Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Cationic Tungsten-Oxo-Alkylidene-N-Heterocyclic Carbene Complexes: Highly Active Olefin Metathesis Catalysts Roman Schowner, Wolfgang Frey, Michael R. Buchmeiser * Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, D Stuttgart, Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, D Stuttgart Supporting Information Table of contents Page General 2 Synthesis of Metal Based Compounds 3 General Procedures for Catalytic Reactions 6 Results: Activation of 3-5 with excess AlCl 3 7 NMR Study of Reaction of 5 + Excess AlCl 3 8 NMR Spectra 9 X-Ray Data 23 References 104 S1

2 General: All reactions were performed under the exclusion of air and moisture by standard Schlenk techniques unless otherwise noted. Reactions involving metal complexes were performed in an N 2 filled glove box (MBraun Labmaster 130). Glassware was either stored at 120 C over night and cooled in an evacuated antechamber or dried at 550 C under high vacuum (0.01 mbar). NMR: 1 H Spectra were recorded on a Bruker Avance III 400 (400 MHz for 1 H) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance resulting from residual solvent protons (CDCl 3 : 7.26 ppm, C 6 D ppm, CD 2 Cl ppm) as reference. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sept = septet, br = broad, m = multiplet), integration and coupling constants (Hz). 13 C Spectra were recorded on a Bruker Avance III 400 (100 MHz for 13 C) spectrometer. Chemical shifts are reported in ppm downfield from tetramethylsilane with the solvent resonance as reference. GC-MS: Data was obtained by using an Agilent Technologies 5975C inert MSD with triple-axis detector, an 7693 auto sampler, and a 7890A GC system equipped with a SPB-5 fused silica column (34.13 m 0.25 mm 0.25 µm film thickness). The injection temperature was set to 150 C. The column temperature ramped from 45 to 250 C within 8 min, and was then held for further 5 min. The column flow was 1.05 ml min -1. Elemental analyses were carried out at the Institute of Inorganic Chemistry, University of Stuttgart, Germany. Solvents: CH 2 Cl 2, THF, diethyl ether, toluene and pentane were dried by using an MBraun SPS-800 solvent purification system with alumina drying columns and stored over 4 Å Linde type molecular sieves (THF, toluene, DCM) or NaK alloy (Et 2 O, pentane). Deuterated solvents were filtered over activated alumina and stored over 4 Å Linde type molecular sieves inside the glove box. Substrates: All liquid substrates were dried by stirring over CaH 2 for several hours and subsequent distillation followed by filtration over activated alumina. Substrates were degassed by several freeze-pump-thaw cycles and stored over activated 4 Å molecular sieves. The following chemicals were purchased commercially: diallyldiphenylsilane, allylbenzene (ABCR), octa-1,7-diene, allylphenylsulfide, 4-octene (Alfa Aesar), diallyl ether, diethyl diallyl malonate, 1-hexene, 1-octene, hex-5-ene-1-yl acetate (Sigma-Aldrich), diallyl thioether, trimethylallylsilane (Acros Organics). N,N-Diallyl-p-toluolsulfonamide, diallyldimalonitrile, [1] 4,4-dicyanoocta-1,7- diene, [2] N-phenyl-(1-phenylbut-3-ene-1-yl)amine, [3] W(O)Cl 2 (PPhMe 2 ) 2 (CHCMe 2 Ph), [4] Ag(MeCN) 2 (BAr F ) 4, [5] Na(BAr F [6] ) 4, Li(2,6-diphenylphenolate), [7] [8] LiOCCH 3 (CF 3 ) 2 and 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene [9] were prepared according to the literature. S2

3 W(O)Cl 2 (PPhMe 2 )(IMes)(CHCMe 2 Ph) (2): W(O)Cl 2 (PPhMe 2 ) 2 (CHCMe 2 Ph) (1, 2.42 g, 3.56 mmol) was dissolved in 50 ml of toluene. Separately, a solution of 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (1.08 g, 3.56 mmol, 1 equiv.) in 10 ml of toluene was prepared. Both solutions were cooled at 40 C for 30 min. The cold NHC solution was added drop wise to the solution of the metal complex and the mixture was stirred for two hours at room temperature. Subsequently, the slightly turbid solution was filtered over a pad of celite and the solvent was removed in vacuo, leaving an orange oil. The oil was taken up in 50 ml of diethyl ether and filtered again. A yellow solid started to precipitate from the orange solution. The solution was put in the freezer over night at - 40 C. Yield: 2.63 g (87%) of a yellow to pale yellow solid. 1 H NMR (400 MHz, C 6 D 6 ): δ = 1.28 (d, 3H, PMe 2, J P-H = 10.1 Hz), 1.32 (s, 3H, CMe 2 Ph), 1.59 (s, 3H, CMe 2 Ph), 1.66 (d, 3H, PMe 2, J P-H = 10.3 Hz), 2.11 (s, 6H, Mes-Me), 2.24 (s, br, 6H, Mes-Me), 2.38 (s, br, 6H, Mes-Me), 6.16 (s, br, 2H, N-CH=CH-N), 6.80 (s, br, 2H, Mes-Ar), 6.83 (s, br, 2H, Mes-Ar), 6.87 (m, 3H, CMe 2 Ph), (m, 5H, Ar), 7.25 (m, 2H, Ar), 7.46 (m, 2H, PMe 2 Ph), 11.9 (d, 1H, J P-H = 3.6 Hz); 13 C NMR (100 MHz, C 6 D 6 ): δ = 14.0 (d, PMe 2, J C-P = 34.8), 15.3 (d, PMe 2, J C-P = 31.2), 19.5 (o-mes-me), 19.7 (o- Mes-Me), 21.2 (p-mes-me), 31.1 (CMe 2 Ph), 32.9 (CMe 2 Ph), 51.7 (CMe 2 Ph), (br, N-C=C-N), (p- CMe 2 Ph), (o-cme 2 Ph), (m-cme 2 Ph), (p-pph), (d, m-pph, J C-P = 2.0 Hz), (d, o-pph, J C-P = 2.7 Hz), (d, ipso-pph, J C-P = 8.6 Hz), (br), (m-mes), (o-mes), (ipso-cme 2 Ph), (d, N-C-N, J C-P = 71.1 Hz) (W=C, J C-H = Hz); 31 P NMR (160 MHz, C 6 D 6 ): δ = 8.28 (P-W), (PMe 2 Ph). Anal. calcd. for C 39 H 47 Cl 2 N 2 OPW : C, 55.40; H, 5.60; N, Found: C, 55.58; H, 5.74; N, W(O)(OTf)Cl(PPhMe 2 )(IMes)(CHCMe 2 Ph) (3): 2 (67 mg, 0,08 mmol) was dissolved in 2 ml of CH 2 Cl 2 and cooled to - 40 C. The cooled solution was added to solid silver triflate (20 mg, 1 equiv.). A colorless precipitate formed. The suspension was stirred for 30 min under the exclusion of light and then filtered over celite. After removing the solvents the residual oily product was redissolved in a minimum amount of CH 2 Cl 2 and filtered again. This step has to be repeated several times to remove residual AgCl. Yield: 61 mg (81%) of a pale yellow solid. 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 0.97 (s, 3H, CMe 2 Ph), 1.15 (d, 3H, PMe 2, J P-H = Hz), 1.36 (d, 3H, PMe 2, J P-H = Hz), 1.81 (s, 3H, CMe 2 Ph), 1.97 (s, 6H, Mes-Me), 2.16 (s, 6H, Mes-Me), 2.39 (s, 6H, Mes-Me), 6.92 (s, br, 2H, Mes-Ar), (m, 2H, Ar), 7.11 (s, br, 2H, Mes-Ar), (m, 2H, Ar), (m, 6H, Ar), 7.40 (s, 2H, N-CH=CH-N), (m, 1H, Ar), (d, 1H, W=CH, J P-H = 2.2 Hz); 13 C NMR (100 MHz, CD 2 Cl 2 ): δ = (d, PMe 2, J C-P = 35.4), 13.9 (d, PMe 2, J C-P = 31.2), 18.7 (p-mes-me), 21.5 (o-mes-me), 28.7 (CMe 2 Ph), 32.7 (CMe 2 Ph), 52.0 (CMe 2 Ph), 126.1, (br, N-C=C-N), 128.0, 128.7, 129.5, 129.5, 129.6, 129.6, (d, PPh, J C-P = 26.3 Hz), (d, PPh, J C-P = 9.3 Hz), (d, PPh, J C-P = 2.8 Hz), (p-mes), (m-mes), (o-mes), 141.4, (ipso-cme 2 Ph), (d, N-C-N, J C-P = 55.1 Hz), (d, W=C, J C-H = Hz, J C-P = 9.5 Hz); 19 F NMR (375 MHz, CD 2 Cl 2 ): δ = (OSO 2 CF 3 ); 31 P NMR (160 MHz, CD 2 Cl 2 ): δ = Anal. Calcd. for C 40 H 47 ClF 3 N 2 O 4 PSW : C, 50.09; H, 4.94; N, Found: C, 50.4; H, 5.095; N, W(O)(OCCH 3 (CF 3 ) 2 )Cl(IMes)(CHCMe 2 Ph) (4). Inside a glove box a 25 ml Schlenk flask was charged with 568 mg (0.67 mmol) of 2. The compound was dissolved in 10 ml of toluene and cooled for 30 min at - 35 C. Subsequently, 170 mg (0.75 mmol, 1 equiv.) of LiOCMe(CF 3 ) 2 were added as a solid. The suspension turned dark orange. After stirring for 3 h the reaction mixture was filtered and the solvent was evaporated. A dark orange oily solid was obtained. It was triturated with pentane (5 ml) and then dissolved in a minimum amount of diethyl ether. A yellow precipitate formed after a few hours. It was filtered off. The crude product was recrystallized from a minimum amount of diethyl ether at -35 C. The product is obtained as yellow crystals or a pale yellow solid (470 mg, 82%). 1 H NMR (400 MHz, C 6 D 6 ): δ = 1.49 (m, CMe(CF 3 ) 2, 3H), 1.54 (s, CMe 2 Ph, 3H), 1.60 (s, CMe 2 Ph, 3H), 1.91 (s, 6H, S3

