The Best Kept Secret in Industry By: Stephen L. Kaplan * Plasma Technology Systems 276 Harbor Blvd. Belmont, CA 94002

Size: px
Start display at page:

Download "The Best Kept Secret in Industry By: Stephen L. Kaplan * Plasma Technology Systems 276 Harbor Blvd. Belmont, CA 94002"

Transcription

1 The Best Kept Secret in Industry By: Stephen L. Kaplan * Plasma Technology Systems 276 Harbor Blvd. Belmont, CA Abstract: Five decades ago there were only a few green choices to modify polymer surfaces, corona and flame. In the 1960s cold gas plasma was introduced as a work place and environmentally safe and particularly effective method to modify polymers to enhance adhesion. Plasma s superiority quickly became obvious and corona and flame manufacturers adopted the term plasma for their processes, then confusion reigned. While it is true that corona and flame are plasmas, the energetic species present in them are significantly less than in cold gas plasma, aka low pressure plasma. Thus they are very limited in the chemical changes they can effect. Trade publications and often even scientific journals fail to adequately discern between the various plasma processes in their published articles. Material engineers often miss the subtle differences in such learned papers and assume the limitations discussed for coronas, atmospheric plasma and flames are not necessarily applicable to cold gas plasma. The very significant difference between the capabilities of low pressure plasma and other plasma has inadvertently been obfuscated and perhaps intentionally kept secret. One of the best kept secrets is the utility of cold gas plasma to successfully graft silanes to the surfaces of metals, ceramics and polymers. Background: Generally silanizations are carried out in liquid-phase over an extended time where the silane of interest is dissolved in a solvent [1], possibly in the presence of a catalyst [2], and cleaned substrates are added to the solution. Liquid phase silanization is however not easy to control, mainly due to difficulties in controlling the amount of water present in the solution. Absence of water results in incomplete monolayers and excess water results in extensive polymerization and formation of polysiloxane aggregates which can be deposited onto the surface of substrates [3]. Gas-phase depositions have the advantage in that the moisture level can easily be controlled and thus eliminate extensive polymerization and formation of aggregates on * Presented at the Ninth International Symposium on Polymer Surface Modification: Relevance to Adhesion in collaboration with the Center for Polymer Science and Engineering, Lehigh University,Bethlehem, Pennsylvania, USA. June 17-18, 2013.

2 Kaplan, Page 2 of 8 the surface. A further advantage with gas-phase deposition is the high permeability of gas molecules which allows functionalization of nano-scale devices where the access of liquid is limited by capillary forces. Various methods for gas phase depositions have been proposed and depositions can be made either at elevated temperature, in the presence of a gas flow, or with the help of cold gas plasma, here referred to as plasmaenhanced chemical vapor deposition (PECVD) [4]. Such depositions are achieved through a vacuum process where substrates are placed in a chamber; air is removed through a vacuum pump to a pressure often less than 100 mtorr. Process gases are then fed into the chamber and radio-frequency energy is supplied to electrodes within the chamber. A highly reactive gas mixture of electrons, ions and other meta-stable species is thus produced. These species have sufficient energy to react with the substrate and by carefully choosing the gas mixture and process parameters surface properties can be tailored to a desired application. Discussion: As indicated, cold gas plasma is effective on all materials. One such application involved the alteration of quartz nano-pipettes as a method for electrical detection of DNA-functionalized nanoparticles [4]. The ability to tailor surface properties of such nano-scale devices are essential to avoid undesired adsorption of biological material onto the walls of a nano channel since it can alter flow properties as well as electrical properties of the channel. Another important aspect is to find a convenient method for functionalizing nano-pipettes while maintaining desired wetting properties. Silanization employing solvent methods provided poor yield as globules from homopolymerization would plug the pipette tip. Plasma-enhanced chemical vapor deposition (PECVD) of mercaptopropyltrimethoxysilane was investigated as an alternative method to silanize the internal surfaces of these nano-pipettes. The mercaptosilane in a subsequent step was coupled to bovine SA. Elemental composition as determined by XPS for both plasma deposited and liquidphase deposited mercaptotrimethoxysilane is shown in Table 1.

