Physical Chemistry Laboratory [CHEM 335] BOMB CALORIMETRY Adriana Biney and Silmilly Toribio

Size: px
Start display at page:

Download "Physical Chemistry Laboratory [CHEM 335] BOMB CALORIMETRY Adriana Biney and Silmilly Toribio"

Transcription

1 Physical Chemistry Laboratory [CHEM 335] BOMB CALORIMETRY Adriana Biney and Silmilly Toribio ABSTRACT In this experiment a Parr 1341 Plain Jacket Oxygen Bomb Calorimeter was employed to determine the enthalpy of combustion of naphthalene, sucrose and an unknown. The constant volume heat capacity (Cv)of the calorimeter was determined by the combustion of high purity benzoic acid. Upon a series of trials, this heat capacity was determined as / kj/ 0 C with the calorimeter pail containing 1.75 L of water. We have obtained the internal energy change ( U) for naphthalene; / kj, sucrose; / kj, and the unknown; / kj. The molar enthalpies ( Hm) of the naphthalene and sucrose samples were found to be / kj/mol and / kj/mol, which are similar to the literature values of kj/mol and kj/mol, for naphthalene and sucrose respectively. The results demonstrate it is possible to determine reliable Hm values for organic compounds using bomb calorimetry. Corresponding Author Contributed similarly to this work INTRODUCTION The process of calorimetry pertains to measuring absorbed or evolved heat during a chemical reaction or simply measuring quantitatively the flow of heat in a reaction [1]. The first law of thermodynamics states that energy can neither be created nor destroyed, but can be transformed from one state to another. This law is made evident in bomb calorimetry. During this process, when the fuse wire and pellet are ignited in the bomb, heat is the energy seen to be given off during this combustion reaction. The bomb, used in bomb calorimetry, is a completely sealed and oxygen filled metal container. This is placed in an insulated jacket containing a pail of water and a thermometer -- all combined to form the calorimeter [3]. The bomb allows for both a constant volume of the container and for no inflow or outflow of heat ( q) and its insulated jacket serves as an ideal environment for the bomb. All the conditions surrounding the bomb and its calorimeter, allow for an adiabatic reaction to take place. Hence, the U is equal to the change in work ( W) done by the bomb during the reaction [2]. U = W (1) All through the adiabatic process, the change in heat of the system (coming in or going out) is supposedly zero, rendering the change in enthalpy equal to the change in heat [2]. H = q (2) Since no reaction or the equipment used in the reaction is perfect with 100% efficiency in the process, the adiabatic conditions are also not perfect and some heat does enter and leave the bomb. The typical combustion reaction seems to resemble this form: Organic Compound (s) + A O 2 (g) --> B CO 2 (g) + C H 2 O (g) and when balanced, C x H y O z (s) + (X+Y/4-Z/2) O 2 (g) -----> X CO 2 (g) + (Y/2) H 2 O(g) [6] 1

2 The organic compounds used in this experiment were benzoic acid (C 7 H 6 O 2 ), naphthalene (C 10 H 8 ) [5], sucrose (C 12 H 22 O 11 ) and an unknown compound. This experiment seeks to determine the heat capacity of the bomb using the standard, benzoic acid. This value is a constant for that particular bomb and will ultimately lead to the determination of the internal energy ( U) of naphthalene, sucrose and the unknown, as well as and the molar internal energy ( Um) and the molar enthalpy ( Hm) of naphthalene and sucrose [3]. EXPERIMENTAL SECTION Fig. 1. (Left to right) Calorimeter and Bomb cross sections. [Shoemaker, D., Experiments in Physical Chemistry, McGraw-Hill, Inc., 1989] The bomb calorimeter (Fig. 1) was assembled and cleaned. An amount just over 0.800g of benzoic acid was obtained, weighed and compacted into a pill. This pill was placed in the ignition cup and the ends of a 10cm piece of fuse wire were attached to both ends of the electrode terminals while the middle section of the wire was left touching the sample. The head of the bomb was placed in the bomb container and sealed. To remove the air from the bomb, the closed container was filled with 10 atm of oxygen through a screw on the head of the bomb. After being fully filled with oxygen, the bomb was completely closed and electrical leads were connected from the bomb insulator jacket to the electrical connection outlets on the head of the bomb. The bomb was then placed in a pail filled with 1750ml of water and this was placed in the insulated jacket. The lid of the jacket was replaced, with a Beckmann thermometer exposed from the lid used for measuring the temperature of the water in the pail. The bomb insulator was plugged into an electrical outlet, and a rubber band was connected from the motor to the stirrer, which was switched on. The temperature of the thermometer (indicating the temperature of the water in the pail) was left to become constant. The ignition controller was plugged into an electrical outlet and the button was pressed when the temperature of the water in the pail was deemed stable. The temperature values of the reaction, over a period of three minutes, were recorded every fifteen seconds. This exact procedure was performed using 2

