CC: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-PS1-4)

Size: px
Start display at page:

Download "CC: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-PS1-4)"

Transcription

1 SCUSD 5E Lesson Plan Lesson Series Title: STATES OF MATTER Unit: STRUCTURE AND PROPERTIES OF MATTER Teacher: Maria (Mafe) Aguilar Number of Days: 6 Subject/Grade Level: 8 th NOTE: This lesson plan is going to be presented at the California Science Teachers Association Conference in October 2017 in Sacramento, CA. Teachers will engage in 1.5 hour workshop to develop the particle arrangement of solids, liquids and gases based on the evidence collected during the How Squishable? lab activity. This simulation activity is another way of visualizing the particles of matter. Previous simulation techniques taught to my students used UC Davis-CSTEM QAnimate program. Content Standards and Understandings (NGSS/CCSS): MS-PS1-4. Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. [Clarification Statement: Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawings and diagrams. Examples of particles could include molecules or inert atoms. Examples of pure substances could include water, carbon dioxide, and helium.] DCI: PS1.A: Structure and Properties of Matter Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. (MS-PS1-2),(MS-PS1-3) Gases and liquids are made of molecules or inert atoms that are moving about relative to each other. (MS-PS1-4) In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations. (MS-PS1-4) Solids may be formed from molecules, or they may be extended structures with repeating subunits (e.g., crystals). (MS-PS1-1) CC: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-PS1-4) S&E Practices: Developing and Using Models Modeling in 6 8 builds on K 5 and progresses to developing, using and revising models to describe, test, and predict more abstract phenomena and design systems. Develop a model to predict and/or describe phenomena. (MS-PS1-1),(MS-PS1-4) Develop a model to describe unobservable mechanisms. (MS-PS1-5) Common Core State Standards Connections: ELA/Literacy - RST Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (MS-PS1-6) RST Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-PS1-1),(MS- PS1-2),(MS-PS1-4),(MS-PS1-5) Driving Questions: (This questions will be formulated by the students after the engage activity. Is silly putty or oobleck solid? Differentiation strategies to meet diverse learner needs: Students will work in groups throughout the entire unit lesson. Students will use reading, writing and speaking literacy skills during metacognition to develop the ideas of the Particles of Matter model. Students will engage in hands on and visualization activities to represent unseen objects or particles of matter. Students will also engage in arguing using evidence in developing the particle model of the states of matter.

2 ENGAGEMENT (Day 1) Describe how the teacher will capture students interest. What kind of questions should the students ask themselves after the engagement? Students: 1. Students will make a silly putty or oobleck using simple household materials When done, ask students to make NOTICES.and WONDERINGS by filling out their interactive notebooks. Teacher Notes: When asking the students to engage in a phenomenon, use the questions to redirect phenomena protocol in order to generate related notices and wonderings. What Do You See? Protocol Review the image. Record your answers to the following questions: What do you notice about the image? What phenomenon is the image displaying? What in the image do you find surprising? What questions can you ask about the phenomenon? I Notice I Wonder. When asking the students to formulate questions as wonderings, ask them to complete the sentence stem I wonder in order to generate intuitive questions that are not usually answerable by yes or no. Rather, questions generated using this sentence frame, are how and why questions. From the list of questions, focus on one to investigate, one that is related to the focus DCI: structure and properties of solids, liquids and gases. EXPLORATION (Days 2-3) Describe what hands-on/minds-on activities students will be doing. List big idea conceptual questions the teacher will use to encourage and/or focus students exploration Students: 1. Driving Question: Is oobleck or silly putty solid or liquid? (Write in INB.) Before formulating a claim, uncover students ideas about solids based on what they know about particles of matter. 2. Uncovering Student Ideas: Is it Solid? By Paige Keeley 924/Centricity/ModuleInstance/22013/Is%20It%20a% 20Solid.pdf Consider these questions in formulating your claim: a. Why do solids appear the way they do? b. How do the particle arrangement of matter relate to their properties? c. Solids, liquids, and gases are all made of particles. Are these particles close together? far apart? NOTE: Do not discuss their responses. 3. Formulate a claim Example: An oobleck is a fluid because it doesn t maintain a specific shape. Teacher: Your task is to develop a model that explains the properties of the states of matter and use these ideas to support your claim. Introduce the activity How Squishable? (CSUS SASP 2011) 1. Purpose and expectations 2. Types of data to be obtained 3. Safety precautions Is it solid? 20Cards_SandC.pdf Teacher must have had a separate lesson on how students engage in Claim-Evidence-Reasoning CaseOfMissingMeatballs.pdf