3 Kaplan, Page 3 of 8 Table 1 Deposition Characterization Deposition method Contact Angle [ 0] Thickness [A] XPS [atomic%] Si O c s Plasma deposition ± Liquid phase 64 15± Contact angle measurements showed little differences between the two deposition methods since batches prepared in liquid-phase generally give variation of contact angles in the range of However ellipsometry measurements show a significantly thicker silane layer was achieved with plasma deposition compared to liquid-phase deposition. This was also verified by XPS measurements indicating a thicker organic layer despite the order or magnitude difference in treatment time. The lower silicon content found on plasma deposited samples can easily be explained by the thicker organosilicon layer. Generally more than 90% of the XPS signal comes from the outermost 100 Angstrom of the sample hence for the plasma deposited silane layer the silicon detected originates mainly from the deposited silane film. This is in contrast to the liquid-phase deposition where the detected silicon originates from the deposited silane film, silicon from the native silicon oxide layer as well as from elemental silicon in the underlying substrate. Furthermore a significant increase in carbon content is found in the PECVD film as expected for a thicker silane layer. However an expected increase in sulfur content was not found. For a perfect mercaptopropylsilane monolayer the sulfur functionality is expected to be oriented as the terminal group at the interface. The theoretical film thickness of a monolayer can be estimated to approximately 9 Angstroms using standard bond length and bond angles as well as van der Waals radii according to the literature. This is short enough that inelastic scattering of underlying carbon atoms can be considered insignificant and therefore a carbon-to-sulfur ratio of 3 is expected. A reasonable C/S ratio is also found in samples made from liquid-phase deposition (C/S=2.5). However the carbon-to-sulfur ratio deviates significantly from the expected ratio for samples made with the PECVD method (C/S= 6.1). It is well known that high RF-powers can lead to extensive molecular fragmentation and reduced deposition of precursor molecules. This can possibly explain fragmentation of the C - S bond during the plasma process resulting in the formation of partly methyl-terminated silane layers and a higher C/S ratio. The discrepancy in the desired carbon to sulfur content of the plasma deposited silane layers compared to the solvent silanization process motivated further investigation into the relation between silane layer characteristics and plasma power. Figure 1 shows the film thickness as

4 Kaplan, Page 4 of 8 function of plasma power exhibiting a clear correlation between film thickness and plasma power. Figure 1 Influence of Power on Deposition The variation in elemental composition to plasma power is shown in Figure 2. An interesting feature is observed. Sulfur content appears to reach its maximum relative composition at a power of 50 Watts (W). A minimum in C:S ratio of 3.3 is found at 50 W and increases with power suggesting that higher plasma power lead to extensive fragmentation of the carbon-sulfur bond in mercaptopropyltrimethoxysilane. Figure 2 Elemental Composition determined by XPS as a function of power [%] Power [W] Carbon Oxygen Silicon Sulfur

5 Kaplan, Page 5 of 8 Little variation in elemental composition is found in films produced at plasma powers of 100 W and higher. Such films have a thickness of at least 100 Angstroms suggesting that signal contributions from the underlying substrates are depleted. It is also indicative of a possible equilibrium fragmentation at 100 W and that further increase in plasma power does not alter the composition of reactive species produced by the RF-plasma. AFM analysis of these films was also conducted which indicates that smooth silane films are accomplished. In contrast there are pre-polymerized agglomerates found on liquid-phase deposited silane layers not present in the layers produced by plasma deposition. This is important in micro-fluidic devices since such agglomerates are generally on the size of tens of nanometers and can alter the properties of nano-scale devices. Essentially the roughness of plasma deposited silane layers is comparable to the roughness of bare silicon dioxide and significantly smoother than liquid-deposited silane layers of comparable nominal thickness. Ultimately the plasma parameters were optimized to provide a thinner silanized layer (approximately 150 Angstroms) for the nano-pipette. The process which included a plasma cleaning step totaled 15 minutes compared to a 12 hours solvent silanization. In addition the solvent process also greatly suffered from homopolymerization which created large agglomerates that plugged many of the devices. Coupling or grafting by the chemical reaction of silanes to glass via wet chemistry is well established. Globules of silane homopolymerization products that occur in solution application methods has been a serious problem in the manufacture of nano-fluidic devices. The preceding study shows the effectiveness of the PECVD process to graft silanes to the surface of glass. Plasma silane grafting (aka plasma silanization) extends the utility of silanes to nano-fluidic devices. Silanes are also commonly used with metals to enhance adhesion strength. A dry and environmentally-clean green process is desirable especially when the metal is part of a composite that could be deteriorated by exposure to harsh metal etchants. In the following metal bonding studies the processes have not been optimized. The studies were conducted as proof of concepts. Several amine functional silanes were examined and found in some cases to have significant influence on the bond strength as reported in Table 2.