3 naphthalene, sucrose and an unknown sample as the sample. All results received from the temperature values were plotted using Excel TM. Several trials were performed for each sample in order to obtain average and λ 95 values. RESULTS The change in temperature values were obtained through this method: 1.Determine the minimum turning point on the curve at which the temperature extends upwards. 2.Determine the maximum point on the curve at which the temperature is stable and not moving upwards. 3.Subtract the maximum from the minimum value. 4.Multiply this number by Add the number to the minimum value. 6.Extend a horizontal line from the value received in (5) to a point that intersects with the curve. 7.Extend the lines of the top and bottom curves. 8.Rule a vertical line through the intersection point (6) to the extended maximum and minimum lines. 9.Subtract the maximum from the minimum values obtained at the points where the top and bottom curves (7) meet with vertical line (8). 10.The value received is the change in temperature ( T). For example: Finding the calorimeter heat capacity: Mass of Iron burned: 0.01 g, U = 0.01g kj/g = kj Benzoic Acid: g U = g kj/g= kj U = C T, T = C = C --> U= kj C = kj/ C = kj/ 0 C The average value of two trials gave kj/ 0 C λ 95 = [t*s]/(n) ½ = [ *0.10]/(2) 1/2 = Therefore, Cv for the calorimeter is / kj/ 0 C Finding the U (kj) and Energy (kj/g) Values for Naphthalene, Sucrose and an Unknown Sample: U = Cv T For naphthalene (Trial 1) U for the total reaction = kJ/ 0 C * C = kj U for the fused wire = Energy (kj/g) * Weight of fuse wire = kj/g * g = kj U for naphthalene = U for the total reaction - U for the fused wire = kj kJ = kj The average of four trials gives kj λ 95 = [t*s/(n)] 1/2 = [ *1.075]/(4) 1/2 = Therefore, the U for naphthalene is / kj Energy for naphthalene (kj/g) U for naphthalene (kj) / Weight of pellet used (g) U = kj / g = kj/g The average of four trials gives kj/g λ 95 = [t*s]/(n) ½ = [ *1.322]/(4) 1/2 = Therefore, the energy value for naphthalene is / kj/g 3

4 Fig. 2. Determining T for the combustion of g of an unknown compound and g of iron wire with 1750 ml of water in the calorimeter s pail. Compound T ( 0 C) U (kj/g) U (kj) Benzoic acid Naphthalene U Total (kj) Ψ Um (kj/mol) Hm (kj/mol) Hm - Um (kj/mol) Sucrose Unknown ~ ~ ~ Table 1. Summary of change in temperature, energy, internal energy and enthalpy results for the four samples used in the experiment. Ψ Refers to the combined combustion of the compound and the iron wire. DISCUSSION Upon calculation of the results, it has been observed that samples naphthalene and sucrose yielded different U, Um and Hm values. The unknown compound also yielded a low value U compared the other samples. Although the molecular weights and make-up of the various compounds result in the varying U, Um and Hm values received, it is difficult to spot a correlation between them. Benzoic acid was used as a standard and gave 4

5 rise to the heat capacity. This value is / kj/ 0 C and exhibits the constant heat capacity of the bomb. Analyzing the other three compounds revealed their U values to be quite different. It seemed that the U for naphthalene was closer to that of benzoic acid at / kj whilst those of sucrose and the unknown were / kj and / kj, respectively. These negative values indicate that energy was given off during the combustion of the organic sample into carbon dioxide and water. Unfortunately, more problems existed while performing the combustion of sucrose and the unknown as the pellet was not consumed for both reactions on two occasions. In order to find the Um and Hm values of naphthalene and sucrose the molecular weights of each compound were needed. The unknown sample could not be calculated, due to the lack of knowledge of its molecular weight. Calculating Hm requires knowledge of Um. The Hm for naphthalene was / kj/mol and the literature value, kJ/mol [4]. There existed between them a relative error percentage of 1.02%. Calculations of the Hm for sucrose yielded / kj/mol and the literature value was determined to be kj/mol [4]. This exhibited a relative percentage error of 0.036% for the sucrose values. All calculations demonstrate the highly exothermic property of these combustion reactions. They also show that the experiments performed were quite accurate in determining the given results as error between the results and the values obtained from literature was of a small percentage and does not seem significant. ACKNOWLEDGEMENT The following people contributed to this work by either calibrating a second calorimeter, performing more trials for the combustion of the compounds or both. Lipi Akhter Nadia Aslam Salhiram Balthazar Marven Lamarre Alex Stewart BIBLIOGRAPHY [1] The American Heritage TM Dictionary of the English Language (4th Ed.), Houghton Mifflin Company, Boston, 2000 [2] Mashkevich S. V., Mashkevich V. S., Statistical Theory of an Adiabatic Process, Phys. Rev. E. 51: (1995) [3] MERCURY'S HELP DESK CALORIMETRY, URL: (Retrieved April ) [4] Heats of Combustion, URL: and URL: (Retrieved April ) [5] Shoemaker, D., Experiments in Physical Chemistry, McGraw-Hill, Inc., 1989, p [6] Theory, Bomb Calorimetry, URL: (Retrieved April ) 5

6 APPENDIX: RAW DATA 6

PROPULSION LAB MANUAL

PROPULSION LAB MANUAL PROPULSION LAB MANUAL Measurement of Calorific Value of a Solid Fuel Sample using a Bomb Calorimeter DEPARTMENT OF AEROSPACE ENGINEERING Indian Institute of Technology Kharagpur CONTENTS 1. Introduction

More information

Bomb Calorimetry. Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise.