3 4. Perform How Squishable? Follow the procedures as described in the handout. Essential Question: How do the particles of matter relate to their properties? Conceptual questions to be used to encourage and focus students exploration are found in the handout. howsquishable.pdf EXPLANATION (Days 3-4) Student explanations should precede introduction of terms or explanations by the teacher. What questions or techniques will the teacher use to help students connect their exploration to the concept under examination? List higher order thinking questions which teachers will use to solicit student explanations and help them to justify their explanations. Activate prior knowledge: This stage is necessary to develop the reasoning behind the evidence collected in the activity. What do you know about particles from our previous explorations? 1. Particles make up matter. 2. Particles have some stickiness between each other. 3. Particles move. 4. Particles are very tiny. Teacher s notes: You do not need to front load the vocabulary. Particles need not be called atoms or molecules. You can distinguish the times of particles later if your unit plan is in the direction of types of particles in relation to interactions of matter. Stickiness maybe referred to as attraction. Energy of particle motion may be discussed later during state changes. To begin exploring the relationship between the particles of the states of matter and their properties, students will draw how the particles are arranged in each state. If you can zoom into each of the samples of matter, how are their particles arranged? Solids Liquids Gases Teacher guides students to summarize the pieces of evidence from each part of the activity and develop the ideas that describe the properties of solids, liquids and gases. These ideas will comprise the particle model of the states of matter. Evidence: Part 1: Blocked and Unblocked Empty Syringe It was hard to pull the plunger when the nozzle is blocked. The plunger returns to zero volume reading when released. Part 2: Air in Syringe, Nozzle is blocked Plunger can be pushed to a certain volume. Volume decreases as the plunger is pushed down the syringe. Plunger goes back up to original volume when the pushing force is removed. Reasoning: Big Ideas (Describe the behavior of the particles based on the evidence collected.) Part 1: Empty Syringe Few air particles are trapped in the nozzle of the syringe to push the plunger when the nozzle is blocked. If the nozzle is unblocked, more air particles from the surroundings can freely enter the syringe. Since gas particles are moving, they tend to push each other and the surface of the plunger. Part 2: Air in the Syringe, Nozzle is blocked Air particles do not have stickiness. There are wide spaces between air particles. Air particles are compressible. Air particles constantly move.

4 Part 3: Liquid in Syringe, Nozzle is blocked Plunger does not move. Volume stays the same. Liquid flows. Part 4: Solid in Syringe, Nozzle is not blocked Plunger can be pushed only until the surface of the solid substance in the syringe. The solid material kept its shape. Part 3: Liquid in Syringe Liquid particles are as close to each other like the solid particles. Liquid particles have some stickiness.. Part 4: Solid in Syringe, nozzle is not blocked Solid particles are as close to each other like liquid particles. Solids particles have definite arrangement.. Based on these pieces of evidence and reasoning, revisit your drawings before performing How Squishable syringe activity. Re-draw the arrangement of the particles of each state of matter. Solids Liquids Gases ELABORATION Describe how students will develop a more sophisticated understanding of the concept. What vocabulary will be introduced and how will it connect to students observations? How is this knowledge applied in our daily lives? Based on the evidence collected, ask the student to relate their ideas about the behavior of the particles to their observed properties of solids, liquids and gases. 1. Air particles make up gases. They have very little to no stickiness or attraction between each other allowing them to move as far away as possible from each other and take up the space of their container. Since they are not attracted to each other, gases do not have definite volume and shape. 2. Liquid particles have some attraction between each other allowing them to flow together and take up the shape of their container. They have not definite shape. Liquids have definite volume since the particles are as close to each other as possible. 3. Solid particles have very strong attraction between each other. They form definite particle arrangement that allow solids to have definite shape and volume. Revisiting Uncovering Student Ideas: Is it Solid? Discuss students ideas why each item is a solid or not using the ideas developed about particles and states of matter. Use this NSTA article to guide your discussion with your students. Simulate the behavior of the particles of matter through Alice programming. (Days 5-6) Criteria for success: 1. There should be 3 scenes: solids, liquids and gases 2. Each scene should demonstrate the particle arrangement in each state. 3. Each scene should describe the properties of solids, liquids and gases. 4. Extra: each scene should be able to demonstrate the movement of the particles using event listeners.

5 EVALUATION How will students demonstrate that they have achieved the lesson objective? This should be embedded throughout the lesson as well as at the end of the lesson Reading in science: What is an oobleck/silly putty? Based on the evidence collected from the activity and the ideas developed on the particle model of the states of matter, and the ideas from the reading, revisit your claim. Write a complete explanation using the C-E-R template whether an oobleck or silly putty is a solid or not. Materials Required for This Lesson/Activity Quantity Description Potential Supplier (item #) Estimated Price 9x3=27 60-mL syringes (used for oral feeding for newly born animals or in the hospitals) Any farm / feed store; hospital supplier Amazon.com yringe&tag=googhydr- 20&index=aps&hvadid= &hvpos=1t1&hvnetw =g&hvrand= &hvpone=1264&hvptw o=37&hvqmt=e&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy = &hvtargid=kwd &ref=pd_sl_6vggbjeuhg_e_p20 S5.99/pack of 5 9 x 2 Plastic cups Any grocery stores Hefty Deluxe Clear Plastic Party Cups (9 Ounce, 40 Count) $3.86 per pack 9 1-inch wooden cubes (to fill the 60- ml syringes for solid in syringe) 9 Jumbo sidewalk chalk (used in place of wooden cubes) Amazon.com Chica- Jo/dp/B00J1KQYEQ/ref=sr_1_1?ie=UTF8&qid= &sr=8-1&keywords=i-inch+cubes Jo-Ann s 20pk/ html#q=chalk&start=1 $ 10.99/ pack of 10 $3.99/bucket of 20

The Next Generation Science Standards (NGSS)

The Next Generation Science Standards (NGSS) The Next Generation Science Standards (NGSS) CHAPTER 2, LESSON 1 HEAT, TEMPERATURE, AND CONDUCTION MS-PS1-4. Develop a model that predicts and describes changes in particle motion, temperature, and state

More information

The Next Generation Science Standards (NGSS)