6 Kaplan, Page 6 of 8 Table 2 Lap Shear Adhesive Tests Stainless Steel Stainless Steel & Epoxy Film Adhesive AVG Treatment PSI *** *** *** (Untreated) Plasma silanization All values in pounds per square inch *** Indicates a dis-bond in fixture or during machining, before a test value was attained Treatment (Untreated) Amine functional silane Very noteworthy with stainless steel is not only the nearly 100% increase in bond strength but a change in the failure mechanism from adhesive to cohesive within the adhesive. Table 3 Lap Shear Adhesive Tests Titanium Titanium & Epoxy Adhesive Treatment (Untreated) (Primed) Plasma Silanization AVG PSI Treatment (Untreated) (Primed) Amine functional Silane While the case of the bonding enhancement for plasma silanized Titanium is not as compelling, failing to provide equivalent performance to the normal chemically primed methodology. However, in these very preliminary trials plasma silanization does show at least a 10% bond improvement versus untreated Titanium and a significantly increased percentage of cohesive failure within the mixed failure mode. Additional studies are being conducted and progress is being made to achieve a green

7 Kaplan, Page 7 of 8 technology without any compromise to the attainable bond strength, with a goal of achieving a failure mechanism totally cohesive within the adhesive. Plasma silanization chemistry is also an important tool for the modification of polymer surfaces. One commercial application requires the bonding of an addition cured silicone resin to a composite to protect the composite from environmental attack during its use. The substrate is a somewhat resin poor composite, thus solvents and chemicals present in solvent based priming systems could infiltrate and damage the composite. Table 4 Adhesive Pull Strength using PosiTest Tester Tensile Strength (psi) Untreated Plasma Treated Average Strength Failure Mode Adhesive to composite Interply within composite In this application the plasma process employed vinyltrimethoxysilane, (CH 3 O) 3 SiCH=CH 2 as the silane. The vinyl group participates in the addition cure mechanism becoming chemically cross-linked with the pendant vinyl groups of the silicone resin. The obvious challenge is grafting the silane to the composite without polymerizing or fragmenting the very reactive vinyl group. In a prior study an alkyl silane, ethyltrimethoxysilane [CH 3 O) 3 Si-CH 2 CH 3 ] was used as a control and proved to provide no adhesion benefit with addition cured silicones providing empirical proof that the vinyl reactivity of the vinyl silane is essential and has been maintained in the plasma grafting process. A 90+% adhesion improvement was realized with a reduction of the standard deviation by 70% providing a very desirable product improvement. Conclusion: Silanes are available in almost and perhaps all known functionalities and structures. In our laboratories we have successfully grafted via the PECVD process a wide variety of silanes to provide reactive sites such as: amine, amino, aldehyde, vinyl, allyl, glycidyl and mercapto. The processes and knowledge developed have proved to be applicable to an extremely wide variety of materials. In addition to establishing functional sites on materials we have also employed silanization to alter the surface chemistry of materials by populating the surface with long chain alkyl groups to render the surface anti-fouling, fluoroalkyls to impart hydrophobicity and silicone oligomers to impart lubricity.

8 Kaplan, Page 8 of 8 The information presented in this paper demonstrates the ability to employ plasma enhanced chemical vapor deposition process techniques to covalently graft reactive silane to almost any material. Optimization of the plasma parameters is essential to control grafting or deposition thickness as well as to maintain the functionality that led to the selection of a specific silane. The variety of silanes available provides the potential for an almost limitless possibility of modification of an almost limitless list of materials. Harnessing the power of plasma with the potential variants of silanes provides an environmental and work-place clean green technology. References: 1. Halliwell, C.M. and Cass, A.E.G., A Factorial Analysis of Silanization Conditions for the Immobilization of Oligonucleotides on Glass Surfaces, Analytical Chemistry, 2001, 73(11) p Fadeev, A.Y. and McCarthy, T.J., Self-Assembly Is Not the Only Reaction Possible Between Alkyltrichlorosilanes and Surfaces: Monomeric and Oligomeric Covalently Attached Layers of Dichloro- and Trichloroalkylsilanes on Silicon, Langmuir, 2000, 16 (18), p Ulman, A., Formation and Structure of Self-Assembled Monolayers, Chem. Rev. 1996, 96 (4), p Persson, H.J., Kaplan, S.L., Larner, M., Kam, R., Davis, R., and Pourmand, N., Plasma Enhanced Deposition of Silane Coupling Agents for Biological Applications, Fifth International Symposium on Silanes and Other Coupling Agents, Toronto, Canada, June 2005.

