closing date: October 11, 2019

KENNETH G. HANCOCK MEMORIAL STUDENT AWARD IN GREEN CHEMISTRY Student Application Package Award: $1,000 Closing date: October 11, 2019 KENNETH G. HANCOCK MEMORIAL IN GREEN CHEMISTRY Student Application Package Award: $1,000 Closing date: October 11, 2019 The Kenneth G. Hancock Memorial Award is sponsored by the American Chemical Society

More information

The Use of Green Chemistry Approach in Organic Synthesis : Focus and Review

The Use of Green Chemistry Approach in Organic Synthesis : Focus and Review The Use of Green Chemistry Approach in Organic Synthesis : Focus and Review Abstract : Rameshwar R. Magar 3, Sunil S. Choudhare 2, Santosh V. Padghan *1 Dept of Chemistry Sant Dnyaneshwar Mahavidyalaya,

More information

Lab 4: Stoichiometry and Green Chemistry

Lab 4: Stoichiometry and Green Chemistry Lab 4: Stoichiometry and Green Chemistry Goals: Learn about the philosophy of green chemistry Determine the composition of a mixture using stoichiometry Learn what is important in a good laboratory report

More information

Route selection. Learning Objectives: By the end of this module you should:

Route selection. Learning Objectives: By the end of this module you should: Route selection Route selection is at the foundation of developing new products and processes. Selecting the optimal route to make your molecules can have a major impact on both the environmental impact

More information

Chapter 3: Chemical Reactions and the Earth s Composition

Chapter 3: Chemical Reactions and the Earth s Composition Chapter 3: Chemical Reactions and the Earth s Composition Problems: 3.1-3.3, 3.5, 3.11-3.86, 3.95-3.115, 3.119-3.120, 3.122, 3.125-3.128, 3.132, 3.134, 3.136-3.138-3.141 3.2 The Mole Stoichiometry (STOY-key-OM-e-tree):

More information

Milford Public Schools Curriculum

Milford Public Schools Curriculum Milford Public Schools Curriculum Department: Science Course Name: Chemistry UNIT 1 Structure of Matter Matter is made up of atoms and the interactions between and within them. The types, interactions

More information

At-a-glance unit content, assessment criteria and guidance

At-a-glance unit content, assessment criteria and guidance At-a-glance unit content, assessment criteria and guidance To help you with assignment writing as well as assessing assignments, this table maps the Unit 2 content against the Unit 2 assessment criteria

More information

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 2 Flowsheet Synthesis (Conceptual Design of

More information

GREEN CHEMISTRY. N. MD. Akram. Asst. Prof of Chemistry, Santhiram Engineering College, Nandyal, Kurnool Dt, Andhra Pradesh.(India)

GREEN CHEMISTRY. N. MD. Akram. Asst. Prof of Chemistry, Santhiram Engineering College, Nandyal, Kurnool Dt, Andhra Pradesh.(India) GREEN CHEMISTRY N. MD. Akram Asst. Prof of Chemistry, Santhiram Engineering College, Nandyal, Kurnool Dt, Andhra Pradesh.(India) ABSTRACT Green chemistry is the most utilization of a set of principles

More information

GCSE Chemistry. Module C7 Further Chemistry: What you should know. Name: Science Group: Teacher:

GCSE Chemistry. Module C7 Further Chemistry: What you should know. Name: Science Group: Teacher: GCSE Chemistry Module C7 Further Chemistry: What you should know Name: Science Group: Teacher: R.A.G. each of the statements to help focus your revision: R = Red: I don t know this A = Amber: I partly

More information

( ) Natural Sciences Department. Chemical Reactions

( ) Natural Sciences Department. Chemical Reactions Chemical Reactions Why do atoms cluster? The attraction which keeps atoms united one to each other to form a molecule is called chemical bond. The atoms place themselves in the molecule so that the energy

More information

Stoichiometry. Exploring a Student-Friendly Method of Problem Solving

Stoichiometry. Exploring a Student-Friendly Method of Problem Solving 16 Exploring a Student-Friendly Method of Problem Solving comes in two forms: composition and reaction. If the relationship is between the quantities of each element in a compound it is called composition