The Next Generation Science Standards (NGSS) The Next Generation Science Standards (NGSS) CHAPTER 3, LESSON 1: WHAT IS DENSITY? MS-PS1-1. Develop models to describe the atomic composition of simple molecules and extended structures. DISCIPLINARY

More information

B L U E V A L L E Y D I S T R I C T CURRI C U L U M Science 8 th grade

B L U E V A L L E Y D I S T R I C T CURRI C U L U M Science 8 th grade B L U E V A L L E Y D I S T R I C T CURRI C U L U M Science 8 th grade ORGANIZING THEME/TOPIC UNIT 1: ENERGY Definitions of Energy Potential and Kinetic Energy Conservation of Energy Energy Transfer MS-PS3-1:

More information

6th Grade: Great Salt Lake is Salty

6th Grade: Great Salt Lake is Salty Curriculum written by Megan Black in partnership with The Great Salt Lake Institute at Westminster College. 6th Grade: Great Salt Lake is Salty Lesson Description: In this lesson students will compare

More information

Performance Expectation MS-PS1-1: Develop models to describe the atomic composition of simple molecules and extended structures.

Performance Expectation MS-PS1-1: Develop models to describe the atomic composition of simple molecules and extended structures. CHEMISTRY OF MATERIALS OVERVIEW- NGSS Performance Expectation MS-PS1-1: Develop models to describe the atomic composition of simple molecules and extended structures. NGPEP11 DCI: Substances are made from

More information

The Next Generation Science Standards (NGSS)

The Next Generation Science Standards (NGSS) The Next Generation Science Standards (NGSS) CHAPTER 1, LESSON 1 MOLECULES MATTER MS-PS1-4. Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance

More information

Reviewing the Alignment of IPS with NGSS

Reviewing the Alignment of IPS with NGSS Reviewing the Alignment of IPS with NGSS Harold A. Pratt & Robert D. Stair Introductory Physical Science (IPS) was developed long before the release of the Next Generation Science Standards (NGSS); nevertheless,

More information

Name Date CUMULATIVE TEST FOR LESSON CLUSTERS 1-4

Name Date CUMULATIVE TEST FOR LESSON CLUSTERS 1-4 Cumulative Test 1 Name Date CUMULATIVE TEST FOR LESSON CLUSTERS 1-4 1. Why can you change ice into water but not into glass? 2. Why can't you see air? 3. Describe the ways in which ice, liquid water, and

More information

What Is The Matter? Matter Concept Map

What Is The Matter? Matter Concept Map What Is The Matter? Matter Concept Map Phases of Matter Solid Liquid Gas Use the selections below to complete the concept map for the phases of matter. Write the letter of each characteristic in the appropriate

More information

DEMONSTRATION 4.1 MOLECULES HITTING EACH OTHER

DEMONSTRATION 4.1 MOLECULES HITTING EACH OTHER DEMONSTRATION 4.1 MOLECULES HITTING EACH OTHER Directions for doing the demonstration are in the Science Book Teacher's Guide. 1. Students should include these ideas: The air moving out of the hair dryer

More information

An Introduction to The Next Generation Science Standards. NSTA National Conference San Antonio, Texas April 11-14, 2013

An Introduction to The Next Generation Science Standards. NSTA National Conference San Antonio, Texas April 11-14, 2013 An Introduction to The Next Generation Science Standards NSTA National Conference San Antonio, Texas April 11-14, 2013 Science and Engineering Practices in the NGSS Colorado Science Education Network Denver,

More information

UC Irvine FOCUS! 5 E Lesson Plan Title: Marble Isotope Lab Grade Level and Course: 8 th Grade Physical Science and 9-12 High School Chemistry

UC Irvine FOCUS! 5 E Lesson Plan Title: Marble Isotope Lab Grade Level and Course: 8 th Grade Physical Science and 9-12 High School Chemistry UC Irvine FOCUS! 5 E Lesson Plan Title: Marble Isotope Lab Grade Level and Course: 8 th Grade Physical Science and 9-12 High School Chemistry Materials: Red, blue and yellow marbles (25 each) Instructional

More information

Grade Six: Earthquakes/Volcanoes Lesson 6.2: Fault Formations

Grade Six: Earthquakes/Volcanoes Lesson 6.2: Fault Formations Lesson Concept Link Time Grade Six: Earthquakes/Volcanoes Lesson 6.2: Fault Formations Forces in the Earth (tension, compression, shearing) cause stress at plate boundaries. Lesson 6.2 builds on the earthquake

More information

All instruction should be three-dimensional. Page 1 of 12

All instruction should be three-dimensional. Page 1 of 12 High School Conceptual Progressions Model Course 1 - Bundle 2 Electrical Forces and Matter or Interactions Between Particles This is the second bundle of the High School Conceptual Progressions Model Course

More information

States of Matter: A Solid Lesson where Liquids Can be a Gas!