Case Study of Electronic Materials Packaging with Poor Metal Adhesion and the Process for Performing Root Cause Failure Analysis

Case Study of Electronic Materials Packaging with Poor Metal Adhesion and the Process for Performing Root Cause Failure Analysis Case Study of Electronic Materials Packaging with Poor Metal Adhesion and the Process for Performing Root Cause Failure Analysis Dr. E. A. Leone BACKGRUND ne trend in the electronic packaging industry

More information

Abstract. The principles and applicability of surface structure and hydrophobicity of polymers (PS, PDMS),

Abstract. The principles and applicability of surface structure and hydrophobicity of polymers (PS, PDMS), Contact Angle Goniometer: Hydrophobicity of Biomaterial Surfaces and Protein Coatings Eman Mousa Alhajji North Carolina State University Department of Materials Science and Engineering MSE 255 Lab Report

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

NOVEL PHENYLETHYNYL IMIDE SILANES AS COUPLING AGENTS FOR TITANIUM ALLOY

NOVEL PHENYLETHYNYL IMIDE SILANES AS COUPLING AGENTS FOR TITANIUM ALLOY NOVEL PHENYLETHYNYL IMIDE SILANES AS OUPLING AGENTS FOR TITANIUM ALLOY. Park*, S. E. Lowther, J. G. Smith Jr., J. W. onnell, P. M. Hergenrother, and T. L. St. lair *National Research ouncil, omposites

More information

Innovative. Technologies. Chemie des Klebens Chemistry of Adhesives. Dr. Jochen Stock, Laboratory Manager CRL Germany: Neuss, November 27 th, 2013

Innovative. Technologies. Chemie des Klebens Chemistry of Adhesives. Dr. Jochen Stock, Laboratory Manager CRL Germany: Neuss, November 27 th, 2013 Chemie des Klebens Chemistry of Adhesives Dr. Jochen Stock, Laboratory Manager CRL Germany: Neuss, November 27 th, 2013 Innovative Technologies 1 Overview Chemie des Klebens Chemistry of Adhesives Introduction

More information

Solutions for Assignment-8

Solutions for Assignment-8 Solutions for Assignment-8 Q1. The process of adding impurities to a pure semiconductor is called: [1] (a) Mixing (b) Doping (c) Diffusing (d) None of the above In semiconductor production, doping intentionally

More information

Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment

Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment Mat. Res. Soc. Symp. Vol. 635 2001 Materials Research Society Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment Donglu Shi, Zhou Yu, S. X. Wang 1, Wim J.

More information

Tailored surface modification of substrates by atmospheric plasma for improved compatibility with specific adhesive Nicolas Vandencasteele

Tailored surface modification of substrates by atmospheric plasma for improved compatibility with specific adhesive Nicolas Vandencasteele 1 oating Plasma Innovation Tailored surface modification of substrates by atmospheric plasma for improved compatibility with specific adhesive Nicolas Vandencasteele 2 Plasma Applications Adhesion improvement

More information

FLEXIBLE FILMS TREATMENT

FLEXIBLE FILMS TREATMENT FLEXIBLE FILMS TREATMENT ROLL TO ROLL ATMOSPHERIC PRESSURE COLD PLASMA - SURFACE CHEMICAL ACTIVATION & FUNCTIONNALIZATION - DEPOSITION of NANO COATINGS At INDUSTRIALSCALE Eric GAT & TRAN Minh Duc PRODUCTS

More information

Feed. Figure 1. The above image depicts the construction of a typical spiral wound element.

Feed. Figure 1. The above image depicts the construction of a typical spiral wound element. In a reverse osmosis (RO) process, pressure is applied to the saline side of a semi-permeable membrane to produce low salinity water. Upon application of the feed pressure, water molecules pass through

More information

Influence of Nanoparticle s Surface Composition on the Properties of Epoxide Based Adhesives

Influence of Nanoparticle s Surface Composition on the Properties of Epoxide Based Adhesives Influence of Nanoparticle s Surface Composition on the Properties of Epoxide Based Adhesives A. Hartwig, J. Trautmann, M. Sebald har@ifam.fraunhofer.de EUADH 2008 - xford September 2008 utline Introduction

More information

POSS for Surface Modification and and Corrosion Prevention

POSS for Surface Modification and and Corrosion Prevention PSS for Surface Modification and and Corrosion Prevention Bill einerth Presented at the Nanostructured Chemicals Workshop September 7 th - 8 th, 2000 18237 Mount Baldy Circle Fountain Valley, CA 92708

More information

Improving Adhesion: Examining the Electrochemistry of Organic Inhibitors

Improving Adhesion: Examining the Electrochemistry of Organic Inhibitors Improving Adhesion: Examining the Electrochemistry of rganic Inhibitors Benefits of rganics Chemisorb onto metallic substrates Complex with metal ions at substrate Neutralize & absorb the corrodents Decrease

More information

Cold Gas Plasma Treatment For Re-engineering Films by Stephen L. Kaplan, 4th State, Inc.

