SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: /NCHEM.2840 Cooperative carbon-atom abstraction from alkenes in the core of a pentanuclear nickel cluster Contents: Manar M. Shoshani and Samuel A. Johnson* Department of Chemistry and Biochemistry, University of Windsor Sunset Avenue 401, Windsor, ON, N9B 3P4, (Canada) Fax: (+1) sjohnson@uwindsor.ca 1: General 2 2: Experimental Synthesis and Characterization of (2) [Ni(P i Pr 3)] 5(µ-H) 4(µ 5-C) 2 NMR Scale Synthesis and Characterization of 2 and Organic Products 5 Synthesis and Characterization of (2*) [Ni(P i Pr 3)] 5(µ-H) 4(µ 5-13 C) 6 Synthesis and Characterization of (3) Ni 5(P i Pr 3) 3(µ 2-H) 3(CCPh)(H 2C=CHPh) 8 Reaction of 3 with P i Pr 3 + H 2 17 Synthesis and Characterization of (4) (Ni 5(P i Pr 3) 5(µ 2-H) 5(CC(Me)=CH 2). 19 Conversion of 4 to 2 23 Conversion of 1 to 2 in the Presence of added Functional Group Bearing Compounds 24 3: Crystallographic Information 26 NATURE CHEMISTRY Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

2 General: Unless otherwise stated, all manipulations were performed under an inert atmosphere of nitrogen using either standard Schlenk techniques or an MBraun glove-box. Dry, oxygen-free solvents were employed throughout. Anhydrous pentane, toluene, and THF were purchased from Alfa Aesar and were argon packed and dried with either activated sodium or molecular sieves. Benzene-d6 and THF-d8 was dried by filtering through a plug of activated alumina. Isobutylene was purchased from Sigma-Aldrich and dried with activated molecular sieves. Styrene and ethylene, and carbon- 13-labelled ethylene were purchased from Sigma-Aldrich and their purity was confirmed through NMR spectroscopy. 1 H, 31 P{ 1 H} and 13 C{ 1 H} NMR spectra were recorded on a Bruker AMX Spectrometer operating at 300 MHz or 500 MHz with respect to proton nuclei. All chemical shifts are recorded in parts per million, and all coupling constants are reported in Hertz. 1 H NMR spectra were referenced to residual protons (C6D5H, δ 7.15; C7D7H, δ 2.09; C4D7HO, δ 1.73) with respect to tetramethylsilane at δ P{ 1 H} NMR spectra were referenced to external 85% H3PO4 at δ C{ 1 H} NMR spectra were referenced relative to solvent resonances (C6D6, δ 128.0; C7D8, δ 20.4; C4D8O, δ 25.37) Elemental analyses were performed at the Center for Catalysis and Materials Research, Windsor, Ontario. Experimental: Synthesis and Characterization of (2) [Ni(P i Pr3)]5(µ-H)4(µ5-C) A stirring solution of [( i Pr3P)Ni]5H6 (550 mg, 0.50 mmol) in 100 ml of n-pentane, was exposed to 2 equivalents of ethylene ( L, 1 mmol) through a Schlenk line. The solution was stirred for 0.25 hours. The dark brown solution was then evacuated and filtered through a plug of Celite and was concentrated until the precipitation of product was observed. The solution was left at 40 2

3 C for 40 hours, which afforded dark brown plates suitable for X-ray diffraction. A second crop also afforded crystals and a combined yield of 281 mg (46.5 %) was obtained. 1 H NMR (298 K, C6D6, 500 MHz): δ 7.17 (sextet, 2 JPH=2.45 Hz, 4 H, Ni-H), 1.40 (dd, 3 JHH= 7.1 Hz, 3 JPH= 12.4 Hz, 90 H, P(CH(CH3)2)3), 2.21 (septet of d/apparent octet, 3 JHH=7.2 Hz, 2 JPH= 7.6 Hz, 15 H, P(CH(CH3)2)3. 31 P{ 1 H} NMR (298 K, C6D6, MHz): δ 52.4 (s, 5P, P(CH(CH3)2) 13 C{ 1 H} NMR (298 K, C6D6, MHz): δ 20.7 (s, 30 C, P(CH(CH3)2)), 24.1 (d, 1 JPC=12.1 Hz, 15 C, P(CH(CH3)2) Anal Calcd. for C46H109Ni5P5: %C 49.74; %H Found %C 49.96; %H Figure 1: 1 H NMR of Cluster 2 in C6D6 3

4 Figure 2: 31 P{ 1 H} NMR of Cluster 2 in C6D6 4

5 Figure 3: 13 C{ 1 H} NMR of Cluster 2 in C6D6 NMR Scale Synthesis of 2 A solution of 1 (27 mg, mmol) in 0.5 ml of benzene was transferred to a J-Young tube. Ethylene was introduced to the room temperature solution, until the sample was saturated. The reaction was left to stir for 15 min. 1 H NMR spectra was collected and showed the conversion of 1 to 2 as well as the growth of peaks corresponding to ethane and methane. 5

6 Figure 4: Crude 1 H NMR of synthesis of cluster 2 in C6H6 Synthesis and Characterization of (2*) [Ni(P i Pr3)]5(µ-H)4(µ5-13 C) A solution of [( i Pr3P)Ni]5H6 (28mg, mmol) in 0.5 ml of n-pentane was transferred to a J- Young tube. The pressure of the J-young tube was then reduced using vacuum and 2 equivalents of carbon-13-labelled ethylene (1.22 ml,0.050 mmol) were introduced to the J-young tube and the reaction was left for 5 min. 1 H and 31 P{ 1 H}, 13 C{ 1 H} NMR spectra were collected and show the conversion to 1* 31 P{ 1 H} NMR (298 K, C7D8, MHz): δ 50.5 (d, 2 JPC=20.5 Hz, 5P, P(CH(CH3)2) 13 C{ 1 H} NMR (298 K, C6D6, MHz): δ (sextet, 2 JPC=20.5 Hz, 1C, Ni- C); 6

7 Figure 5: Model of 13 C{ 1 H} NMR of Cluster 2* from coupling to 5 phosphines (red) and 13 C{ 1 H} NMR of Cluster 2* in d8-thf (blue) Figure 6: 13 C NMR of organic products in d8-thf 7

8 Synthesis and Characterization of (3) Ni5(P i Pr3)3(µ2-H)3(CCPh)(H2C=CHPh) A solution of an excess of styrene [C8H8 (756 mg, 7.27 mmol) in 10 ml of n-pentane was cooled to 40 C and added dropwise over the course of 0.25 h to a solution of [( i Pr3P)Ni]5H6 (800 mg, mmol) in 5mL of n-pentane. The dark brown solution was stirred at 40 C for 0.5 h, then filtered through a plug of Celite and solvent was removed under vacuum until product precipitated. The solution was cooled to 40 C and after 16 h dark brown blocks suitable for X-ray diffraction were isolated by filtration. A second crop also afforded crystals and a combined yield of 376 mg (52.7 %) was obtained. Isomer A 1 H NMR (298 K, C6D6, 500 MHz): δ (dd, 2 JPH=30.2 Hz, 2 JPH=10.3 Hz 1H, Ni-H), (tm, 2 JPH=15.4 Hz, 1H, Ni-H), (d, 2 JPH=22.4 Hz, 1H, Ni- H), (4x dd, 3 JHH= 7.2 Hz, 3 JPH= 13.6 Hz, 36 H, P(CH(CH3)2)3), 1.42 (dd, 3 JHH= 7.1 Hz, 3 JPH= 12.7 Hz, 18 H, (CH(CH3)2)3), 1.42 (septet of d/apparent octet, 3 JHH=7.1 Hz, 2 JPH= 14.5 Hz, 3H, P(CH(CH3)2), 1.78 (septet of d/apparent octet, 3 JHH=7.1 Hz, 2 JPH= 14.5 Hz, 3H, P(CH(CH3)2), 2.23(septet of d/apparent octet, 3 JHH=7.3 Hz, 2 JPH= 14.5 Hz, 15 H, P(CH(CH3)2)3), 2.78(d, 3 JHH=14.8 Hz, 1H, HC=CHH), 3.06(t, 3 JHH=4.9Hz, 1H, Ar-H C8H8), 3.50(d, 3 JHH=4.9 Hz, 1H, Ar- H C8H8), 3.88(dd, 3 JHH=14.8 Hz, 3 JHH=7.9 Hz, 1H, HC=CHH), 4.25(d, 3 JHH=7.9 Hz, 1H, HC=CHH), 5.20 (overlapping m, 2H, Ar-H C8H8), 5.95(t, 3 JHH=5.8 Hz, 1H, Ar-C C8H8), 7.00 (t, 1H, para-h C8H5), 7.11(m, 2H, meta-h C8H5), 7.69 (d, 3 JHH= 7.6 Hz, 2H, ortho-h C8H5). 31 P{ 1 H} NMR(298 K, C6D6, MHz): δ 30.3 (dd, 2 JPP=20.4, 3 JPP=1.5 Hz 1P, P(CH(CH3)2), 57.58(dd, 2 JPP=20.4, 3 JPP=5.4 Hz 1P, P(CH(CH3)2), 57.77(d, 3 JPP=1.5 Hz 1P, P(CH(CH3)2) 13 C{ 1 H} NMR (298 K, C6D6, MHz): δ 19.9 (s, 3C, P(CH(CH3)2), 20.5(s, 3C, P(CH(CH3)2), (4x d, 2 JPC=4.6Hz, 12C, P(CH(CH3)2), 25.8 (d, 1 JPC=14.4 Hz, 9 C, P(CH(CH3)2), 59.3(s, 1C, Ar-C C8H8), 59.6 (s, 1C, Ph-HC-CH2), 61.6 (s, 1C, Ar-C C8H8), 69.8(s, 1C, Ar-C C8H8), 74.2 (s, 1C, 8

9 Ar-C C8H8), 78.8 (s, 1C, Ar-C C8H8), 80.5(s, 1C, ipso-c C8H8), 89.1 (s, 1C, Ph-HC-CH2), (s, 1C, para-c), (s, 2C, aromatic C), (s, 2C, aromatic C), (d, 2 JPC= 4.0 Hz, 1C, Ni-C), 168.1(s, 1C, ipso-c C8H5), (dd, 2 JPC= 42.3 Hz, 2 JPC= 24.7 Hz, 1C, Ni-C) Isomer B 1 H NMR (298 K, C6D6, 500 MHz): δ (dd, 2 JPH=29.1 Hz, 2 JPH=10.9 Hz 1H, Ni-H), (dd, 2 JPH=23.1 Hz, 3 JPH=5.6 Hz, 1H, Ni-H), (tm, 2 JPH=16.1 Hz, 1H, Ni-H), δ (4x dd, 3 JHH= 7.2 Hz, 3 JPH= 12.7 Hz, 36 H, P(CH(CH3)2)3), 1.42 (dd, 3 JHH= 7.1 Hz, 3 JPH= 11.8 Hz, 18 H, (CH(CH3)2)3), 1.42 (septet of d/apparent octet, 3 JHH=7.1 Hz, 2 JPH= 14.5 Hz, 3H, P(CH(CH3)2), 1.83 (septet of d/apparent octet, 3 JHH=7.3 Hz, 2 JPH= 14.5 Hz, 3H, P(CH(CH3)2), 2.23(septet of d/apparent octet, 3 JHH=7.3 Hz, 2 JPH= 14.5 Hz, 15 H, P(CH(CH3)2)3), 2.10 (d, 3 JHH=14.9Hz, 1H, HC=CHH), 2.35(d, 3 JHH=5.4 Hz, 1H, Ar-H C8H8), 3.78(t, 3 JHH=5.4 Hz, 1H, Ar-H C8H8), 3.95(d, 3 JHH=8.2 Hz, 1H, HC=CHH), 4.52(dd, 3 JHH=8.2 Hz, 3 JHH=14.9Hz, 1H, HC=CHH), 5.41 (t, 1H, 3 JHH=5.9Hz, Ar-H C8H8), 5.6(overlapping m, 2H, Ar-H C8H8), 7.00 (t, 3 JHH=7.6 Hz, 1H, para-h), 7.11(m, 2H, meta-h), 7.61 (d, 3 JHH= 7.6 Hz, 2H, ortho-h). 31 P{ 1 H} NMR(298 K, C6D6, MHz): δ 29.4 (dd, 2 JPP=17.6 Hz, 3 JPP=2.0 Hz, 1P, P(CH(CH3)2), 56.8 (d, 3 JPP=2.0 Hz, 1P, P(CH(CH3), 58.2 (d, 2 JPP=17.6 Hz, 1P, P(CH(CH3)2) 13 C{ 1 H} NMR (298 K, C6D6, MHz): δ 19.5 (s, 3C, P(CH(CH3)2), 20.4(s, 3C, P(CH(CH3)2), (4x d, 2 JPC=4.6 Hz, 12C, P(CH(CH3)2), 26.0 (d, 1 JPC=14.4 Hz, 9 C, P(CH(CH3)2), 57.6 (s, 1C, Ph-HC-CH2), 61.1 (s, 1C, Ar-C C8H8), 63.3(s, 1C, Ar-C C8H8), 67.3 (s, 1C, Ar-C C8H8), 74.5 (s, 1C, Ar-C C8H8), 80.1(s, 1C, ipso-c C8H8), 81.8 (s, 1C Ar-C C8H8), 88.2(s, 1C, Ph-HC-CH2), (s, 1C, para-c), (s, 2C, aromatic C), (s, 2C, aromatic C), (d, 3 JPC= 4.0 Hz, 1C, Ni-C), 170.0(s, 1C, ipso-c C8H5), (dd, 2 JPC= 41.9 Hz, 2 JPC= 25.0 Hz, 1C, Ni-C) Anal Calcd. for C43H79Ni5P3: %C 52.57; %H Found %C 52.57; %H

10 Figure 7: 1 H NMR of 3 in C6D6 Figure 8: 1 H NMR of 3 in C6D6 10

11 Figure 9: 1 H NMR of 3 in C6D6 11

12 Figure 10: 31 P{ 1 H} NMR of 3 in C6D6 12

13 Figure 11: APT 13 C{ 1 H} NMR of 3 13

14 Figure 12: APT 13 C{ 1 H} NMR of 3 14

15 Figure 13: APT 13 C{ 1 H} NMR of 3 15

16 Figure 14: HSQC 13 C{ 1 H}- 1 H NMR of 3, showing no hydrogens correlating with the C(1) and C(2) carbon atoms, labelled Y and Z in Figure S13. 16