States of Matter: A Solid Lesson where Liquids Can be a Gas! TEACHER GUIDE STATES OF MATTER 60 Minute Physical Science Lesson Science- to- Go! Program Grades: 1-3 States of Matter: A Solid Lesson where Liquids Can be a Gas! Description Your classroom will be converted

More information

Investigation 4: Fizz Quiz

Investigation 4: Fizz Quiz 5 th Science Notebook Mixtures and Solutions Investigation 4 Investigation 4: Fizz Quiz Name: Big Question: How can matter be changed? Explain. 1 Alignment with New York State Science Standards & Performance

More information

UC Irvine FOCUS! 5 E Lesson Plan

UC Irvine FOCUS! 5 E Lesson Plan UC Irvine FOCUS! 5 E Lesson Plan Title: Stomp Rockets Grade Level and Course: Pre-Algebra, Geometry, Grade 8 Physical Science, Grades 9-12 Physics (extension) - Trigonometry Materials: 1 stomp rocket per

More information

TEACHER NOTES: ICE CUBE POSTER

TEACHER NOTES: ICE CUBE POSTER TEACHER NOTES: NATIONAL CURRICULUM LINKS THE PARTICULATE NATURE OF MATTER the properties of the different states of matter (solid, liquid and gas) in terms of the particle model, including gas pressure

More information

Physical Science DCI Progression Chart

Physical Science DCI Progression Chart DCI Progression Chart PS1: Matter and Its Interactions Grade Bands PS1.A Structure & Properties of Matter Grades K-2 Grades 3-5 Grades 6-8 Grades 9-12 Second Grade * Different kinds of matter exist and

More information

Chapter 6 Kinetic Particle Theory

Chapter 6 Kinetic Particle Theory Chapter 6 Kinetic Particle Theory To understand that matter is made up of small particles which are in constant and random motion. To describe simple model of solids, liquids and gases, in terms of the

More information

5.PS1.A: Structure and Properties of Matter

5.PS1.A: Structure and Properties of Matter Disciplinary Core Idea 5.PS1.A: Structure and Properties of Matter Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected

More information

MS.PS3.A: Definitions of Energy. MS.PS3.A: Definitions of Energy. MS.PS3.A: Definitions of Energy. Disciplinary Core Idea. Disciplinary Core Idea

MS.PS3.A: Definitions of Energy. MS.PS3.A: Definitions of Energy. MS.PS3.A: Definitions of Energy. Disciplinary Core Idea. Disciplinary Core Idea MS.PS3.A: Definitions of Energy Temperature is not a measure of energy; the relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present.

More information

Middle School Physical Science

Middle School Physical Science Middle School Physical Science Students in middle school continue to develop understanding of four core ideas in the physical sciences. The middle school performance expectations in the Physical Sciences

More information

Middle School Physical Science

Middle School Physical Science Middle School Physical Science Students in middle school continue to develop understanding of four core ideas in the physical sciences. The middle school performance expectations in the Physical Sciences

More information

INTRODUCTION TO LESSON CLUSTER 8 Explaining Evaporation and Boiling

INTRODUCTION TO LESSON CLUSTER 8 Explaining Evaporation and Boiling INTRODUCTION TO LESSON CLUSTER 8 Explaining Evaporation and Boiling A. Lesson Cluster Goals and Lesson Objectives Goals: Students should be able to explain evaporation and boiling, both in macroscopic

More information

Matter. Gas. Solid Liquid. Both shape and volume are not fixed. It has a fixed shape and a fixed volume.

Matter. Gas. Solid Liquid. Both shape and volume are not fixed. It has a fixed shape and a fixed volume. Matter Solid Liquid Gas It has a fixed shape and a fixed volume. It does not have a fixed shape, but it does have a fixed volume. Both shape and volume are not fixed. Felix Yung and John Polias 1 Matter

More information

Hot and Cold Balloons

Hot and Cold Balloons Hot and Cold Balloons Moira filled a balloon with air. She tightly tied the balloon so no air could get in or out of the balloon. She kept the balloon in a warm room. An hour later she put the balloon

More information

Investigation 2: The Moon

Investigation 2: The Moon Science Notebook Sun, Moon, and Stars Investigation 2: The Moon Big Question: How, and why, does the Moon s appearance change? 1 Alignment with New York State Science Standards & Performance Indicators

More information

MIDDLE SCHOOL CYCLING OF EARTH S MATERIALS

MIDDLE SCHOOL CYCLING OF EARTH S MATERIALS 3D Science Performance Assessment Tasks MIDDLE SCHOOL CYCLING OF EARTH S MATERIALS MS: ES: Earth s Materials and Energy Performance Task Task Title Cycling of Earth's Materials Standards Bundle Information

More information

The 5E Model of Teaching Grade 8

The 5E Model of Teaching Grade 8 The 5E Model of Teaching Grade 8 Students Role and Actions in the 5E Model 5E s Consistent with Model Inconsistent with Model Engage Explore Explain Elaborate Evaluate Asks question such as why did this

More information

All instruction should be three-dimensional. NGSS Example Bundles. 1 of 10

All instruction should be three-dimensional. NGSS Example Bundles. 1 of 10 5 th Grade Thematic Model - Bundle 3 Stability and Change in Earth s Systems This is the third bundle of the Fifth Grade Thematic Model. Each bundle has connections to the other bundles in the course,

More information

Kinetic Theory of Matter

Kinetic Theory of Matter 1 Temperature and Thermal Energy Kinetic Theory of Matter The motion of the particles in matter is described by kinetic theory of matter. Matter is composed of particles that are atoms, molecules, or ions

More information

Name Date Block LESSON CLUSTER 6: Expansion and Contraction

Name Date Block LESSON CLUSTER 6: Expansion and Contraction LESSON CLUSTER 6: Expansion and Contraction Did you know that when you say that something is hot or cold, you are actually saying something about the molecules of that substance? Words like hot and cold

More information

Connections to NGSS, CCSS-Mathematics, and CCSS-ELA/Literacy are at the end of this document.