4 Mes-Me), 2.05 (s, 6H, Mes-Me), 2.14 (s, 6H, Mes-Me), 5.97 (s, 2H, N-CH=CH-N), 6.39 (s, br, 2H, Mes-Ar), 6.69 (s, br, 2H, Mes-Ar), 7.00 (m, 5H, Ar), 9.76 (s, 1H, W=CH); 13 C NMR (100 MHz, CD 2 Cl 2 ): δ = 17.3 (OCMe(CF 3 ) 2 ), 19.1 (o-mes-me), 19.1 (o-mes-me), 21.3 (p-mes-me), 28.8 (CMe 2 Ph), 33.4 (CMe 2 Ph), 50.3 (CMe 2 Ph), 78.4 (m, CMe(CF 3 ) 2, 3H), (N-C=C-N), (p-cme 2 Ph), (o-cme 2 Ph), (m-cme 2 Ph), 129.9, (p-mes), (m-mes), (o-mes), (ipso-mes), (CMe 2 Ph), (N-C-N), (W=C, J C-H = Hz); 19 F NMR (375 MHz, C 6 D 6 ): δ = (dq). Anal. calcd. for C 35 H 39 ClF 6 N 2 O 2 W : C, 49.28; H, 4.61; N, Found: C, 49.24; H, 4.73; N, W(O)(2,6-diphenylphenolate)Cl(IMes)(CHCMe 2 Ph) (5): 2 (850 mg, 1 mmol) was dissolved in 30 ml of toluene. Li-2,6-diphenylphenolate (266 mg, 1.06 mmol, 1.05 equiv.) was added as a solid at room temperature. The solution became turbid and was stirred for 12 h. The toluene was reduced to half the volume. The colorless precipitate was filtered off over celite. The filtrate was further reduced until precipitation started; then the solution was put in the freezer at 40 C. Overnight a yellow/orange crystalline solid formed. (830 mg, 90%). 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 1.33 (s, 3H, CMe 2 Ph), 1.40 (s, 6H, Mes-Me), 1.55 (s, 3H, CMe 2 Ph), 1.80 (s. 6H, Mes-Me), 2.33 (s, 6H, Mes- Me), 6.66 (m, 2H, Ar), 6.81 (s, 2H, N-CH=CH-N), 6.83 (s, br, 2H, Mes-Ar), 6.86 (m, 1H, Ar), 6.89 (br, 2H, Mes-Ar), 6.97 (m, 4H, Ar), 7.09 (m, 1H, Ar), 7.17 (m, 2H, Ar), (m, 5H, Ar), 7.40 (m, 2H, Ar), 7.81 (m, 2H, Ar), 9.90 (s, 1H, W=CH); 13 C NMR (100 MHz, CD 2 Cl 2 ): δ = 18.6 (o-mes-me), 19.2 (o-mes-me), 21.4 (p-mes-me), 29.6 (CMe 2 Ph), 32.3 (CMe 2 Ph), 50.3 (CMe 2 Ph), 120.5, 125.5, 126.4, 126.5, 127.1, 128.4, 129.2, 129.3, 129.5, 130.5, 130.8, 131, 131.8, 133.2, 134.8, 135.4, 135.4, 136.6, 139.8, 141.1, 142, (ipso-cme 2 Ph), (ipso-o-ar), (N-C-N), 288 (W=C, J C-H = Hz), (J C-H = Hz, 2 isomers). Anal. calcd. for C 49 H 49 ClN 2 O 2 W : C, 64.16; H, 5.38; N, Found: C, 64.16; H, 5.41; N, [W(O)(CHCMe 2 Ph)(IMes)(OTf)(MeCN) B(3,5-(CF 3 ) 2 -C 6 H 3 ) 4 ] (6): 6 was prepared in situ before catalytic reactions. 3 was dissolved in 5 ml of CH 2 Cl 2 and cooled at 40 C for 30 min. Ag(MeCN) 2 B(Ar F ) 4 (2.0 equiv.) was dissolved in 1 ml of CH 2 Cl 2 and this solution was added drop wise to the cold, stirred solution of 3. A colorless precipitate formed. The suspension was stirred for 30 min under the exclusion of light and then filtered through glass fiber filter. The filtrate was used as a catalyst stock solution for metathesis reactions. Alternatively the compound can be obtained as a 1:1 mixture with Ag(MeCN)(PPhMe2)B(Ar F ) 4 when the solvent is removed in vacuo. 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 1.49 (s, 3H, CMe 2 Ph), 1.92 (s, 3H, CMe 2 Ph), 2.03 (s, 6H, MeCN), 2.12 (s, 6H, Mes-Me), 2.18 (s, 6H, Mes-Me), 2.37 (s, 6H, Mes-Me), 6.96 (s, br, 2H, Mes-Ar), 7.10 (s, br, 2H, Mes-Ar), (m, 5H, Ar), 7.42 (s, 2H, N-CH=CH-N), 7.63 (s, br, 4H, BAr F ), 7.80 (s, br, 8H, BAr F ), (s, 1H, W=CH); 13 C NMR (100 MHz, CD 2 Cl 2 ): δ = 2.9 (MeCN), 18.5 (o-mes-me), 19.0 (o-mes-me), 21.4 (p-mes-me), 29.2 (CMe 2 Ph), 31.0 (CMe 2 Ph), 53.5 (CMe 2 Ph), (sept, J C-F = 3.8 Hz, p-ch (BAr F )), (q, J C-F = Hz, 4x2CF 3 (BAr F )), 126.9, 127.2, 127.4, 129.2, (qq, J C-F = 31.6 Hz, J C-B = 2.7 Hz, 4xC-CF3 (BAr F )), 129.8, 130.1, 130.9, 132.4, 134.6, (s, br, 4x2C, o-ch (BAr F )), 136.9, (ipso-mes), (ipso-cme 2 Ph), (q, J C-B = 49.8 Hz, 4xBC(BAr F )), (N-C-N), (W=C, J C-H = Hz); 19 F NMR (375 MHz, CD 2 Cl 2 ): δ = (BAr F ), (OSO 2 CF 3 ). The compound cannot be separated from [Ag(MeCN)(PPhMe 2 ) + BAr F- ] Anal. calcd. for C 108 H 77 AgB 2 F 31 N 4 O 4 PSW: C, 45,67; H, 2.73; N, 1.97; Found: C, 45.0; H, 3.12; N, [W(O)(CHCMe 2 Ph)(IMes)(OCCH 3 (CF 3 ) 2 ) B(3,5-(CF 3 ) 2 -C 6 H 3 ) 4 ] (7): 4 (32 mg, mmol) was dissolved in 5 ml of CH 2 Cl 2 and cooled at 40 C for 30 min. The solution was added to solid NaB(Ar F ) 4 (33.3 mg, 1 equiv.) The suspension was stirred for 30 min. A colorless precipitate formed. Then the solution was cooled at 40 C for 30 S4

5 min and filtered through a glass fiber filter. The filtrate was reduced in vacuo to one third of the volume and filtered again. After removing the solvent an oily foam formed. It was triturated with pentane until a bright orange solid precipitated. The pentane phase was decanted and the solid was dried in vacuo. Yield 55 mg (87 %). 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 1.29 (s, 3H, CMe 2 Ph), 1.32 (sept, 3H, CCH 3 (CF 3 ) 2 ), 1.64 (s, 3H, CMe 2 Ph), 1.94 (s, 6H, Mes-Me), 2.05 (s, 6H, Mes-Me), 2.37 (s, 6H, Mes-Me), 7.02 (s, br, 2H, Mes-Ar), 7.16 (s, br, 2H, Mes-Ar), (m, 5H, Ar), 7.57 (s, br, 4H, BAr F ), 7.68 (s, 2H, N-CH=CH-N), 7.74 (s, br, 8H, BAr F ), (s, 1H, W=CH); 13 C NMR (100 MHz, CD 2 Cl 2 ): δ = 17.8 (o-mes-me), 17.9 (o-mes-me), 19.3 (OCMe(CF 3 ) 2 ), 21.5 (p-mes-me), 29.4 (CMe 2 Ph), 31.9 (CMe 2 Ph), 52.7 (CMe 2 Ph), 86.3 (m, OCMe(CF 3 ) 2 ), (sept, J C-F = 3.8 Hz, p-ch (BAr F )), (q, J C-F = Hz, 4x2CF 3 (BAr F )), (N-C=C-N), (o-ar), (p-ar), (m-ar), (qq, J C-F = 31.6 Hz, J C-B = 2.7 Hz, 4xC-CF3 (BAr F )), (m-mes), (m- Mes), (o- Mes), (o-mes), (p-mes), (s, br, 4x2C, o-ch (BAr F )), (ipso-mes), (ipso-cme 2 Ph), (q, J C-B = 49.8 Hz, 4xBC(BAr F )), (N-C-N), (W=C, J C-H = Hz); 19 F NMR (375 MHz, CD 2 Cl 2 ): δ = (BAr F ), (dq). Anal. Calcd. for C 67 H 51 BF 30 N 2 O 2 W : C, 47.88; H, 3.06; N, Found: C, 47.96; H, 3.279; N, [W(O)(CHCMe 2 Ph)(IMes)(MeCN)(OCCH 3 (CF 3 ) 2 ) B(3,5-(CF 3 ) 2 -C 6 H 3 ) 4 ] (7-MeCN): 4 (21,2 mg, mmol) was dissolved in 5 ml of CH 2 Cl 2 and cooled at 40 C for 30 min. The solution was added to solid Ag(MeCN) 2 B(Ar F ) 4 (26.2 mg, 1 equiv.) The suspension was stirred for 30 min under exclusion of light. A colorless precipitate formed. Then the solution was cooled at 40 C for 30 min and filtered through a glass fiber filter. The filtrate was reduced in vacuo to one third of the volume and filtered again. After removing the solvent an oily foam formed. It was triturated with pentane until a pale yellow solid precipitated. The pentane phase was decanted and the solid was dried in vacuo. Yield 39 mg (87 %). 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 0.87 (s, 3H, CMe 2 Ph), 1.54 (s, br, 3H, CCH 3 (CF 3 ) 2 ), 1.76 (s, 3H, CMe 2 Ph), 1.85 (s, 3H, MeCN), 2.05 (s, 6H, Mes-Me), 2.12 (s, 6H, Mes-Me), 2.36 (s, 6H, Mes-Me), 7.05 (s, br, 2H, Mes-Ar), 7.09 (s, br, 2H, Mes-Ar), 7.17 (m, 3H, Ar), 7.28 (m, 2H, Ar), 7.37 (s, 2H, N- CH=CH-N), 7.56 (s, br, 4H, BAr F ), 7.72 (s, br, 8H, BAr F ), (s, 1H, W=CH); 19 F NMR (375 MHz, CD 2 Cl 2 ): δ = (s, br, 24F, BAr F ), (q, 3F, CF 3 ), (q, 3F, CF 3 ). Anal. Calcd. for C 69 H 54 BF 30 N 3 O 2 W : C, 48.13; H, 3.16; N, Found: C, 47.87; H, 3.483; N, [W(O)(CHCMe 2 Ph)(IMes)(2,6-diphenylphenolate) B(3,5-(CF 3 ) 2 -C 6 H 3 ) 4 ] (8): 5 (17.1 mg, mmol) was dissolved in 5 ml of CH 2 Cl 2 and cooled at 40 C for 30 min. The solution was added to solid NaB(Ar F ) 4 (16.5 mg, 1 equiv.) The suspension was stirred for 30 min. A colorless precipitate formed. Then the solution was cooled to 40 C for 30 min and filtered through a glass fiber filter. The filtrate was reduced in vacuo to one third of the volume and filtered again. After removing the solvent an oily foam formed that was triturated with pentane until a bright orange solid precipitated. The pentane phase was decanted and the solid was dried in vacuo. Yield 29 mg (89 %). 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 0.62 (s, 3H, CMe 2 Ph), 1.58 (s, 3H, CMe 2 Ph), 1.68 (s, 6H, Mes-Me), 1.68 (s, 6H, Mes-Me), 2.35 (s, 6H, Mes-Me), 6.80 (s, br, 2H, Mes-Ar), 6.99 (s, br, 2H, Mes-Ar), (m, 4H), (m, 12H), (m, 4H), (m, 1H), 7.56 (s, br, p-ch (BAr F )), 7.73 (s, 8H, o-ch (BAr F )), (s, 1H, W=CH); 13 C NMR (100 MHz, CD 2 Cl 2 ): δ = 18.0 (o-mes-me), 18.2 (o-mes-me), 21.5 (p-mes-me), 29.7 (CMe 2 Ph), 30.9 (CMe 2 Ph), 51.8 (CMe 2 Ph), (sept, J C-F = 3.8 Hz, p-ch (BAr F )), (q, J C-F = Hz, 4x2CF 3 (BAr F )), 125.6, 126.0, 127.6, 127.7, , 129.4, (qq, J C-F = 31.6 Hz, J C-B = 2.7 Hz, 4xC-CF3 (BAr F )), 129.9, 130.5, 130.6, 130.7, 132.0, 132.7, 133.1, (s, br, 4x2C, o-ch (BAr F )), 135.5, 136.0, (ipso-mes), (ipso-cme 2 Ph), (ipso-o-ar), (q, J C-B = 49.8 Hz, 4xBC(BAr F )), (N-C-N), (W=C, J C-H = S5