Bomb Calorimetry. Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Experiment 12 Bomb Calorimetry Pre-Lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Purpose A bomb calorimeter will

More information

Measuring and Expressing Enthalpy Changes. Copyright Pearson Prentice Hall. Measuring and Expressing Enthalpy Changes. Calorimetry

Measuring and Expressing Enthalpy Changes. Copyright Pearson Prentice Hall. Measuring and Expressing Enthalpy Changes. Calorimetry Measuring and Expressing Enthalpy Changes A burning match releases heat to its surroundings in all directions. How much heat does this exothermic reaction release? You will learn to measure heat flow in

More information

Lab 2. Molar enthalpy of combustion

Lab 2. Molar enthalpy of combustion Lab 2. Molar enthalpy of combustion Introduction Chemical reactions like burning an organic compound typically produce heat. In this experiment you will be measuring the amount of heat produced by burning

More information

Heat of Combustion. Parr oxygen bomb calorimeter (or equivalent), pellet press, thermometer (0.01 C), fuse wire.

Heat of Combustion. Parr oxygen bomb calorimeter (or equivalent), pellet press, thermometer (0.01 C), fuse wire. Heat of Combustion PURPOSE The purposes of this experiment are to determine the heats of combustion of several related substances using a bomb calorimeter and relate differences in heats of combustion

More information

Chapter 6. Energy Thermodynamics

Chapter 6. Energy Thermodynamics Chapter 6 Energy Thermodynamics 1 Energy is... The ability to do work. Conserved. made of heat and work. a state function. independent of the path, or how you get from point A to B. Work is a force acting

More information

4 BOMB CALORIMETRY. Chapter 4. Bomb Calorimetry 24 I. PREPARATION

4 BOMB CALORIMETRY. Chapter 4. Bomb Calorimetry 24 I. PREPARATION Chapter 4. Bomb Calorimetry 24 4 BOMB CALORIMETRY I. PREPARATION Read "Principles of Calorimetry" in Ch. VI of Shoemaker, Garland, and Nibler (SGN, pp. 145-151), as well as Experiment 6 (pp. 152-158).

More information

Experiment 1: Adiabatic Bomb Calorimeter (Dated: August 25, 2009)

Experiment 1: Adiabatic Bomb Calorimeter (Dated: August 25, 2009) Experiment 1: Adiabatic Bomb Calorimeter (Dated: August 25, 2009) I. INTRODUCTION Heat released in a chemical reaction can be determined experimentally by using an adiabatic calorimeter. The reaction must

More information

Thermochemistry/Calorimetry. Determination of the enthalpy of combustion with a calorimetric bomb LEC 02. What you need:

Thermochemistry/Calorimetry. Determination of the enthalpy of combustion with a calorimetric bomb LEC 02. What you need: LEC 02 Thermochemistry/Calorimetry with a calorimetric bomb What you can learn about 1st law of thermodynamics Hess law Enthalpy of combustion Enthalpy of formation Heat capacity Principle and tasks The

More information

Chemistry Slide 1 of 33

Chemistry Slide 1 of 33 Chemistry 17.2 1 of 33 17.2 Measuring and Expressing Enthalpy Changes A burning match releases heat to its surroundings in all directions. How much heat does this exothermic reaction release? You will

More information

ALE 26. Energy Changes ( E) and Enthalpy Changes ( H) in Chemical Reactions

ALE 26. Energy Changes ( E) and Enthalpy Changes ( H) in Chemical Reactions Name Chem 161, Section: Group Number: ALE 26. Energy Changes ( E) and Enthalpy Changes ( H) in Chemical Reactions (Reference: Chapter 6 - Silberberg 5 th edition) Important!! For answers that involve a

More information

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat The Nature of Energy Chapter Six: THERMOCHEMISTRY Thermodynamics is the study of energy and its transformations. Thermochemistry is the study of the relationship between chemical reactions and energy changes

More information

Thermochemistry. Chapter 6. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Thermochemistry. Chapter 6. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Thermochemistry Chapter 6 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Energy is the capacity to do work. Radiant energy comes from the sun and is earth s

More information

Bomb Calorimetry: Heat of Combustion of Naphthalene

Bomb Calorimetry: Heat of Combustion of Naphthalene Bomb Calorimetry: Heat of Combustion of Naphthalene Most tabulated H values of highly exothermic reactions come from bomb calorimeter experiments. Heats of combustion are most common, in which the combustible

More information

8.6 The Thermodynamic Standard State

8.6 The Thermodynamic Standard State 8.6 The Thermodynamic Standard State The value of H reported for a reaction depends on the number of moles of reactants...or how much matter is contained in the system C 3 H 8 (g) + 5O 2 (g) > 3CO 2 (g)

More information

Determination of Resonance Stabilization Energy of Benzene Jonathan Smith (With Small Adaptations by Amanda Nienow)

Determination of Resonance Stabilization Energy of Benzene Jonathan Smith (With Small Adaptations by Amanda Nienow) Determination of Resonance Stabilization Energy of Benzene Jonathan Smith (With Small Adaptations by Amanda Nienow) Abstract In this investigation we will measure the heat evolved during the combustion

More information

11B, 11E Temperature and heat are related but not identical.