Connections to NGSS, CCSS-Mathematics, and CCSS-ELA/Literacy are at the end of this document. Conservation of Energy at the Skate Park Student Prior Knowledge: The equations for KE and PE and relationships of these with speed and height. Energy cannot be created or destroyed, but it can be transported

More information

Learning Goals and Assessments in IQWST

Learning Goals and Assessments in IQWST Learning Goals and Assessments in IQWST Joseph Krajcik Michigan State University Workshop on Developing Assessments to Meet the Goals of the 2012 Framework for K-12 Science Education September 13, 2012

More information

Bay Area Scientists in Schools Presentation Plan

Bay Area Scientists in Schools Presentation Plan Bay Area Scientists in Schools Presentation Plan Lesson Name Presenter(s) Grade Level 3rd Melting, Freezing, and More!: Phase Transitions Steven Scroggins, Ailey Crow, Tom Holcombe, and Terence Choy California

More information

The performance expectation above was developed using the following elements from A Framework for K-12 Science Education: Disciplinary Core Ideas

The performance expectation above was developed using the following elements from A Framework for K-12 Science Education: Disciplinary Core Ideas HS-PS2-1 HS-PS2-1. Analyze data to support the claim that Newton s second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

More information

Alignment Guide PHYSICAL GLENCOE

Alignment Guide PHYSICAL GLENCOE Alignment Guide PHYSICAL GLENCOE Glencoe Science Your Partner in Understanding and Implementing NGSS* Ease the Transition to Next Generation Science Standards Meeting NGSS Glencoe Science helps ease the

More information

Thanks. You Might Also Like. I look forward helping you focus your instruction and save time prepping.

Thanks. You Might Also Like. I look forward helping you focus your instruction and save time prepping. Thanks Connect Thank you for downloading my product. I truly appreciate your support and look forward to hearing your feedback. You can connect with me and find many free activities and strategies over

More information

Dublin City Schools Science Graded Course of Study Physical Science

Dublin City Schools Science Graded Course of Study Physical Science I. Content Standard: Students demonstrate an understanding of the composition of physical systems and the concepts and principles that describe and predict physical interactions and events in the natural

More information

GRADE EIGHT CURRICULUM. Unit 1: The Makeup and Interactions of Matter

GRADE EIGHT CURRICULUM. Unit 1: The Makeup and Interactions of Matter Chariho Regional School District - Science Curriculum September, 2016 GRADE EIGHT CURRICULUM Unit 1: The Makeup and Interactions of Matter OVERVIEW Summary The performance expectations for this unit help

More information

Energy Changes in Chemical Reactions

Energy Changes in Chemical Reactions Energy Changes in Chemical Reactions Author(s): Ashley Colvin, Yunus Kinkhabwala, Prof. Song Lin, Jonathan Neff, & Greg Sauer Date Created: October 2016 Subject: Chemistry Grade Level: Middle School Standards:

More information

The performance expectation above was developed using the following elements from A Framework for K-12 Science Education: Disciplinary Core Ideas

The performance expectation above was developed using the following elements from A Framework for K-12 Science Education: Disciplinary Core Ideas HS-PS3-1 HS-PS3-1. Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the

More information

MS.PS1.A: Structure and Properties of Matter

MS.PS1.A: Structure and Properties of Matter MS.PS1.A: Structure and Properties of Matter Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. (MS

More information

Unit 5: Types of Interactions. CONTENT AREA: General Physical Science GRADES: 6 UNIT: 5 of 7 Pacing: Approx. 1 Month (January)

Unit 5: Types of Interactions. CONTENT AREA: General Physical Science GRADES: 6 UNIT: 5 of 7 Pacing: Approx. 1 Month (January) Unit 5: Types of Interactions CONTENT AREA: General Physical Science GRADES: 6 UNIT: 5 of 7 Pacing: Approx. 1 Month (January) Science and Engineering Practices Using Mathematics and Computational Thinking

More information

Lesson Plan: Stearic Acid

Lesson Plan: Stearic Acid Lesson Plan: Stearic Acid Created by: In this lesson, students investigate how stearic acid undergoes a 2014 AACT Middle School phase change from solid to liquid and back from liquid to solid. Content

More information

Fairfield Public Schools Science Curriculum Physics

Fairfield Public Schools Science Curriculum Physics Fairfield Public Schools Science Curriculum Physics BOE Approved 5/8/2018 1 Physics: Description Physics is the study of natural phenomena and interactions and between matter and energy using mathematical

More information

Photosynthesis: How do plants get engery? Teacher Version

Photosynthesis: How do plants get engery? Teacher Version Photosynthesis: How do plants get engery? Teacher Version In this lab, students explore the process of photosynthesis in spinach leaves. As oxygen is produced, the density of the leaves change and they

More information

Physical Science and Nature of Science Assessment Probes

Physical Science and Nature of Science Assessment Probes Physical Science and Nature of Science Assessment Probes Concept Matrix...6 Pennies...7 2 Is It a Solid?...25 3 Thermometer...33. 4 Floating Balloon... 39 5 Hot and Cold Balloons...45 6 Mirror on the Wall...5

More information

1) Of solids, liquids, and gases, the common state of matter is the liquid state.