6 Hz); 19 F NMR (375 MHz, CD 2 Cl 2 ): δ = (BAr F ). Anal. Calcd. for C 81 H 61 BF 24 N 2 O 2 W : C, 55.75; H, 3.52; N, Found: C, 55.69; H, 3.913; N, [W(O)(CHCMe 2 Ph)(IMes)(MeCN) 2 (2,6-diphenylphenolate) B(3,5-(CF 3 ) 2 -C 6 H 3 ) 4 ] (8-MeCN): 5 (13.2 mg, mmol) was dissolved in 5 ml of CH 2 Cl 2 and cooled at 40 C for 30 min. The solution was added to solid Ag(MeCN) 2 B(Ar F ) 4 (15.2 mg, 1 equiv.) The suspension was stirred for 30 min. A colorless precipitate formed. Then the solution was cooled to 40 C for 30 min and filtered through a glass fiber filter. The filtrate was reduced in vacuo to one third of the volume and filtered again. After removing the solvent an oily foam formed. It was triturated with pentane until a yellow solid precipitated. The pentane phase was decanted and the solid was dried in vacuo. Yield 21 mg (84 %). 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 1.35 (s, 3H, CMe 2 Ph), 1.43 (s, 3H, CMe 2 Ph), 1.58 (s, 6H, Mes-Me), 1.87 (s, 6H, MeCN), 1.88 (s, 6H, Mes-Me), 2.31 (s, 6H, Mes-Me), 6.46 (s, br, 2H, Ar), 6.95 (s, br, 2H, Mes-Ar), 6.98 (m, 2H, Ar), 7.03 (s, br, 2H, Mes-Ar), 7.06 (m, 2H, Ar), 7.15 (m, 3H, Ar), 7.24 (m, 3H, Ar), 7.35 (m, br, 3H), 7.39 (m, 3H, Ar), 7.57 (s, br, p-ch (BAr F )), 7.73 (s, 8H, o-ch (BAr F )), (s, 1H, W=CH); 13 C NMR (100 MHz, CD 2 Cl 2 ): δ = 2.5 (MeCN), 18.6 (o-mes-me), 18.9 (o-mes-me), 21.4 (p-mes-me), 30.1 (CMe 2 Ph), 30.5 (CMe 2 Ph), 52.1 (CMe 2 Ph), (sept, J C-F = 3.8 Hz, p-ch (BAr F )), (MeCN), (q, J C-F = Hz, 4x2CF 3 (BAr F )), (br, N-C=C-N), 126.8, 127.2, 128.8, (qq, J C-F = 31.6 Hz, J C-B = 2.7 Hz, 4xC-CF3 (BAr F )), 129.9, 130.0, 135.4, (s, br, 4x2C, o-ch (BAr F )), 135.5, 135.6, (ipso-mes), (ipso-cme 2 Ph), (ipso-o-ar), (q, J C-B = 49.8 Hz, 4xBC(BAr F )), (N-C-N), (W=C, J C-H = Hz); 19 F NMR (375 MHz, CD 2 Cl 2 ): δ = (BAr F ). Attempted olefin metathesis reactions with complex 4: Apart from the compounds listed in Table S1, the following substrates were used: N,N-diallyltrifluoroacetamide, N,N-diallylacetamide, allyl isocyanate, N-allyl-Npropargyl p-toluenesulfonamide, allyltriphenylsilane, dimethyl allyl propargyl malonate, allylalcohol, but-3-enoic acid. Reaction conditions: room temperature, 4 h, 1,2-dichloroethane, catalyst:substrate = 1:1000. Complex 4 proved inactive in all of these reactions. Representative procedure for the in situ catalyst generation: As described in detail for compound 6, the tungsten-oxo precursor 3-5 (typically 0.05 mmol) was dissolved in 2 ml of 1,2-dichloroethane. An equimolar (2 equiv. for 6) amount of Ag(MeCN) 2 B(Ar F ) 4 or excess AlCl 3 was added to the solution. The mixture was stirred for 30 minutes and filtered over celite. The resulting solution was used as a catalyst stock solution. General procedure for ring closing metathesis and self metathesis reactions: Around 20 mg of substrate was transferred into a 10 ml dram vial. The corresponding amount of solvent was added to the substrate to obtain a 0.1 M solution. Subsequently 0.5 equiv. of dodecane (internal standard) was added. An aliquot with 1 mg of substrate was taken for the t 0 sample. A M stock solution of the catalyst was prepared. The corresponding amount stock solution (or only stock solution of 3-5, if not activated) were added to the substrate and the mixture was stirred at the indicated temperature for the indicated time period. The reactions were quenched by exposure to air and an aliquot was taken for GCMS analysis. General procedure for cross metathesis reactions with allyltrimethylsilane as cross metathesis partner: The same general procedure as for RCM and SM reactions was used. 10 equiv. of allyltrimethylsilane were added prior to the catalyst stock solution. S6

7 Representative procedure for the in situ activation of 3 5 with tris(pentafluorophenyl)borane: The tungsten-oxo precursor 3-5 (typically 0.05 mmol) was dissolved in 2 ml of 1,2-dichloroethane. An equimolar (2 equiv. for 6) amount of tris(pentafluorophenyl)borane was added to the solution. The color changed rapidly to yellow and the mixture was stirred approximately for 30 minutes. The resulting solution was used as a catalyst stock solution. Table S1 TONs obtained in olefin metathesis reactions with AlCl 3-activated 3 5 (10-fold excess with respect to W). Reactions were run at T = 25 C in 1,2-dichloroethane for 4 h using a ratio of substrate : catalyst of 5000 : 1 unless stated otherwise. Substrate/ reaction type Ring closing metathesis (RCM) 3 [a] 4 [a] 5 [a] Diallyldiphenylsilane 0 [c] 0 [c] 0 [c] N,N-diallyl-p-toluolsulfonamide 0 [c] 0 [c] 0 [c] Octa-1,7-diene 980 [c] 4300 [c] 4700 [c] Diallylmalodinitrile 0 [c] 0 [c] 0 [c] Diallyl ether 0 [c] 0 [c] 0 [c] Diallyl thioether 4800 [c] ,4-Dicyano-octa-1,7-diene 0 [c] 0 [c] 0 [c] Diethyl diallyl malonate 0 [c] 0 [c] 0 [c] Homo metathesis (HM), values in brackets = E-content Allylbenzene 640 (55) 430 (55) 410 (80) 1-Hexene 4900 (60) [c] 5000 (65) [c] 9800 (80) [e] 1-Octene 4830 (55) [c] 5000 (60) [c] 2000 (80) [c] Allyl phenyl sulfide (>95) [d] Trimethylallylsilane Cross metathesis (CM) with allyltrimethylsilane, values in brackets = E-content Hex-5-ene-1-yl acetate Octene N-phenyl-(1-phenyl-but-3-ene-1-yl)amine Self metathesis (SM), values in brackets = E-content Methyl oleate 0 [c] 0 [c] 0 [c] [a] activated with excess AlCl 3, CH 2Cl 2, room temperature, substrate : catalyst = 5000 : 1. [c] substrate : catalyst 5000 : 1, 70 C. [d] substrate : catalyst 500 : 1, 25 C. [e] substrate : catalyst : 1, 25 C. S7

8 Figure S1. Top: compound 4 in acetonitrile-d 3, middle: compound 4 + excess AlCl 3 after 30 min, bottom: compound 4 + excess AlCl 3 after 3h. S8

9 Figure S2. 1 H-NMR C 6D 6 (400 MHz) of compound 2, phosphine is partially dissociated in solution. Figure S3. 13 C-NMR C 6D 6 (100 MHz) of compound 2, phosphine is partially dissociated in solution. S9

10 Figure S4. 31 P-NMR C 6D 6 (160 MHz) of compound 2, phosphine is partially dissociated in solution. Figure S5. 1 H-NMR CD 2Cl 2 (400 MHz) of compound 3. S10

11 Figure S6. 13 C-NMR CD 2Cl 2 (100 MHz) of compound 3. Figure S7. 19 F-NMR CD 2Cl 2 (375 MHz) of compound 3. S11

12 Figure S8. 31 P-NMR CD 2Cl 2 (160 MHz) of compound 3. Figure S9. 1 H-NMR CD 2Cl 2 (400 MHz) of compound 4. S12

13 Figure S C-NMR CD 2Cl 2 (100 MHz) of compound 4. Figure S F-NMR CD 2Cl 2 (375 MHz) of compound 4. S13

14 Figure S12. 1 H-NMR CD 2Cl 2 (400 MHz) of compound 5. Figure S C-NMR CD 2Cl 2 (100 MHz) of compound 5. S14

15 Figure S14. In situ 1 H-NMR CD 2Cl 2 (400 MHz) of compound 6MeCN. Figure S15. In situ 13 C-NMR CD 2Cl 2 (100 MHz) of compound 6MeCN. S15

16 Figure S16. In situ 19 F-NMR CD 2Cl 2 (375 MHz) of compound 6MeCN. Figure S17. 1 H-NMR CD 2Cl 2 (400 MHz) of compound 7. S16

17 Figure S F-NMR CD 2Cl 2 (375 MHz) of compound 7. Figure S C-NMR CD 2Cl 2 (100 MHz) of compound 7. S17

18 Figure S20. 1 H-NMR CD 2Cl 2 (400 MHz) of compound 8. Figure S F-NMR CD 2Cl 2 (375 MHz) of compound 8. S18

19 Figure S C-NMR CD 2Cl 2 (100 MHz) of compound 8. Figure S23. 1 H-NMR CD 2Cl 2 (400 MHz) of compound 8-2MeCN. S19

20 Figure S F-NMR CD 2Cl 2 (375 MHz) of compound 8-2MeCN. Figure S C-NMR CD 2Cl 2 (100 MHz) of compound 8-2MeCN. S20

21 Figure S26. 1 H-NMR CD 2Cl 2 (400 MHz) of compound 7-MeCN. Figure S F-NMR CD 2Cl 2 (375 MHz) of compound 7-MeCN. S21

22 Figure S28. Single crystal x-ray structure of 2a. Selected bond lengths (pm) and angles ( ): W(1)-O(1) 169.3(2), W(1)-C(22) 188.7(3), W(1)-C(1) 220.2(3), W(1)-Cl(2) (9), W(1)-Cl(1) (8); O(1)-W(1)-C(22) (13); O(1)-W(1)-C(1) 89.58(10); C(22)-W(1)-C(1) (12); O(1)-W(1)-Cl(2) (8); C(22)-W(1)-Cl(2) (11); C(1)-W(1)-Cl(2) 80.96(8); O(1)-W(1)-Cl(1) 92.63(8); C(22)-W(1)-Cl(1) 97.02(10); C(1)- W(1)-Cl(1) (8); Cl(2)-W(1)-Cl(1) 84.67(3). S22

23 Table S2. Crystal data and structure refinement for 2. Empirical formula C43 H55 Cl2 N2 O2 P W Formula weight Temperature Wavelength 100(2) K Å Crystal system, space group triclinic, P-1 Unit cell dimensions a = (6) Å, = (3). b = (7) Å, = (3). c = (9) Å, = (3). Volume (2) Å 3 Z, Calculated density 2, Mg/m 3 Absorption coefficient mm -1 F(000) 932 Crystal size 0.38 x 0.28 x 0.16 mm Theta range for data collection 1.66 to Limiting indices -14<=h<=14, -16<=k<=16, -21<=l<=21 Reflections collected / unique / [R(int) = ] Completeness to theta = % Absorption correction numerical Max. and min. transmission and Refinement method full-matrix least-squares on F 2 Data / restraints / parameters / 222 / 579 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole and e.a -3 S23

24 Table S3. Atomic coordinates (x 10 4 ) and equivalent isotropic displacement parameters (A 2 x 10 3 ) for 2. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) W(1) 3266(1) 5969(1) 2282(1) 17(1) Cl(1) 2921(1) 5645(1) 3673(1) 24(1) Cl(2) 4581(1) 4616(1) 2311(1) 26(1) P(1) 1580(1) 4185(1) 1810(1) 29(1) O(1) 3340(3) 5914(3) 1252(2) 29(1) N(1) 5930(3) 7486(3) 2297(2) 19(1) C(1) 5131(4) 7124(3) 2797(2) 18(1) N(2) 5858(3) 7407(3) 3574(2) 22(1) C(2) 7105(4) 7948(4) 2750(3) 29(1) C(3) 7069(4) 7901(4) 3549(3) 30(1) C(4) 5618(4) 7609(3) 1454(2) 19(1) C(5) 5786(4) 6852(3) 764(3) 20(1) C(6) 5514(4) 7023(3) -23(3) 22(1) C(7) 5133(4) 7931(3) -125(3) 25(1) C(8) 4993(4) 8684(3) 584(3) 25(1) C(9) 5236(4) 8537(3) 1380(2) 22(1) C(10) 6267(4) 5886(4) 864(3) 26(1) C(11) 4874(5) 8104(4) -994(3) 32(1) C(12) 5145(5) 9380(4) 2156(3) 28(1) C(13) 5468(4) 7375(3) 4366(2) 23(1) C(14) 5838(4) 6664(3) 4804(3) 25(1) C(15) 5451(5) 6678(4) 5572(3) 29(1) C(16) 4740(5) 7354(4) 5901(3) 31(1) C(17) 4406(5) 8072(3) 5454(3) 29(1) C(18) 4775(5) 8085(3) 4679(3) 27(1) C(19) 6594(5) 5908(4) 4454(3) 33(1) C(20) 4321(6) 7350(4) 6734(3) 41(1) C(21) 4392(5) 8860(4) 4203(3) 30(1) S24