17 Figure 15: Aliquot of reaction of cluster 2 with an excess of styrene. Integrals shown for ethylbenzene CH2 peak and one hydride environment of the major and minor isomers 3. These values support the production of ethylbenzene to cluster 3 in a 3:1 ratio. Reaction of 3 with P i Pr3 + H2 A solution of 3 (10 mg, mmol) in 0.5 ml of n-pentane was added to 2 equivalents of triisopropylphosphine (3 mg, mmol) and transferred to a J-Young tube. 1 atmosphere of dihydrogen was introduced to the J-young tube until the solution was saturated, and the reaction was left to stir for 4 h. 1 H and 31 P{ 1 H} NMR spectra were collected and showed the conversion of 3 to 2 and 1 H NMR showed the growth of peaks corresponding to toluene and ethylbenzene in a 1:1 ratio 17

18 Figure 16: Stacked 1 H NMR showing the addition of P i Pr3 to 3, before (top spectrum, red) and after (bottom spectrum, blue) the addition of H2 (L = i Pr3P). 18

19 Figure 17: Stacked 31 P{ 1 H} NMR showing the addition of P i Pr3 to 3, before (top spectrum, red) and after (bottom spectrum, blue) the addition of H2. (L = i Pr3P). Synthesis and Characterization of (4) (Ni5(P i Pr3)5(µ2-H)5(CC(Me)=CH2). To a stirring solution of [( i Pr3P)Ni]5H6 (600 mg, 0.55 mmol) in 100 ml of n-pentane at 273 K, isobutylene was introduced to the 500 ml Schlenk flask until the solution was saturated with isobutylene. The solution was stirred for 0.25 h. The head-space gas was then removed under vacuum, and the dark brown solution was filtered through a plug of Celite. The solution was concentrated by vacuum evaporation, and then cooled to 40 C for 40 hours, which afforded dark brown plates of 1. A second crop also afforded crystals of a combination of 1 and 3 according to 1 H and 31 P{ 1 H} NMR spectra. A third crop, which was also a mix of 1 and 3, was collected and a dark brown plates of 3 were isolated which were suitable for X-Ray diffraction. 1 H NMR (298 K, C6D6, 500 MHz): δ (sextet, 2 JPH=6.5 Hz, 5 H, Ni-H), δ 1.38 (dd, 3 JHH= 7.3 Hz, 3 JPH=

20 Hz, 90 H, P(CH(CH3)2)3), δ 2.28 (septet of d/apparent octet, 3 JHH=7.1 Hz, 2 JPH= 7.5 Hz, 15 H, P(CH(CH3)2)3), (temperature-dependent s, 1H, isobutylene =CH2), δ 2.09 (s, 3H, isobutylene CH3), 2.91 (s, 1H, isobutylene =CH2) 31 P{ 1 H} NMR(298 K, C6D6, MHz): δ 47.3 (s, 5P, P(CH(CH3)2) Figure 18: 1 H NMR of cluster 4 generated from in situ reaction of 1 with isobutylene in C6D6 and contaminated with cluster 2. Temperature dependent proton resonance F obscured by isobutylene, see Fig S20. 20

21 Figure 19: 13 C{ 1 H} DEPT-Q of cluster 4 in C6D6 at 10 C, showing the positively phased =CH2 and negatively phased CH3 carbons associated with the CC(Me)=CH2 moiety. Figure 20: HSQC 13 C{ 1 H}- 1 H NMR of 4 at 10 C, showing the correlation between the C=CH2 hydrogens and the carbon at 59.1, and the CCMe hydrogens and the carbon at

22 Figure 21: 31 P{ 1 H} NMR of cluster 4 (top, red) and selectively decoupled 31 P{ 1 H} NMR of cluster 4 with coupling to five hydrides (bottom, blue). Figure 22: Model of 31 P{ 1 H} NMR of cluster 4 with coupling to five nuclei with a coupling constant of 6.5 Hz (black) 31 P{ 1 H} NMR of cluster 4 with coupling to hydrides (blue) 22

23 Conversion of 4 to 2: A solution of 4 contaminated with 2 in C6D6 was monitored over a period of 16 hours. 1 H and 31 P{ 1 H} NMR spectra were collected throughout and revealed almost all of 4 had been converted to cluster 2 along with propane as an organic byproduct. The shifts corresponding to the bound isobutylene fragment also disappeared, further supporting their assignment. Figure 23: Stacked 1 H NMR showing a mixture of cluster 4 and cluster 2 immediately (blue. top) and the same solution after 16 hours (red, bottom) 23

24 Figure 24: Stacked 1 H NMR of the hydride region showing a mixture of cluster 4 and cluster 2 immediately (blue, top) and the same solution after 16 hours (red, bottom) Conversion of 1 to 2 in the Presence of added Functional Group Bearing Compounds: A solution of cluster 1 (22 mg, 0.02 mmol) in 0.6 ml of n-pentane was cooled to 40 C along with a separate solution of approximately 1 equivalent of: a) n-butanol (2 mg, mmol); b) diisopropyl amine (2 mg, 0.02 mmol); c) 3-pentanone (2 mg, mmol); d) isopropyl actetate (2 mg, 0.02 mmol); e) N,N dimethyl formamide (2 mg, mmol); f) 3-hexyne (2 mg, mmol); g) neopentyl chloride (3 mg, mmol); h) benzyl chloride (3 mg, mmol); i) propionitrile (1 mg, 0.02 mmol)] in 0.2 ml of n-pentane. The two solutions were added together at 40 C, transferred to a J-Young tube and subsequently exposed to an excess of ethylene. Samples a-f showed conversion to cluster 2 in higher than 70 % NMR yield, as determined through integration of 31 P{ 1 H} NMR spectra. Sample g formed a new cluster from the reaction of 1 with neopentyl chloride; the nature of this compound is under investigation, but the same species could be independently prepared from the reaction of 2 directly with neopentyl chloride. Methane was generated for samples a-g, and ethane was generated for samples a-e and g. In sample f, 3-hexyne 24

25 was converted to 3-hexene in lieu of ethane formation. Reactivity that did not result in methane formation was observed when exposing additives h and i to cluster 1, where instantaneous reaction was observed before the addition of ethylene. Table 1: Reaction of Cluster 1 and Ethylene with Various Additives Additive Hydrogenation Methane NMR Yield Product Generation of 2 a)1-butanol Ethane Yes 80.2 % Ethane Yes 82.6 % b) Diisopropylamine c) 3-Pentanone Ethane Yes 77.1 % Ethane Yes 82.3 % d) Isopropyl Acetate Ethane Yes 70.0 % e) N,N-Dimethyl formamide 3-hexene Yes 79.6 % f) 3-hexyne g) Neopentyl Chloride h) Benzyl Chloride i) Propionitrile Ethane Yes * N/A No N/A N/A No N/A *2 reacts with neopentyl chloride after being formed. 25

26 III Crystallographic Information Structure Solutions: General: For complexes 2, 3 and 4 hydride ligands were located in the electron density difference maps. Their positions were refined, and their thermal parameters were treated isotropically. X-ray Solution 2. Features a disorder of the Ni(1) centre, which bridges between Ni(2) and Ni(3) with site occupancy, between Ni(2) and Ni(4) with site occupancy, and between Ni(4) and Ni(5) with site occupancy. The isopropyl substituents C(2)-C(10) associated with P(1) were treated as two-fold disordered, with a site occupancy of for the sites labelled A. The isopropyl substituents C(14)-C(16) and C(17)-C(19) associated with P(2) were treated as two-fold disordered, with a site occupancies of and , respectively, for the sites labelled A. The isopropyl substituents C(44)-C(46) associated with P(5) were treated as two-fold disordered, with a site occupancy of , for the sites labelled A. The disordered i Pr groups were restrained to have similar distances to the well-behaved isopropyl group of C(32)- C(34) using the SHELX SAME command. X-ray Solution 3. The styrene -CH=CH2 group was modelled as two-fold disordered, where the opposite face of the styrene double bond associated with C(9)-C(10) is bound to Ni(4). The site occupancies for C(9A) and C(10A) were , consistent with the solution NMR data. X-ray solution 4. There is a two-fold disorder of atoms C(2)-C(4) and Ni(1), where the location of the CH3 and =CH2 substituents are exchanged. Atoms C(2A)-C(4A) and Ni1A feature site occupancy. Due to the close proximity of the pairs of atoms C(2A), C(2B); C(3A), C(4B); (C4A), C(3B) and low occupancy of the B sites, the SHELX SAME command was used to constrain the geometry of C(2B)-C(3B)-C(4B) to be the same as that of C(2A)-C(3A)-C(4A). These atoms were treated anisotropically, but with the thermal parameters of the proximal pairs of atoms constrained to be identical. The isopropyl substituents associated with C(5)-C(13) on P(1) were also two-fold disordered, with a site occupancy of the A sites refined as

27 Figure 25: ORTEP depiction of solid-state structure of 2 with 50% probability ellipoids shown. Hydrogens and carbons on phosphine ligand and 3-site disorder on top Ni-centre omitted for clarity. Table 2. Crystal data and structure refinement for cluster 2 Identification code shelx Empirical formula C46 H109 Ni5 P5 Formula weight Temperature 140(2) K Wavelength Å Crystal system Triclinic Space group P -1 Unit cell dimensions a = (14) Å = (3). b = (13) Å = (3). c = (2) Å = (3). Volume (5) Å 3 27

28 Z 2 Density (calculated) Mg/m 3 Absorption coefficient mm -1 F(000) 1200 Crystal size x x mm 3 Theta range for data collection to Index ranges -16<=h<=16, -16<=k<=16, -28<=l<=28 Reflections collected Independent reflections [R(int) = ] Completeness to theta = % Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters / 166 / 752 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Extinction coefficient n/a Largest diff. peak and hole and e.å -3 28

29 Table 3. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for 2. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) Ni(1A) 8982(1) 4862(1) 2421(1) 25(1) Ni(1B) 9636(4) 4528(2) 2764(1) 38(1) Ni(1C) 10229(2) 4246(2) 2592(1) 30(1) Ni(2) 8341(1) 3657(1) 3045(1) 20(1) Ni(3) 8645(1) 3306(1) 1870(1) 25(1) Ni(5) 10662(1) 2408(1) 3220(1) 25(1) Ni(4) 10971(1) 2120(1) 2053(1) 22(1) P(1) 9746(1) 6106(1) 2391(1) 26(1) P(3) 7470(1) 3433(1) 1073(1) 33(1) P(2) 6770(1) 4070(1) 3658(1) 21(1) P(5) 11779(1) 1035(1) 3964(1) 23(1) P(4) 12504(1) 1003(1) 1446(1) 30(1) C(1) 9678(2) 3156(2) 2518(1) 22(1) C(2A) 8580(7) 7662(7) 2683(3) 31(1) C(3A) 7692(6) 7565(6) 3143(3) 42(2) C(4A) 9142(8) 8380(6) 2968(4) 60(2) C(2B) 8354(18) 7368(16) 2653(7) 41(4) C(3B) 7890(14) 6958(19) 3225(6) 53(4) C(4B) 8340(20) 8570(10) 2755(6) 62(5) C(5A) 9787(15) 6413(14) 1554(9) 40(3) C(6A) 8826(6) 6206(9) 1212(3) 49(2) C(7A) 9683(13) 7631(9) 1326(4) 76(3) C(5B) 9929(15) 6552(15) 1539(8) 33(3) C(6B) 8704(7) 7076(11) 1174(3) 58(3) C(7B) 10470(10) 7410(7) 1517(4) 48(2) C(8A) 11169(6) 5579(7) 2802(3) 41(2) C(9A) 12221(6) 4531(5) 2472(4) 46(2) C(10A) 11096(7) 5159(7) 3486(3) 57(2) C(8B) 11112(8) 6250(12) 2714(4) 55(3) C(9B) 12304(8) 5372(19) 2403(5) 144(8) 29

30 C(10B) 11177(8) 5995(11) 3438(3) 72(3) C(11) 5860(2) 4715(2) 1022(1) 35(1) C(12) 5113(3) 4603(3) 1568(1) 56(1) C(13) 5855(3) 5928(3) 1021(2) 57(1) C(14A) 8076(6) 3269(7) 292(2) 40(2) C(15A) 7184(8) 3769(10) -277(3) 49(2) C(16A) 8956(6) 3763(9) 257(2) 45(2) C(14B) 8099(12) 3880(20) 302(5) 56(4) C(15B) 7284(12) 4245(13) -292(5) 38(3) C(16B) 8824(12) 4450(20) 359(6) 63(4) C(17A) 7059(6) 2115(5) 1185(4) 41(2) C(18A) 6295(15) 1966(18) 657(6) 56(3) C(19A) 8216(8) 895(7) 1333(5) 58(2) C(17B) 7547(7) 2050(6) 884(4) 40(2) C(18B) 6441(15) 2170(20) 495(7) 48(3) C(19B) 7726(13) 1286(11) 1498(5) 63(3) C(20) 6578(2) 2699(2) 3789(1) 27(1) C(21) 6514(3) 2185(2) 3163(1) 40(1) C(22) 5524(2) 2833(2) 4214(1) 36(1) C(23) 5213(2) 5298(2) 3359(1) 27(1) C(24) 4212(2) 5893(2) 3849(1) 39(1) C(25) 5298(2) 6295(2) 2957(1) 36(1) C(26) 6882(2) 4474(2) 4480(1) 29(1) C(27) 7917(2) 3373(2) 4856(1) 38(1) C(28) 7113(3) 5558(3) 4469(1) 44(1) C(29) 11489(2) -278(2) 3955(1) 30(1) C(30) 10125(2) 138(3) 4068(1) 42(1) C(31) 11833(2) -853(2) 3317(1) 40(1) C(32) 13465(2) 315(2) 3830(1) 30(1) C(33) 13898(3) 1260(3) 3875(1) 45(1) C(34) 14355(2) -881(2) 4195(1) 39(1) C(35) 11477(2) 1495(2) 4792(1) 29(1) C(36) 11323(3) 2771(3) 4857(1) 49(1) C(37) 12341(2) 580(3) 5308(1) 41(1) C(38) 12432(2) -283(2) 1081(1) 41(1) C(39) 12303(3) -1101(3) 1590(2) 62(1) 30