1) Of solids, liquids, and gases, the common state of matter is the liquid state. I. Properties of LIQUIDS: 1) Of solids, liquids, and gases, the common state of matter is the liquid state. a) can exist only within a relatively narrow range of temperature and pressure. 2) The kinetic-molecular

More information

Lesson 1 Solids, Liquids, and Gases

Lesson 1 Solids, Liquids, and Gases Lesson 1 Student Labs and Activities Page Launch Lab 8 Content Vocabulary 9 Lesson Outline 10 MiniLab 12 Content Practice A 13 Content Practice B 14 School to Home 15 Key Concept Builders 16 Enrichment

More information

2. What is meant by Chemical State?. 3. Changing states of matter is about changing,,, and other.

2. What is meant by Chemical State?. 3. Changing states of matter is about changing,,, and other. Name: Date: Period: Matter Mania! Online Computer Activity (3 pages) Part I: Go to http://www.chem4kids.com/ and answer the following questions in complete sentences. a. Click on MATTER (written in yellow)

More information

States of Matter. What physical changes and energy changes occur as matter goes from one state to another?

States of Matter. What physical changes and energy changes occur as matter goes from one state to another? Name States of Matter Date What physical changes and energy changes occur as matter goes from one state to another? Before You Read Before you read the chapter, think about what you know about states of

More information

Next Generation Science Standards for California Public Schools, Kindergarten through Grade Twelve

Next Generation Science Standards for California Public Schools, Kindergarten through Grade Twelve California Department of Education Clarification statements were created by the writers of NGSS to supply examples or additional clarification to the performance expectations and assessment boundary statements.

More information

4.PS4.B: Electromagnetic Radiation

4.PS4.B: Electromagnetic Radiation DCI: Waves and Their Applications in Technologies for Information 4.PS4.A: Wave Properties Waves, which are regular patterns of motion, can be made in water by disturbing the surface. When waves move across

More information

Copyright 2008 NSTA. All rights reserved. For more information, go to Pennies

Copyright 2008 NSTA. All rights reserved. For more information, go to   Pennies Pennies A shiny new penny is made up of atoms. Put an X next to all the things on the list that describe the atoms that make up the shiny new penny. hard soft I N G O D L I B E R T Y W E T R U S T 2 0

More information

Objective Students will gain an understanding of how the properties of a solid material can affect how it interacts with water.

Objective Students will gain an understanding of how the properties of a solid material can affect how it interacts with water. OOBLECK! (1 Hour) Addresses NGSS Level of Difficulty: 4 Grade Range: K-2 OVERVIEW Students will examine the behavior of different types of solids when they are dissolved in water and explain those behaviors

More information

Copyright 2009 NSTA. All rights reserved. For more information, go to Nails in a Jar

Copyright 2009 NSTA. All rights reserved. For more information, go to   Nails in a Jar Nails in a Jar Jake put a handful of wet, iron nails in a glass jar. He tightly closed the lid and set the jar aside. After a few weeks, he noticed that the nails inside the jar were rusty. Which sentence

More information

heat By cillian bryan and scott doyle

heat By cillian bryan and scott doyle heat By cillian bryan and scott doyle What is heat Heat energy is the result of the movement of tiny particles called atoms molecules or ions in solids, liquids and gases. Heat energy can be transferred

More information

UC Irvine FOCUS! 5 E Lesson Plan Title: Acid/Base-pH Lab Grade Level and Course: 8 th grade Physical Science, Grades 9-12 Chemistry Materials:

UC Irvine FOCUS! 5 E Lesson Plan Title: Acid/Base-pH Lab Grade Level and Course: 8 th grade Physical Science, Grades 9-12 Chemistry Materials: UC Irvine FOCUS! 5 E Lesson Plan Title: Acid/Base-pH Lab Grade Level and Course: 8 th grade Physical Science, Grades 9-12 Chemistry Materials: Detergent-quart, shampoo- quart Lemon-juice-quart Vinegar

More information

CHEMICAL REACTION IN A BAGGY (MODIFIED FOR ADEED)

CHEMICAL REACTION IN A BAGGY (MODIFIED FOR ADEED) CHEMICAL REACTION IN A BAGGY (MODIFIED FOR ADEED) Overview: Students investigate chemical reactions using given substances. Students identify chemical reactions in their daily lives. Objectives: The student

More information

Chapter 2, Lesson 5: Changing State Melting

Chapter 2, Lesson 5: Changing State Melting Chapter 2, Lesson 5: Changing State Melting Key Concepts Melting is a process that causes a substance to change from a solid to a liquid. Melting occurs when the molecules of a solid speed up enough that

More information

Content and Vocabulary How They Support Each Other

Content and Vocabulary How They Support Each Other Content and Vocabulary How They Support Each Other 13 th Annual Academic Success Institute March 14, 2015 Sandi Yellenberg sandra_yellenberg@sccoe.org Thermal Expansion An Interactive Lecture Created by

More information

The complete lesson plan for this topic is included below.