25 C(22) 2127(4) 6905(3) 2438(3) 21(1) C(23) 1383(4) 7469(4) 1924(3) 28(1) C(24) 0(4) 6991(4) 1900(4) 40(1) C(25) 1484(11) 7075(10) 965(7) 32(2) C(26) 1740(10) 8645(6) 2252(6) 24(2) C(27) 2069(9) 9353(7) 1771(5) 33(2) C(28) 2362(10) 10477(7) 2124(7) 47(3) C(29) 2350(13) 10878(8) 2995(7) 47(3) C(30) 1961(14) 10178(9) 3458(7) 58(3) C(31) 1686(12) 9064(8) 3104(6) 42(3) C(25A) 1768(13) 7526(11) 1105(8) 40(3) C(26A) 1615(11) 8720(7) 2522(7) 28(3) C(27A) 2195(10) 9591(8) 2249(7) 51(3) C(28A) 2422(15) 10661(9) 2749(10) 72(5) C(29A) 2081(14) 10822(9) 3544(8) 68(4) C(30A) 1418(14) 9955(10) 3793(8) 72(4) C(31A) 1192(11) 8899(8) 3286(7) 45(3) C(32) 1792(5) 3143(4) 2322(5) 54(2) C(33) 1520(5) 3543(5) 706(4) 54(2) C(34) 11(4) 4237(4) 1916(4) 32(1) C(35) -904(4) 3986(4) 1215(4) 37(1) C(36) -2100(5) 4057(5) 1314(5) 51(2) C(37) -2369(5) 4369(5) 2105(5) 59(2) C(38) -1487(5) 4610(5) 2789(5) 54(2) C(39) -274(5) 4563(4) 2710(4) 39(1) O(1X) -15(8) 8087(8) 4829(5) 53(2) C(1X) 895(19) 8748(17) 5608(12) 95(6) C(2X) 809(14) 7753(12) 6076(9) 64(4) C(3X) 631(14) 6782(12) 5391(8) 61(3) C(4X) 358(11) 7181(9) 4634(7) 42(2) O(2X) 1362(7) 726(6) -880(5) 46(2) S25

26 C(5X) 1169(10) -165(8) -1693(7) 37(2) C(6X) 1607(12) -1026(10) -1425(8) 50(3) C(7X) 1216(11) -920(8) -552(7) 41(2) C(8X) 1571(11) 208(10) -152(8) 46(3) Table S4. Bond lengths [Å] and angles [ ] for 2. W(1)-O(1) 1.704(3) W(1)-C(22) 1.949(4) W(1)-C(1) 2.246(4) W(1)-Cl(1) (10) W(1)-Cl(2) (10) W(1)-P(1) (11) P(1)-C(32) 1.800(6) P(1)-C(34) 1.811(5) P(1)-C(33) 1.813(6) N(1)-C(1) 1.375(5) N(1)-C(2) 1.378(5) N(1)-C(4) 1.453(5) C(1)-N(2) 1.367(5) N(2)-C(3) 1.388(6) N(2)-C(13) 1.439(5) C(2)-C(3) 1.344(6) C(2)-H(2) C(3)-H(3) C(4)-C(5) 1.387(6) C(4)-C(9) 1.393(6) C(5)-C(6) 1.384(5) C(5)-C(10) 1.507(6) C(6)-C(7) 1.380(6) C(6)-H(6) S26

27 C(7)-C(8) 1.394(6) C(7)-C(11) 1.512(6) C(8)-C(9) 1.381(6) C(8)-H(8) C(9)-C(12) 1.516(6) C(10)-H(10A) C(10)-H(10B) C(10)-H(10C) C(11)-H(11A) C(11)-H(11B) C(11)-H(11C) C(12)-H(12A) C(12)-H(12B) C(12)-H(12C) C(13)-C(18) 1.384(7) C(13)-C(14) 1.401(6) C(14)-C(15) 1.390(6) C(14)-C(19) 1.497(7) C(15)-C(16) 1.378(7) C(15)-H(15) C(16)-C(17) 1.403(6) C(16)-C(20) 1.510(6) C(17)-C(18) 1.397(6) C(17)-H(17) C(18)-C(21) 1.517(6) C(19)-H(19A) C(19)-H(19B) C(19)-H(19C) C(20)-H(20A) C(20)-H(20B) C(20)-H(20C) S27

28 C(21)-H(21A) C(21)-H(21B) C(21)-H(21C) C(22)-C(23) 1.535(6) C(22)-H(22) C(23)-C(26) 1.450(9) C(23)-C(25A) 1.485(14) C(23)-C(24) 1.542(7) C(23)-C(25) 1.579(12) C(23)-C(26A) 1.647(10) C(24)-H(24A) C(24)-H(24B) C(24)-H(24C) C(25)-H(25A) C(25)-H(25B) C(25)-H(25C) C(26)-C(27) 1.372(7) C(26)-C(31) 1.404(10) C(27)-C(28) 1.395(10) C(27)-H(27) C(28)-C(29) 1.420(11) C(28)-H(28) C(29)-C(30) 1.357(11) C(29)-H(29) C(30)-C(31) 1.384(11) C(30)-H(30) C(31)-H(31) C(25A)-H(25D) C(25A)-H(25E) C(25A)-H(25F) C(26A)-C(27A) 1.380(7) S28

29 C(26A)-C(31A) 1.391(11) C(27A)-C(28A) 1.399(11) C(27A)-H(27A) C(28A)-C(29A) 1.398(12) C(28A)-H(28A) C(29A)-C(30A) 1.388(12) C(29A)-H(29A) C(30A)-C(31A) 1.389(11) C(30A)-H(30A) C(31A)-H(31A) C(32)-H(32A) C(32)-H(32B) C(32)-H(32C) C(33)-H(33A) C(33)-H(33B) C(33)-H(33C) C(34)-C(39) 1.382(8) C(34)-C(35) 1.386(7) C(35)-C(36) 1.397(7) C(35)-H(35) C(36)-C(37) 1.370(10) C(36)-H(36) C(37)-C(38) 1.346(10) C(37)-H(37) C(38)-C(39) 1.401(7) C(38)-H(38) C(39)-H(39) O(1X)-C(4X) 1.320(14) O(1X)-C(1X) 1.50(2) C(1X)-C(2X) 1.65(2) C(1X)-H(1X1) S29

30 C(1X)-H(1X2) C(2X)-C(3X) 1.45(2) C(2X)-H(2X1) C(2X)-H(2X2) C(3X)-C(4X) 1.488(16) C(3X)-H(3X1) C(3X)-H(3X2) C(4X)-H(4X1) C(4X)-H(4X2) O(2X)-C(5X) 1.520(13) O(2X)-C(8X) 1.531(13) C(5X)-C(6X) 1.454(15) C(5X)-H(5X1) C(5X)-H(5X2) C(6X)-C(7X) 1.544(17) C(6X)-H(6X1) C(6X)-H(6X2) C(7X)-C(8X) 1.412(15) C(7X)-H(7X1) C(7X)-H(7X2) C(8X)-H(8X1) C(8X)-H(8X2) O(1)-W(1)-C(22) 97.77(17) O(1)-W(1)-C(1) 95.52(14) C(22)-W(1)-C(1) (15) O(1)-W(1)-Cl(1) (11) C(22)-W(1)-Cl(1) 86.52(12) C(1)-W(1)-Cl(1) 94.17(10) O(1)-W(1)-Cl(2) 92.31(12) C(22)-W(1)-Cl(2) (12) C(1)-W(1)-Cl(2) 79.97(10) S30

31 Cl(1)-W(1)-Cl(2) 82.66(4) O(1)-W(1)-P(1) 89.19(11) C(22)-W(1)-P(1) 95.09(12) C(1)-W(1)-P(1) (10) Cl(1)-W(1)-P(1) 79.39(4) Cl(2)-W(1)-P(1) 80.13(3) C(32)-P(1)-C(34) 101.9(2) C(32)-P(1)-C(33) 103.5(3) C(34)-P(1)-C(33) 105.7(3) C(32)-P(1)-W(1) (19) C(34)-P(1)-W(1) (15) C(33)-P(1)-W(1) 110.0(2) C(1)-N(1)-C(2) 111.2(3) C(1)-N(1)-C(4) 127.5(3) C(2)-N(1)-C(4) 120.2(3) N(2)-C(1)-N(1) 103.3(3) N(2)-C(1)-W(1) 131.4(3) N(1)-C(1)-W(1) 123.4(3) C(1)-N(2)-C(3) 111.5(3) C(1)-N(2)-C(13) 127.5(4) C(3)-N(2)-C(13) 120.5(3) C(3)-C(2)-N(1) 107.4(4) C(3)-C(2)-H(2) N(1)-C(2)-H(2) C(2)-C(3)-N(2) 106.5(4) C(2)-C(3)-H(3) N(2)-C(3)-H(3) C(5)-C(4)-C(9) 122.5(4) C(5)-C(4)-N(1) 119.7(4) C(9)-C(4)-N(1) 117.7(3) C(6)-C(5)-C(4) 117.6(4) S31

32 C(6)-C(5)-C(10) 120.9(4) C(4)-C(5)-C(10) 121.5(4) C(7)-C(6)-C(5) 121.8(4) C(7)-C(6)-H(6) C(5)-C(6)-H(6) C(6)-C(7)-C(8) 119.0(4) C(6)-C(7)-C(11) 120.3(4) C(8)-C(7)-C(11) 120.7(4) C(9)-C(8)-C(7) 121.1(4) C(9)-C(8)-H(8) C(7)-C(8)-H(8) C(8)-C(9)-C(4) 118.0(4) C(8)-C(9)-C(12) 121.2(4) C(4)-C(9)-C(12) 120.7(4) C(5)-C(10)-H(10A) C(5)-C(10)-H(10B) H(10A)-C(10)-H(10B) C(5)-C(10)-H(10C) H(10A)-C(10)-H(10C) H(10B)-C(10)-H(10C) C(7)-C(11)-H(11A) C(7)-C(11)-H(11B) H(11A)-C(11)-H(11B) C(7)-C(11)-H(11C) H(11A)-C(11)-H(11C) H(11B)-C(11)-H(11C) C(9)-C(12)-H(12A) C(9)-C(12)-H(12B) H(12A)-C(12)-H(12B) C(9)-C(12)-H(12C) H(12A)-C(12)-H(12C) S32

33 H(12B)-C(12)-H(12C) C(18)-C(13)-C(14) 122.7(4) C(18)-C(13)-N(2) 118.0(4) C(14)-C(13)-N(2) 119.2(4) C(15)-C(14)-C(13) 116.9(4) C(15)-C(14)-C(19) 121.5(4) C(13)-C(14)-C(19) 121.7(4) C(16)-C(15)-C(14) 122.5(4) C(16)-C(15)-H(15) C(14)-C(15)-H(15) C(15)-C(16)-C(17) 119.1(4) C(15)-C(16)-C(20) 121.7(4) C(17)-C(16)-C(20) 119.2(5) C(18)-C(17)-C(16) 120.3(5) C(18)-C(17)-H(17) C(16)-C(17)-H(17) C(13)-C(18)-C(17) 118.5(4) C(13)-C(18)-C(21) 122.1(4) C(17)-C(18)-C(21) 119.3(4) C(14)-C(19)-H(19A) C(14)-C(19)-H(19B) H(19A)-C(19)-H(19B) C(14)-C(19)-H(19C) H(19A)-C(19)-H(19C) H(19B)-C(19)-H(19C) C(16)-C(20)-H(20A) C(16)-C(20)-H(20B) H(20A)-C(20)-H(20B) C(16)-C(20)-H(20C) H(20A)-C(20)-H(20C) H(20B)-C(20)-H(20C) S33

34 C(18)-C(21)-H(21A) C(18)-C(21)-H(21B) H(21A)-C(21)-H(21B) C(18)-C(21)-H(21C) H(21A)-C(21)-H(21C) H(21B)-C(21)-H(21C) C(23)-C(22)-W(1) 139.3(3) C(23)-C(22)-H(22) W(1)-C(22)-H(22) C(26)-C(23)-C(25A) 92.4(7) C(26)-C(23)-C(22) 112.2(5) C(25A)-C(23)-C(22) 114.5(6) C(26)-C(23)-C(24) 112.2(6) C(25A)-C(23)-C(24) 116.5(6) C(22)-C(23)-C(24) 108.4(4) C(26)-C(23)-C(25) 113.3(6) C(25A)-C(23)-C(25) 21.7(6) C(22)-C(23)-C(25) 109.1(5) C(24)-C(23)-C(25) 101.1(6) C(26)-C(23)-C(26A) 16.2(5) C(25A)-C(23)-C(26A) 108.6(7) C(22)-C(23)-C(26A) 105.2(5) C(24)-C(23)-C(26A) 102.4(5) C(25)-C(23)-C(26A) 129.1(6) C(23)-C(24)-H(24A) C(23)-C(24)-H(24B) H(24A)-C(24)-H(24B) C(23)-C(24)-H(24C) H(24A)-C(24)-H(24C) H(24B)-C(24)-H(24C) C(23)-C(25)-H(25A) S34