Cold Gas Plasma Treatment For Re-engineering Films by Stephen L. Kaplan, 4th State, Inc. Cold Gas Plasma Treatment For Re-engineering Films by Stephen L. Kaplan, 4th State, Inc. With cold gas plasma treatment you may not have to trade one critical quality for another when treating your film

More information

WHAT IS GAS PLASMA AND SHOULD YOU CARE?

WHAT IS GAS PLASMA AND SHOULD YOU CARE? By: Stephen L. Kaplan ABSTRACT WHAT IS GAS PLASMA AND SHOULD YOU CARE? Plasma surface treatment of plastics is definitely not new, nor is it commonplace. What is a plasma and what can it do is the subject

More information

Plasma Surface Modification for Cleaning and Adhesion Ron Nickerson, Vice President AST Products, Inc. Billerica, MA

Plasma Surface Modification for Cleaning and Adhesion Ron Nickerson, Vice President AST Products, Inc. Billerica, MA Plasma Surface Modification for Cleaning and Adhesion Ron Nickerson, Vice President AST Products, Inc. Billerica, MA. 01821 978-663-7652 When manufacturers scramble to find processes of surface cleaning

More information

LECTURE 5 SUMMARY OF KEY IDEAS

LECTURE 5 SUMMARY OF KEY IDEAS LECTURE 5 SUMMARY OF KEY IDEAS Etching is a processing step following lithography: it transfers a circuit image from the photoresist to materials form which devices are made or to hard masking or sacrificial

More information

PAINT COATINGS WITH HIGHER HYDROPHOBICITY FOR PROTECTION AGAINST ICE ACCRETION

PAINT COATINGS WITH HIGHER HYDROPHOBICITY FOR PROTECTION AGAINST ICE ACCRETION 17th International Symposium on Ice Saint Petersburg, Russia, 21-25 June 2004 International Association of Hydraulic Engineering and Research Session A PAINT COATINGS WITH HIGHER HYDROPHOBICITY FOR PROTECTION

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

Plasma Deposition (Overview) Lecture 1

Plasma Deposition (Overview) Lecture 1 Plasma Deposition (Overview) Lecture 1 Material Processes Plasma Processing Plasma-assisted Deposition Implantation Surface Modification Development of Plasma-based processing Microelectronics needs (fabrication

More information

Multilayer Wiring Technology with Grinding Planarization of Dielectric Layer and Via Posts

Multilayer Wiring Technology with Grinding Planarization of Dielectric Layer and Via Posts Tani et al.: Multilayer Wiring Technology with Grinding Planarization (1/6) [Technical Paper] Multilayer Wiring Technology with Grinding Planarization of Dielectric Layer and Via Posts Motoaki Tani, Kanae

More information

SURFACE MODIFICATION OF POLYPROPYLENE BY PHOTOGRAFTING OF VINYL ACETATE MONOMERS

SURFACE MODIFICATION OF POLYPROPYLENE BY PHOTOGRAFTING OF VINYL ACETATE MONOMERS Bulletin of the Transilvania University of Braşov Series I: Engineering Sciences Vol. 4 (53) No. 1-2011 SURFACE MODIFICATION OF POLYPROPYLENE BY PHOTOGRAFTING OF VINYL ACETATE MONOMERS J. BALART 1 J.M.

More information

ETCHING Chapter 10. Mask. Photoresist

ETCHING Chapter 10. Mask. Photoresist ETCHING Chapter 10 Mask Light Deposited Substrate Photoresist Etch mask deposition Photoresist application Exposure Development Etching Resist removal Etching of thin films and sometimes the silicon substrate

More information

Tutorial on Plasma Polymerization Deposition of Functionalized Films

Tutorial on Plasma Polymerization Deposition of Functionalized Films Tutorial on Plasma Polymerization Deposition of Functionalized Films A. Michelmore, D.A. Steele, J.D. Whittle, J.W. Bradley, R.D. Short University of South Australia Based upon review article RSC Advances,

More information

Introduction to Photolithography

Introduction to Photolithography http://www.ichaus.de/news/72 Introduction to Photolithography Photolithography The following slides present an outline of the process by which integrated circuits are made, of which photolithography is