31 C(40) 11359(3) 178(3) 601(2) 65(1) C(41) 12513(3) 1935(3) 746(1) 54(1) C(42) 12369(4) 3154(3) 931(2) 88(1) C(43) 13564(3) 1324(3) 278(2) 77(1) C(44A) 14049(4) 165(5) 1883(3) 45(2) C(45A) 14440(10) 1037(7) 2138(4) 53(2) C(46A) 15128(4) -880(4) 1558(3) 72(2) C(44B) 14205(14) 294(13) 1611(7) 34(4) C(45B) 14380(40) 1270(20) 1920(11) 52(6) C(46B) 14626(11) -856(10) 2036(6) 44(4) 31

32 Table 4: Bond lengths [Å] and angles [ ] for 2 Ni(1A)-C(1) 1.872(2) Ni(1A)-P(1) (9) Ni(1A)-Ni(2) (7) Ni(1A)-Ni(3) (8) Ni(1B)-C(1) 1.799(3) Ni(1B)-P(1) (18) Ni(1B)-Ni(2) 2.406(3) Ni(1B)-Ni(5) 2.459(2) Ni(1C)-C(1) 1.816(3) Ni(1C)-P(1) (16) Ni(1C)-Ni(5) (16) Ni(1C)-Ni(4) 2.674(2) Ni(1C)-Ni(2) 2.929(3) Ni(2)-C(1) 1.854(2) Ni(2)-P(2) (6) Ni(2)-Ni(5) (5) Ni(2)-Ni(3) (4) Ni(2)-H(4) 1.58(3) Ni(2)-H(1) 1.52(4) Ni(3)-C(1) 1.818(2) Ni(3)-P(3) (7) Ni(3)-Ni(4) (5) Ni(3)-H(2) 1.62(3) Ni(3)-H(1) 1.62(4) Ni(5)-C(1) 1.823(2) Ni(5)-P(5) (7) Ni(5)-Ni(4) (5) Ni(5)-H(4) 1.63(3) Ni(5)-H(3) 1.57(3) Ni(4)-C(1) 1.820(2) Ni(4)-P(4) (7) Ni(4)-H(2) 1.53(3) 32

33 Ni(4)-H(3) 1.62(3) P(1)-C(8A) 1.764(7) P(1)-C(2B) 1.786(17) P(1)-C(5A) 1.805(19) P(1)-C(2A) 1.903(7) P(1)-C(5B) 1.912(18) P(1)-C(8B) 1.920(7) P(3)-C(17B) 1.756(6) P(3)-C(14A) 1.798(6) P(3)-C(11) 1.847(2) P(3)-C(17A) 1.959(6) P(3)-C(14B) 1.983(9) P(2)-C(20) 1.856(2) P(2)-C(26) 1.861(2) P(2)-C(23) 1.867(2) P(5)-C(29) 1.851(2) P(5)-C(32) 1.855(2) P(5)-C(35) 1.857(2) P(4)-C(41) 1.848(3) P(4)-C(38) 1.863(3) P(4)-C(44B) 1.869(16) P(4)-C(44A) 1.887(5) C(2A)-C(3A) 1.517(7) C(2A)-C(4A) 1.528(6) C(2A)-H(2A) C(3A)-H(3A1) C(3A)-H(3A2) C(3A)-H(3A3) C(4A)-H(4A1) C(4A)-H(4A2) C(4A)-H(4A3) C(2B)-C(3B) 1.515(12) C(2B)-C(4B) 1.524(11) C(2B)-H(2B) C(3B)-H(3B1) C(3B)-H(3B2)

34 C(3B)-H(3B3) C(4B)-H(4B1) C(4B)-H(4B2) C(4B)-H(4B3) C(5A)-C(7A) 1.522(11) C(5A)-C(6A) 1.530(11) C(5A)-H(5A) C(6A)-H(6A1) C(6A)-H(6A2) C(6A)-H(6A3) C(7A)-H(7A1) C(7A)-H(7A2) C(7A)-H(7A3) C(5B)-C(6B) 1.520(12) C(5B)-C(7B) 1.522(11) C(5B)-H(5B) C(6B)-H(6B1) C(6B)-H(6B2) C(6B)-H(6B3) C(7B)-H(7B1) C(7B)-H(7B2) C(7B)-H(7B3) C(8A)-C(9A) 1.524(9) C(8A)-C(10A) 1.536(9) C(8A)-H(8A) C(9A)-H(9A1) C(9A)-H(9A2) C(9A)-H(9A3) C(10A)-H(10A) C(10A)-H(10B) C(10A)-H(10C) C(8B)-C(9B) 1.519(12) C(8B)-C(10B) 1.547(10) C(8B)-H(8B) C(9B)-H(9B1) C(9B)-H(9B2)

35 C(9B)-H(9B3) C(10B)-H(10D) C(10B)-H(10E) C(10B)-H(10F) C(11)-C(13) 1.518(4) C(11)-C(12) 1.525(4) C(11)-H(11) C(12)-H(12A) C(12)-H(12B) C(12)-H(12C) C(13)-H(13A) C(13)-H(13B) C(13)-H(13C) C(14A)-C(16A) 1.497(7) C(14A)-C(15A) 1.522(7) C(14A)-H(14A) C(15A)-H(15A) C(15A)-H(15B) C(15A)-H(15C) C(16A)-H(16A) C(16A)-H(16B) C(16A)-H(16C) C(14B)-C(16B) 1.410(9) C(14B)-C(15B) 1.519(10) C(14B)-H(14B) C(15B)-H(15D) C(15B)-H(15E) C(15B)-H(15F) C(16B)-H(16D) C(16B)-H(16E) C(16B)-H(16F) C(17A)-C(19A) 1.514(9) C(17A)-C(18A) 1.542(10) C(17A)-H(17A) C(18A)-H(18A) C(18A)-H(18B)

36 C(18A)-H(18C) C(19A)-H(19A) C(19A)-H(19B) C(19A)-H(19C) C(17B)-C(19B) 1.525(11) C(17B)-C(18B) 1.539(10) C(17B)-H(17B) C(18B)-H(18D) C(18B)-H(18E) C(18B)-H(18F) C(19B)-H(19D) C(19B)-H(19E) C(19B)-H(19F) C(20)-C(21) 1.523(3) C(20)-C(22) 1.532(3) C(20)-H(20) C(21)-H(21A) C(21)-H(21B) C(21)-H(21C) C(22)-H(22A) C(22)-H(22B) C(22)-H(22C) C(23)-C(25) 1.525(3) C(23)-C(24) 1.531(3) C(23)-H(23) C(24)-H(24A) C(24)-H(24B) C(24)-H(24C) C(25)-H(25A) C(25)-H(25B) C(25)-H(25C) C(26)-C(28) 1.520(3) C(26)-C(27) 1.531(3) C(26)-H(26) C(27)-H(27A) C(27)-H(27B)

37 C(27)-H(27C) C(28)-H(28A) C(28)-H(28B) C(28)-H(28C) C(29)-C(31) 1.524(3) C(29)-C(30) 1.529(3) C(29)-H(29) C(30)-H(30A) C(30)-H(30B) C(30)-H(30C) C(31)-H(31A) C(31)-H(31B) C(31)-H(31C) C(32)-C(34) 1.525(3) C(32)-C(33) 1.529(3) C(32)-H(32) C(33)-H(33A) C(33)-H(33B) C(33)-H(33C) C(34)-H(34A) C(34)-H(34B) C(34)-H(34C) C(35)-C(37) 1.527(3) C(35)-C(36) 1.527(3) C(35)-H(35) C(36)-H(36A) C(36)-H(36B) C(36)-H(36C) C(37)-H(37A) C(37)-H(37B) C(37)-H(37C) C(38)-C(39) 1.514(4) C(38)-C(40) 1.527(4) C(38)-H(38) C(39)-H(39A) C(39)-H(39B)

38 C(39)-H(39C) C(40)-H(40A) C(40)-H(40B) C(40)-H(40C) C(41)-C(42) 1.521(5) C(41)-C(43) 1.537(4) C(41)-H(41) C(42)-H(42A) C(42)-H(42B) C(42)-H(42C) C(43)-H(43A) C(43)-H(43B) C(43)-H(43C) C(44A)-C(45A) 1.517(7) C(44A)-C(46A) 1.532(6) C(44A)-H(44A) C(45A)-H(45A) C(45A)-H(45B) C(45A)-H(45C) C(46A)-H(46A) C(46A)-H(46B) C(46A)-H(46C) C(44B)-C(46B) 1.515(12) C(44B)-C(45B) 1.521(13) C(44B)-H(44B) C(45B)-H(45D) C(45B)-H(45E) C(45B)-H(45F) C(46B)-H(46D) C(46B)-H(46E) C(46B)-H(46F) C(1)-Ni(1A)-P(1) (8) C(1)-Ni(1A)-Ni(2) 50.04(7) P(1)-Ni(1A)-Ni(2) (5) C(1)-Ni(1A)-Ni(3) 45.94(7) 38

39 P(1)-Ni(1A)-Ni(3) (4) Ni(2)-Ni(1A)-Ni(3) (19) C(1)-Ni(1B)-P(1) (14) C(1)-Ni(1B)-Ni(2) 49.78(9) P(1)-Ni(1B)-Ni(2) (18) C(1)-Ni(1B)-Ni(5) 47.66(8) P(1)-Ni(1B)-Ni(5) (19) Ni(2)-Ni(1B)-Ni(5) 62.61(4) C(1)-Ni(1C)-P(1) (13) C(1)-Ni(1C)-Ni(5) 48.46(8) P(1)-Ni(1C)-Ni(5) (12) C(1)-Ni(1C)-Ni(4) 42.71(8) P(1)-Ni(1C)-Ni(4) (11) Ni(5)-Ni(1C)-Ni(4) 59.09(4) C(1)-Ni(1C)-Ni(2) 37.50(9) P(1)-Ni(1C)-Ni(2) (12) Ni(5)-Ni(1C)-Ni(2) 55.44(5) Ni(4)-Ni(1C)-Ni(2) 79.97(4) C(1)-Ni(2)-P(2) (7) C(1)-Ni(2)-Ni(1A) 50.70(7) P(2)-Ni(2)-Ni(1A) (3) C(1)-Ni(2)-Ni(1B) 47.81(9) P(2)-Ni(2)-Ni(1B) (7) C(1)-Ni(2)-Ni(5) 46.05(7) P(2)-Ni(2)-Ni(5) (2) Ni(1A)-Ni(2)-Ni(5) 79.57(2) Ni(1B)-Ni(2)-Ni(5) 59.71(8) C(1)-Ni(2)-Ni(3) 45.50(7) P(2)-Ni(2)-Ni(3) (2) Ni(1A)-Ni(2)-Ni(3) 61.59(2) Ni(1B)-Ni(2)-Ni(3) 77.35(5) Ni(5)-Ni(2)-Ni(3) (13) C(1)-Ni(2)-Ni(1C) 36.62(8) P(2)-Ni(2)-Ni(1C) (5) Ni(5)-Ni(2)-Ni(1C) 52.00(4) Ni(3)-Ni(2)-Ni(1C) 70.37(4) 39

40 C(1)-Ni(2)-H(4) 84.0(12) P(2)-Ni(2)-H(4) 96.4(12) Ni(1A)-Ni(2)-H(4) 99.6(12) Ni(1B)-Ni(2)-H(4) 75.5(12) Ni(5)-Ni(2)-H(4) 38.9(12) Ni(3)-Ni(2)-H(4) 127.9(12) Ni(1C)-Ni(2)-H(4) 74.5(12) C(1)-Ni(2)-H(1) 81.3(14) P(2)-Ni(2)-H(1) 98.0(14) Ni(1A)-Ni(2)-H(1) 72.5(14) Ni(1B)-Ni(2)-H(1) 95.9(14) Ni(5)-Ni(2)-H(1) 126.2(14) Ni(3)-Ni(2)-H(1) 37.3(14) Ni(1C)-Ni(2)-H(1) 94.5(14) H(4)-Ni(2)-H(1) 165.1(18) C(1)-Ni(3)-P(3) (7) C(1)-Ni(3)-Ni(1A) 47.71(7) P(3)-Ni(3)-Ni(1A) (3) C(1)-Ni(3)-Ni(4) 45.91(7) P(3)-Ni(3)-Ni(4) (2) Ni(1A)-Ni(3)-Ni(4) 79.42(2) C(1)-Ni(3)-Ni(2) 46.65(7) P(3)-Ni(3)-Ni(2) (2) Ni(1A)-Ni(3)-Ni(2) 55.87(2) Ni(4)-Ni(3)-Ni(2) (13) C(1)-Ni(3)-H(2) 81.2(10) P(3)-Ni(3)-H(2) 96.6(10) Ni(1A)-Ni(3)-H(2) 105.5(9) Ni(4)-Ni(3)-H(2) 35.3(10) Ni(2)-Ni(3)-H(2) 124.8(10) C(1)-Ni(3)-H(1) 79.8(13) P(3)-Ni(3)-H(1) 102.4(13) Ni(1A)-Ni(3)-H(1) 66.8(13) Ni(4)-Ni(3)-H(1) 124.9(13) Ni(2)-Ni(3)-H(1) 34.6(13) H(2)-Ni(3)-H(1) 159.3(17) 40

41 C(1)-Ni(5)-P(5) (7) C(1)-Ni(5)-Ni(1C) 48.22(8) P(5)-Ni(5)-Ni(1C) (5) C(1)-Ni(5)-Ni(1B) 46.83(8) P(5)-Ni(5)-Ni(1B) (5) C(1)-Ni(5)-Ni(4) 46.16(7) P(5)-Ni(5)-Ni(4) (2) Ni(1C)-Ni(5)-Ni(4) 65.50(6) Ni(1B)-Ni(5)-Ni(4) 77.25(6) C(1)-Ni(5)-Ni(2) 47.07(7) P(5)-Ni(5)-Ni(2) (2) Ni(1C)-Ni(5)-Ni(2) 72.56(6) Ni(1B)-Ni(5)-Ni(2) 57.69(9) Ni(4)-Ni(5)-Ni(2) (13) C(1)-Ni(5)-H(4) 83.6(11) P(5)-Ni(5)-H(4) 99.7(11) Ni(1C)-Ni(5)-H(4) 90.7(11) Ni(1B)-Ni(5)-H(4) 73.2(11) Ni(4)-Ni(5)-H(4) 128.7(11) Ni(2)-Ni(5)-H(4) 37.5(11) C(1)-Ni(5)-H(3) 83.4(12) P(5)-Ni(5)-H(3) 92.7(12) Ni(1C)-Ni(5)-H(3) 80.6(11) Ni(1B)-Ni(5)-H(3) 97.6(11) Ni(4)-Ni(5)-H(3) 38.7(12) Ni(2)-Ni(5)-H(3) 129.7(12) H(4)-Ni(5)-H(3) 167.0(16) C(1)-Ni(4)-P(4) (7) C(1)-Ni(4)-Ni(5) 46.26(7) P(4)-Ni(4)-Ni(5) (2) C(1)-Ni(4)-Ni(3) 45.85(7) P(4)-Ni(4)-Ni(3) (2) Ni(5)-Ni(4)-Ni(3) (13) C(1)-Ni(4)-Ni(1C) 42.61(9) P(4)-Ni(4)-Ni(1C) (6) Ni(5)-Ni(4)-Ni(1C) 55.41(5) 41