More information

Building a mobile reaction lab notebook

Building a mobile reaction lab notebook Building a mobile reaction lab notebook Alex M. Clark, Ph.D. March 2014 2014 Molecular Materials Informatics, Inc.! !2 Electronic Lab Notebooks Many shapes & sizes: big, small, hosted, desktop, mobile

More information

Green Chemistry Polycarbonate Plastic Production. 7S Lo Pak Fung (14) Mak Tsz Kin (16) Ng Pak Chun (18) Content

Green Chemistry Polycarbonate Plastic Production. 7S Lo Pak Fung (14) Mak Tsz Kin (16) Ng Pak Chun (18) Content Green Chemistry Polycarbonate Plastic Production 7S Lo Pak Fung (14) Mak Tsz Kin (16) Ng Pak Chun (18) Content Properties and uses of polycarbonate Traditional method Greener method Comparison of 2 methods

More information

A Green Oxidant for In-Situ Chemical Oxidation. Jack Peabody Regenesis

A Green Oxidant for In-Situ Chemical Oxidation. Jack Peabody Regenesis A Green xidant for In-Situ Chemical xidation Jack Peabody Regenesis jpeabody@regenesis.com The New Era of Environmentalism Green Sustainable Renewable Energy Chemistry Vehicles Farming Technologies Lifestyles

More information

CHEMISTRY 121 Review Problems

CHEMISTRY 121 Review Problems CHEMISTRY 121 Review Problems 1. Fill in the blanks with the correct symbols for the elements. An atom having a half-filled 2p subshell. An atom having a total of 6 electrons in its n = 3 principal quantum

More information

Atom Economy in Drug Synthesis is a Playground of Functional Groups

Atom Economy in Drug Synthesis is a Playground of Functional Groups American Journal of Advanced Drug Delivery www.ajadd.co.uk Atom Economy in Drug Synthesis is a Playground of Functional Groups Kartik R. Patel*, Dr. Dhrubo Jyoti Sen and Viraj P. Jatakiya Review Article

More information

Ch 9 Stoichiometry Practice Test

Ch 9 Stoichiometry Practice Test Ch 9 Stoichiometry Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A balanced chemical equation allows one to determine the a. mole ratio

More information

Balancing Chemical Equations

Balancing Chemical Equations Printed Page 365 [Notes/Highlighting] LESSON 5 Atom Inventory Think About It The law of conservation of mass states that mass is not lost or gained in a chemical reaction. When you write a chemical equation

More information

CHEMICAL REACTIONS. Chemical equations are written in the following standard format:

CHEMICAL REACTIONS. Chemical equations are written in the following standard format: OBJECTIVE(S): Be able to identify if a reaction takes place and record your observations Be able to classify the type of reaction that takes place Write balanced chemical reactions based on physical observations

More information

Chemical Quantities: Stoichiometry and the Mole

Chemical Quantities: Stoichiometry and the Mole Chemical Quantities: Stoichiometry and the Mole This is trying to summarize what we have learned up to this point: formulas, names, conversions, moles, quantities, reaction types, balancing equations,

More information

Lesson Aiming for 4 Aiming for 6 Aiming for 8. I can use the periodic table to find the relative atomic mass of all elements.

Lesson Aiming for 4 Aiming for 6 Aiming for 8. I can use the periodic table to find the relative atomic mass of all elements. Chemical calculations C4.1 Relative masses and moles I can use the periodic table to identify the relative atomic mass for the first 20 elements. I can calculate the relative formula mass for familiar

More information

Theoretical Yield and Percent Yield: The Synthesis of tris(2,4-pentanedionato)iron(iii)

Theoretical Yield and Percent Yield: The Synthesis of tris(2,4-pentanedionato)iron(iii) MiraCosta College Introductory Chemistry Laboratory Theoretical Yield and Percent Yield: The Synthesis of tris(2,4-pentanedionato)iron(iii) EXPERIMENTAL TASK Synthesize tris(2,4-pentanedianato)iron(iii),

More information

Chapter 4 Stoichiometry of Chemical Reactions

Chapter 4 Stoichiometry of Chemical Reactions Chapter 4 Stoichiometry of Chemical Reactions 203 Figure 4.11 Airbags deploy upon impact to minimize serious injuries to passengers. (credit: Jon Seidman) 4.4 Reaction Yields By the end of this section,

More information

2/11/2013 INTRODUCTION. STOICHIOMETRY General Chemistry. Uses of H 2 SO 4. Stoichiometry? Big Deal.