11B, 11E Temperature and heat are related but not identical. Thermochemistry Key Terms thermochemistry heat thermochemical equation calorimeter specific heat molar enthalpy of formation temperature enthalpy change enthalpy of combustion joule enthalpy of reaction

More information

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry Topic 2: Introduction, Topic 2: Thermochemistry Text: Chapter 7 and 19 (~ 3 weeks) 2.0 Introduction, terminology and scope 2.1 Enthalapy and Energy Change in a chemical process; 1st law of Thermodynamics

More information

The Enthalpy of Formation of Camphor by Bomb Calorimetry 1

The Enthalpy of Formation of Camphor by Bomb Calorimetry 1 The Enthalpy of Formation of Camphor by Bomb Calorimetry 1 Purpose: The enthalpy of combustion of camphor will be determined in a bomb calorimeter. The enthalpy of formation of camphor will be calculated

More information

COMBUSTION OF FUEL 12:57:42

COMBUSTION OF FUEL 12:57:42 COMBUSTION OF FUEL The burning of fuel in presence of air is known as combustion. It is a chemical reaction taking place between fuel and oxygen at temperature above ignition temperature. Heat is released

More information

= 1906J/0.872deg = 2186J/deg

= 1906J/0.872deg = 2186J/deg Physical Chemistry 2 2006 Homework assignment 2 Problem 1: he heat of combustion of caffeine was determined by first burning benzoic acid and then caffeine. In both cases the calorimeter was filled with

More information

CHEMISTRY. Chapter 5 Thermochemistry

CHEMISTRY. Chapter 5 Thermochemistry CHEMISTRY The Central Science 8 th Edition Chapter 5 Thermochemistry Dr. Kozet YAPSAKLI The Nature of Energy Kinetic and Potential Energy Potential energy can be converted into kinetic energy. E p = mgh

More information

Chemistry: The Central Science. Chapter 5: Thermochemistry

Chemistry: The Central Science. Chapter 5: Thermochemistry Chemistry: The Central Science Chapter 5: Thermochemistry Study of energy and its transformations is called thermodynamics Portion of thermodynamics that involves the relationships between chemical and

More information

EXPERIMENT 5. THE ENTHALPY OF FORMATION OF CAMPHOR BY BOMB CALORIMETRY 1

EXPERIMENT 5. THE ENTHALPY OF FORMATION OF CAMPHOR BY BOMB CALORIMETRY 1 EXPERIMENT 5. THE ENTHALPY OF FORMATION OF CAMPHOR BY BOMB CALORIMETRY 1 The enthalpies of combustion and formation for camphor will be determined using a bomb calorimeter and tabulated values for the

More information

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings.

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Name Class Date Thermochemistry 17.1 The Flow of Energy As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Process Cause Effect endothermic

More information

AC : PC-BASED MEASUREMENT OF THE HEAT OF COMBUSTION OF A SOLID FUEL USING OXYGEN BOMB CALORIMETER

AC : PC-BASED MEASUREMENT OF THE HEAT OF COMBUSTION OF A SOLID FUEL USING OXYGEN BOMB CALORIMETER AC 2007-2839: PC-BASED MEASUREMENT OF THE HEAT OF COMBUSTION OF A SOLID FUEL USING OXYGEN BOMB CALORIMETER Ramesh Prasad, University of New Brunswick-St. John Ramesh C. Prasad, Professor of Mechanical

More information

THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

More information

Chapter 6: Thermochemistry

Chapter 6: Thermochemistry Chapter 6: Thermochemistry 1. Light the Furnace: The Nature of Energy and Its Transformations a. Thermochemistry is the study of the relationships between chemistry and energy i. This means that we will

More information

Chemistry. Understanding Water V. Name: Suite 403, 410 Elizabeth St, Surry Hills NSW 2010 (02)

Chemistry. Understanding Water V. Name: Suite 403, 410 Elizabeth St, Surry Hills NSW 2010 (02) Chemistry Understanding Water V Name: Suite 403, 410 Elizabeth St, Surry Hills NSW 2010 (02) 9211 2610 info@keystoneeducation.com.au keystoneeducation.com.au Water has a higher heat capacity than many

More information

First Law of Thermodynamics: energy cannot be created or destroyed.

First Law of Thermodynamics: energy cannot be created or destroyed. 1 CHEMICAL THERMODYNAMICS ANSWERS energy = anything that has the capacity to do work work = force acting over a distance Energy (E) = Work = Force x Distance First Law of Thermodynamics: energy cannot

More information

AP* Chapter 6. Thermochemistry

AP* Chapter 6. Thermochemistry AP* Chapter 6 Thermochemistry Section 6.1 The Nature of Energy Energy Capacity to do work or to produce heat. Law of conservation of energy energy can be converted from one form to another but can be neither

More information

Thermochemistry: Calorimetry and Hess s Law

Thermochemistry: Calorimetry and Hess s Law Thermochemistry: Calorimetry and Hess s Law Some chemical reactions are endothermic and proceed with absorption of heat while others are exothermic and proceed with an evolution of heat. The magnitude

More information

MEEN 3242 MEE LAB II

MEEN 3242 MEE LAB II MEEN 3242 MEE LAB II Experiment Report Lab # 2 Bomb Calorimeter Group Members: Hugo Diaz Reed Greenwood Juan Orona Alan Sanoja Micheal Shackelford Date: September 27, 2013 DEPARTMENT OF MECHANICAL AND

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Learning Outcomes: Interconvert energy units Distinguish between the system and the surroundings in thermodynamics Calculate internal energy from heat and work and state sign

More information

Thermodynamics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Thermodynamics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Thermodynamics Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Thermodynamics is the scientific study of the interconversion of heat and other kinds of energy.