42 Ni(3)-Ni(4)-Ni(1C) 74.98(5) C(1)-Ni(4)-H(2) 83.5(10) P(4)-Ni(4)-H(2) 95.1(10) Ni(5)-Ni(4)-H(2) 125.8(10) Ni(3)-Ni(4)-H(2) 37.7(10) Ni(1C)-Ni(4)-H(2) 104.3(10) C(1)-Ni(4)-H(3) 82.2(11) P(4)-Ni(4)-H(3) 100.0(11) Ni(5)-Ni(4)-H(3) 37.3(11) Ni(3)-Ni(4)-H(3) 126.7(11) Ni(1C)-Ni(4)-H(3) 71.8(11) H(2)-Ni(4)-H(3) 162.0(16) C(8A)-P(1)-C(5A) 114.5(5) C(8A)-P(1)-C(2A) 108.7(3) C(5A)-P(1)-C(2A) 103.5(6) C(2B)-P(1)-C(5B) 105.9(7) C(2B)-P(1)-C(8B) 107.6(7) C(5B)-P(1)-C(8B) 94.1(4) C(2B)-P(1)-Ni(1B) 103.1(5) C(5B)-P(1)-Ni(1B) 129.4(4) C(8B)-P(1)-Ni(1B) 115.2(4) C(8A)-P(1)-Ni(1A) 116.2(3) C(5A)-P(1)-Ni(1A) 102.3(4) C(2A)-P(1)-Ni(1A) 110.8(2) C(17B)-P(3)-C(11) 111.3(3) C(14A)-P(3)-C(11) (19) C(14A)-P(3)-C(17A) 104.2(4) C(11)-P(3)-C(17A) 96.6(2) C(17B)-P(3)-C(14B) 102.5(7) C(11)-P(3)-C(14B) 98.6(5) C(17B)-P(3)-Ni(3) 115.6(2) C(14A)-P(3)-Ni(3) 118.7(3) C(11)-P(3)-Ni(3) (8) C(17A)-P(3)-Ni(3) (18) C(14B)-P(3)-Ni(3) 107.7(3) C(20)-P(2)-C(26) (11) 42

43 C(20)-P(2)-C(23) (11) C(26)-P(2)-C(23) (11) C(20)-P(2)-Ni(2) (7) C(26)-P(2)-Ni(2) (8) C(23)-P(2)-Ni(2) (7) C(29)-P(5)-C(32) (11) C(29)-P(5)-C(35) (11) C(32)-P(5)-C(35) (11) C(29)-P(5)-Ni(5) (8) C(32)-P(5)-Ni(5) (8) C(35)-P(5)-Ni(5) (8) C(41)-P(4)-C(38) (14) C(41)-P(4)-C(44B) 94.1(4) C(38)-P(4)-C(44B) 100.8(5) C(41)-P(4)-C(44A) 112.9(2) C(38)-P(4)-C(44A) (19) C(41)-P(4)-Ni(4) (9) C(38)-P(4)-Ni(4) (9) C(44B)-P(4)-Ni(4) 128.7(5) C(44A)-P(4)-Ni(4) (16) Ni(1B)-C(1)-Ni(3) (15) Ni(1C)-C(1)-Ni(3) (13) Ni(1B)-C(1)-Ni(4) (17) Ni(1C)-C(1)-Ni(4) 94.68(14) Ni(3)-C(1)-Ni(4) 88.24(9) Ni(1B)-C(1)-Ni(5) 85.51(12) Ni(1C)-C(1)-Ni(5) 83.32(10) Ni(3)-C(1)-Ni(5) (13) Ni(4)-C(1)-Ni(5) 87.58(10) Ni(1B)-C(1)-Ni(2) 82.41(14) Ni(1C)-C(1)-Ni(2) (14) Ni(3)-C(1)-Ni(2) 87.85(10) Ni(4)-C(1)-Ni(2) (13) Ni(5)-C(1)-Ni(2) 86.88(9) Ni(3)-C(1)-Ni(1A) 86.34(10) Ni(4)-C(1)-Ni(1A) (12) 43

44 Ni(5)-C(1)-Ni(1A) (11) Ni(2)-C(1)-Ni(1A) 79.26(9) C(3A)-C(2A)-C(4A) 109.6(5) C(3A)-C(2A)-P(1) 111.9(4) C(4A)-C(2A)-P(1) 115.1(5) C(3A)-C(2A)-H(2A) C(4A)-C(2A)-H(2A) P(1)-C(2A)-H(2A) C(2A)-C(3A)-H(3A1) C(2A)-C(3A)-H(3A2) H(3A1)-C(3A)-H(3A2) C(2A)-C(3A)-H(3A3) H(3A1)-C(3A)-H(3A3) H(3A2)-C(3A)-H(3A3) C(2A)-C(4A)-H(4A1) C(2A)-C(4A)-H(4A2) H(4A1)-C(4A)-H(4A2) C(2A)-C(4A)-H(4A3) H(4A1)-C(4A)-H(4A3) H(4A2)-C(4A)-H(4A3) C(3B)-C(2B)-C(4B) 111.3(11) C(3B)-C(2B)-P(1) 109.9(10) C(4B)-C(2B)-P(1) 118.5(10) C(3B)-C(2B)-H(2B) C(4B)-C(2B)-H(2B) P(1)-C(2B)-H(2B) C(2B)-C(3B)-H(3B1) C(2B)-C(3B)-H(3B2) H(3B1)-C(3B)-H(3B2) C(2B)-C(3B)-H(3B3) H(3B1)-C(3B)-H(3B3) H(3B2)-C(3B)-H(3B3) C(2B)-C(4B)-H(4B1) C(2B)-C(4B)-H(4B2) H(4B1)-C(4B)-H(4B2) C(2B)-C(4B)-H(4B3)

45 H(4B1)-C(4B)-H(4B3) H(4B2)-C(4B)-H(4B3) C(7A)-C(5A)-C(6A) 110.6(9) C(7A)-C(5A)-P(1) 118.6(11) C(6A)-C(5A)-P(1) 109.2(10) C(7A)-C(5A)-H(5A) C(6A)-C(5A)-H(5A) P(1)-C(5A)-H(5A) C(5A)-C(6A)-H(6A1) C(5A)-C(6A)-H(6A2) H(6A1)-C(6A)-H(6A2) C(5A)-C(6A)-H(6A3) H(6A1)-C(6A)-H(6A3) H(6A2)-C(6A)-H(6A3) C(5A)-C(7A)-H(7A1) C(5A)-C(7A)-H(7A2) H(7A1)-C(7A)-H(7A2) C(5A)-C(7A)-H(7A3) H(7A1)-C(7A)-H(7A3) H(7A2)-C(7A)-H(7A3) C(6B)-C(5B)-C(7B) 113.1(10) C(6B)-C(5B)-P(1) 110.1(10) C(7B)-C(5B)-P(1) 111.0(9) C(6B)-C(5B)-H(5B) C(7B)-C(5B)-H(5B) P(1)-C(5B)-H(5B) C(5B)-C(6B)-H(6B1) C(5B)-C(6B)-H(6B2) H(6B1)-C(6B)-H(6B2) C(5B)-C(6B)-H(6B3) H(6B1)-C(6B)-H(6B3) H(6B2)-C(6B)-H(6B3) C(5B)-C(7B)-H(7B1) C(5B)-C(7B)-H(7B2) H(7B1)-C(7B)-H(7B2) C(5B)-C(7B)-H(7B3)

46 H(7B1)-C(7B)-H(7B3) H(7B2)-C(7B)-H(7B3) C(9A)-C(8A)-C(10A) 109.8(6) C(9A)-C(8A)-P(1) 111.1(5) C(10A)-C(8A)-P(1) 110.6(5) C(9A)-C(8A)-H(8A) C(10A)-C(8A)-H(8A) P(1)-C(8A)-H(8A) C(8A)-C(9A)-H(9A1) C(8A)-C(9A)-H(9A2) H(9A1)-C(9A)-H(9A2) C(8A)-C(9A)-H(9A3) H(9A1)-C(9A)-H(9A3) H(9A2)-C(9A)-H(9A3) C(8A)-C(10A)-H(10A) C(8A)-C(10A)-H(10B) H(10A)-C(10A)-H(10B) C(8A)-C(10A)-H(10C) H(10A)-C(10A)-H(10C) H(10B)-C(10A)-H(10C) C(9B)-C(8B)-C(10B) 112.3(8) C(9B)-C(8B)-P(1) 110.6(6) C(10B)-C(8B)-P(1) 107.1(5) C(9B)-C(8B)-H(8B) C(10B)-C(8B)-H(8B) P(1)-C(8B)-H(8B) C(8B)-C(9B)-H(9B1) C(8B)-C(9B)-H(9B2) H(9B1)-C(9B)-H(9B2) C(8B)-C(9B)-H(9B3) H(9B1)-C(9B)-H(9B3) H(9B2)-C(9B)-H(9B3) C(8B)-C(10B)-H(10D) C(8B)-C(10B)-H(10E) H(10D)-C(10B)-H(10E) C(8B)-C(10B)-H(10F)

47 H(10D)-C(10B)-H(10F) H(10E)-C(10B)-H(10F) C(13)-C(11)-C(12) 110.7(2) C(13)-C(11)-P(3) (19) C(12)-C(11)-P(3) (19) C(13)-C(11)-H(11) C(12)-C(11)-H(11) P(3)-C(11)-H(11) C(11)-C(12)-H(12A) C(11)-C(12)-H(12B) H(12A)-C(12)-H(12B) C(11)-C(12)-H(12C) H(12A)-C(12)-H(12C) H(12B)-C(12)-H(12C) C(11)-C(13)-H(13A) C(11)-C(13)-H(13B) H(13A)-C(13)-H(13B) C(11)-C(13)-H(13C) H(13A)-C(13)-H(13C) H(13B)-C(13)-H(13C) C(16A)-C(14A)-C(15A) 109.8(5) C(16A)-C(14A)-P(3) 109.2(4) C(15A)-C(14A)-P(3) 119.3(5) C(16A)-C(14A)-H(14A) C(15A)-C(14A)-H(14A) P(3)-C(14A)-H(14A) C(14A)-C(15A)-H(15A) C(14A)-C(15A)-H(15B) H(15A)-C(15A)-H(15B) C(14A)-C(15A)-H(15C) H(15A)-C(15A)-H(15C) H(15B)-C(15A)-H(15C) C(14A)-C(16A)-H(16A) C(14A)-C(16A)-H(16B) H(16A)-C(16A)-H(16B) C(14A)-C(16A)-H(16C)

48 H(16A)-C(16A)-H(16C) H(16B)-C(16A)-H(16C) C(16B)-C(14B)-C(15B) 115.7(8) C(16B)-C(14B)-P(3) 119.4(7) C(15B)-C(14B)-P(3) 116.7(7) C(16B)-C(14B)-H(14B) 99.6 C(15B)-C(14B)-H(14B) 99.6 P(3)-C(14B)-H(14B) 99.6 C(14B)-C(15B)-H(15D) C(14B)-C(15B)-H(15E) H(15D)-C(15B)-H(15E) C(14B)-C(15B)-H(15F) H(15D)-C(15B)-H(15F) H(15E)-C(15B)-H(15F) C(14B)-C(16B)-H(16D) C(14B)-C(16B)-H(16E) H(16D)-C(16B)-H(16E) C(14B)-C(16B)-H(16F) H(16D)-C(16B)-H(16F) H(16E)-C(16B)-H(16F) C(19A)-C(17A)-C(18A) 109.1(9) C(19A)-C(17A)-P(3) 110.6(6) C(18A)-C(17A)-P(3) 118.3(6) C(19A)-C(17A)-H(17A) C(18A)-C(17A)-H(17A) P(3)-C(17A)-H(17A) C(17A)-C(18A)-H(18A) C(17A)-C(18A)-H(18B) H(18A)-C(18A)-H(18B) C(17A)-C(18A)-H(18C) H(18A)-C(18A)-H(18C) H(18B)-C(18A)-H(18C) C(17A)-C(19A)-H(19A) C(17A)-C(19A)-H(19B) H(19A)-C(19A)-H(19B) C(17A)-C(19A)-H(19C)

49 H(19A)-C(19A)-H(19C) H(19B)-C(19A)-H(19C) C(19B)-C(17B)-C(18B) 110.4(8) C(19B)-C(17B)-P(3) 108.2(6) C(18B)-C(17B)-P(3) 115.8(9) C(19B)-C(17B)-H(17B) C(18B)-C(17B)-H(17B) P(3)-C(17B)-H(17B) C(17B)-C(18B)-H(18D) C(17B)-C(18B)-H(18E) H(18D)-C(18B)-H(18E) C(17B)-C(18B)-H(18F) H(18D)-C(18B)-H(18F) H(18E)-C(18B)-H(18F) C(17B)-C(19B)-H(19D) C(17B)-C(19B)-H(19E) H(19D)-C(19B)-H(19E) C(17B)-C(19B)-H(19F) H(19D)-C(19B)-H(19F) H(19E)-C(19B)-H(19F) C(21)-C(20)-C(22) 110.9(2) C(21)-C(20)-P(2) (17) C(22)-C(20)-P(2) (16) C(21)-C(20)-H(20) C(22)-C(20)-H(20) P(2)-C(20)-H(20) C(20)-C(21)-H(21A) C(20)-C(21)-H(21B) H(21A)-C(21)-H(21B) C(20)-C(21)-H(21C) H(21A)-C(21)-H(21C) H(21B)-C(21)-H(21C) C(20)-C(22)-H(22A) C(20)-C(22)-H(22B) H(22A)-C(22)-H(22B) C(20)-C(22)-H(22C)