2/11/2013 INTRODUCTION. STOICHIOMETRY General Chemistry. Uses of H 2 SO 4. Stoichiometry? Big Deal. INTRODUCTION STOICHIOMETRY General Chemistry Billions of pounds of chemicals are produced each year across the world. These chemicals help manufacture: Medicines Computer chips and electronic instruments

More information

CHAPTER 11 Stoichiometry Defining Stoichiometry

CHAPTER 11 Stoichiometry Defining Stoichiometry CHAPTER 11 Stoichiometry 11.1 Defining Stoichiometry Stoichiometry is the study of quantitative relationships between amounts of reactants used and products formed by a chemical reaction. Stoichiometry

More information

Page 2. The hydrocarbon but-1-ene (C 4H 8) is a member of the homologous series of alkenes. But-1-ene has structural isomers.

Page 2. The hydrocarbon but-1-ene (C 4H 8) is a member of the homologous series of alkenes. But-1-ene has structural isomers. Q1.(a) The hydrocarbon but-1-ene (C 4H 8) is a member of the homologous series of alkenes. But-1-ene has structural isomers. State the meaning of the term structural isomers. Give the IUPAC name of the

More information

Q1. Which one of the following is least likely to occur in the reaction between methane and chlorine?

Q1. Which one of the following is least likely to occur in the reaction between methane and chlorine? Q1. Which one of the following is least likely to occur in the reaction between methane and chlorine? A B C D C 4 + Cl C 3 + Cl C 3 + Cl C 3 Cl + C 3 + Cl 2 C 3 Cl + Cl C 3 Cl + Cl C 2 Cl + Cl (Total 1

More information

Introduction to Stoichiometry

Introduction to Stoichiometry Introduction to Stoichiometry Objectives: Introduction to concepts of stoichiometry. How we use the coefficients How to determine the limiting reactant How mass figures into stoichiometry How to determine

More information

Green Chemistry: Principle and its Application

Green Chemistry: Principle and its Application Green Chemistry: Principle and its Application Mohd Wahid Department of Chemistry, Aligarh Muslim University, Aligarh, UP, India Faizan Ahmad * Department of Post arvest Engineering and Technology, Faculty

More information

Stoichiometry Dry Lab

Stoichiometry Dry Lab Stoichiometry Dry Lab Name: Mole-Mass Conversions The molar mass of a substance is the conversion factor that allows us to convert between the mass of a substance (in grams) and the number of moles of

More information

AP Chapter 3 Study Questions

AP Chapter 3 Study Questions Class: Date: AP Chapter 3 Study Questions True/False Indicate whether the statement is true or false. 1. The mass of a single atom of an element (in amu) is numerically EQUAL to the mass in grams of 1

More information

Chapter 9. Calculations from Chemical Equations. to patients Introduction to General, Organic, and Biochemistry 10e throughout the

Chapter 9. Calculations from Chemical Equations. to patients Introduction to General, Organic, and Biochemistry 10e throughout the Chapter 9 Calculations from Chemical Equations Accurate measurement and calculation of the correct dosage are important in dispensing the correct medicine to patients Introduction to General, Organic,

More information

Michael J. Costanzo, Mitul N. Patel, Kathryn A. Petersen, and Paul F. Vogt. June 2009

Michael J. Costanzo, Mitul N. Patel, Kathryn A. Petersen, and Paul F. Vogt. June 2009 Ammonia-Free Birch Reductions Using Stabilized Sodium In n-silica for Safer, More Sustainable Synthesis Michael J. Costanzo, Mitul N. Patel, Kathryn A. Petersen, and Paul F. Vogt June 2009 About SiGNa