More information

Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions

Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions Jeffrey Mack California State University, Sacramento Energy & Chemistry Questions that need to be addressed: How do we measure

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy Thermochemistry Thermodynamics is the science of the relationship between heat and other forms of energy. (and Thermochemistry) World of Chemistry Chapter 10 is defined as the ability to do work or produce

More information

Thermodynamics - Energy Relationships in Chemical Reactions:

Thermodynamics - Energy Relationships in Chemical Reactions: Thermodynamics - Energy Relationships in Chemical Reactions: energy - The capacity to do work. Types of Energy: radiant-energy from the sun. potential-energy due to an objects position. chemical-energy

More information

Thermochemistry Chapter 4

Thermochemistry Chapter 4 Thermochemistry Chapter 4 Thermochemistry is the study of energy changes that occur during chemical reactions Focus is on heat and matter transfer between the system and the surroundings Energy The ability

More information

Chapter 11. Thermochemistry. 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages

Chapter 11. Thermochemistry. 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages Chapter 11 Thermochemistry 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages 293-94 The Flow of energy - heat Thermochemistry concerned with the heat changes that occur

More information

1. State in your own terms what is the first law of thermodynamics, a closed system, an isolated system, surroundings, heat, work, and energy.

1. State in your own terms what is the first law of thermodynamics, a closed system, an isolated system, surroundings, heat, work, and energy. Worksheet 1 1. State in your own terms what is the first law of thermodynamics, a closed system, an isolated system, surroundings, heat, work, and energy. The first law of thermodynamics is the conservation

More information

Chapter 5 Thermochemistry. 許富銀 ( Hsu Fu-Yin)

Chapter 5 Thermochemistry. 許富銀 ( Hsu Fu-Yin) Chapter 5 Thermochemistry 許富銀 ( Hsu Fu-Yin) 1 Thermodynamics The study of energy and its transformations is known as thermodynamics The relationships between chemical reactions and energy changes that

More information

Chapter 5 Practice Multiple Choice & Free

Chapter 5 Practice Multiple Choice & Free Name Response 1. A system has an increase in internal energy, E, of 40 kj. If 20 kj of work, w, is done on the system, what is the heat change, q? a) +60 kj d) -20 kj b) +40 kj e) -60 kj c) +20 kj 2. Which

More information

Chapter 5 - Thermochemistry

Chapter 5 - Thermochemistry Chapter 5 - Thermochemistry Study of energy changes that accompany chemical rx s. I) Nature of Energy Energy / Capacity to do work Mechanical Work w = F x d Heat energy - energy used to cause the temperature

More information

Matter & Energy: Temperature & Heat in Physical Processes

Matter & Energy: Temperature & Heat in Physical Processes Matter & Energy: Temperature & Heat in Physical Processes Objectives: 1) To observe changes in temperature and heat energy which occur during physical processes such as dissolving. 2) To become familiar

More information

Enthalpy and Internal Energy

Enthalpy and Internal Energy Enthalpy and Internal Energy H or ΔH is used to symbolize enthalpy. The mathematical expression of the First Law of Thermodynamics is: ΔE = q + w, where ΔE is the change in internal energy, q is heat and

More information

Mr Chiasson Advanced Chemistry 12 / Chemistry 12 1 Unit B: Thermochemical Changes

Mr Chiasson Advanced Chemistry 12 / Chemistry 12 1 Unit B: Thermochemical Changes Mr Chiasson Advanced Chemistry 12 / Chemistry 12 1 Unit B: Thermochemical Changes Students will be expected to: Compare the molar enthalpies of several combustion reactions involving organic compounds.

More information

Quantities in Chemical Reactions

Quantities in Chemical Reactions Quantities in Chemical Reactions 6-1 6.1 The Meaning of a Balanced Equation C 3 H 8(g) + 5 O 2(g) 3 CO 2(g) + 4 H 2 O (g) The balanced equation tells us: 1 molecule of propane reacts with 5 molecules of

More information

Chemical Energetics. First Law of thermodynamics: Energy can be neither created nor destroyed but It can be converted from one form to another.

Chemical Energetics. First Law of thermodynamics: Energy can be neither created nor destroyed but It can be converted from one form to another. Chemical Energetics First Law of thermodynamics: Energy can be neither created nor destroyed but It can be converted from one form to another. All chemical reactions are accompanied by some form of energy

More information

Calorimetry: Heat of Solution

Calorimetry: Heat of Solution Calorimetry: Heat of Solution When a substance undergoes a change in temperature, the quantity of heat lost or gained can be calculated using the following relationship: (heat) = m s T (1) The specific

More information

Chapter 6 Review. Part 1: Change in Internal Energy

Chapter 6 Review. Part 1: Change in Internal Energy Chapter 6 Review This is my own personal review, this should not be the only thing used to study. You should also study using notes, PowerPoint, homework, ect. I have not seen the exam, so I cannot say

More information

Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat.

Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat. CHEM134- F18 Dr. Al- Qaisi Chapter 06: Thermodynamics Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat. Energy is anything that has the capacity

More information

Thermochemistry. Chapter 6. Dec 19 8:52 AM. Thermochemistry. Energy: The capacity to do work or to produce heat

Thermochemistry. Chapter 6. Dec 19 8:52 AM. Thermochemistry. Energy: The capacity to do work or to produce heat Chapter 6 Dec 19 8:52 AM Intro vocabulary Energy: The capacity to do work or to produce heat Potential Energy: Energy due to position or composition (distance and strength of bonds) Kinetic Energy: Energy

More information

Section 9: Thermodynamics and Energy

Section 9: Thermodynamics and Energy Section 9: Thermodynamics and Energy The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 9.01 Law of Conservation of Energy Chemistry (11)(A)

More information

Ch. 17 Thermochemistry

Ch. 17 Thermochemistry Ch. 17 Thermochemistry 17.1 The Flow of Energy Energy Transformations Thermochemistry: study of energy changes in chemical reactions and changes in state Chemical potential energy: energy stored in bonds

More information

Thermochemistry. Using Heats of Reaction - Hess s Law - Standard Enthalpies of Formation - Fuels Foods, Commercial Fuels, and Rocket Fuels

Thermochemistry. Using Heats of Reaction - Hess s Law - Standard Enthalpies of Formation - Fuels Foods, Commercial Fuels, and Rocket Fuels Thermochemistry Understanding Heats of Reaction - Energy and Its Units - Heat of Reaction - Enthalpy and Enthalpy Change - Thermochemical Equations - Applying Stoichiometry to Heats of Reaction - Measuring

More information

Calorimetry. Enthalpy of Neutralization

Calorimetry. Enthalpy of Neutralization Calorimetry Enthalpy of Neutralization Introduction A calorimeter is a device that can measure the heat absorbed or released by a reaction (Petrucci, 2011). A calorimeter is thermally insulated from its

More information

Calorimetry and Hess s Law Prelab

Calorimetry and Hess s Law Prelab Calorimetry and Hess s Law Prelab Name Total /10 1. What is the purpose of this experiment? 2. Make a graph (using some kind of graphing computer software) of temperature vs. time for the following data:

More information

Chemistry 3202 Unit Test : Thermochemistry

Chemistry 3202 Unit Test : Thermochemistry Chemistry 3202 Unit Test : Thermochemistry Name:_ Part A: Multiple Choice. Circle the best answer for each question. Answer all questions in this section. (24 pts) 1. A heated 250 g sample of aluminium

More information

Determination of Calories in Food Via Adiabatic Bomb Calorimeter

Determination of Calories in Food Via Adiabatic Bomb Calorimeter The Corinthian Volume 6 Article 9 2004 Determination of Calories in Food Via Adiabatic Bomb Calorimeter Kenneth C. McGill Georgia College Michelle L. Yasechko Georgia College Wendy K. Nkari Georgia College

More information

Quantities in Chemical Reactions

Quantities in Chemical Reactions Quantities in Chemical Reactions 6-1 6.1 The Meaning of a Balanced Equation C 3 H 8(g) + 5 O 2(g) 3 CO 2(g) + 4 H 2 O (g) The balanced equation tells us: 1 molecule of propane reacts with 5 molecules of

More information

College Chem I 2045C Specific Heat of a Metal-SL. Objective: In this lab, you will use calorimetry to determine the specific heat of a metal.

College Chem I 2045C Specific Heat of a Metal-SL. Objective: In this lab, you will use calorimetry to determine the specific heat of a metal. Student Name Partner s Name Date College Chem I 2045C Specific Heat of a Metal-SL Objective: In this lab, you will use calorimetry to determine the specific heat of a metal. Materials: Metal Sample Bunsen

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5 Thermochemistry Energy Thermodynamics Study of the relationship between heat, work, and other forms of energy Thermochemistry A branch of thermodynamics Focuses on the study of heat given off

More information

Chapter 6 Energy and Chemical Change. Brady and Senese 5th Edition

Chapter 6 Energy and Chemical Change. Brady and Senese 5th Edition Chapter 6 Energy and Chemical Change Brady and Senese 5th Edition Index 6.1 An object has energy if it is capable of doing work 6.2 Internal energy is the total energy of an object s molecules 6.3 Heat

More information

Thermochemistry. Mr.V

Thermochemistry. Mr.V Thermochemistry Mr.V Introduction to Energy changes System Surroundings Exothermic Endothermic Internal energy Enthalpy Definitions System A specified part of the universe which is under investigation

More information

AP Chapter 6: Thermochemistry Name

AP Chapter 6: Thermochemistry Name AP Chapter 6: Thermochemistry Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 6: Thermochemistry 2 Warm-Ups (Show your work for credit)

More information

Hess' Law: Calorimetry

Hess' Law: Calorimetry Exercise 9 Page 1 Illinois Central College CHEMISTRY 130 Name: Hess' Law: Calorimetry Objectives The objectives of this experiment are to... - measure the heats of reaction for two chemical reactions.