50 H(22A)-C(22)-H(22C) H(22B)-C(22)-H(22C) C(25)-C(23)-C(24) (19) C(25)-C(23)-P(2) (17) C(24)-C(23)-P(2) (17) C(25)-C(23)-H(23) C(24)-C(23)-H(23) P(2)-C(23)-H(23) C(23)-C(24)-H(24A) C(23)-C(24)-H(24B) H(24A)-C(24)-H(24B) C(23)-C(24)-H(24C) H(24A)-C(24)-H(24C) H(24B)-C(24)-H(24C) C(23)-C(25)-H(25A) C(23)-C(25)-H(25B) H(25A)-C(25)-H(25B) C(23)-C(25)-H(25C) H(25A)-C(25)-H(25C) H(25B)-C(25)-H(25C) C(28)-C(26)-C(27) 110.3(2) C(28)-C(26)-P(2) (16) C(27)-C(26)-P(2) (16) C(28)-C(26)-H(26) C(27)-C(26)-H(26) P(2)-C(26)-H(26) C(26)-C(27)-H(27A) C(26)-C(27)-H(27B) H(27A)-C(27)-H(27B) C(26)-C(27)-H(27C) H(27A)-C(27)-H(27C) H(27B)-C(27)-H(27C) C(26)-C(28)-H(28A) C(26)-C(28)-H(28B) H(28A)-C(28)-H(28B) C(26)-C(28)-H(28C)

51 H(28A)-C(28)-H(28C) H(28B)-C(28)-H(28C) C(31)-C(29)-C(30) 109.0(2) C(31)-C(29)-P(5) (17) C(30)-C(29)-P(5) (17) C(31)-C(29)-H(29) C(30)-C(29)-H(29) P(5)-C(29)-H(29) C(29)-C(30)-H(30A) C(29)-C(30)-H(30B) H(30A)-C(30)-H(30B) C(29)-C(30)-H(30C) H(30A)-C(30)-H(30C) H(30B)-C(30)-H(30C) C(29)-C(31)-H(31A) C(29)-C(31)-H(31B) H(31A)-C(31)-H(31B) C(29)-C(31)-H(31C) H(31A)-C(31)-H(31C) H(31B)-C(31)-H(31C) C(34)-C(32)-C(33) 110.7(2) C(34)-C(32)-P(5) (17) C(33)-C(32)-P(5) (18) C(34)-C(32)-H(32) C(33)-C(32)-H(32) P(5)-C(32)-H(32) C(32)-C(33)-H(33A) C(32)-C(33)-H(33B) H(33A)-C(33)-H(33B) C(32)-C(33)-H(33C) H(33A)-C(33)-H(33C) H(33B)-C(33)-H(33C) C(32)-C(34)-H(34A) C(32)-C(34)-H(34B) H(34A)-C(34)-H(34B) C(32)-C(34)-H(34C)

52 H(34A)-C(34)-H(34C) H(34B)-C(34)-H(34C) C(37)-C(35)-C(36) 111.6(2) C(37)-C(35)-P(5) (18) C(36)-C(35)-P(5) (17) C(37)-C(35)-H(35) C(36)-C(35)-H(35) P(5)-C(35)-H(35) C(35)-C(36)-H(36A) C(35)-C(36)-H(36B) H(36A)-C(36)-H(36B) C(35)-C(36)-H(36C) H(36A)-C(36)-H(36C) H(36B)-C(36)-H(36C) C(35)-C(37)-H(37A) C(35)-C(37)-H(37B) H(37A)-C(37)-H(37B) C(35)-C(37)-H(37C) H(37A)-C(37)-H(37C) H(37B)-C(37)-H(37C) C(39)-C(38)-C(40) 109.5(3) C(39)-C(38)-P(4) (18) C(40)-C(38)-P(4) 112.0(2) C(39)-C(38)-H(38) C(40)-C(38)-H(38) P(4)-C(38)-H(38) C(38)-C(39)-H(39A) C(38)-C(39)-H(39B) H(39A)-C(39)-H(39B) C(38)-C(39)-H(39C) H(39A)-C(39)-H(39C) H(39B)-C(39)-H(39C) C(38)-C(40)-H(40A) C(38)-C(40)-H(40B) H(40A)-C(40)-H(40B) C(38)-C(40)-H(40C)

53 H(40A)-C(40)-H(40C) H(40B)-C(40)-H(40C) C(42)-C(41)-C(43) 110.9(3) C(42)-C(41)-P(4) 111.2(2) C(43)-C(41)-P(4) 118.0(2) C(42)-C(41)-H(41) C(43)-C(41)-H(41) P(4)-C(41)-H(41) C(41)-C(42)-H(42A) C(41)-C(42)-H(42B) H(42A)-C(42)-H(42B) C(41)-C(42)-H(42C) H(42A)-C(42)-H(42C) H(42B)-C(42)-H(42C) C(41)-C(43)-H(43A) C(41)-C(43)-H(43B) H(43A)-C(43)-H(43B) C(41)-C(43)-H(43C) H(43A)-C(43)-H(43C) H(43B)-C(43)-H(43C) C(45A)-C(44A)-C(46A) 110.7(6) C(45A)-C(44A)-P(4) 112.3(5) C(46A)-C(44A)-P(4) 117.9(4) C(45A)-C(44A)-H(44A) C(46A)-C(44A)-H(44A) P(4)-C(44A)-H(44A) C(44A)-C(45A)-H(45A) C(44A)-C(45A)-H(45B) H(45A)-C(45A)-H(45B) C(44A)-C(45A)-H(45C) H(45A)-C(45A)-H(45C) H(45B)-C(45A)-H(45C) C(44A)-C(46A)-H(46A) C(44A)-C(46A)-H(46B) H(46A)-C(46A)-H(46B) C(44A)-C(46A)-H(46C)

54 H(46A)-C(46A)-H(46C) H(46B)-C(46A)-H(46C) C(46B)-C(44B)-C(45B) 112.7(12) C(46B)-C(44B)-P(4) 108.8(9) C(45B)-C(44B)-P(4) 105.8(17) C(46B)-C(44B)-H(44B) C(45B)-C(44B)-H(44B) P(4)-C(44B)-H(44B) C(44B)-C(45B)-H(45D) C(44B)-C(45B)-H(45E) H(45D)-C(45B)-H(45E) C(44B)-C(45B)-H(45F) H(45D)-C(45B)-H(45F) H(45E)-C(45B)-H(45F) C(44B)-C(46B)-H(46D) C(44B)-C(46B)-H(46E) H(46D)-C(46B)-H(46E) C(44B)-C(46B)-H(46F) H(46D)-C(46B)-H(46F) H(46E)-C(46B)-H(46F) Symmetry transformations used to generate equivalent atoms: 54

55 Figure 26: ORTEP depicition of solid-state structure of 3 with 50% probability ellipoids shown. Carbons and hydrogens on phosphine ligands along with 2-site disorder on the bound vinylic carbons ommited for clarity Table 5: Crystal data and structure refinement for 3 Identification code shelx Empirical formula C43 H79 Ni5 P3 Formula weight Temperature 134(2) K Wavelength Å Crystal system Monoclinic Space group P 21 Unit cell dimensions a = (7) Å = 90. b = (19) Å = (3). c = (10) Å = 90. Volume (3) Å 3 Z 2 Density (calculated) Mg/m 3 Absorption coefficient mm -1 F(000) 1044 Crystal size? x? x? mm 3 55

56 Theta range for data collection to Index ranges -12<=h<=12, -28<=k<=28, -15<=l<=15 Reflections collected Independent reflections [R(int) = ] Completeness to theta = % Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters / 1 / 510 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Absolute structure parameter 0.092(11) Extinction coefficient n/a Largest diff. peak and hole and e.å -3 56

57 Table 6: Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for shelx. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) NI1 1131(1) 3485(1) 2635(1) 15(1) NI2 110(1) 4751(1) -91(1) 15(1) NI3 1475(1) 5302(1) 1623(1) 15(1) NI4 48(1) 4647(1) 2680(1) 16(1) NI5-509(1) 3831(1) 1039(1) 14(1) P(1) 3122(1) 3228(1) 3802(1) 15(1) P(2) -769(1) 4967(1) -1865(1) 18(1) P(3) 2224(1) 6236(1) 1954(1) 19(1) C(1) 1052(4) 4468(2) 1419(3) 15(1) C(2) 1685(4) 3893(2) 1315(3) 14(1) C(3) 2729(4) 3740(2) 538(3) 15(1) C(4) 3674(4) 4184(2) 219(3) 22(1) C(5) 4630(5) 4043(2) -540(4) 32(1) C(6) 4649(5) 3462(2) -1001(4) 32(1) C(7) 3718(5) 3017(2) -701(4) 28(1) C(8) 2771(4) 3154(2) 70(3) 22(1) C(9A) -743(8) 4892(3) 4171(6) 26(2) C(10A) -1780(11) 4621(5) 3313(9) 24(2) C(9B) -1689(14) 5026(8) 3341(13) 34(4) C(10B) -1394(17) 4458(9) 3776(15) 27(4) C(11) -1548(4) 3973(2) 2936(4) 28(1) C(12) -2423(4) 3846(2) 1822(4) 22(1) C(13) -2244(4) 3305(2) 1234(4) 22(1) C(14) -1079(4) 2911(2) 1719(4) 24(1) C(15) -522(4) 2938(2) 2947(4) 31(1) C(16) -720(4) 3476(3) 3538(4) 34(1) C(17) 4530(4) 2844(2) 3093(4) 21(1) C(18) 3946(5) 2267(2) 2421(4) 30(1) C(19) 6007(5) 2708(2) 3843(4) 31(1) C(20) 4111(4) 3903(2) 4504(4) 23(1) C(21) 4633(5) 4323(2) 3603(4) 28(1) 57

58 C(22) 3128(5) 4266(2) 5184(4) 30(1) C(23) 2803(5) 2753(2) 5075(4) 25(1) C(24) 2461(5) 2083(2) 4750(4) 33(1) C(25) 3976(6) 2781(2) 6162(4) 40(1) C(26) -708(5) 4301(2) -2869(4) 27(1) C(27) -2086(5) 3896(2) -3023(4) 36(1) C(28) 625(5) 3902(2) -2440(4) 29(1) C(29) -2750(5) 5181(2) -2109(4) 29(1) C(30) -3352(6) 5437(2) -3313(4) 39(1) C(31) -3140(5) 5581(2) -1140(4) 37(1) C(32) 123(5) 5576(2) -2621(4) 28(1) C(33) 1727(6) 5414(2) -2647(5) 41(1) C(34) 42(6) 6194(2) -2034(4) 34(1) C(35) 950(5) 6806(2) 1155(4) 25(1) C(36) -660(5) 6629(2) 1141(5) 38(1) C(37) 1259(6) 7477(2) 1493(4) 35(1) C(38) 4020(5) 6420(2) 1496(4) 29(1) C(39) 3867(6) 6578(2) 208(4) 40(1) C(40) 5074(6) 5877(3) 1754(5) 46(1) C(41) 2537(5) 6516(2) 3484(4) 26(1) C(42) 3664(6) 6120(2) 4259(4) 37(1) C(43) 1120(5) 6534(2) 3985(4) 39(1) 58

59 Table 7: Bond lengths [Å] and angles [ ] for 3 NI1-C(9) 1.935(4) NI1-P(1) (11) NI1-NI (7) NI1-NI (7) NI1-H(1) 1.60(4) NI1-H(2) 1.67(6) NI2-C(9) 1.867(4) NI2-P(2) (11) NI2-NI (7) NI2-H(2) 1.60(5) NI2-H(3) 1.49(4) NI3-C(10) 1.924(4) NI3-C(7) 2.020(4) NI3-C(8) 2.156(4) NI3-P(3) (11) NI3-NI (7) NI3-C(6) 2.483(4) NI3-NI (7) NI4-C(9) 1.910(4) NI4-C(1A) 1.956(9) NI4-C(1B) 2.039(15) NI4-C(2B) 2.066(13) NI4-C(2A) 2.070(6) NI4-C(3) 2.139(4) NI4-NI (7) NI4-H(3) 1.56(4) NI5-C(9) 1.999(4) NI5-C(10) 2.005(3) NI5-C(5) 2.014(4) NI5-C(4) 2.124(4) NI5-C(6) 2.252(4) 59

60 NI5-H(1) 1.62(4) P(1)-C(20) 1.862(4) P(1)-C(23) 1.864(4) P(1)-C(17) 1.875(4) P(2)-C(26) 1.854(4) P(2)-C(32) 1.866(4) P(2)-C(29) 1.872(4) P(3)-C(35) 1.851(4) P(3)-C(38) 1.856(4) P(3)-C(41) 1.876(4) C(1Aa)-C(2A) 1.398(14) C(1Aa)-C(3) 1.506(12) C(1Aa)-H(1A) C(2Aa)-H(2A) C(2Aa)-H(2B) C(1Bb)-C(2B) 1.35(3) C(1Bb)-C(3) 1.435(17) C(1Bb)-H(1B) C(2Bb)-H(2C) C(2Bb)-H(2D) C(3)-C(8) 1.440(7) C(3)-C(4) 1.442(6) C(4)-C(5) 1.387(6) C(4)-H(4) C(5)-C(6) 1.421(6) C(5)-H(5) C(6)-C(7) 1.444(6) C(6)-H(6) C(7)-C(8) 1.389(7) C(7)-H(7) C(8)-H(8) C(9)-C(10) 1.397(5) C(10)-C(11) 1.470(5) C(11)-C(12) 1.393(5) C(11)-C(16) 1.395(6) C(12)-C(13) 1.390(6) 60

61 C(12)-H(12) C(13)-C(14) 1.381(7) C(13)-H(13) C(14)-C(15) 1.377(7) C(14)-H(14) C(15)-C(16) 1.389(6) C(15)-H(15) C(16)-H(16) C(17)-C(18) 1.523(6) C(17)-C(19) 1.537(6) C(17)-H(17) C(18)-H(18A) C(18)-H(18B) C(18)-H(18C) C(19)-H(19A) C(19)-H(19B) C(19)-H(19C) C(20)-C(21) 1.521(6) C(20)-C(22) 1.530(7) C(20)-H(20) C(21)-H(21A) C(21)-H(21B) C(21)-H(21C) C(22)-H(22A) C(22)-H(22B) C(22)-H(22C) C(23)-C(24) 1.521(6) C(23)-C(25) 1.532(6) C(23)-H(23) C(24)-H(24A) C(24)-H(24B) C(24)-H(24C) C(25)-H(25A) C(25)-H(25B) C(25)-H(25C) C(26)-C(28) 1.532(6) 61