More information

CHAPTER 3. FABRICATION TECHNOLOGIES OF CdSe/ZnS / Au NANOPARTICLES AND NANODEVICES. 3.1 THE SYNTHESIS OF Citrate-Capped Au NANOPARTICLES

CHAPTER 3. FABRICATION TECHNOLOGIES OF CdSe/ZnS / Au NANOPARTICLES AND NANODEVICES. 3.1 THE SYNTHESIS OF Citrate-Capped Au NANOPARTICLES CHAPTER 3 FABRICATION TECHNOLOGIES OF CdSe/ZnS / Au NANOPARTICLES AND NANODEVICES 3.1 THE SYNTHESIS OF Citrate-Capped Au NANOPARTICLES Au NPs with ~ 15 nm were prepared by citrate reduction of HAuCl 4

More information

GCSE CHEMISTRY REVISION LIST

GCSE CHEMISTRY REVISION LIST GCSE CHEMISTRY REVISION LIST OCR Gateway Chemistry (J248) from 2016 Topic C1: Particles C1.1 Describe the main features of the particle model in terms of states of matter and change of state Explain, in

More information

Adhesion Improvement on Smooth Cu Wiring Surfaces of Printed Circuit Boards

Adhesion Improvement on Smooth Cu Wiring Surfaces of Printed Circuit Boards [Technical Paper] Adhesion Improvement on Smooth Cu Wiring Surfaces of Printed Circuit Boards Motoaki Tani*, Shinya Sasaki*, and Keisuke Uenishi** *Next-Generation Manufacturing Technologies Research Center,

More information

Atmospheric Plasma treatment, effect on the plasma chemistry on adhesion Nicolas Vandencasteele

Atmospheric Plasma treatment, effect on the plasma chemistry on adhesion Nicolas Vandencasteele 1 oating Plasma Innovation Atmospheric Plasma treatment, effect on the plasma chemistry on adhesion Nicolas Vandencasteele 2 Plasma Applications Adhesion improvement onclusion 3 Plasma 4 th state of matter:

More information

Composite Materials. Fibre-Matrix Interfaces. There is nothing there really except the two of you (or the fiber and matrix).

Composite Materials. Fibre-Matrix Interfaces. There is nothing there really except the two of you (or the fiber and matrix). Composite Materials Fibre-Matrix Interfaces There is nothing there really except the two of you (or the fiber and matrix). Composite Parameters Fibre properties Composite Interfaces Matrix properties Fibre

More information

PARTICLE ADHESION AND REMOVAL IN POST-CMP APPLICATIONS

PARTICLE ADHESION AND REMOVAL IN POST-CMP APPLICATIONS PARTICLE ADHESION AND REMOVAL IN POST-CMP APPLICATIONS George Adams, Ahmed A. Busnaina and Sinan Muftu the oratory Mechanical, Industrial, and Manufacturing Eng. Department Northeastern University, Boston,

More information

COMPARISON OF QUANTITATIVE HIGH TEMPERATURE TESTING METHODS FOR SILICONE PRESSURE SENSITIVE ADHESIVES

COMPARISON OF QUANTITATIVE HIGH TEMPERATURE TESTING METHODS FOR SILICONE PRESSURE SENSITIVE ADHESIVES COMPARISON OF QUANTITATIVE HIGH TEMPERATURE TESTING METHODS FOR SILICONE PRESSURE SENSITIVE ADHESIVES Elizabeth Kelley, Senior Chemist, The Dow Chemical Company, Midland, MI Timothy Mitchell, Associate

More information

Plasma polymers can be used to modify the surface chemistries of materials in a controlled fashion (without effecting bulk chemistry).

Plasma polymers can be used to modify the surface chemistries of materials in a controlled fashion (without effecting bulk chemistry). Plasma polymers can be used to modify the surface chemistries of materials in a controlled fashion (without effecting bulk chemistry). An example used here is the modification of the alumina surface of

More information

Oxford Advanced Surfaces

Oxford Advanced Surfaces Oxford Advanced Surfaces The Practical Uses of Chemical Adhesion In Interlayer Bonding AIMCAL Europe 2012 Web Coating Conference www.oxfordsurfaces.com 1 Adhesion is important! In use and in process Adhesion

More information

Lecture 1: Vapour Growth Techniques

Lecture 1: Vapour Growth Techniques PH3EC2 Vapour Growth and Epitaxial Growth Lecturer: Dr. Shinoj V K Lecture 1: Vapour Growth Techniques 1.1 Vapour growth The growth of single crystal materials from the vapour phase. Deposition from the

More information

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun UNIT 3 By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun 1 Syllabus Lithography: photolithography and pattern transfer, Optical and non optical lithography, electron,

More information

CVD: General considerations.