The complete lesson plan for this topic is included below. Home Connection Parent Information: Magnets provide a simple way to explore force with children. The power of a magnet is somewhat like magic to them and requires exploration to understand. When forces

More information

Properties of Matter

Properties of Matter Grade 7 Science, Quarter 2, Unit 2.1 Properties of Matter Overview Number of instructional days: 15 (1 day = 50 minutes) Content to be learned Identify different substances using data about characteristic

More information

Bay Area Scientists in Schools Presentation Plan

Bay Area Scientists in Schools Presentation Plan Bay Area Scientists in Schools Presentation Plan Lesson Name Presenter(s) Chemical Reactions Mercedes Taylor, Nick Settineri, Jessica Ziegler, Tyler Hurlburt, Parker Deal Grade Level 5 Standards Connection(s)

More information

2275 Speedway, Mail Code C9000 Austin, TX (512) Planet Fun

2275 Speedway, Mail Code C9000 Austin, TX (512) Planet Fun Lesson Plan for Grades: Middle School Length of Lesson: 70 min Authored by: UT Environmental Science Institute Date created: 12/03/2016 Subject area/course: Mathematics, Astronomy, and Space Materials:

More information

The Next Generation Science Standards (NGSS)

The Next Generation Science Standards (NGSS) The Next Generation Science Standards (NGSS) CHAPTER 6, LESSON 1: WHAT IS A CHEMICAL REACTION? MS-PS1-2. Analyze and interpret data on the properties of substances before and after the substances interact

More information

Concepts Experimenting with Mixtures, chemical means. Lesson 6. SUBCONCEPT 5 Elements can be combined

Concepts Experimenting with Mixtures, chemical means. Lesson 6. SUBCONCEPT 5 Elements can be combined Quarter 1 PS21.A Structure and Properties of Matter Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to

More information

Gases: Properties and Behaviour

Gases: Properties and Behaviour SECTION 11.1 Gases: Properties and Behaviour Key Terms kinetic molecular theory of gases ideal gas On Earth, matter typically exists in three physical states: solid, liquid, and gas. All three states of

More information

Science & Literacy Activity GRADES 6-8

Science & Literacy Activity GRADES 6-8 Science & Literacy Activity GRADES 6-8 OVERVIEW This activity, which is aligned to the Common Core State Standards (CCSS) for English Language Arts, introduces students to scientific knowledge and language

More information

What is so different about NGSS? Chemistry PD. Joe Krajcik. CREATE for STEM. Michigan State University. Atlanta, GA

What is so different about NGSS? Chemistry PD. Joe Krajcik. CREATE for STEM. Michigan State University. Atlanta, GA What is so different about NGSS? Chemistry PD Joe Krajcik CREATE for STEM Michigan State University Atlanta, GA Institute for Collaborative Research in Education, Assessment, and Teaching Environments

More information

Properties of Matter

Properties of Matter Grade 7 Science, Quarter 1, Unit 1.1 Properties of Matter Overview Number of instructional days: 15 (1 day = 50 minutes) Content to be learned Identify different substances using data about characteristic

More information

Subject: Regents Chemistry Grade: 9-12 Unit #: 1 Title: Movie Special Effects

Subject: Regents Chemistry Grade: 9-12 Unit #: 1 Title: Movie Special Effects UNIT OVERVIEW S Chemistry Standards: 3.2l, 3.3a, 3.1cc, 3.1kk, 4.2a, 4.2b, 4.2c, 3.1s, 3.1w, 3.1v, 3.2c, 3.1k, 3.1ff, 3.1gg STAGE ONE: Identify Desired Results Long-Term Transfer Goal At the end of this

More information

INTRODUCTION TO LESSON CLUSTER 7

INTRODUCTION TO LESSON CLUSTER 7 INTRODUCTION TO LESSON CLUSTER 7 EXPLAINING MELTING AND SOLIDIFYING A. Lesson Cluster Goals and Lesson Objectives Goals Students should be able to explain melting and solidifying, by reference to the molecular

More information

B3 Relating Launch Speed and Range

B3 Relating Launch Speed and Range Key Question: What function relates the range and launch speed of a projectile? In this investigation, students identify the function relating projectile range to launch speed. In doing so, students are

More information

Investigation 3: The Stars

Investigation 3: The Stars Science Notebook Sun, Moon, and Stars Investigation 3: The Stars Big Question: How do stars compare and contrast from the Sun? 1 Alignment with New York State Science Standards & Performance Indicators

More information

ENGAGE. Daily Routines Common Core. Essential Question

ENGAGE. Daily Routines Common Core. Essential Question LESSON 7. Time to the Hour and Half Hour FOCUS COHERENCE RIGOR LESSON AT A GLANCE F C R Focus: Common Core State Standards Learning Objective.MD.C.7 Tell and write time from analog and digital clocks to

More information

Research & reference tools & materials. Tools & materials for building out one selfwatering container per student (see

Research & reference tools & materials. Tools & materials for building out one selfwatering container per student (see Grade Level: Seventh Learners at the concrete operations stage of development with emerging formal operations are suited for this activity. STEM Science, Technology, Engineering, & Mathematics Common Core

More information

U.S. Standards Alignment Guide

U.S. Standards Alignment Guide U.S. Standards Alignment Guide Module 1: The Skate Blades Learning Objectives: Students will be able to (SWBAT) define and identify independent variables, dependent variables, and controls in an experiment

More information

ACTIVITY 3: Magnetic and Static Electric Interactions and Energy

ACTIVITY 3: Magnetic and Static Electric Interactions and Energy UNIT PEF Developing Ideas ACTIVITY 3: Magnetic and Static Electric Interactions and Energy Purpose In the first module of this course (or in the previous activity) you examined magnetic and static electric

More information

How Does the Sun s Energy Cause Rain?

How Does the Sun s Energy Cause Rain? 1.2 Investigate 3.3 Read How Does the Sun s Energy Cause Rain? In the water-cycle simulation, you observed water change from a liquid to a gas, and then back to a liquid falling to the bottom of the container.