62 C(26)-C(27) 1.535(6) C(26)-H(26) C(27)-H(27A) C(27)-H(27B) C(27)-H(27C) C(28)-H(28A) C(28)-H(28B) C(28)-H(28C) C(29)-C(30) 1.528(7) C(29)-C(31) 1.530(7) C(29)-H(29) C(30)-H(30A) C(30)-H(30B) C(30)-H(30C) C(31)-H(31A) C(31)-H(31B) C(31)-H(31C) C(32)-C(33) 1.523(6) C(32)-C(34) 1.530(6) C(32)-H(32) C(33)-H(33A) C(33)-H(33B) C(33)-H(33C) C(34)-H(34A) C(34)-H(34B) C(34)-H(34C) C(35)-C(37) 1.525(6) C(35)-C(36) 1.533(6) C(35)-H(35) C(36)-H(36A) C(36)-H(36B) C(36)-H(36C) C(37)-H(37A) C(37)-H(37B) C(37)-H(37C) C(38)-C(40) 1.524(6) 62

63 C(38)-C(39) 1.533(6) C(38)-H(38) C(39)-H(39A) C(39)-H(39B) C(39)-H(39C) C(40)-H(40A) C(40)-H(40B) C(40)-H(40C) C(41)-C(42) 1.529(6) C(41)-C(43) 1.529(6) C(41)-H(41) C(42)-H(42A) C(42)-H(42B) C(42)-H(42C) C(43)-H(43A) C(43)-H(43B) C(43)-H(43C) C(9)-NI1-P(1) (12) C(9)-NI1-NI (11) P(1)-NI1-NI (4) C(9)-NI1-NI (11) P(1)-NI1-NI (4) NI2-NI1-NI (2) C(9)-NI1-H(1) 89.8(16) P(1)-NI1-H(1) 88.1(16) NI2-NI1-H(1) 132.2(16) NI5-NI1-H(1) 38.7(16) C(9)-NI1-H(2) 82.7(19) P(1)-NI1-H(2) 99.8(19) NI2-NI1-H(2) 39.4(18) NI5-NI1-H(2) 133.5(19) H(1)-NI1-H(2) 172(3) C(9)-NI2-P(2) (12) C(9)-NI2-NI (12) P(2)-NI2-NI (4) 63

64 C(9)-NI2-NI (11) P(2)-NI2-NI (4) NI4-NI2-NI (2) C(9)-NI2-H(2) 87(2) P(2)-NI2-H(2) 96(2) NI4-NI2-H(2) 124(2) NI1-NI2-H(2) 41(2) C(9)-NI2-H(3) 81.2(17) P(2)-NI2-H(3) 97.4(17) NI4-NI2-H(3) 38.5(17) NI1-NI2-H(3) 121.6(17) H(2)-NI2-H(3) 162(3) C(10)-NI3-C(7) (17) C(10)-NI3-C(8) (17) C(7)-NI3-C(8) 38.70(19) C(10)-NI3-P(3) (11) C(7)-NI3-P(3) (13) C(8)-NI3-P(3) (12) C(10)-NI3-NI (10) C(7)-NI3-NI (12) C(8)-NI3-NI (12) P(3)-NI3-NI (4) C(10)-NI3-C(6) (14) C(7)-NI3-C(6) 35.56(16) C(8)-NI3-C(6) 62.81(16) P(3)-NI3-C(6) (10) NI5-NI3-C(6) 55.75(10) C(10)-NI3-NI (11) C(7)-NI3-NI (14) C(8)-NI3-NI (15) P(3)-NI3-NI (3) NI5-NI3-NI (19) C(6)-NI3-NI (10) C(9)-NI4-C(1A) 148.1(3) C(9)-NI4-C(1B) 153.8(5) C(9)-NI4-C(2B) 151.5(5) 64

65 C(1Bb)-NI4-C(2B) 38.3(7) C(9)-NI4-C(2A) 171.4(2) C(1Aa)-NI4-C(2A) 40.5(4) C(9)-NI4-C(3) (16) C(1Aa)-NI4-C(3) 42.9(3) C(1Bb)-NI4-C(3) 40.1(5) C(2Bb)-NI4-C(3) 68.0(5) C(2Aa)-NI4-C(3) 73.1(2) C(9)-NI4-NI (11) C(1Aa)-NI4-NI (3) C(1Bb)-NI4-NI (5) C(2Bb)-NI4-NI (5) C(2Aa)-NI4-NI (19) C(3)-NI4-NI (12) C(9)-NI4-NI (11) C(1Aa)-NI4-NI (3) C(1Bb)-NI4-NI (5) C(2Bb)-NI4-NI (4) C(2Aa)-NI4-NI (2) C(3)-NI4-NI (12) NI2-NI4-NI (2) C(9)-NI4-NI (11) C(1Aa)-NI4-NI (3) C(1Bb)-NI4-NI3 96.0(6) C(2Bb)-NI4-NI (5) C(2Aa)-NI4-NI (2) C(3)-NI4-NI (12) NI2-NI4-NI (2) NI5-NI4-NI (17) C(9)-NI4-H(3) 78.0(16) C(1Aa)-NI4-H(3) 129.3(16) C(1Bb)-NI4-H(3) 127.6(17) C(2Bb)-NI4-H(3) 105.7(17) C(2Aa)-NI4-H(3) 94.5(16) C(3)-NI4-H(3) 166.0(16) NI2-NI4-H(3) 36.3(16) 65

66 NI5-NI4-H(3) 127.6(16) NI3-NI4-H(3) 113.3(16) C(9)-NI5-C(10) 40.82(15) C(9)-NI5-C(5) (16) C(10)-NI5-C(5) (16) C(9)-NI5-C(4) (16) C(10)-NI5-C(4) (15) C(5)-NI5-C(4) 39.06(16) C(9)-NI5-C(6) (15) C(10)-NI5-C(6) (15) C(5)-NI5-C(6) 38.39(15) C(4)-NI5-C(6) 66.45(16) C(9)-NI5-NI (11) C(10)-NI5-NI (10) C(5)-NI5-NI (12) C(4)-NI5-NI (11) C(6)-NI5-NI (11) C(9)-NI5-NI (11) C(10)-NI5-NI (11) C(5)-NI5-NI (12) C(4)-NI5-NI (12) C(6)-NI5-NI (11) NI3-NI5-NI (2) C(9)-NI5-NI (11) C(10)-NI5-NI (10) C(5)-NI5-NI (13) C(4)-NI5-NI (12) C(6)-NI5-NI (11) NI3-NI5-NI (2) NI1-NI5-NI (2) C(9)-NI5-H(1) 87.1(15) C(10)-NI5-H(1) 102.1(15) C(5)-NI5-H(1) 105.8(15) C(4)-NI5-H(1) 106.2(16) C(6)-NI5-H(1) 132.9(15) NI3-NI5-H(1) 154.2(15) 66

67 NI1-NI5-H(1) 38.2(15) NI4-NI5-H(1) 110.1(15) C(20)-P(1)-C(23) 104.5(2) C(20)-P(1)-C(17) (19) C(23)-P(1)-C(17) 103.2(2) C(20)-P(1)-NI (14) C(23)-P(1)-NI (14) C(17)-P(1)-NI (14) C(26)-P(2)-C(32) 104.4(2) C(26)-P(2)-C(29) 103.4(2) C(32)-P(2)-C(29) 101.6(2) C(26)-P(2)-NI (14) C(32)-P(2)-NI (14) C(29)-P(2)-NI (14) C(35)-P(3)-C(38) (18) C(35)-P(3)-C(41) (19) C(38)-P(3)-C(41) (19) C(35)-P(3)-NI (14) C(38)-P(3)-NI (14) C(41)-P(3)-NI (14) C(2Aa)-C(1Aa)-C(3) 119.5(8) C(2Aa)-C(1Aa)-NI4 74.2(5) C(3)-C(1Aa)-NI4 75.1(4) C(2Aa)-C(1Aa)-H(1A) C(3)-C(1Aa)-H(1A) NI4-C(1Aa)-H(1A) C(1Aa)-C(2Aa)-NI4 65.3(5) C(1Aa)-C(2Aa)-H(2A) NI4-C(2Aa)-H(2A) 80.8 C(1Aa)-C(2Aa)-H(2B) NI4-C(2Aa)-H(2B) H(2Aa)-C(2Aa)-H(2B) C(2Bb)-C(1Bb)-C(3) 115.3(15) C(2Bb)-C(1Bb)-NI4 71.9(9) C(3)-C(1Bb)-NI4 73.7(6) C(2Bb)-C(1Bb)-H(1B)

68 C(3)-C(1Bb)-H(1B) NI4-C(1Bb)-H(1B) C(1Bb)-C(2Bb)-NI4 69.7(9) C(1Bb)-C(2Bb)-H(2C) NI4-C(2Bb)-H(2C) 77.4 C(1Bb)-C(2Bb)-H(2D) NI4-C(2Bb)-H(2D) H(2Cb)-C(2Bb)-H(2D) C(1Bb)-C(3)-C(8) 103.7(9) C(1Bb)-C(3)-C(4) 137.5(9) C(8)-C(3)-C(4) 118.0(4) C(8)-C(3)-C(1A) 130.7(6) C(4)-C(3)-C(1A) 111.0(5) C(1Bb)-C(3)-NI4 66.2(7) C(8)-C(3)-NI (3) C(4)-C(3)-NI (3) C(1Aa)-C(3)-NI4 62.1(4) C(5)-C(4)-C(3) 121.1(4) C(5)-C(4)-NI5 66.2(2) C(3)-C(4)-NI5 90.6(2) C(5)-C(4)-H(4) C(3)-C(4)-H(4) NI5-C(4)-H(4) C(4)-C(5)-C(6) 117.5(4) C(4)-C(5)-NI5 74.7(2) C(6)-C(5)-NI5 79.9(2) C(4)-C(5)-H(5) C(6)-C(5)-H(5) NI5-C(5)-H(5) C(5)-C(6)-C(7) 119.6(4) C(5)-C(6)-NI5 61.7(2) C(7)-C(6)-NI (3) C(5)-C(6)-NI (3) C(7)-C(6)-NI3 54.5(2) NI5-C(6)-NI (9) C(5)-C(6)-H(6)

69 C(7)-C(6)-H(6) NI5-C(6)-H(6) NI3-C(6)-H(6) C(8)-C(7)-C(6) 118.3(4) C(8)-C(7)-NI3 75.9(3) C(6)-C(7)-NI3 90.0(3) C(8)-C(7)-H(7) C(6)-C(7)-H(7) NI3-C(7)-H(7) C(7)-C(8)-C(3) 119.7(4) C(7)-C(8)-NI3 65.4(2) C(3)-C(8)-NI3 98.9(3) C(7)-C(8)-H(8) C(3)-C(8)-H(8) NI3-C(8)-H(8) C(10)-C(9)-NI (3) C(10)-C(9)-NI (3) NI2-C(9)-NI (15) C(10)-C(9)-NI (3) NI2-C(9)-NI (15) NI4-C(9)-NI (19) C(10)-C(9)-NI5 69.8(2) NI2-C(9)-NI (2) NI4-C(9)-NI (14) NI1-C(9)-NI (13) C(9)-C(10)-C(11) 125.8(3) C(9)-C(10)-NI (3) C(11)-C(10)-NI (3) C(9)-C(10)-NI5 69.4(2) C(11)-C(10)-NI (3) NI3-C(10)-NI (12) C(12)-C(11)-C(16) 118.2(4) C(12)-C(11)-C(10) 121.0(3) C(16)-C(11)-C(10) 120.8(4) C(13)-C(12)-C(11) 120.9(4) C(13)-C(12)-H(12)

70 C(11)-C(12)-H(12) C(14)-C(13)-C(12) 120.0(4) C(14)-C(13)-H(13) C(12)-C(13)-H(13) C(15)-C(14)-C(13) 119.8(4) C(15)-C(14)-H(14) C(13)-C(14)-H(14) C(14)-C(15)-C(16) 120.4(4) C(14)-C(15)-H(15) C(16)-C(15)-H(15) C(15)-C(16)-C(11) 120.7(4) C(15)-C(16)-H(16) C(11)-C(16)-H(16) C(18)-C(17)-C(19) 108.6(3) C(18)-C(17)-P(1) 110.0(3) C(19)-C(17)-P(1) 114.0(3) C(18)-C(17)-H(17) C(19)-C(17)-H(17) P(1)-C(17)-H(17) C(17)-C(18)-H(18A) C(17)-C(18)-H(18B) H(18A)-C(18)-H(18B) C(17)-C(18)-H(18C) H(18A)-C(18)-H(18C) H(18B)-C(18)-H(18C) C(17)-C(19)-H(19A) C(17)-C(19)-H(19B) H(19A)-C(19)-H(19B) C(17)-C(19)-H(19C) H(19A)-C(19)-H(19C) H(19B)-C(19)-H(19C) C(21)-C(20)-C(22) 109.5(4) C(21)-C(20)-P(1) 111.0(3) C(22)-C(20)-P(1) 110.7(3) C(21)-C(20)-H(20) C(22)-C(20)-H(20)

71 P(1)-C(20)-H(20) C(20)-C(21)-H(21A) C(20)-C(21)-H(21B) H(21A)-C(21)-H(21B) C(20)-C(21)-H(21C) H(21A)-C(21)-H(21C) H(21B)-C(21)-H(21C) C(20)-C(22)-H(22A) C(20)-C(22)-H(22B) H(22A)-C(22)-H(22B) C(20)-C(22)-H(22C) H(22A)-C(22)-H(22C) H(22B)-C(22)-H(22C) C(24)-C(23)-C(25) 112.4(4) C(24)-C(23)-P(1) 112.2(3) C(25)-C(23)-P(1) 115.4(3) C(24)-C(23)-H(23) C(25)-C(23)-H(23) P(1)-C(23)-H(23) C(23)-C(24)-H(24A) C(23)-C(24)-H(24B) H(24A)-C(24)-H(24B) C(23)-C(24)-H(24C) H(24A)-C(24)-H(24C) H(24B)-C(24)-H(24C) C(23)-C(25)-H(25A) C(23)-C(25)-H(25B) H(25A)-C(25)-H(25B) C(23)-C(25)-H(25C) H(25A)-C(25)-H(25C) H(25B)-C(25)-H(25C) C(28)-C(26)-C(27) 112.4(4) C(28)-C(26)-P(2) 115.8(3) C(27)-C(26)-P(2) 111.8(3) C(28)-C(26)-H(26) C(27)-C(26)-H(26)