CVD: General considerations. CVD: General considerations. PVD: Move material from bulk to thin film form. Limited primarily to metals or simple materials. Limited by thermal stability/vapor pressure considerations. Typically requires

More information

Theories of Adhesion

Theories of Adhesion Theories of Adhesion Mechanical Theory According to mechanical theory, adhesion occurs by the penetration of adhesives into pores, cavities, and other surface irregularities of the surface of the substrate

More information

Functionalized Carbon Nanotubes a key to nanotechnology?

Functionalized Carbon Nanotubes a key to nanotechnology? 1 27th Max Born Symposium Multiscale Modeling of Real Materials Wroclaw, Sep 19, 2010 Functionalized Carbon Nanotubes a key to nanotechnology? Karolina Milowska, Magda Birowska & Jacek A. Majewski Faculty

More information

Wet and Dry Etching. Theory

Wet and Dry Etching. Theory Wet and Dry Etching Theory 1. Introduction Etching techniques are commonly used in the fabrication processes of semiconductor devices to remove selected layers for the purposes of pattern transfer, wafer

More information

Section 3: Etching. Jaeger Chapter 2 Reader

Section 3: Etching. Jaeger Chapter 2 Reader Section 3: Etching Jaeger Chapter 2 Reader Etch rate Etch Process - Figures of Merit Etch rate uniformity Selectivity Anisotropy d m Bias and anisotropy etching mask h f substrate d f d m substrate d f

More information

Bis sulfone Reagents. Figure 1.

Bis sulfone Reagents. Figure 1. Bis sulfone Reagents An intact IgG molecule has four accessible inter chain disulfide bonds that can be reduced to form eight free cysteine thiols, which can serve as sites for conjugation. The reaction

More information

Lipid functionalised Polyelectrolyte Multilayers Studied by Neutron Reflectometry

Lipid functionalised Polyelectrolyte Multilayers Studied by Neutron Reflectometry Lipid functionalised Polyelectrolyte Multilayers Studied by Neutron Reflectometry R. Krastev, N. Ch. Mishra, Chr. Delajon, H. Möhwald Max-Planck Institute of Colloids and Interfaces, Golm/Potsdam Th. Gutberlet

More information

Hydrophilization of Fluoropolymers and Silicones

Hydrophilization of Fluoropolymers and Silicones 2017 Adhesive and Sealant Council Spring Meeting Hydrophilization of Fluoropolymers and Silicones Aknowledgements: Wei Chen Mount Holyoke College NSF, NIH, Dreyfus, ACS-RF, MHC Bryony Coupe, Mamle Quarmyne,

More information

PLASMA-POLYMER MODIFICATION OF BASAL PLANE GRAPHITE SURFACES FOR IMPROVED BIOCOMPATIBILITY

PLASMA-POLYMER MODIFICATION OF BASAL PLANE GRAPHITE SURFACES FOR IMPROVED BIOCOMPATIBILITY PLASMA-POLYMER MODIFICATION OF BASAL PLANE GRAPHITE SURFACES FOR IMPROVED BIOCOMPATIBILITY Anca Orăşanu, Marcus R. Davidson, Robert H. Bradley Advanced Materials & Biomaterials Research Centre, School

More information

Thin and Ultrathin Plasma Polymer Films and Their Characterization

Thin and Ultrathin Plasma Polymer Films and Their Characterization WDS'13 Proceedings of Contributed Papers, Part III, 134 138, 2013. ISBN 978-80-7378-252-8 MATFYZPRESS Thin and Ultrathin Plasma Polymer Films and Their Characterization M. Petr, O. Kylián, J. Hanuš, A.

More information

Device Fabrication: Etch

Device Fabrication: Etch Device Fabrication: Etch 1 Objectives Upon finishing this course, you should able to: Familiar with etch terminology Compare wet and dry etch processes processing and list the main dry etch etchants Become

More information

Critical Plasma Processing Parameters for Improved Strength of Wire Bonds

Critical Plasma Processing Parameters for Improved Strength of Wire Bonds Critical Plasma Processing Parameters for Improved Strength of Wire Bonds Plasma surface-treatment techniques can improve wire bonding and molding. J. Getty, L. Wood, and C. Fairfield Nordson MARCH Concord,