More information

Part 8- Chemistry Paper 2 Using Resources Triple Science

Part 8- Chemistry Paper 2 Using Resources Triple Science Part 8- Chemistry Paper 2 Using Resources Triple Science How bonding and structure are related to the properties of substances A simple model of the atom, symbols, relative atomic mass, electronic charge

More information

We use a special symbol to denote a reaction which is reversible: The double-headed arrow means the reaction can go in either direction

We use a special symbol to denote a reaction which is reversible: The double-headed arrow means the reaction can go in either direction Reversible reactions Some reactions do not go to completion we don t get 100% yield because not all of the reactants react to form products. One of the reasons for this is that some reactions are reversible

More information

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12.

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12. CHAPTER 12 Stoichiometry is the calculation of quantities using different substances in chemical equations. Based on the Law of Conservation of Mass. Mg(s) + How many moles of H Chemists use balanced to

More information

Introduction to Chemical Reactions. Chapter 6

Introduction to Chemical Reactions. Chapter 6 Introduction to Chemical Reactions Chapter 6 Instructional Goals 1. Given the reactants and product in a chemical reaction, the student will be able to write and balance chemical equations. 2. Identify

More information

STOICHIOMETRY via ChemLog

STOICHIOMETRY via ChemLog STOICHIOMETRY via ChemLog 3 Mg + N (g) Mg 3 N by Dr. Stephen Thompson Mr. Joe Staley Ms. Mary Peacock The contents of this module were developed under grant award # P116B-001338 from the Fund for the Improvement

More information

Page 2. (polyethene) any four from:

Page 2. (polyethene) any four from: M.(a) (ethene) (polyethene) (b) any four from: poly(ethene) produced by addition polymerisation whereas polyester by condensation polymerisation poly(ethene) produced from one monomer wheareas polyester

More information

STOICHIOMETRY. STOICHIOMETRY Chemists use balanced chemical equations to calculate how much reactant is needed or how much product is formed.

STOICHIOMETRY. STOICHIOMETRY Chemists use balanced chemical equations to calculate how much reactant is needed or how much product is formed. STOICHIOMETRY Stoikheion = element; metron = to measure STOICHIOMETRY Chemists use balanced chemical equations to calculate how much reactant is needed or how much product is formed. provides the same

More information

STOICHIOMETRY. Greek: Stoicheon = element metron = element measuring

STOICHIOMETRY. Greek: Stoicheon = element metron = element measuring STOICHIOMETRY Greek: Stoicheon = element metron = element measuring Stoichiometry is the science of measuring the quantitative proportions or mass ratios in which chemical elements stand to one another

More information

Technical Resource Package 1

Technical Resource Package 1 Technical Resource Package 1 Green Chemistry Impacts in Batch Chemical Processing UNIDO IAMC Toolkit Images may not be copied, transmitted or manipulated 1/5 The following list provides an overview of

More information

DOUBLE DISPLACEMENT REACTIONS. Double your pleasure, double your fun

DOUBLE DISPLACEMENT REACTIONS. Double your pleasure, double your fun DOUBLE DISPLACEMENT REACTIONS Double your pleasure, double your fun Industrial processes produce unwanted by-products. Dissolved toxic metal ions-copper, mercury, and cadmium-are common leftovers in the

More information

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Chapter 3 : Calculations with Chemical Formulas and Equations AP Chemistry 2014-15 North Nova Education Centre Mr. Gauthier Law of Conservation of Mass We may lay it down as an incontestable axiom that,

More information

CHAPTER 8. Stoichiometry

CHAPTER 8. Stoichiometry CHAPTER 8 Stoichiometry So far in your chemistry course, you have learned that chemists count quantities of elements and compounds in terms of moles and that they relate moles of a substance to mass by

More information

1/20/2013. Introduction to Environmental Geology, 5e. Case History: Island of Hispaniola. Earth History. Earth s Place in Space