72 P(2)-C(26)-H(26) C(26)-C(27)-H(27A) C(26)-C(27)-H(27B) H(27A)-C(27)-H(27B) C(26)-C(27)-H(27C) H(27A)-C(27)-H(27C) H(27B)-C(27)-H(27C) C(26)-C(28)-H(28A) C(26)-C(28)-H(28B) H(28A)-C(28)-H(28B) C(26)-C(28)-H(28C) H(28A)-C(28)-H(28C) H(28B)-C(28)-H(28C) C(30)-C(29)-C(31) 108.7(4) C(30)-C(29)-P(2) 112.9(3) C(31)-C(29)-P(2) 110.1(3) C(30)-C(29)-H(29) C(31)-C(29)-H(29) P(2)-C(29)-H(29) C(29)-C(30)-H(30A) C(29)-C(30)-H(30B) H(30A)-C(30)-H(30B) C(29)-C(30)-H(30C) H(30A)-C(30)-H(30C) H(30B)-C(30)-H(30C) C(29)-C(31)-H(31A) C(29)-C(31)-H(31B) H(31A)-C(31)-H(31B) C(29)-C(31)-H(31C) H(31A)-C(31)-H(31C) H(31B)-C(31)-H(31C) C(33)-C(32)-C(34) 109.3(4) C(33)-C(32)-P(2) 111.8(3) C(34)-C(32)-P(2) 111.4(3) C(33)-C(32)-H(32) C(34)-C(32)-H(32)

73 P(2)-C(32)-H(32) C(32)-C(33)-H(33A) C(32)-C(33)-H(33B) H(33A)-C(33)-H(33B) C(32)-C(33)-H(33C) H(33A)-C(33)-H(33C) H(33B)-C(33)-H(33C) C(32)-C(34)-H(34A) C(32)-C(34)-H(34B) H(34A)-C(34)-H(34B) C(32)-C(34)-H(34C) H(34A)-C(34)-H(34C) H(34B)-C(34)-H(34C) C(37)-C(35)-C(36) 109.4(4) C(37)-C(35)-P(3) 110.5(3) C(36)-C(35)-P(3) 111.0(3) C(37)-C(35)-H(35) C(36)-C(35)-H(35) P(3)-C(35)-H(35) C(35)-C(36)-H(36A) C(35)-C(36)-H(36B) H(36A)-C(36)-H(36B) C(35)-C(36)-H(36C) H(36A)-C(36)-H(36C) H(36B)-C(36)-H(36C) C(35)-C(37)-H(37A) C(35)-C(37)-H(37B) H(37A)-C(37)-H(37B) C(35)-C(37)-H(37C) H(37A)-C(37)-H(37C) H(37B)-C(37)-H(37C) C(40)-C(38)-C(39) 109.9(4) C(40)-C(38)-P(3) 117.3(3) C(39)-C(38)-P(3) 112.7(3) C(40)-C(38)-H(38) C(39)-C(38)-H(38)

74 P(3)-C(38)-H(38) C(38)-C(39)-H(39A) C(38)-C(39)-H(39B) H(39A)-C(39)-H(39B) C(38)-C(39)-H(39C) H(39A)-C(39)-H(39C) H(39B)-C(39)-H(39C) C(38)-C(40)-H(40A) C(38)-C(40)-H(40B) H(40A)-C(40)-H(40B) C(38)-C(40)-H(40C) H(40A)-C(40)-H(40C) H(40B)-C(40)-H(40C) C(42)-C(41)-C(43) 109.5(4) C(42)-C(41)-P(3) 112.5(3) C(43)-C(41)-P(3) 117.0(3) C(42)-C(41)-H(41) C(43)-C(41)-H(41) P(3)-C(41)-H(41) C(41)-C(42)-H(42A) C(41)-C(42)-H(42B) H(42A)-C(42)-H(42B) C(41)-C(42)-H(42C) H(42A)-C(42)-H(42C) H(42B)-C(42)-H(42C) C(41)-C(43)-H(43A) C(41)-C(43)-H(43B) H(43A)-C(43)-H(43B) C(41)-C(43)-H(43C) H(43A)-C(43)-H(43C) H(43B)-C(43)-H(43C) Symmetry transformations used to generate equivalent atoms: 74

75 Figure 27: ORTEP depiction of solid-state structure of 4 with 50% probability ellipoids shown. Carbons and hydrogens on phosphine ligands along with two-site disorder on both the top Ni centre and the bound isobutylene fragment omitted for clarity. 75

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Emmanuelle Despagnet-Ayoub, Michael K. Takase, Jay A. Labinger and John E. Bercaw Contents 1. Experimental

More information

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Supplementary Information Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Galyna Dubinina, Hideki Furutachi, and David A. Vicic * Department of Chemistry, University of Hawaii,

More information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information Experimental Supporting Information for Experimental and DFT Studies Explain Solvent Control of C-H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of eutral and Cationic Heterocycles

More information

Stereoselective Synthesis of (-) Acanthoic Acid

Stereoselective Synthesis of (-) Acanthoic Acid 1 Stereoselective Synthesis of (-) Acanthoic Acid Taotao Ling, Bryan A. Kramer, Michael A. Palladino, and Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of California, San

More information

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Supporting Information Ferrocenyl BODIPYs: Synthesis, Structure and Properties Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Department of Chemistry, Indian Institute of Technology

More information

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 215 Electronic Supplementary Information for Catalysis Science & Technology Catalytic

More information

Copper(I) β-boroalkyls from Alkene Insertion: Isolation and Rearrangement

Copper(I) β-boroalkyls from Alkene Insertion: Isolation and Rearrangement Supporting Information for Copper(I) β-boroalkyls from Alkene Insertion: Isolation and Rearrangement David S. Laitar, Emily Y. Tsui, Joseph P. Sadighi* Department of Chemistry, Massachusetts Institute

More information

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Kang Yuan, Goonay Yousefalizadeh, Felix Saraci, Tai Peng, Igor Kozin, Kevin G. Stamplecoskie, Suning Wang*

More information

Supplementary Materials for

Supplementary Materials for www.advances.sciencemag.org/cgi/content/full/1/5/e1500304/dc1 Supplementary Materials for Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne click reaction This PDF file includes:

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Carbene Activation of P 4 and Subsequent Derivatization Jason D. Masuda, Wolfgang W. Schoeller, Bruno Donnadieu, and Guy Bertrand * [*] Dr.

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Early-Late Heterobimetallic Rh-Ti and Rh-Zr Complexes via Addition of Early Metal Chlorides to Mono- and Divalent Rhodium Dan A. Smith and Oleg V. Ozerov* Department

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Single-Crystal-to-Single-Crystal Transformation of an Anion Exchangeable

More information

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions Wing-Leung Wong, Kam-Piu Ho, Lawrence Yoon Suk Lee, Kin-Ming Lam, Zhong-Yuan Zhou, Tak

More information

Supporting Information

Supporting Information Supporting Information Divergent Reactivity of gem-difluoro-enolates towards Nitrogen Electrophiles: Unorthodox Nitroso Aldol Reaction for Rapid Synthesis of -Ketoamides Mallu Kesava Reddy, Isai Ramakrishna,

More information

Supporting Information

Supporting Information Supporting Information Characterization of Intermediates in the C F Activation of the Tetrafluorobenzenes Using a Reactive Ni(PEt 3 ) 2 Synthon: A Combined Computational and Experimental Investigation

More information

Binuclear Rare-Earth Polyhydride Complexes Bearing both

Binuclear Rare-Earth Polyhydride Complexes Bearing both Supporting Information Binuclear Rare-Earth Polyhydride Complexes Bearing both Terminal and Bridging Hydride Ligands Jianhua Cheng, Haiyu Wang, Masayoshi Nishiura and Zhaomin Hou* S1 Contents Experimental

More information

Synthesis of Vinyl Germylenes

Synthesis of Vinyl Germylenes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Material for Synthesis of Vinyl Germylenes Małgorzata Walewska, Judith Baumgartner,*

More information

Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes to Borinic Esters Lauren E. Longobardi, Connie Tang, and Douglas W.

Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes to Borinic Esters Lauren E. Longobardi, Connie Tang, and Douglas W. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Supplementary Data for: Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes

More information

Supporting Information

Supporting Information Supporting Information Tris(allyl)indium Compounds: Synthesis and Structural Characterization Ilja Peckermann, Gerhard Raabe, Thomas P. Spaniol and Jun Okuda* Synthesis and characterization Figure S1:

More information

Heterolytic H 2 Activation Mediated by Low Coordinate L 3 Fe-(µ-N)-FeL 3 Complexes to Generate Fe(µ-NH)(µ-H)Fe Species

Heterolytic H 2 Activation Mediated by Low Coordinate L 3 Fe-(µ-N)-FeL 3 Complexes to Generate Fe(µ-NH)(µ-H)Fe Species Heterolytic H 2 Activation Mediated by Low Coordinate L 3 Fe-(µ-N)-FeL 3 Complexes to Generate Fe(µ-NH)(µ-H)Fe Species Steven D. Brown and Jonas C. Peters Division of Chemistry and Chemical Engineering,

More information

Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms. Supporting Information

Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms. Supporting Information Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms Theodore A. Betley and Jonas C. Peters Division of Chemistry and Chemical Engineering Arnold and Mabel Beckman Laboratories of

More information

Copper Mediated Fluorination of Aryl Iodides

Copper Mediated Fluorination of Aryl Iodides Copper Mediated Fluorination of Aryl Iodides Patrick S. Fier and John F. Hartwig* Department of Chemistry, University of California, Berkeley, California 94720, United States. Supporting Information Table

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 208 Supporting Information Cobalt-Catalyzed Regioselective Syntheses of Indeno[2,-c]pyridines

More information

Supplementary Information

Supplementary Information Supplementary Information Eco-Friendly Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones Catalyzed by FeCl 3 /Al 2 O 3 and Analysis of Large 1 H NMR Diastereotopic Effect Isabel Monreal, a Mariano Sánchez-Castellanos,

More information

Supporting Information for. Organogold oligomers: exploiting iclick and aurophilic cluster formation to prepare solution stable Au4 repeating units.

Supporting Information for. Organogold oligomers: exploiting iclick and aurophilic cluster formation to prepare solution stable Au4 repeating units. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Supporting Information for Organogold oligomers: exploiting iclick and aurophilic cluster

More information

Supporting Information. for

Supporting Information. for Supporting Information for "Inverse-Electron-Demand" Ligand Substitution in Palladium(0) Olefin Complexes Shannon S. Stahl,* Joseph L. Thorman, Namal de Silva, Ilia A. Guzei, and Robert W. Clark Department

More information

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex Mechanistic insights on the controlled switch from oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex Emmanuelle Despagnet-Ayoub, *,a,b Michael K. Takase, c Lawrence M.

More information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases Jingming Zhang, a Haohan Wu, a Thomas J. Emge, a and Jing Li* a a Department of Chemistry and Chemical Biology,

More information

Seth B. Harkins and Jonas C. Peters

Seth B. Harkins and Jonas C. Peters Amido-bridged Cu 2 N 2 diamond cores that minimize structural reorganization and facilitate reversible redox behavior between a Cu 1 Cu 1 and a Class III delocalized Cu 1.5 Cu 1.5 species. Seth B. Harkins

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information for uminum complexes containing salicylbenzoxazole

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Supporting Information Unmasking Representative Structures of TMP-Active Hauser and Turbo Hauser Bases Pablo García-Álvarez, David V. Graham,

More information

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Electronic supplementary information Strategy to Enhance Solid-State Fluorescence and

More information

Efficient Homogeneous Catalysis in the Reduction of CO 2 to CO

Efficient Homogeneous Catalysis in the Reduction of CO 2 to CO Supporting Information for: Efficient Homogeneous Catalysis in the Reduction of CO 2 to CO David S. Laitar, Peter Müller, Joseph P. Sadighi* Full listing for text reference (3): Arakawa, H.; Aresta, M.;

More information

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to Vinyl Sulfone: An Organocatalytic Access to Chiral 3-Fluoro-3-Substituted Oxindoles Xiaowei Dou and Yixin Lu * Department of Chemistry & Medicinal

More information

Chelsea A. Huff, Jeff W. Kampf, and Melanie S. Sanford* Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109

Chelsea A. Huff, Jeff W. Kampf, and Melanie S. Sanford* Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109 Role of a Non-Innocent Pincer Ligand in the Activation of CO 2 at (PNN)Ru(H)(CO) Chelsea A. Huff, Jeff W. Kampf, and Melanie S. Sanford* Department of Chemistry, University of Michigan, 930 N. University

More information

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic Supporting information (+)- and ( )-Ecarlottones, Uncommon Chalconoids from Fissistigma latifolium with Proapoptotic Activity Charlotte Gény, Alma Abou Samra, Pascal Retailleau, Bogdan I. Iorga, Hristo

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Crystal-to-Crystal Transformation between Three Cu(I) Coordination Polymers and Structural Evidence for Luminescence Thermochromism Tae Ho

More information

4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1)

4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1) 4 Piperidine derivatives 4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1) 4.1.1 Synthesis To a well stirred solution of 3-methyl-2,6-bis(3,4,5-trimethoxyphenyl)piperi dine-4-one

More information

Supporting Information

Supporting Information Supporting Information Synthesis of H-Indazoles from Imidates and Nitrosobenzenes via Synergistic Rhodium/Copper Catalysis Qiang Wang and Xingwei Li* Dalian Institute of Chemical Physics, Chinese Academy

More information

Supporting Information

Supporting Information Supporting Information One Pot Synthesis of 1,3- Bis(phosphinomethyl)arene PCP/PNP Pincer Ligands and Their Nickel Complexes Wei-Chun Shih and Oleg V. Ozerov* Department of Chemistry, Texas A&M University,