35 C(23)-C(25)-H(25B) C(23)-C(25)-H(25C) C(27)-C(26)-C(31) 119.2(6) C(27)-C(26)-C(23) 123.8(7) C(31)-C(26)-C(23) 116.9(7) C(26)-C(27)-C(28) 120.6(6) C(26)-C(27)-H(27) C(28)-C(27)-H(27) C(27)-C(28)-C(29) 119.0(6) C(27)-C(28)-H(28) C(29)-C(28)-H(28) C(30)-C(29)-C(28) 120.2(7) C(30)-C(29)-H(29) C(28)-C(29)-H(29) C(29)-C(30)-C(31) 120.0(7) C(29)-C(30)-H(30) C(31)-C(30)-H(30) C(30)-C(31)-C(26) 120.7(7) C(30)-C(31)-H(31) C(26)-C(31)-H(31) C(23)-C(25A)-H(25D) C(23)-C(25A)-H(25E) H(25D)-C(25A)-H(25E) C(23)-C(25A)-H(25F) H(25D)-C(25A)-H(25F) H(25E)-C(25A)-H(25F) C(27A)-C(26A)-C(31A) 120.1(7) C(27A)-C(26A)-C(23) 119.8(7) C(31A)-C(26A)-C(23) 120.1(7) C(26A)-C(27A)-C(28A) 121.0(7) C(26A)-C(27A)-H(27A) S35

36 C(28A)-C(27A)-H(27A) C(29A)-C(28A)-C(27A) 118.2(7) C(29A)-C(28A)-H(28A) C(27A)-C(28A)-H(28A) C(30A)-C(29A)-C(28A) 120.6(7) C(30A)-C(29A)-H(29A) C(28A)-C(29A)-H(29A) C(29A)-C(30A)-C(31A) 120.1(7) C(29A)-C(30A)-H(30A) C(31A)-C(30A)-H(30A) C(30A)-C(31A)-C(26A) 119.6(7) C(30A)-C(31A)-H(31A) C(26A)-C(31A)-H(31A) P(1)-C(32)-H(32A) P(1)-C(32)-H(32B) H(32A)-C(32)-H(32B) P(1)-C(32)-H(32C) H(32A)-C(32)-H(32C) H(32B)-C(32)-H(32C) P(1)-C(33)-H(33A) P(1)-C(33)-H(33B) H(33A)-C(33)-H(33B) P(1)-C(33)-H(33C) H(33A)-C(33)-H(33C) H(33B)-C(33)-H(33C) C(39)-C(34)-C(35) 119.3(5) C(39)-C(34)-P(1) 119.5(4) C(35)-C(34)-P(1) 121.2(4) C(34)-C(35)-C(36) 120.1(6) C(34)-C(35)-H(35) C(36)-C(35)-H(35) S36

37 C(37)-C(36)-C(35) 119.8(6) C(37)-C(36)-H(36) C(35)-C(36)-H(36) C(38)-C(37)-C(36) 120.3(5) C(38)-C(37)-H(37) C(36)-C(37)-H(37) C(37)-C(38)-C(39) 121.1(6) C(37)-C(38)-H(38) C(39)-C(38)-H(38) C(34)-C(39)-C(38) 119.3(6) C(34)-C(39)-H(39) C(38)-C(39)-H(39) C(4X)-O(1X)-C(1X) 102.5(10) O(1X)-C(1X)-C(2X) 95.7(13) O(1X)-C(1X)-H(1X1) C(2X)-C(1X)-H(1X1) O(1X)-C(1X)-H(1X2) C(2X)-C(1X)-H(1X2) H(1X1)-C(1X)-H(1X2) C(3X)-C(2X)-C(1X) 104.2(12) C(3X)-C(2X)-H(2X1) C(1X)-C(2X)-H(2X1) C(3X)-C(2X)-H(2X2) C(1X)-C(2X)-H(2X2) H(2X1)-C(2X)-H(2X2) C(2X)-C(3X)-C(4X) 102.5(12) C(2X)-C(3X)-H(3X1) C(4X)-C(3X)-H(3X1) C(2X)-C(3X)-H(3X2) C(4X)-C(3X)-H(3X2) H(3X1)-C(3X)-H(3X2) S37

38 O(1X)-C(4X)-C(3X) 111.4(10) O(1X)-C(4X)-H(4X1) C(3X)-C(4X)-H(4X1) O(1X)-C(4X)-H(4X2) C(3X)-C(4X)-H(4X2) H(4X1)-C(4X)-H(4X2) C(5X)-O(2X)-C(8X) 107.1(8) C(6X)-C(5X)-O(2X) 103.8(9) C(6X)-C(5X)-H(5X1) O(2X)-C(5X)-H(5X1) C(6X)-C(5X)-H(5X2) O(2X)-C(5X)-H(5X2) H(5X1)-C(5X)-H(5X2) C(5X)-C(6X)-C(7X) 101.5(9) C(5X)-C(6X)-H(6X1) C(7X)-C(6X)-H(6X1) C(5X)-C(6X)-H(6X2) C(7X)-C(6X)-H(6X2) H(6X1)-C(6X)-H(6X2) C(8X)-C(7X)-C(6X) 105.1(9) C(8X)-C(7X)-H(7X1) C(6X)-C(7X)-H(7X1) C(8X)-C(7X)-H(7X2) C(6X)-C(7X)-H(7X2) H(7X1)-C(7X)-H(7X2) C(7X)-C(8X)-O(2X) 103.1(9) C(7X)-C(8X)-H(8X1) O(2X)-C(8X)-H(8X1) C(7X)-C(8X)-H(8X2) O(2X)-C(8X)-H(8X2) H(8X1)-C(8X)-H(8X2) S38

39 Table S5. Anisotropic displacement parameters (Å 2 x 10 3 ) for 2. The anisotropic displacement factor exponent takes the form: -2 2 [h 2 a* 2 U h k a* b* U 12 ]. U11 U22 U33 U23 U13 U12 W(1) 14(1) 18(1) 18(1) 3(1) 3(1) 4(1) Cl(1) 24(1) 30(1) 24(1) 14(1) 8(1) 8(1) Cl(2) 16(1) 23(1) 39(1) 5(1) 7(1) 7(1) P(1) 13(1) 20(1) 48(1) -1(1) 6(1) 5(1) O(1) 17(1) 45(2) 24(2) 9(1) 6(1) 3(1) N(1) 19(2) 21(2) 15(2) 6(1) 5(1) 0(1) C(1) 20(2) 18(2) 16(2) 6(1) 5(1) 5(2) N(2) 22(2) 24(2) 16(2) 9(1) 3(1) -3(1) C(2) 23(2) 35(2) 24(2) 10(2) 1(2) -2(2) C(3) 23(2) 34(2) 28(2) 13(2) -2(2) -3(2) C(4) 21(2) 20(2) 16(2) 7(2) 3(1) 2(2) C(5) 21(2) 22(2) 21(2) 10(2) 9(2) 3(2) C(6) 28(2) 20(2) 19(2) 6(2) 8(2) 4(2) C(7) 34(2) 21(2) 18(2) 7(2) 4(2) 1(2) C(8) 34(2) 16(2) 26(2) 8(2) 6(2) 7(2) C(9) 29(2) 17(2) 18(2) 5(2) 8(2) 4(2) C(10) 30(2) 27(2) 25(2) 10(2) 11(2) 11(2) C(11) 55(3) 24(2) 16(2) 8(2) 3(2) 6(2) C(12) 44(3) 21(2) 21(2) 7(2) 10(2) 11(2) C(13) 31(2) 24(2) 11(2) 6(2) 1(2) -2(2) C(14) 29(2) 24(2) 17(2) 4(2) -1(2) 1(2) C(15) 44(3) 22(2) 17(2) 8(2) 0(2) 1(2) C(16) 50(3) 21(2) 18(2) 7(2) 6(2) 2(2) C(17) 45(3) 18(2) 20(2) 4(2) 5(2) 3(2) C(18) 41(3) 19(2) 15(2) 3(2) 1(2) 1(2) C(19) 41(3) 31(2) 27(2) 12(2) 5(2) 7(2) C(20) 73(4) 32(3) 24(2) 13(2) 17(2) 15(3) S39

40 C(21) 50(3) 22(2) 17(2) 6(2) 6(2) 9(2) C(22) 21(2) 18(2) 23(2) 5(2) 2(2) 2(2) C(23) 24(2) 33(2) 34(2) 17(2) 4(2) 11(2) C(24) 23(2) 26(2) 74(4) 21(2) -3(2) 8(2) C(25) 38(4) 34(4) 26(4) 12(3) -4(3) 12(4) C(26) 23(4) 24(4) 27(4) 5(3) 1(3) 13(3) C(27) 37(4) 32(4) 38(4) 21(3) 8(3) 12(3) C(28) 44(4) 37(4) 66(5) 24(4) 8(4) 16(3) C(29) 46(5) 31(4) 56(5) 2(4) -4(4) 10(4) C(30) 68(5) 51(5) 57(5) 15(4) -8(4) 26(4) C(31) 48(5) 41(4) 43(5) 16(4) 3(4) 22(4) C(25A) 42(5) 44(5) 39(5) 20(4) 4(4) 14(4) C(26A) 29(4) 19(4) 37(5) 9(3) 0(4) 9(3) C(27A) 47(5) 43(5) 65(5) 17(4) 7(4) 18(4) C(28A) 70(7) 60(6) 85(7) 15(5) 6(5) 23(5) C(29A) 62(5) 59(5) 78(6) 15(4) -4(4) 16(4) C(30A) 71(6) 70(6) 74(6) 8(4) 7(4) 28(4) C(31A) 43(5) 43(4) 51(5) 5(4) 5(4) 26(4) C(32) 24(3) 22(2) 118(6) 22(3) 8(3) 7(2) C(33) 25(3) 48(3) 63(4) -27(3) 6(2) 1(2) C(34) 19(2) 21(2) 59(3) 11(2) 11(2) 7(2) C(35) 20(2) 25(2) 63(3) 11(2) 3(2) 4(2) C(36) 19(2) 37(3) 105(5) 34(3) 3(3) 9(2) C(37) 21(3) 55(4) 122(6) 45(4) 31(3) 18(2) C(38) 36(3) 49(3) 97(5) 33(3) 44(3) 20(3) C(39) 31(3) 35(3) 59(3) 18(2) 21(2) 12(2) O(1X) 44(3) 73(4) 40(3) 1(3) -5(3) 30(3) C(1X) 88(7) 94(7) 97(7) 11(5) 17(5) 26(5) C(2X) 58(5) 76(5) 59(5) 17(4) 6(4) 24(4) C(3X) 65(5) 69(5) 54(5) 25(4) 12(4) 16(4) C(4X) 43(4) 47(4) 32(4) 10(3) 12(3) 0(3) S40

41 O(2X) 43(3) 35(3) 62(4) 13(3) 17(3) 6(3) C(5X) 37(4) 34(4) 42(4) 13(3) 15(3) 5(3) C(6X) 42(4) 41(4) 66(5) 7(4) 2(4) 17(4) C(7X) 53(4) 25(4) 45(4) 25(3) -7(3) 6(3) C(8X) 40(4) 50(4) 48(4) 22(4) -3(3) 5(3) Table S6. Hydrogen coordinates (x 10 4 ) and isotropic displacement parameters (Å 2 x 10 3 ) for 2. x y z U(eq) H(2) H(3) H(6) H(8) H(10A) H(10B) H(10C) H(11A) H(11B) H(11C) H(12A) H(12B) H(12C) H(15) H(17) H(19A) H(19B) H(19C) H(20A) H(20B) H(20C) H(21A) S41

42 H(21B) H(21C) H(22) H(24A) H(24B) H(24C) H(25A) H(25B) H(25C) H(27) H(28) H(29) H(30) H(31) H(25D) H(25E) H(25F) H(27A) H(28A) H(29A) H(30A) H(31A) H(32A) H(32B) H(32C) H(33A) H(33B) H(33C) H(35) H(36) H(37) S42

43 H(38) H(39) H(1X1) H(1X2) H(2X1) H(2X2) H(3X1) H(3X2) H(4X1) H(4X2) H(5X1) H(5X2) H(6X1) H(6X2) H(7X1) H(7X2) H(8X1) H(8X2) Table S7. Torsion angles [ ] for 2. O(1)-W(1)-P(1)-C(32) 130.8(3) C(22)-W(1)-P(1)-C(32) (3) C(1)-W(1)-P(1)-C(32) 27.0(4) Cl(1)-W(1)-P(1)-C(32) -45.9(3) Cl(2)-W(1)-P(1)-C(32) 38.4(3) O(1)-W(1)-P(1)-C(34) (2) C(22)-W(1)-P(1)-C(34) -9.9(2) C(1)-W(1)-P(1)-C(34) 148.5(3) Cl(1)-W(1)-P(1)-C(34) 75.6(2) Cl(2)-W(1)-P(1)-C(34) 159.9(2) S43