More information

CHEM 1105 S10 March 11 & 14, 2014

CHEM 1105 S10 March 11 & 14, 2014 CHEM 1105 S10 March 11 & 14, 2014 Today s topics: Thermochemistry (Chapter 6) Basic definitions Calorimetry Enthalpy Thermochemical equations Calculating heats of reaction Hess s Law Energy and Heat Some

More information

Energy, Heat and Chemical Change

Energy, Heat and Chemical Change Energy, Heat and Chemical Change Chemistry 35 Fall 2000 Thermochemistry A part of Thermodynamics dealing with energy changes associated with physical and chemical reactions Why do we care? -will a reaction

More information

THERMOCHEMISTRY -1. Dr. Sapna Gupta

THERMOCHEMISTRY -1. Dr. Sapna Gupta THERMOCHEMISTRY -1 Dr. Sapna Gupta THERMODYNAMICS Thermodynamics: Relationship between heat and other forms of energy Thermochemistry: Study of heat absorbed or evolved by chemical reactions. Energy: Capacity

More information

Just a reminder that everything you do related to lab should be entered directly into your lab notebook. Calorimetry

Just a reminder that everything you do related to lab should be entered directly into your lab notebook. Calorimetry Just a reminder that everything you do related to lab should be entered directly into your lab notebook. Objectives: Calorimetry After completing this lab, you should be able to: - Assemble items of common

More information

Enthalpy of Formation of Ammonium Chloride Version 6.2.5

Enthalpy of Formation of Ammonium Chloride Version 6.2.5 Enthalpy of Formation of Ammonium Chloride Version 6.2.5 Michael J. Vitarelli Jr. Department of Chemistry and Chemical Biology Rutgers University, 60 Taylor Road, Piscataway, NJ 08854 I. INTRODUCTION Enthalpy

More information

Enthalpies of Reaction

Enthalpies of Reaction Enthalpies of Reaction Enthalpy is an extensive property Magnitude of H is directly related to the amount of reactant used up in a process. CH 4 (g) + 2O 2 (g) CO 2 (g) + 2H 2 O(l) H = 890 kj 2CH 4 (g)

More information

Date: SCH 4U Name: ENTHALPY CHANGES

Date: SCH 4U Name: ENTHALPY CHANGES Date: SCH 4U Name: ENTHALPY CHANGES Enthalpy (H) = heat content of system (heat, latent heat) Enthalpy = total energy of system + pressure volume H = E + PV H = E + (PV) = final conditions initial conditions

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 6 Thermodynamics Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 25 minutes to finish this portion of the test. No calculator should

More information

June Which is a closed system? (A) burning candle (B) halogen lightbulb (C) hot water in a sink (D) ripening banana

June Which is a closed system? (A) burning candle (B) halogen lightbulb (C) hot water in a sink (D) ripening banana June 2005 28. Which is a closed system? burning candle halogen lightbulb hot water in a sink ripening banana 29. Which involves the greatest energy change? chemical reaction nuclear reaction phase change

More information

Lecture Presentation. Chapter 6. Thermochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 6. Thermochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 6 Thermochemistry Sherril Soman Grand Valley State University Chemical Hand Warmers Most hand warmers work by using the heat released from the slow oxidation of iron 4 Fe(s)

More information

THER Mo CHEMISTRY: HEAT OF Ne UTRALIZATION

THER Mo CHEMISTRY: HEAT OF Ne UTRALIZATION Experiment 11 Name: 42 THER Mo CHEMISTRY: HEAT OF Ne UTRALIZATION In this experiment, you will use calorimetry to experimentally determine the heat of neutralization of NaOH-HCl, or the enthalpy of the

More information

ENERGY (THERMOCHEMISTRY) Ch 1.5, 6, 9.10, , 13.3

ENERGY (THERMOCHEMISTRY) Ch 1.5, 6, 9.10, , 13.3 ENERGY (THERMOCHEMISTRY) Ch 1.5, 6, 9.10, 11.5-11.7, 13.3 Thermochemistry Prediction and measurement of energy transfer, in the form of heat, that accompanies chemical and physical processes. Chemical

More information

COPYRIGHT FOUNTAINHEAD PRESS

COPYRIGHT FOUNTAINHEAD PRESS Calorimetry: Heats of Solution Objective: Use calorimetric measurements to determine heats of solution of two ionic compounds. Materials: Solid ammonium nitrate (NH 4 NO 3 ) and anhydrous calcium chloride

More information

Chapter 11. Thermochemistry: Heat & Chemical Change

Chapter 11. Thermochemistry: Heat & Chemical Change Chapter 11 Thermochemistry: Heat & Chemical Change The Flow of Energy Thermochemistry: Study of heat changes that occur during physical processes and chemical reactions Energy Energy is the capacity to

More information

Name Date Class THE FLOW OF ENERGY HEAT AND WORK

Name Date Class THE FLOW OF ENERGY HEAT AND WORK 17.1 THE FLOW OF ENERGY HEAT AND WORK Section Review Objectives Explain the relationship between energy, heat, and work Distinguish between exothermic and endothermic processes Distinguish between heat

More information

CH10007/87. Thermodynamics. Dr Toby Jenkins

CH10007/87. Thermodynamics. Dr Toby Jenkins CH10007/87 Thermodynamics Dr Toby Jenkins 1 Objectives To introduce the basic concepts of thermodynamics To apply them to chemical systems To develop competence in thermodynamics calculations 2 Equilibrium

More information

Calorimetry &Thermochemistry

Calorimetry &Thermochemistry Lecture 6 Calorimetry &Thermochemistry Suggested Reading Thermochemistry Chemistry 3, Chapter 14, Energy and Thermochemistry, pp.658-700. Elements of hysical Chemistry, 5 th edition, Atkins & de aula,

More information

CHEM J-11 June /01(a)