More information

Simulation: Density FOR THE TEACHER

Simulation: Density FOR THE TEACHER Simulation: Density FOR THE TEACHER Summary In this simulation, students will investigate the effect of changing variables on both the volume and the density of a solid, a liquid and a gas sample. Students

More information

SOLIDS, LIQUIDS, AND GASES

SOLIDS, LIQUIDS, AND GASES CHAPTER 2 SOLIDS, LIQUIDS, AND GASES SECTION 2 1 States of Matter (pages 56-60) This section explains how shape, volume, and the motion of particles are useful in describing solids, liquids, and gases.

More information

The University of Texas at Austin. Build an Atom

The University of Texas at Austin. Build an Atom UTeach Outreach The University of Texas at Austin Build an Atom Content Standards Addressed in Lesson: TEKS8.5A describe the structure of atoms, including the masses, electrical charges, and locations,

More information

The performance expectation above was developed using the following elements from A Framework for K-12 Science Education: Disciplinary Core Ideas

The performance expectation above was developed using the following elements from A Framework for K-12 Science Education: Disciplinary Core Ideas HS-PS1-1 HS-PS1-1. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. [Clarification Statement:

More information

Investigation 1: Separating Mixtures

Investigation 1: Separating Mixtures 5 th Science Notebook Mixtures and Solutions Investigation 1 Investigation 1: Separating Mixtures Name: Big Question: How are mixtures and solutions similar and different and how can they be separated?

More information

Bay Area Scientists in School Presentation Plan

Bay Area Scientists in School Presentation Plan Bay Area Scientists in School Presentation Plan Lesson Name It s just a phase! Presenter(s) Kevin Metcalf, David Ojala, Melanie Drake, Carly Anderson, Hilda Buss, Lin Louie, Chris Jakobson California Standards

More information

Lesson 4. Stream Table Lab. Summary. Suggested Timeline. Objective. Materials. Teacher Background Knowledge

Lesson 4. Stream Table Lab. Summary. Suggested Timeline. Objective. Materials. Teacher Background Knowledge Rivers Instructional Case: A series of student-centered science lessons Suggested Timeline 50 minutes Materials 1 Stream table for each station 1 Calculator for each station Approximately 3 lb of sand

More information

Chapter 1, Lesson 3: The Ups and Downs of Thermometers

Chapter 1, Lesson 3: The Ups and Downs of Thermometers Chapter 1, Lesson 3: The Ups and Downs of Thermometers Key Concepts The way a thermometer works is an example of heating and cooling a liquid. When heated, the molecules of the liquid in the thermometer

More information

Investigation 1: The Sun

Investigation 1: The Sun Science Notebook Sun, Moon, and Stars Investigation 1: The Sun Big Question: Does the Sun move, and why is its position in the sky important? 1 Alignment with New York State Science Standards & Performance

More information

KINETIC PARTICLE THEORY

KINETIC PARTICLE THEORY KINETIC PARTICLE THEORY IMPORTANT DEFINITIONS: The mixing process in gases or solutions due to the random motion of particles is called Diffusion. The process by which a liquid changes into a vapour at

More information

Amarillo ISD Science Curriculum

Amarillo ISD Science Curriculum Amarillo Independent School District follows the Texas Essential Knowledge and Skills (TEKS). All of AISD curriculum and documents and resources are aligned to the TEKS. The State of Texas State Board

More information

Atoms and molecules are in motion and have energy

Atoms and molecules are in motion and have energy Atoms and molecules are in motion and have energy By now you know that substances are made of atoms and molecules. These atoms and molecules are always in motion and have attractions to each other. When

More information

MEASURING THE RATE OF PHOTOSYNTHESIS

MEASURING THE RATE OF PHOTOSYNTHESIS MEASURING THE RATE OF PHOTOSYNTHESIS QUESTION: What factors affect the rate of photosynthesis in plants? BACKGROUND KNOWLEDGE Leaf disks float, normally. When the air spaces in the leaf are filled with

More information

Pine Hill Public Schools Curriculum

Pine Hill Public Schools Curriculum Content Area: Pine Hill Public Schools Curriculum Science Course Title/ Grade Level: Honors Physics / Gr. 11 & 12 Unit 1: Unit 2: Unit 3: Unit 4: Unit 4: Introduction, Measurement, Estimating Duration:

More information

Tackling Potential and Kinetic Energy

Tackling Potential and Kinetic Energy Tackling Potential and Kinetic Energy Overview In this lesson, students explore concepts of energy and relate them to tackling in football. Using manipulatives, such as marbles or ball, students will investigate

More information

Most substances can be in three states: solid, liquid, and gas.

Most substances can be in three states: solid, liquid, and gas. States of Matter Most substances can be in three states: solid, liquid, and gas. Solid Particles Have Fixed Positions The particles in a solid are very close together and have an orderly, fixed arrangement.

More information

4.4 Electricity & Magnetism

4.4 Electricity & Magnetism 4.4 Electricity & Magnetism Enduring Understanding: Electrical energy can be transferred and transformed. Magnetic energy can be transferred and transformed. Essential Question: How is energy transferred

More information

Leonie Boshoff-Mostert Edited by Anne Starace

Leonie Boshoff-Mostert Edited by Anne Starace GASES, LIQUIDS AND SOLIDS Density Leonie Boshoff-Mostert Edited by Anne Starace Abstract Matter is sorted into three groups: solids, liquids and gases. Solids, liquids and gases each have characteristic

More information