1/20/2013. Introduction to Environmental Geology, 5e. Case History: Island of Hispaniola. Earth History. Earth s Place in Space Introduction to Environmental Geology, 5e Edward A. Keller Chapter 1 Philosophy and Fundamental Concepts Intro to Geology: summary haiku Here's geology. It's the study of the Earth - complete entity. Lecture

More information

PowerPoint to accompany. Chapter 2. Stoichiometry: Calculations with Chemical Formulae and Equations. Dr V Paideya

PowerPoint to accompany. Chapter 2. Stoichiometry: Calculations with Chemical Formulae and Equations. Dr V Paideya PowerPoint to accompany Chapter 2 Stoichiometry: Calculations with Chemical Formulae and Equations Dr V Paideya Chemical Equations CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O (g) Figure 2.4 Chemical Equations

More information

e) How many atoms of nitrogen are in 1.2 g aspartame? #11 HC 4 of 4

e) How many atoms of nitrogen are in 1.2 g aspartame? #11 HC 4 of 4 Ch. 3 Honors Chem HW #11 HC 1 of 4 A2) An element is a mixture of two isotopes. One isotope of the element has an atomic mass of 34.96885 amu and has a relative abundance of 75.53%. The other isotope has

More information

Chapter 4: Chemical Quantities and Aqueous Reactions

Chapter 4: Chemical Quantities and Aqueous Reactions Chapter 4: Chemical Quantities and Aqueous Reactions C (s) + O 2 (g) CO 2 (g) CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 0 (g) 2 C 8 H 18 (g) + 25 O 2 (g) 16 CO 2 (g) + 18 H 2 0 (g) Stoichiometry Calculations

More information

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 12

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 12 herry ill Tuition A Level hemistry OR (A) Paper 12 ADVANED SUBSIDIARY GE EMISTRY A hains, Energy and Resources F322 *F318530611* andidates answer on the question paper. OR Supplied Materials: Data Sheet

More information

CHEMICAL OXIDATION. The use of oxidizing agents without the need of microorganisms for the reactions to proceed

CHEMICAL OXIDATION. The use of oxidizing agents without the need of microorganisms for the reactions to proceed CHEMICAL OXIDATION The use of oxidizing agents without the need of microorganisms for the reactions to proceed oxidizing agents : O 3, H 2 O 2, Cl 2 or HOCl or O 2 etc catalysts : ph, transition metals,

More information

Teaching Green Chemistry & Engineering Concepts in the Undergraduate Organic Laboratory via Biginelli and Hantzsch Reactions

Teaching Green Chemistry & Engineering Concepts in the Undergraduate Organic Laboratory via Biginelli and Hantzsch Reactions Teaching Green Chemistry & Engineering Concepts in the Undergraduate rganic Laboratory via Biginelli and antzsch Reactions A.P. Dicks*, E. Aktoudianakis and S. Styler Department of Chemistry University

More information

Important Note: The current 2004 SCOS will continue to be the operational standards in the and school years

Important Note: The current 2004 SCOS will continue to be the operational standards in the and school years This document is designed to help North Carolina educators teach the s (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Eighth Grade

More information

Stoichiometry CHAPTER 12

Stoichiometry CHAPTER 12 CHAPTER 12 Stoichiometry 12.1 Using Everyday Equations Stoichiometry is the calculation of quantities in chemical equations. * The balanced equation gives the ratios for the reactants and products. 3 eggs

More information

Stoichiometry. Before You Read. Chapter 10. Chapter 11. Review Vocabulary. Define the following terms. mole. molar mass.

Stoichiometry. Before You Read. Chapter 10. Chapter 11. Review Vocabulary. Define the following terms. mole. molar mass. Stoichiometry Before You Read Review Vocabulary Define the following terms. mole molar mass conversion factor dimensional analysis law of conservation of mass Chapter 10 Balance the following equation.