CHEM J-11 June /01(a) CHEM1001 2014-J-11 June 2014 22/01(a) Combustion of 15.0 g of coal provided sufficient heat to increase the temperature of 7.5 kg of water from 286 K to 298 K. Calculate the amount of heat (in kj) absorbed

More information

Chapter 6 Thermochemistry 許富銀

Chapter 6 Thermochemistry 許富銀 Chapter 6 Thermochemistry 許富銀 6.1 Chemical Hand Warmers Thermochemistry: the study of the relationships between chemistry and energy Hand warmers use the oxidation of iron as the exothermic reaction: Nature

More information

Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings. H 2 O (l) + energy

Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings. H 2 O (l) + energy Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings. H 2 O (g) H 2 O (l) + energy Endothermic process is any process in which heat has to

More information

I. The Nature of Energy A. Energy

I. The Nature of Energy A. Energy I. The Nature of Energy A. Energy is the ability to do work or produce heat. It exists in 2 forms: 1. Potential energy is energy due to the composition or position of an object. 2. Kinetic energy is energy

More information

Chemistry 212 THE ENTHALPY OF FORMATION OF MAGNESIUM OXIDE LEARNING OBJECTIVES

Chemistry 212 THE ENTHALPY OF FORMATION OF MAGNESIUM OXIDE LEARNING OBJECTIVES Chemistry 212 THE ENTHALPY OF FORMATION OF MAGNESIUM OXIDE The learning objectives of this experiment are LEARNING OBJECTIVES A simple coffee cup calorimeter will be used to determine the enthalpy of formation

More information

Name: Chemistry 103 Laboratory University of Massachusetts Boston HEATS OF REACTION PRELAB ASSIGNMENT

Name: Chemistry 103 Laboratory University of Massachusetts Boston HEATS OF REACTION PRELAB ASSIGNMENT Name: Chemistry 103 Laboratory University of Massachusetts Boston HEATS OF REACTION PRELAB ASSIGNMENT Chemical and physical changes usually involve the absorption or liberation of heat, given the symbol

More information

AP* Chemistry THERMOCHEMISTRY

AP* Chemistry THERMOCHEMISTRY AP* Chemistry THERMOCHEMISTRY Terms for you to learn that will make this unit understandable: Energy (E) the ability to do work or produce heat ; the sum of all potential and kinetic energy in a system

More information

Calorimetry Measurements of Fusion, Hydration and Neutralization - Hess Law

Calorimetry Measurements of Fusion, Hydration and Neutralization - Hess Law Calorimetry Measurements of Fusion, Hydration and Neutralization - Hess Law EXPERIMENT 9 Prepared by Edward L. Brown, Lee University and Verrill M. Norwood, Cleveland State Community College To become

More information

To use calorimetry results to calculate the specific heat of an unknown metal. To determine heat of reaction ( H) from calorimetry measurements.

To use calorimetry results to calculate the specific heat of an unknown metal. To determine heat of reaction ( H) from calorimetry measurements. Calorimetry PURPOSE To determine if a Styrofoam cup calorimeter provides adequate insulation for heat transfer measurements, to identify an unknown metal by means of its heat capacity and to determine

More information

CALORIMETRY. m = mass (in grams) of the solution C p = heat capacity (in J/g- C) at constant pressure T = change in temperature in degrees Celsius

CALORIMETRY. m = mass (in grams) of the solution C p = heat capacity (in J/g- C) at constant pressure T = change in temperature in degrees Celsius CALORIMETRY INTRODUCTION The heat evolved by a chemical reaction can be determined using a calorimeter. The transfer of heat or flow of heat is expressed as the change in Enthalpy of a reaction, H, at

More information

Name Date Class THERMOCHEMISTRY

Name Date Class THERMOCHEMISTRY Name Date Class 17 THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) This section explains the relationship between energy and heat, and distinguishes between heat capacity

More information

HEAT, TEMPERATURE, & THERMAL ENERGY. Work - is done when an object is moved through a distance by a force acting on the object.

HEAT, TEMPERATURE, & THERMAL ENERGY. Work - is done when an object is moved through a distance by a force acting on the object. HEAT, TEMPERATURE, & THERMAL ENERGY Energy A property of matter describing the ability to do work. Work - is done when an object is moved through a distance by a force acting on the object. Kinetic Energy

More information

Chapter 3. Thermochemistry: Energy Flow and Chemical Change. 5.1 Forms of Energy and Their Interconversion

Chapter 3. Thermochemistry: Energy Flow and Chemical Change. 5.1 Forms of Energy and Their Interconversion Chapter 3 Thermochemistry: Energy Flow and Chemical Change 5.1 Forms of Energy and Their Interconversion 5.2 Enthalpy: Chemical Change at Constant Pressure 5.3 Calorimetry: Measuring the Heat of a Chemical

More information

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 4: Chemical Thermodynamics

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 4: Chemical Thermodynamics General Chemistry I Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University Module 4: Chemical Thermodynamics Zeroth Law of Thermodynamics. First Law of Thermodynamics (state quantities:

More information

Topic 05 Energetics : Heat Change. IB Chemistry T05D01

Topic 05 Energetics : Heat Change. IB Chemistry T05D01 Topic 05 Energetics 5.1-5.2: Heat Change IB Chemistry T05D01 5.1 Exothermic and endothermic reactions - 1 hour 5.1.1 Define the terms exothermic reaction, endothermic reaction and standard enthalpy change

More information