44 O(1)-W(1)-P(1)-C(33) 13.8(3) C(22)-W(1)-P(1)-C(33) 111.5(3) C(1)-W(1)-P(1)-C(33) -90.1(4) Cl(1)-W(1)-P(1)-C(33) (2) Cl(2)-W(1)-P(1)-C(33) -78.7(2) C(2)-N(1)-C(1)-N(2) 1.3(5) C(4)-N(1)-C(1)-N(2) (4) C(2)-N(1)-C(1)-W(1) (3) C(4)-N(1)-C(1)-W(1) 28.0(5) O(1)-W(1)-C(1)-N(2) (4) C(22)-W(1)-C(1)-N(2) 95.4(4) Cl(1)-W(1)-C(1)-N(2) 7.9(4) Cl(2)-W(1)-C(1)-N(2) -73.8(4) P(1)-W(1)-C(1)-N(2) -62.5(5) O(1)-W(1)-C(1)-N(1) -3.8(3) C(22)-W(1)-C(1)-N(1) (3) Cl(1)-W(1)-C(1)-N(1) 169.4(3) Cl(2)-W(1)-C(1)-N(1) 87.6(3) P(1)-W(1)-C(1)-N(1) 99.0(4) N(1)-C(1)-N(2)-C(3) -1.4(5) W(1)-C(1)-N(2)-C(3) 162.8(3) N(1)-C(1)-N(2)-C(13) 169.8(4) W(1)-C(1)-N(2)-C(13) -26.1(6) C(1)-N(1)-C(2)-C(3) -0.8(5) C(4)-N(1)-C(2)-C(3) 167.8(4) N(1)-C(2)-C(3)-N(2) -0.1(5) C(1)-N(2)-C(3)-C(2) 1.0(5) C(13)-N(2)-C(3)-C(2) (4) C(1)-N(1)-C(4)-C(5) (5) C(2)-N(1)-C(4)-C(5) 89.3(5) C(1)-N(1)-C(4)-C(9) 80.0(5) S44

45 C(2)-N(1)-C(4)-C(9) -86.5(5) C(9)-C(4)-C(5)-C(6) -2.4(6) N(1)-C(4)-C(5)-C(6) (4) C(9)-C(4)-C(5)-C(10) 176.5(4) N(1)-C(4)-C(5)-C(10) 1.0(6) C(4)-C(5)-C(6)-C(7) 2.3(6) C(10)-C(5)-C(6)-C(7) (4) C(5)-C(6)-C(7)-C(8) -1.4(7) C(5)-C(6)-C(7)-C(11) 178.5(4) C(6)-C(7)-C(8)-C(9) 0.4(7) C(11)-C(7)-C(8)-C(9) (4) C(7)-C(8)-C(9)-C(4) -0.4(7) C(7)-C(8)-C(9)-C(12) 177.0(4) C(5)-C(4)-C(9)-C(8) 1.4(6) N(1)-C(4)-C(9)-C(8) 177.1(4) C(5)-C(4)-C(9)-C(12) (4) N(1)-C(4)-C(9)-C(12) -0.3(6) C(1)-N(2)-C(13)-C(18) -66.6(6) C(3)-N(2)-C(13)-C(18) 103.9(5) C(1)-N(2)-C(13)-C(14) 115.8(5) C(3)-N(2)-C(13)-C(14) -73.7(5) C(18)-C(13)-C(14)-C(15) 1.6(6) N(2)-C(13)-C(14)-C(15) 179.1(4) C(18)-C(13)-C(14)-C(19) (4) N(2)-C(13)-C(14)-C(19) -2.2(6) C(13)-C(14)-C(15)-C(16) -0.3(7) C(19)-C(14)-C(15)-C(16) (4) C(14)-C(15)-C(16)-C(17) -0.9(7) C(14)-C(15)-C(16)-C(20) 179.5(5) C(15)-C(16)-C(17)-C(18) 1.0(7) C(20)-C(16)-C(17)-C(18) (4) S45

46 C(14)-C(13)-C(18)-C(17) -1.5(7) N(2)-C(13)-C(18)-C(17) (4) C(14)-C(13)-C(18)-C(21) 179.3(4) N(2)-C(13)-C(18)-C(21) 1.7(6) C(16)-C(17)-C(18)-C(13) 0.2(7) C(16)-C(17)-C(18)-C(21) 179.4(4) O(1)-W(1)-C(22)-C(23) 2.4(5) C(1)-W(1)-C(22)-C(23) 100.0(5) Cl(1)-W(1)-C(22)-C(23) (5) Cl(2)-W(1)-C(22)-C(23) (4) P(1)-W(1)-C(22)-C(23) -87.5(5) W(1)-C(22)-C(23)-C(26) (6) W(1)-C(22)-C(23)-C(25A) -15.2(9) W(1)-C(22)-C(23)-C(24) 116.8(5) W(1)-C(22)-C(23)-C(25) 7.5(8) W(1)-C(22)-C(23)-C(26A) (5) C(25A)-C(23)-C(26)-C(27) 9.7(11) C(22)-C(23)-C(26)-C(27) 127.5(8) C(24)-C(23)-C(26)-C(27) (9) C(25)-C(23)-C(26)-C(27) 3.4(12) C(26A)-C(23)-C(26)-C(27) -165(3) C(25A)-C(23)-C(26)-C(31) (11) C(22)-C(23)-C(26)-C(31) -55.5(11) C(24)-C(23)-C(26)-C(31) 66.8(11) C(25)-C(23)-C(26)-C(31) (9) C(26A)-C(23)-C(26)-C(31) 12(2) C(31)-C(26)-C(27)-C(28) 0.9(13) C(23)-C(26)-C(27)-C(28) 177.9(10) C(26)-C(27)-C(28)-C(29) 1.8(13) C(27)-C(28)-C(29)-C(30) -5.3(18) C(28)-C(29)-C(30)-C(31) 6(2) S46

47 C(29)-C(30)-C(31)-C(26) -3(2) C(27)-C(26)-C(31)-C(30) -0.1(17) C(23)-C(26)-C(31)-C(30) (10) C(26)-C(23)-C(26A)-C(27A) 0(2) C(25A)-C(23)-C(26A)-C(27A) -5.6(12) C(22)-C(23)-C(26A)-C(27A) 117.4(9) C(24)-C(23)-C(26A)-C(27A) (9) C(25)-C(23)-C(26A)-C(27A) -13.8(14) C(26)-C(23)-C(26A)-C(31A) 177(4) C(25A)-C(23)-C(26A)-C(31A) 172.2(11) C(22)-C(23)-C(26A)-C(31A) -64.8(11) C(24)-C(23)-C(26A)-C(31A) 48.4(11) C(25)-C(23)-C(26A)-C(31A) 164.1(10) C(31A)-C(26A)-C(27A)-C(28A) 3.1(13) C(23)-C(26A)-C(27A)-C(28A) (11) C(26A)-C(27A)-C(28A)-C(29A) 2.0(16) C(27A)-C(28A)-C(29A)-C(30A) -7(2) C(28A)-C(29A)-C(30A)-C(31A) 6(2) C(29A)-C(30A)-C(31A)-C(26A) -1(2) C(27A)-C(26A)-C(31A)-C(30A) -3.6(18) C(23)-C(26A)-C(31A)-C(30A) 178.5(11) C(32)-P(1)-C(34)-C(39) 64.1(5) C(33)-P(1)-C(34)-C(39) 172.0(4) W(1)-P(1)-C(34)-C(39) -64.3(4) C(32)-P(1)-C(34)-C(35) (4) C(33)-P(1)-C(34)-C(35) -9.8(5) W(1)-P(1)-C(34)-C(35) 113.9(4) C(39)-C(34)-C(35)-C(36) -0.3(7) P(1)-C(34)-C(35)-C(36) (4) C(34)-C(35)-C(36)-C(37) -0.4(8) C(35)-C(36)-C(37)-C(38) 0.1(9) S47

48 C(36)-C(37)-C(38)-C(39) 0.9(9) C(35)-C(34)-C(39)-C(38) 1.3(7) P(1)-C(34)-C(39)-C(38) 179.6(4) C(37)-C(38)-C(39)-C(34) -1.7(8) C(4X)-O(1X)-C(1X)-C(2X) -46.6(13) O(1X)-C(1X)-C(2X)-C(3X) 34.6(15) C(1X)-C(2X)-C(3X)-C(4X) -11.5(15) C(1X)-O(1X)-C(4X)-C(3X) 45.3(14) C(2X)-C(3X)-C(4X)-O(1X) -20.3(15) C(8X)-O(2X)-C(5X)-C(6X) -15.4(11) O(2X)-C(5X)-C(6X)-C(7X) 35.1(10) C(5X)-C(6X)-C(7X)-C(8X) -45.6(12) C(6X)-C(7X)-C(8X)-O(2X) 34.8(11) C(5X)-O(2X)-C(8X)-C(7X) -12.8(11) S48

49 Table S8. Crystal data and structure refinement for 4. Empirical formula C35 H39 Cl F6 N2 O2 W Formula weight Temperature Wavelength Crystal system, space group 100(2) K Å orthorhombic, P b c a Unit cell dimensions a = (8) Å, = 90 b = (7) Å, = 90 c = (10) Å, = 90 Volume (5) A 3 Z, Calculated density 8, Mg/m 3 Absorption coefficient mm -1 F(000) 3392 Crystal size 0.19 x 0.10 x 0.10 mm Theta range for data collection 1.74 to Limiting indices -17<=h<=24, -21<=k<=21, -30<=l<=29 Reflections collected / unique / 8335 [R(int) = ] Completeness to theta = % Absorption correction numerical Max. and min. transmission and Refinement method full-matrix least-squares on F 2 Data / restraints / parameters 8335 / 0 / 437 Goodness-of-fit on F Final R indices [I>2 (I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole and e.å -3 S49

50 Table S9. Atomic coordinates (x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for 4. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) W(1) 8310(1) 7821(1) 4091(1) 12(1) Cl(1) 7220(1) 7308(1) 4556(1) 18(1) O(1) 9014(2) 8525(2) 4035(1) 19(1) F(1) 10238(2) 6447(2) 4705(1) 32(1) N(1) 6994(2) 9010(2) 3498(2) 13(1) C(1) 7527(2) 8876(3) 3889(2) 14(1) O(2) 8805(2) 6982(2) 4610(1) 15(1) F(2) 9408(2) 5562(2) 5023(2) 41(1) N(2) 7439(2) 9520(2) 4271(2) 13(1) C(2) 6582(3) 9715(3) 3643(2) 19(1) F(3) 10115(2) 6232(2) 5602(1) 44(1) C(3) 6860(2) 10035(3) 4122(2) 16(1) F(4) 8256(2) 6222(2) 5572(1) 35(1) C(4) 6905(2) 8632(3) 2933(2) 17(1) F(5) 8195(2) 7577(2) 5662(1) 41(1) C(5) 6410(2) 7968(3) 2851(2) 18(1) F(6) 8998(2) 6862(2) 6129(1) 54(1) C(6) 6303(3) 7704(3) 2293(2) 20(1) C(7) 6630(3) 8078(3) 1834(2) 26(1) C(8) 7112(3) 8755(3) 1930(2) 23(1) C(9) 7256(3) 9045(3) 2481(2) 19(1) C(10) 5996(3) 7600(3) 3339(2) 23(1) C(11) 6483(3) 7795(4) 1228(2) 41(2) C(12) 7768(3) 9778(3) 2579(2) 27(1) C(13) 7917(2) 9707(3) 4740(2) 14(1) C(14) 7728(2) 9493(3) 5297(2) 16(1) C(15) 8221(3) 9676(3) 5728(2) 17(1) C(16) 8886(3) 10063(3) 5619(2) 18(1) S50

51 C(17) 9032(2) 10322(3) 5062(2) 16(1) C(18) 8560(2) 10156(3) 4617(2) 12(1) C(19) 6987(2) 9118(3) 5436(2) 19(1) C(20) 9420(3) 10220(3) 6093(2) 24(1) C(21) 8713(3) 10472(3) 4021(2) 19(1) C(22) 8356(2) 7247(3) 3384(2) 12(1) C(23) 8822(2) 7166(3) 2846(2) 15(1) C(24) 8300(3) 7054(3) 2337(2) 25(1) C(25) 9295(3) 7960(3) 2762(2) 24(1) C(26) 9333(2) 6400(3) 2922(2) 15(1) C(27) 9403(3) 5772(3) 2507(2) 25(1) C(28) 9882(3) 5093(3) 2576(2) 29(1) C(29) 10280(3) 5020(3) 3065(2) 23(1) C(30) 10230(2) 5636(3) 3480(2) 19(1) C(31) 9756(2) 6310(3) 3410(2) 15(1) C(32) 9180(3) 7049(3) 5122(2) 18(1) C(33) 9605(3) 7863(3) 5210(2) 38(2) C(34) 9740(3) 6318(3) 5108(2) 29(1) C(35) 8661(3) 6909(4) 5622(3) 34(2) Table S10. Bond lengths [Å] and angles [ ] for 4. W(1)-O(1) 1.704(3) W(1)-C(22) 1.885(4) W(1)-O(2) 2.010(3) W(1)-C(1) 2.246(4) W(1)-Cl(1) (11) F(1)-C(34) 1.327(6) N(1)-C(1) 1.353(6) N(1)-C(2) 1.385(5) N(1)-C(4) 1.457(6) S51

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Supplementary Information Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Galyna Dubinina, Hideki Furutachi, and David A. Vicic * Department of Chemistry, University of Hawaii,

More information

Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes to Borinic Esters Lauren E. Longobardi, Connie Tang, and Douglas W.

Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes to Borinic Esters Lauren E. Longobardi, Connie Tang, and Douglas W. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Supplementary Data for: Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes

More information

Supplementary Materials for

Supplementary Materials for www.advances.sciencemag.org/cgi/content/full/1/5/e1500304/dc1 Supplementary Materials for Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne click reaction This PDF file includes:

More information

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Emmanuelle Despagnet-Ayoub, Michael K. Takase, Jay A. Labinger and John E. Bercaw Contents 1. Experimental

More information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information Experimental Supporting Information for Experimental and DFT Studies Explain Solvent Control of C-H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of eutral and Cationic Heterocycles

More information

Copper Mediated Fluorination of Aryl Iodides

Copper Mediated Fluorination of Aryl Iodides Copper Mediated Fluorination of Aryl Iodides Patrick S. Fier and John F. Hartwig* Department of Chemistry, University of California, Berkeley, California 94720, United States. Supporting Information Table

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2840 Cooperative carbon-atom abstraction from alkenes in the core of a pentanuclear nickel cluster Contents:

More information

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information for: Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their

More information

Supporting Information

Supporting Information Supporting Information Divergent Reactivity of gem-difluoro-enolates towards Nitrogen Electrophiles: Unorthodox Nitroso Aldol Reaction for Rapid Synthesis of -Ketoamides Mallu Kesava Reddy, Isai Ramakrishna,

More information

Supporting Information. for

Supporting Information. for Supporting Information for "Inverse-Electron-Demand" Ligand Substitution in Palladium(0) Olefin Complexes Shannon S. Stahl,* Joseph L. Thorman, Namal de Silva, Ilia A. Guzei, and Robert W. Clark Department

More information

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 215 Electronic Supplementary Information for Catalysis Science & Technology Catalytic

More information

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to Vinyl Sulfone: An Organocatalytic Access to Chiral 3-Fluoro-3-Substituted Oxindoles Xiaowei Dou and Yixin Lu * Department of Chemistry & Medicinal

More information

Suzuki-Miyaura Coupling of Heteroaryl Boronic Acids and Vinyl Chlorides

Suzuki-Miyaura Coupling of Heteroaryl Boronic Acids and Vinyl Chlorides Suzuki-Miyaura Coupling of Heteroaryl Boronic Acids and Vinyl Chlorides Ashish Thakur, Kainan Zhang, Janis Louie* SUPPORTING INFORMATION General Experimental: All reactions were conducted under an atmosphere

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Carbene Activation of P 4 and Subsequent Derivatization Jason D. Masuda, Wolfgang W. Schoeller, Bruno Donnadieu, and Guy Bertrand * [*] Dr.

More information

Synthesis of Vinyl Germylenes

Synthesis of Vinyl Germylenes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Material for Synthesis of Vinyl Germylenes Małgorzata Walewska, Judith Baumgartner,*

More information

Stereoselective Synthesis of (-) Acanthoic Acid

Stereoselective Synthesis of (-) Acanthoic Acid 1 Stereoselective Synthesis of (-) Acanthoic Acid Taotao Ling, Bryan A. Kramer, Michael A. Palladino, and Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of California, San

More information

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Supporting Information Ferrocenyl BODIPYs: Synthesis, Structure and Properties Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Department of Chemistry, Indian Institute of Technology

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information for uminum complexes containing salicylbenzoxazole

More information

Supporting Information for. Organogold oligomers: exploiting iclick and aurophilic cluster formation to prepare solution stable Au4 repeating units.

Supporting Information for. Organogold oligomers: exploiting iclick and aurophilic cluster formation to prepare solution stable Au4 repeating units. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Supporting Information for Organogold oligomers: exploiting iclick and aurophilic cluster

More information

Supporting Information:

Supporting Information: Supporting Information: An rganocatalytic Asymmetric Sequential Allylic Alkylation/Cyclization of Morita-Baylis-Hillman Carbonates and 3-Hydroxyoxindoles Qi-Lin Wang a,b, Lin Peng a, Fei-Ying Wang a, Ming-Liang

More information

Table S2a. Crystal data and structure refinement for 2 Table S2b. Selected bond lengths and angles for 2 Figure S3.

Table S2a. Crystal data and structure refinement for 2 Table S2b. Selected bond lengths and angles for 2 Figure S3. Four-Coordinate, Trigonal Pyramidal Pt(II) and Pd(II) Complexes Charlene Tsay, Neal P. Mankad, Jonas C. Peters* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts

More information

Chiral Sila[1]ferrocenophanes

Chiral Sila[1]ferrocenophanes Supporting Information Thermal Ring-Opening Polymerization of Planar- Chiral Sila[1]ferrocenophanes Elaheh Khozeimeh Sarbisheh, Jose Esteban Flores, Brady Anderson, Jianfeng Zhu, # and Jens Müller*, Department

More information

Supporting Information

Supporting Information Supporting Information Synthesis of H-Indazoles from Imidates and Nitrosobenzenes via Synergistic Rhodium/Copper Catalysis Qiang Wang and Xingwei Li* Dalian Institute of Chemical Physics, Chinese Academy

More information

Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms. Supporting Information

Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms. Supporting Information Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms Theodore A. Betley and Jonas C. Peters Division of Chemistry and Chemical Engineering Arnold and Mabel Beckman Laboratories of

More information

Supporting Information for

Supporting Information for Page of 0 0 0 0 Submitted to The Journal of Organic Chemistry S Supporting Information for Syntheses and Spectral Properties of Functionalized, Water-soluble BODIPY Derivatives Lingling Li, Junyan Han,

More information

Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3

Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3 S1 Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3 David Bézier, Sehoon Park and Maurice Brookhart* Department of Chemistry, University of North Carolina at Chapel Hill,

More information

Supplementary Information

Supplementary Information Supplementary Information NE Difference Spectroscopy: SnPh 3 CH (b) Me (b) C()CH (a) Me (a) C()N Me (d) Me (c) Irradiated signal Enhanced signal(s) (%) Me (a) Me (c) 0.5, Me (d) 0.6 Me (b) - Me (c) H (a)

More information

Supporting Information for XXXXXXX

Supporting Information for XXXXXXX Supporting Information for XXXXXXX The First Imidazolium-Substituted Metal Alkylidene Giovanni Occhipinti, a Hans-René Bjørsvik, a Karl Wilhelm Törnroos, a Alois Fürstner, b and Vidar R. Jensen a, * a

More information

Supporting Information

Supporting Information Supporting Information Tris(allyl)indium Compounds: Synthesis and Structural Characterization Ilja Peckermann, Gerhard Raabe, Thomas P. Spaniol and Jun Okuda* Synthesis and characterization Figure S1:

More information

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions Wing-Leung Wong, Kam-Piu Ho, Lawrence Yoon Suk Lee, Kin-Ming Lam, Zhong-Yuan Zhou, Tak

More information

C-H Activation Reactions of Ruthenium N-Heterocyclic Carbene. Complexes: Application in a Catalytic Tandem Reaction Involving C-C

C-H Activation Reactions of Ruthenium N-Heterocyclic Carbene. Complexes: Application in a Catalytic Tandem Reaction Involving C-C SUPPORTING INFORMATION C-H Activation Reactions of Ruthenium N-Heterocyclic Carbene Complexes: Application in a Catalytic Tandem Reaction Involving C-C Bond Formation from Alcohols Suzanne Burling, Belinda

More information

Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocylic Carbene Complexes of Rh, Ir and Pd

Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocylic Carbene Complexes of Rh, Ir and Pd J. Am. Chem. Soc. Supporting Information Page S1 Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocylic Carbene Complexes of Rh, Ir and Pd Adelina Voutchkova, Leah N. Appelhans,

More information

Functional nickel complexes of N-heterocyclic carbene ligands in pre-organized and supported thin film materials

Functional nickel complexes of N-heterocyclic carbene ligands in pre-organized and supported thin film materials Supporting Information Functional nickel complexes of N-heterocyclic carbene ligands in pre-organized and supported thin film materials Xinjiao Wang, a Marek Sobota, b Florian T. U. Kohler, c Bruno Morain,

More information

Regioselective Synthesis of the Tricyclic Core of Lateriflorone

Regioselective Synthesis of the Tricyclic Core of Lateriflorone Regioselective Synthesis of the Tricyclic Core of Lateriflorone Eric J. Tisdale, Hongmei Li, Binh G. Vong, Sun Hee Kim, Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of

More information

SUPPORTING INFORMATION. Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe Aïssa

SUPPORTING INFORMATION. Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe Aïssa Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 SUPPORTING INFORMATION S1 Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe

More information

Binuclear Rare-Earth Polyhydride Complexes Bearing both

Binuclear Rare-Earth Polyhydride Complexes Bearing both Supporting Information Binuclear Rare-Earth Polyhydride Complexes Bearing both Terminal and Bridging Hydride Ligands Jianhua Cheng, Haiyu Wang, Masayoshi Nishiura and Zhaomin Hou* S1 Contents Experimental

More information

Influence of anellation in N-heterocyclic carbenes: Detection of novel quinoxalineanellated NHC by trapping as transition metal complexes

Influence of anellation in N-heterocyclic carbenes: Detection of novel quinoxalineanellated NHC by trapping as transition metal complexes Influence of anellation in N-heterocyclic carbenes: Detection of novel quinoxalineanellated NHC by trapping as transition metal complexes Shanmuganathan Saravanakumar, a Markus K. Kindermann, a Joachim

More information

Copper(I) β-boroalkyls from Alkene Insertion: Isolation and Rearrangement

Copper(I) β-boroalkyls from Alkene Insertion: Isolation and Rearrangement Supporting Information for Copper(I) β-boroalkyls from Alkene Insertion: Isolation and Rearrangement David S. Laitar, Emily Y. Tsui, Joseph P. Sadighi* Department of Chemistry, Massachusetts Institute

More information

Supporting Information for

Supporting Information for Supporting Information for Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis Koji Endo and Robert H. Grubbs* Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2012 69451 Weinheim, Germany Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium Phosphine Catalyst** Sebastian Wesselbaum, Thorsten vom Stein,

More information

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones Daisuke Uraguchi, Takaki Ito, Shinji Nakamura, and Takashi oi* Department of Applied Chemistry, Graduate School

More information

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A Fuerst et al. Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A S1 Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers:

More information

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe Supporting Information for Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe Ho Yu Au-Yeung, Jefferson Chan, Teera Chantarojsiri and Christopher J. Chang* Departments

More information

Synthesis of borinic acids and borinate adducts using diisopropylaminoborane

Synthesis of borinic acids and borinate adducts using diisopropylaminoborane Synthesis of borinic acids and borinate adducts using diisopropylaminoborane Ludovic Marciasini, Bastien Cacciuttolo, Michel Vaultier and Mathieu Pucheault* Institut des Sciences Moléculaires, UMR 5255,

More information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 Asymmetric Friedel-Crafts Alkylations of Indoles with Ethyl Glyoxylate Catalyzed by (S)-BIL-Ti (IV) Complex: Direct

More information

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon SUPPLEMENTARY METHODS Solvents, reagents and synthetic procedures All reactions were carried out under an argon atmosphere unless otherwise specified. Tetrahydrofuran (THF) was distilled from benzophenone

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany Sandwich Complexes Containing Bent Palladium ains Yasuki Tatsumi, Katsunori Shirato, Tetsuro Murahashi,* Sensuke Ogoshi and Hideo Kurosawa*

More information

A Total Synthesis of Paeoveitol

A Total Synthesis of Paeoveitol A Total Synthesis of Paeoveitol Lun Xu, Fengyi Liu, Li-Wen Xu, Ziwei Gao, Yu-Ming Zhao* Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi

More information

Carbene) Catalyzed Alcohol Oxidation Using. Molecular Oxygen

Carbene) Catalyzed Alcohol Oxidation Using. Molecular Oxygen Supporting information for [Pd(HC)(PR 3 )] (HC = -Heterocyclic Carbene) Catalyzed Alcohol Oxidation Using Molecular Oxygen Václav Jurčík, Thibault E. Schmid, Quentin Dumont, Alexandra M. Z. Slawin and

More information

Hydrophobic Ionic Liquids with Strongly Coordinating Anions

Hydrophobic Ionic Liquids with Strongly Coordinating Anions Supporting material Hydrophobic Ionic Liquids with Strongly Coordinating Anions Hasan Mehdi, Koen Binnemans*, Kristof Van Hecke, Luc Van Meervelt, Peter Nockemann* Experimental details: General techniques.