More information

Supporting information

Supporting information Supporting information Sensitizing Tb(III) and Eu(III) Emission with Triarylboron Functionalized 1,3-diketonato Ligands Larissa F. Smith, Barry A. Blight, Hee-Jun Park, and Suning Wang* Department of Chemistry,

More information

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies Satheesh Ellipilli, Sandeep Palvai and Krishna N Ganesh* Chemical Biology Unit,

More information

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content Electronic Supporting Information For Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization Ananya Banik, Rupankar Paira*,, Bikash Kumar Shaw, Gonela Vijaykumar and Swadhin K. Mandal*,

More information

Chiral Sila[1]ferrocenophanes

Chiral Sila[1]ferrocenophanes Supporting Information Thermal Ring-Opening Polymerization of Planar- Chiral Sila[1]ferrocenophanes Elaheh Khozeimeh Sarbisheh, Jose Esteban Flores, Brady Anderson, Jianfeng Zhu, # and Jens Müller*, Department

More information

Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide. Ka-Cheong Lau, Richard F. Jordan*

Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide. Ka-Cheong Lau, Richard F. Jordan* Supporting Information for: Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide Ka-Cheong Lau, Richard F. Jordan* Department of Chemistry, The University of Chicago, 5735 South Ellis

More information

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes Ashley Carter, Alexander Mason, Michael A. Baker, Donald G. Bettler, Angelo Changas, Colin D. McMillen,

More information

Synthesis and Hydrogenation of Bis(imino)pyridine Iron Imides

Synthesis and Hydrogenation of Bis(imino)pyridine Iron Imides Synthesis and Hydrogenation of Bis(imino)pyridine Iron Imides Suzanne C. Bart, Emil Lobkovsky, Eckhard Bill and Paul J. Chirik* pc92@cornell.edu Department of Chemistry and Chemical Biology, Baker Laboratory,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Cleave and Capture Chemistry: Synergic Fragmentation of THF Robert E. Mulvey 1*, Victoria L. Blair 1, William Clegg 2, Alan R. Kennedy 1, Jan Klett 1, Luca Russo 2 1 WestCHEM,

More information

Supporting Information. Table of Contents

Supporting Information. Table of Contents Supporting Information Selective Anion Exchange and Tunable Luminescent Behaviors of Metal-Organic Framework Based Supramolecular Isomers Biplab Manna, Shweta Singh, Avishek Karmakar, Aamod V.Desai and

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-cinnamyl-chiral alcohol Lab ID: 12040 User:

More information

Supporting Information

Supporting Information Cationic Tungsten-Oxo-Alkylidene-N-Heterocyclic Carbene Complexes: Highly Active Olefin Metathesis Catalysts Roman Schowner, Wolfgang Frey, Michael R. Buchmeiser * Institute of Polymer Chemistry, University

More information

Targeting an Achilles Heel in Olefin Metathesis: A Strategy for High-Yield Synthesis of Second-Generation Grubbs Methylidene Catalysts

Targeting an Achilles Heel in Olefin Metathesis: A Strategy for High-Yield Synthesis of Second-Generation Grubbs Methylidene Catalysts Supplementary Information for: Targeting an Achilles Heel in Olefin Metathesis: A Strategy for High-Yield Synthesis of Second-Generation Grubbs Methylidene Catalysts Justin A.M. Lummiss, a Nicholas J.

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information [7]-Helicene: A Chiral Molecular Tweezer for Silver(I) Salts. Matthew J. Fuchter, a* Julia Schaefer, b Dilraj K. Judge, a Benjamin Wardzinski, a Marko Weimar, a Ingo

More information

Regioselective Synthesis of the Tricyclic Core of Lateriflorone

Regioselective Synthesis of the Tricyclic Core of Lateriflorone Regioselective Synthesis of the Tricyclic Core of Lateriflorone Eric J. Tisdale, Hongmei Li, Binh G. Vong, Sun Hee Kim, Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of

More information

Table S2a. Crystal data and structure refinement for 2 Table S2b. Selected bond lengths and angles for 2 Figure S3.

Table S2a. Crystal data and structure refinement for 2 Table S2b. Selected bond lengths and angles for 2 Figure S3. Four-Coordinate, Trigonal Pyramidal Pt(II) and Pd(II) Complexes Charlene Tsay, Neal P. Mankad, Jonas C. Peters* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts

More information

Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane

Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane Electronic Supplementary Information (ESI) Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane Jie Liu, ab Qing Meng, a Xiaotao Zhang, a Xiuqiang Lu, a Ping

More information

Supporting Information

Supporting Information Supporting Information New Hexaphosphane Ligands 1,3,5-C 6 H 3 {p-c 6 H 4 N(PX 2 ) 2 } 3 [X = Cl, F, C 6 H 3 OMe(C 3 H 5 )]: Synthesis, Derivatization and, Palladium(II) and Platinum(II) Complexes Sowmya

More information

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information for: Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their

More information

High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene

High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene Electronic Supplementary Information High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene Experimental details Synthesis of pyreno[4,5-a]coronene: In 1960 E. Clar et.al 1 and

More information

Super-Resolution Monitoring of Mitochondrial Dynamics upon. Time-Gated Photo-Triggered Release of Nitric Oxide

Super-Resolution Monitoring of Mitochondrial Dynamics upon. Time-Gated Photo-Triggered Release of Nitric Oxide Supporting Information for Super-Resolution Monitoring of Mitochondrial Dynamics upon Time-Gated Photo-Triggered Release of Nitric Oxide Haihong He a, Zhiwei Ye b, Yi Xiao b, *, Wei Yang b, *, Xuhong Qian

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 Template-directed synthesis

More information

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or Ethylene Trimerization Catalysts Based on Chromium Complexes with a Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or ortho-thiomethoxy Substituents: Well Defined Catalyst Precursors and

More information

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene Gaurav Bhalla, Xiang Yang Liu, Jonas Oxgaard, William A. Goddard, III, Roy A. Periana* Loker Hydrocarbon

More information

Supporting Information

Supporting Information Supporting Information Tris(2-dimethylaminoethyl)amine: A simple new tripodal polyamine ligand for Group 1 metals David M. Cousins, Matthew G. Davidson,* Catherine J. Frankis, Daniel García-Vivó and Mary

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Supporting Information Sulfonato-imino copper(ii) complexes : fast and general Chan-

More information

Supporting Information. for. Synthetic routes to [Au(NHC)(OH)] (NHC = N- heterocyclic carbene) complexes

Supporting Information. for. Synthetic routes to [Au(NHC)(OH)] (NHC = N- heterocyclic carbene) complexes Supporting Information for Synthetic routes to [Au(HC)(OH)] (HC = - heterocyclic carbene) complexes Adrián Gómez-Suárez, Rubén S, Alexandra M. Z. Slawin and Steven P. olan* EaStChem School of chemistry,

More information

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke *

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke * Development of a New Building Block for the Synthesis of Silicon-Based Drugs and Odorants: Alternative Synthesis of the Retinoid Agonist Disila-bexarotene Matthias W. Büttner, Jennifer B. Nätscher, Christian

More information

A Facile Route to Rare Heterobimetallic Aluminum-Copper. and Aluminum-Zinc Selenide Clusters

A Facile Route to Rare Heterobimetallic Aluminum-Copper. and Aluminum-Zinc Selenide Clusters Supporting Information For A Facile Route to Rare Heterobimetallic Aluminum-Copper and Aluminum-Zinc Selenide Clusters Bin Li, Jiancheng Li, Rui Liu, Hongping Zhu*, and Herbert W. Roesky*, State Key Laboratory

More information

Supporting Information for XXXXXXX

Supporting Information for XXXXXXX Supporting Information for XXXXXXX The First Imidazolium-Substituted Metal Alkylidene Giovanni Occhipinti, a Hans-René Bjørsvik, a Karl Wilhelm Törnroos, a Alois Fürstner, b and Vidar R. Jensen a, * a

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Facile Heterolytic H 2 Activation by Amines and B(C 6 F 5 ) 3 Victor Sumerin, Felix Schulz, Martin Nieger, Markku Leskelä, Timo Repo,* and

More information

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2 S1 Chemistry at Boron: Synthesis and Properties of Red to Near-IR Fluorescent Dyes based on Boron Substituted Diisoindolomethene Frameworks Gilles Ulrich, a, * Sebastien Goeb a, Antoinette De Nicola a,

More information

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage SUPPORTING INFORMATION Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage Chi Yang, a Ushasree Kaipa, a Qian Zhang Mather,

More information

Supporting Information for

Supporting Information for Supporting Information for Nickel(I)-mediated transformations of carbon dioxide in closed synthetic cycles: reductive cleavage and coupling of CO 2 generating Ni I CO, Ni II CO 3 and Ni II C 2 O 4 Ni II

More information

Supporting Information for

Supporting Information for Supporting Information for Reactivity of Uranium(IV) Bridged Chalcogenido Complexes U IV E U IV (E = S, Se) with Elemental Sulfur and Selenium: Synthesis of Polychalcogenide-Bridged Uranium Complexes Sebastian

More information

C-H Activation Reactions of Ruthenium N-Heterocyclic Carbene. Complexes: Application in a Catalytic Tandem Reaction Involving C-C

C-H Activation Reactions of Ruthenium N-Heterocyclic Carbene. Complexes: Application in a Catalytic Tandem Reaction Involving C-C SUPPORTING INFORMATION C-H Activation Reactions of Ruthenium N-Heterocyclic Carbene Complexes: Application in a Catalytic Tandem Reaction Involving C-C Bond Formation from Alcohols Suzanne Burling, Belinda

More information

Red-light activated photocorms of Mn(I) species bearing electron deficient 2,2'-azopyridines.

Red-light activated photocorms of Mn(I) species bearing electron deficient 2,2'-azopyridines. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supporting information for Red-light activated photocorms of Mn(I) species bearing electron

More information

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting Information for Pyridyl vs bipyridyl anchoring groups of porphyrin sensitizers for

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supporting Information Catalyst Design Based on Agostic Interaction: Synthesis, Characterization,

More information

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes Supporting Information for Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes Marco Blangetti, Patricia Fleming and Donal F. O Shea* Centre for Synthesis and Chemical

More information

Supporting Information

Supporting Information Supporting Information An efficient and general method for the Heck and Buchwald- Hartwig coupling reactions of aryl chlorides Dong-Hwan Lee, Abu Taher, Shahin Hossain and Myung-Jong Jin* Department of

More information

Supporting Information

Supporting Information Supporting Information Activation of Ene-Diamido Samarium Methoxide with Hydrosilane for Selectively Catalytic Hydrosilylation of Alkenes and Polymerization of Styrene: an Experimental and Theoretical

More information

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4)

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4) Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4) A solution of propenyl magnesium bromide in THF (17.5 mmol) under nitrogen atmosphere was cooled in an ice bath and

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany Sandwich Complexes Containing Bent Palladium ains Yasuki Tatsumi, Katsunori Shirato, Tetsuro Murahashi,* Sensuke Ogoshi and Hideo Kurosawa*

More information

Functionalization of the Aryl Moiety in the Pincer Complex. (NCN)Ni III Br 2 :

Functionalization of the Aryl Moiety in the Pincer Complex. (NCN)Ni III Br 2 : Electronic Supporting Information For : Functionalization of the Aryl Moiety in the Pincer Complex (NCN)Ni III Br 2 : Insights on Ni III -Promoted Carbon-Heteroatom Coupling Jean-Philippe Cloutier and

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supporting Information Over or under: Hydride attack at the metal versus the coordinated

More information

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence APPENDIX E Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence Temperature Designation CCDC Page 100 K MLC18 761599 E2 200 K MLC17 762705 E17 300 K MLC19 763335 E31 E2 CALIFORNIA INSTITUTE

More information

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE 139 CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE 6.1 INTRODUCTION This chapter describes the crystal and molecular structure of a dehydroacetic acid substituted

More information

Supplementary Information

Supplementary Information Supplementary Information Tuning the Luminescence of Metal-Organic Frameworks for Detection of Energetic Heterocyclic Compounds Yuexin Guo, Xiao Feng,*, Tianyu Han, Shan Wang, Zhengguo Lin, Yuping Dong,

More information

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK1360707 Vassil I. Elitzin, Kimberly A. Harvey, Hyunjung Kim, Matthew Salmons, Matthew J. Sharp*, Elie

More information

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones Daisuke Uraguchi, Takaki Ito, Shinji Nakamura, and Takashi oi* Department of Applied Chemistry, Graduate School

More information

Supplementary Information: Selective Catalytic Oxidation of Sugar Alcohols to Lactic acid

Supplementary Information: Selective Catalytic Oxidation of Sugar Alcohols to Lactic acid Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2014 Supplementary Information: Selective Catalytic Oxidation of Sugar Alcohols to Lactic acid

More information

Supplementary Information

Supplementary Information Supplementary Information NE Difference Spectroscopy: SnPh 3 CH (b) Me (b) C()CH (a) Me (a) C()N Me (d) Me (c) Irradiated signal Enhanced signal(s) (%) Me (a) Me (c) 0.5, Me (d) 0.6 Me (b) - Me (c) H (a)

More information

Supplementary Information

Supplementary Information Site-Selective Cyclometalation of a Metal-Organic Framework Phuong V. Dau, Min Kim, and Seth M. Cohen* Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive,

More information

Supporting Information

Supporting Information Supporting Information An Extremely Active and General Catalyst for Suzuki Coupling Reactions of Unreactive Aryl Chlorides Dong-Hwan Lee and Myung-Jong Jin* School of Chemical Science and Engineering,

More information

Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3

Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3 S1 Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3 David Bézier, Sehoon Park and Maurice Brookhart* Department of Chemistry, University of North Carolina at Chapel Hill,

More information

The oxide-route for the preparation of

The oxide-route for the preparation of Supporting Information for: The oxide-route for the preparation of mercury(ii) N-heterocyclic carbene complexes. Simon Pelz and Fabian Mohr* Fachbereich C-Anorganische Chemie, Bergische Universität Wuppertal,

More information

White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule

White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule www.sciencemag.org/cgi/content/full/324/5935/1697/dc1 Supporting Online Material for White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule Prasenjit Mal, Boris Breiner, Kari Rissanen,

More information

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 A rare case of a dye co-crystal showing better dyeing performance Hui-Fen Qian, Yin-Ge Wang,

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY APPENDIX F Crystallographic Data for TBA Tb(DO2A)(F-DPA) CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY Date 11 January 2010 Crystal Structure Analysis of: MLC23

More information