More information

Chemical Equations. Chemical Equations

Chemical Equations. Chemical Equations Page III-4a-1 / Chapter Four Part I Lecture Notes Chemical Reactions Chapter 4 Part 1 Chemistry as Cooking! - the Chemical Reaction "Recipe" and technique leads to successful creations Must know amounts

More information

Synthesis of cis- and trans- Diamminedichloroplatinum(II)

Synthesis of cis- and trans- Diamminedichloroplatinum(II) 4 EXPERIMENT Synthesis of cis- and trans- Diamminedichloroplatinum(II) REFERENCES a. Singh, M. M.; Szafran, Z.; Pike, R. M. The Microscale Laboratory, J. Chem. Educ. 1990, 67, A261-A262. b. Szafran, Z.;

More information

4.1.1 A simple model of the atom, symbols, relative atomic mass, electronic charge and isotopes. Unit 1 Unit 2 Unit 3. C2.1.1a Structure and bonding

4.1.1 A simple model of the atom, symbols, relative atomic mass, electronic charge and isotopes. Unit 1 Unit 2 Unit 3. C2.1.1a Structure and bonding Summary of changes This resource outlines the main changes that have been made to the assessment and subject content from our previous GCSE Chemistry (4402) to the new specification (8462). Our new specifications

More information

Chemistry 11. Unit 7 - Stoichiometry

Chemistry 11. Unit 7 - Stoichiometry 1 Chemistry 11 Unit 7 - Stoichiometry 2 1. Coefficients of chemical equations In chapter 6, we have learned how to balance a chemical reaction by considering the laws of conservation of atoms and charges.

More information

FACTFILE: GCSE CHEMISTRY: UNIT 2.6

FACTFILE: GCSE CHEMISTRY: UNIT 2.6 FACTFILE: GCSE CHEMISTRY: UNIT Quantitative Chemistry Learning outcomes Students should be able to:.1 calculate the concentration of a solution in mol/dm 3 given the mass of solute and volume of solution;.2

More information

Stoichiometry CHAPTER 12

Stoichiometry CHAPTER 12 CHAPTER 12 Stoichiometry 12.1 Using Everyday Equations Stoichiometry is the calculation of quantities in chemical equations. Jan 16 7:57 AM May 24 10:03 AM * The balanced equation gives the ratios for

More information

Environmentally Benign and Efficient Approaches to Organic Synthesis of Drugs: A Review

Environmentally Benign and Efficient Approaches to Organic Synthesis of Drugs: A Review Human Journals Review Article October 2018 Vol.:13, Issue:3 All rights are reserved by Madhura Vijay Newrekar Environmentally Benign and Efficient Approaches to Organic Synthesis of Drugs: A Review Keywords:

More information

Green Synthesis and Green Nanotechnology: An Integral Part of Sustainable Nano

Green Synthesis and Green Nanotechnology: An Integral Part of Sustainable Nano Green Synthesis and Green Nanotechnology: An Integral Part of Sustainable Nano Barbara Karn, PhD National Science Foundation Santa Barbara November 3, 2013 Green Nano Green nanotechnology is about doing

More information

Green Technologies & Solutions at Gharda Chemicals Ltd.

Green Technologies & Solutions at Gharda Chemicals Ltd. Green Technologies & Solutions at Gharda Chemicals Ltd. Taher Dakorwala General Manager R&D and Intellectual Property Management Gharda Chemicals Limited Dombivli BSc (Tech ) Pharmaceuticals & Fine Chemicals,

More information

Experiment 4: The Borane-Amine Adduct. Text #4 CHEM 531

Experiment 4: The Borane-Amine Adduct. Text #4 CHEM 531 Experiment 4: The Borane-Amine Adduct Text #4 CEM 531 Reminders Due this Thursday (2/19): Report: Experiment 3 Electrolytic Synthesis of K 2 S 2 8 Prelab: Experiment 4 Borane-Amine Synthesis Due in two

More information

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 9 THIS IS A NEW SPECIFICATION

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 9 THIS IS A NEW SPECIFICATION THIS IS A NEW SPECIFICATION ADVANCED SUBSIDIARY GCE CHEMISTRY A Chains, Energy and Resources F322 * OCE / 1 9 2 3 4* Candidates answer on the Question Paper OCR Supplied Materials: Data Sheet for Chemistry