More information

Supporting information

Supporting information Supporting information Sensitizing Tb(III) and Eu(III) Emission with Triarylboron Functionalized 1,3-diketonato Ligands Larissa F. Smith, Barry A. Blight, Hee-Jun Park, and Suning Wang* Department of Chemistry,

More information

Supporting Information

Supporting Information Supporting Information (Tetrahedron. Lett.) Cavitands with Inwardly and Outwardly Directed Functional Groups Mao Kanaura a, Kouhei Ito a, Michael P. Schramm b, Dariush Ajami c, and Tetsuo Iwasawa a * a

More information

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts

More information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases Jingming Zhang, a Haohan Wu, a Thomas J. Emge, a and Jing Li* a a Department of Chemistry and Chemical Biology,

More information

The oxide-route for the preparation of

The oxide-route for the preparation of Supporting Information for: The oxide-route for the preparation of mercury(ii) N-heterocyclic carbene complexes. Simon Pelz and Fabian Mohr* Fachbereich C-Anorganische Chemie, Bergische Universität Wuppertal,

More information

Supporting Information. for. Synthetic routes to [Au(NHC)(OH)] (NHC = N- heterocyclic carbene) complexes

Supporting Information. for. Synthetic routes to [Au(NHC)(OH)] (NHC = N- heterocyclic carbene) complexes Supporting Information for Synthetic routes to [Au(HC)(OH)] (HC = - heterocyclic carbene) complexes Adrián Gómez-Suárez, Rubén S, Alexandra M. Z. Slawin and Steven P. olan* EaStChem School of chemistry,

More information

Supplementary Information

Supplementary Information Supplementary Information Eco-Friendly Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones Catalyzed by FeCl 3 /Al 2 O 3 and Analysis of Large 1 H NMR Diastereotopic Effect Isabel Monreal, a Mariano Sánchez-Castellanos,

More information

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Kang Yuan, Goonay Yousefalizadeh, Felix Saraci, Tai Peng, Igor Kozin, Kevin G. Stamplecoskie, Suning Wang*

More information

Seth B. Harkins and Jonas C. Peters

Seth B. Harkins and Jonas C. Peters Amido-bridged Cu 2 N 2 diamond cores that minimize structural reorganization and facilitate reversible redox behavior between a Cu 1 Cu 1 and a Class III delocalized Cu 1.5 Cu 1.5 species. Seth B. Harkins

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Crystal-to-Crystal Transformation between Three Cu(I) Coordination Polymers and Structural Evidence for Luminescence Thermochromism Tae Ho

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 214 Supporting Information Rapid and sensitive detection of acrylic acid using a novel fluorescence

More information

Supporting Information for:

Supporting Information for: Supporting Information for: Photoenolization of 2-(2-Methyl Benzoyl) Benzoic Acid, Methyl Ester: The Effect of The Lifetime of the E Photoenol on the Photochemistry Armands Konosonoks, P. John Wright,

More information

Cyclic polymers from alkynes

Cyclic polymers from alkynes DOI: 10.1038/NCHEM.2516 Cyclic polymers from alkynes Christopher D. Roland, Hong Li, Khalil A. Abboud, Kenneth B. Wagener, and Adam S. Veige* University of Florida, Department of Chemistry, Center for

More information

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Carbonylative Coupling of Allylic Acetates with Arylboronic Acids Wei Ma, a Ting Yu, Dong Xue,*

More information

Supporting Information. Organocatalytic Synthesis of N-Phenylisoxazolidin-5-ones and a One-Pot Synthesis of -Amino Acid Esters

Supporting Information. Organocatalytic Synthesis of N-Phenylisoxazolidin-5-ones and a One-Pot Synthesis of -Amino Acid Esters Supporting Information rganocatalytic Synthesis of N-Phenylisoxazolidin-5-ones and a ne-pot Synthesis of -Amino Acid Esters Jayasree Seayad, Pranab K. Patra, Yugen Zhang,* and Jackie Y. Ying* Institute

More information

Supporting Information

Supporting Information Supporting Information for Cu-Mediated trifluoromethylation of benzyl, allyl and propargyl methanesulfonates with TMSCF 3 Xueliang Jiang 1 and Feng-Ling Qing* 1,2 Address: 1 Key Laboratory of Organofluorine

More information

Chelsea A. Huff, Jeff W. Kampf, and Melanie S. Sanford* Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109

Chelsea A. Huff, Jeff W. Kampf, and Melanie S. Sanford* Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109 Role of a Non-Innocent Pincer Ligand in the Activation of CO 2 at (PNN)Ru(H)(CO) Chelsea A. Huff, Jeff W. Kampf, and Melanie S. Sanford* Department of Chemistry, University of Michigan, 930 N. University

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information Palladium-Catalyzed Regio-selective xidative C-H

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Early-Late Heterobimetallic Rh-Ti and Rh-Zr Complexes via Addition of Early Metal Chlorides to Mono- and Divalent Rhodium Dan A. Smith and Oleg V. Ozerov* Department

More information

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Electronic supplementary information Strategy to Enhance Solid-State Fluorescence and

More information

Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position

Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position Feng Zhou, Xing-Ping Zeng, Chao Wang, Xiao-Li Zhao, and Jian Zhou* [a] Shanghai Key Laboratory

More information

Iridium-catalyzed regioselective decarboxylative allylation of. β-ketoacids: efficient construction of γ, δ-unsaturated ketones

Iridium-catalyzed regioselective decarboxylative allylation of. β-ketoacids: efficient construction of γ, δ-unsaturated ketones Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Iridium-catalyzed regioselective decarboxylative allylation of β-ketoacids: efficient construction

More information

Supporting Information

Supporting Information Supporting Information Ionic Dithioester-Based RAFT Agents Derived From N-Heterocyclic Carbenes Daniel J. Coady, Brent C. Norris, Vincent M. Lynch and Christopher W. Bielawski* Department of Chemistry

More information

[(NHC)Au I ]-Catalyzed Acid Free Hydration of Alkynes at Part-Per-Million Catalyst Loadings

[(NHC)Au I ]-Catalyzed Acid Free Hydration of Alkynes at Part-Per-Million Catalyst Loadings SUPPORTING INFORMATION [(NHC)Au I ]-Catalyzed Acid Free Hydration of Alkynes at Part-Per-Million Catalyst Loadings Nicolas Marion, Rubén S. Ramón, and Steven P. Nolan Institute of Chemical Research of

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Supporting Information Unmasking Representative Structures of TMP-Active Hauser and Turbo Hauser Bases Pablo García-Álvarez, David V. Graham,

More information

Supporting Information

Supporting Information Supporting Information Calix[4, 5]tetrolarenes: A New Family of Macrocycles Yossi Zafrani* and Yoram Cohen* School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978,

More information

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex Mechanistic insights on the controlled switch from oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex Emmanuelle Despagnet-Ayoub, *,a,b Michael K. Takase, c Lawrence M.

More information

Supporting Information

Supporting Information Supporting Information Efficient Benzimidazolidinone Synthesis via Rhodium-Catalyzed Double-Decarbonylative C C Activation/Cycloaddition between Isatins and Isocyanates Rong Zeng, Peng-hao Chen, and Guangbin

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013 Tuning the Lewis Acidity of Boranes in rustrated Lewis Pair Chemistry: Implications for the Hydrogenation of Electron-Poor

More information

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one Haoyue Xiang and Chunhao Yang* State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy

More information

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes Supporting Information to Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed Cascade Trifluoromethylation/Cyclization of 2-(3-Arylpropioloyl)benzaldehydes Yan Zhang*, Dongmei Guo, Shangyi

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012 Ring Expansion of Alkynyl Cyclopropanes to Highly substituted Cyclobutenes via a N-Sulfonyl-1,2,3-Triazole Intermediate Renhe Liu, Min Zhang, Gabrielle Winston-Mcerson, and Weiping Tang* School of armacy,

More information

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S Supporting Text Synthesis of (2S,3S)-2,3-bis(3-bromophenoxy)butane (3). Under N 2 atmosphere and at room temperature, a mixture of 3-bromophenol (0.746 g, 4.3 mmol) and Cs 2 C 3 (2.81 g, 8.6 mmol) in DMS

More information

Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol

Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol S1 Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010 Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol Julien

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry Supporting Information General Remarks Most of chemicals were purchased from Sigma-Aldrich, Strem,

More information

Supporting Information

Supporting Information Supporting Information Frustrated Lewis Pair-Like Splitting of Aromatic C-H bonds and Abstraction of Halogen Atoms by a Cationic [( F PNP)Pt] + Species Jessica C. DeMott, Nattamai Bhuvanesh and Oleg V.

More information

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4)

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4) Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4) A solution of propenyl magnesium bromide in THF (17.5 mmol) under nitrogen atmosphere was cooled in an ice bath and

More information

Supporting Information

Supporting Information Supporting Information N-Heterocyclic Carbene-Catalyzed Chemoselective Cross-Aza-Benzoin Reaction of Enals with Isatin-derived Ketimines: Access to Chiral Quaternary Aminooxindoles Jianfeng Xu 1, Chengli

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information Rhodium(III)-Catalyzed Formal xidative [4+1] Cycloaddition

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Asymmetric Vinylogous aza-darzens Approach to Vinyl Aziridines Isaac Chogii, Pradipta Das, Michael D. Delost, Mark N. Crawford and Jon T. Njardarson* Department of Chemistry and

More information

Supporting Information 1. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes

Supporting Information 1. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes Supporting Information 1 Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes Takahiro Kawamoto, Sho Hirabayashi, Xun-Xiang Guo, Takahiro Nishimura,* and Tamio

More information

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes Supporting Information for Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes Marco Blangetti, Patricia Fleming and Donal F. O Shea* Centre for Synthesis and Chemical

More information

Supporting Information

Supporting Information Remarkably Variable Reaction Modes of Frustrated Lewis Pairs with Non-Conjugated Terminal Diacetylenes Chao Chen, Roland Fröhlich, Gerald Kehr, Gerhard Erker Organisch-Chemisches Institut, Westfälische

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 205 Supporting Information Synthesis and Structures of N-Arylcyano-β-diketiminate Zinc Complexes

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPRTING INFRMATIN A Direct, ne-step Synthesis of Condensed Heterocycles: A Palladium-Catalyzed Coupling Approach Farnaz Jafarpour and Mark Lautens* Davenport Chemical Research Laboratories, Chemistry

More information

Supporting Information. Corporation, 1-1 Kurosakishiroishi, Yahatanishi-ku, Kitakyushu , Japan

Supporting Information. Corporation, 1-1 Kurosakishiroishi, Yahatanishi-ku, Kitakyushu , Japan Supporting Information Facile Fullerene Modification: FeCl 3 -mediated Quantitative Conversion of C 60 to Polyarylated Fullerenes Containing Pentaaryl(chloro)[60]fullerenes Masahiko Hashiguchi,*,1 Kazuhiro

More information

Supporting Information. A rapid and efficient synthetic route to terminal. arylacetylenes by tetrabutylammonium hydroxide- and

Supporting Information. A rapid and efficient synthetic route to terminal. arylacetylenes by tetrabutylammonium hydroxide- and Supporting Information for A rapid and efficient synthetic route to terminal arylacetylenes by tetrabutylammonium hydroxide- and methanol-catalyzed cleavage of 4-aryl-2-methyl-3- butyn-2-ols Jie Li and

More information

Maksim A. Kolosov*, Olesia G. Kulyk, Elena G. Shvets, Valeriy D. Orlov

Maksim A. Kolosov*, Olesia G. Kulyk, Elena G. Shvets, Valeriy D. Orlov 1 Synthesis of 5-cinnamoyl-3,4-dihydropyrimidine-2(1H)-ones Supplementary Information Maksim A. Kolosov*, lesia G. Kulyk, Elena G. Shvets, Valeriy D. rlov Department of organic chemistry, V.N.Karazin Kharkiv

More information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003 Supporting Information for Angew. Chem. Int. Ed. Z51666 Wiley-VCH 2003 69451 Weinheim, Germany Catalytic Enantioselective Synthesis of xindoles and Benzofuranones that Bear a Quaternary Stereocenter Ivory

More information

Electronic Supporting Information

Electronic Supporting Information Electronic Supporting Information Reactions of Tp(NH=CPh 2 )(PPh 3 )Ru Cl with HC CPh in the presence of H 2 O: Insertion/Hydration Products Chih-Jen Cheng, a Hung-Chun Tong, a Yih-Hsing Lo,* b Po-Yo Wang,

More information