More information

THE CODRINGTON SCHOOL The International School of Barbados MYP VERTICAL PLANNER

THE CODRINGTON SCHOOL The International School of Barbados MYP VERTICAL PLANNER UNIT THE CODRINGTON SCHOOL SUBJECT Chemistry MYP LEVEL 5 DATE 2016-2017 TIME FRAME (weeks) 1 6 UNIT TITLE Rates of reaction GLOBAL CONTEXT Identities and relationships: relationship between different factors

More information

Conservation The Law of Conservation of Matter states that matter cannot be created or destroyed in ordinary chemical reactions. This means that no

Conservation The Law of Conservation of Matter states that matter cannot be created or destroyed in ordinary chemical reactions. This means that no Chemical Reactions Conservation The Law of Conservation of Matter states that matter cannot be created or destroyed in ordinary chemical reactions. This means that no atoms can be lost or gained. This

More information

Chemical Equations. Law of Conservation of Mass. Anatomy of a Chemical Equation CH4(g) + 2O2(g) Chapter 3

Chemical Equations. Law of Conservation of Mass. Anatomy of a Chemical Equation CH4(g) + 2O2(g) Chapter 3 Chemical Equations Chemical equations are concise representations of chemical reactions. Chapter 3 : Calculations with Chemical Formulas and Equations Law of Conservation of Mass Anatomy of a Chemical

More information

Enthalpy changes

Enthalpy changes 2.3.1. Enthalpy changes In an exothermic change energy is transferred from the system (chemicals) to the surroundings. The have less energy than the If an enthalpy change occurs then energy is transferred

More information

Reactions Rates

Reactions Rates 3.2.2. Reactions Rates Collision theory Reactions can only occur when collisions take place between particles having sufficient energy. The energy is usually needed to break the relevant bonds in one or

More information

POGIL EXERCISE 16 Concentration Terms and There Use

POGIL EXERCISE 16 Concentration Terms and There Use RUN TIME = 80 MIN POGIL 16 Page 1 of 10 POGIL EXERCISE 16 Concentration Terms and There Use Each member should locate his/her role in Table 1 and assume his or her role at this time. The new manager takes

More information

Experiment 2 Solvent-free Aldol Condensation between 3,4-dimethoxybenzaldehyde and 1-indanone

Experiment 2 Solvent-free Aldol Condensation between 3,4-dimethoxybenzaldehyde and 1-indanone Experiment 2 Solvent-free Aldol Condensation between 3,4-dimethoxybenzaldehyde and 1-indanone Chemical Concepts Carbonyl chemistry, base catalyzed aldol reaction, melting point, recrystallization Green

More information

Laboratory 3. Development of an Equation. Objectives. Introduction

Laboratory 3. Development of an Equation. Objectives. Introduction Laboratory 3 Development of an Equation Objectives Apply laboratory procedures and make observations to investigate a chemical reaction. Based on these observations, identify the pattern of reactivity

More information

Green nanoscience: Opportunities and challenges for innovation

Green nanoscience: Opportunities and challenges for innovation Green nanoscience: Opportunities and challenges for innovation Jim Hutchison Department of Chemistry, University of Oregon Director, UO Materials Science Institute Director, ONAMI Safer Nanomaterials and

More information

Chapter 4: Chemical and Solution Stoichiometry

Chapter 4: Chemical and Solution Stoichiometry Chapter 4: Chemical and Solution Stoichiometry (Sections 4.1-4.4) 1 Reaction Stoichiometry The coefficients in a balanced chemical equation specify the relative amounts in moles of each of the substances

More information

Reactants and products. Indications of state. Mass balance: coefficients vs. subscripts

Reactants and products. Indications of state. Mass balance: coefficients vs. subscripts 1 of 9 I. Chemical equations Chemical equations - shorthand representations of chemical reactions The reaction of aqueous silver (I) nitrate and aqueous ammonium chloride results in the formation of solid

More information

Sustainable tourism in for Sustaibale Danang

Sustainable tourism in for Sustaibale Danang Sustainable tourism in for Sustaibale Danang A case study of Balearic Ecotax in Spain toward Sustainable tourism Miki Yoshizumi Associate Professor College of Gastronomy Management Ritsumeikan University

More information