More information

Competitive Advantages of Ontos7 Atmospheric Plasma

Competitive Advantages of Ontos7 Atmospheric Plasma Competitive Advantages of Ontos7 Atmospheric Plasma Eric Schulte Matt Phillips Keith Cooper SETNA Proprietary 1 Advantages of Ontos7 Atmospheric Plasma Process over Vacuum RIE Plasma for Die/Wafer Surface

More information

Chapter 7 Solid Surface

Chapter 7 Solid Surface Chapter 7 Solid Surface Definition of solid : A matter that is rigid and resists stress. Difference between solid and liquid surface : Liquid : always in equilibrium and equipotential. (Fig 7.1a,b) Solid

More information

A typical Silanization Reaction on Titanium plates from the literature is given below:

A typical Silanization Reaction on Titanium plates from the literature is given below: INTRODUCTION: The Silanization Reaction in the Design of Antimicrobial Surfaces The chemisorption of organosilanes to oxide surfaces (i.e., quartz, SiO2, or TiO2) by means of silanization is an important

More information

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur Nova 600 NanoLab Dual beam Focused Ion Beam system @ IITKanpur Dual Beam Nova 600 Nano Lab From FEI company (Dual Beam = SEM + FIB) SEM: The Electron Beam for SEM Field Emission Electron Gun Energy : 500

More information

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD Supplementary figure 1 Graphene Growth and Transfer Graphene PMMA FeCl 3 DI water Copper foil CVD growth Back side etch PMMA coating Copper etch in 0.25M FeCl 3 DI water rinse 1 st transfer DI water 1:10

More information

Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown. on Copper and Its Application to Renewable Transfer Process

Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown. on Copper and Its Application to Renewable Transfer Process SUPPORTING INFORMATION Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process Taeshik Yoon 1, Woo Cheol Shin 2, Taek Yong Kim 2,

More information

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Adsorption Processes Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Principles of adsorption Types of adsorption Definitions Brief history Adsorption isotherms Mechanism

More information

UltiMetal Plus Advanced Chemistry for Stainless Steel Surface Deactivation

UltiMetal Plus Advanced Chemistry for Stainless Steel Surface Deactivation UltiMetal Plus Advanced Chemistry for Stainless Steel Surface Deactivation Technical Overview Introduction Inert flow path technology Modern GC and GC/MS instrumentation is an important analytical tool

More information

ATMOSPHERIC PLASMA TREATMENT OF FIBER REINFORCED COMPOSITES FOR ADHESIVE BONDING

ATMOSPHERIC PLASMA TREATMENT OF FIBER REINFORCED COMPOSITES FOR ADHESIVE BONDING ATMOSPHERIC PLASMA TREATMENT OF FIBER REINFORCED COMPOSITES FOR ADHESIVE BONDING R. J. Zaldivar*, PhD, G. L. Steckel, PhD, J. P. Nokes, PhD, B. Morgan, PhD, and H. I. Kim, PhD The Aerospace Corporation,

More information

Interfacial forces and friction on the nanometer scale: A tutorial

Interfacial forces and friction on the nanometer scale: A tutorial Interfacial forces and friction on the nanometer scale: A tutorial M. Ruths Department of Chemistry University of Massachusetts Lowell Presented at the Nanotribology Tutorial/Panel Session, STLE/ASME International

More information

Proceedings Novel Method for Adhesion between PI-PDMS Using Butyl Rubber for Large Area Flexible Body Patches

Proceedings Novel Method for Adhesion between PI-PDMS Using Butyl Rubber for Large Area Flexible Body Patches Proceedings Novel Method for Adhesion between PI-PDMS Using Butyl Rubber for Large Area Flexible Body Patches Shivani Joshi 1,2, *, Rishab Bagani 1, Lucas Beckers 2 and Ronald Dekker 1,2 1 Department of

More information

Nordson MARCH Concord, CA, USA

Nordson MARCH Concord, CA, USA Overcoming the Challenges Presented with Automated Selective Conformal Coating of Advanced Electronic Assemblies by Employing Plasma Treatment Technology David Foote Nordson MARCH Concord, CA, USA david.foote@nordsonmarch.com

More information

Chemistry Instrumental Analysis Lecture 28. Chem 4631

Chemistry Instrumental Analysis Lecture 28. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 28 Two types in general use: -packed (stationary phase) -open tubular or capillary determine selectivity and efficiency of the sample. Column Materials Column

More information

CHARACTERIZATION OF FLUID-ROCK INTERACTION BY ADSORPTION CALORIMETRY

CHARACTERIZATION OF FLUID-ROCK INTERACTION BY ADSORPTION CALORIMETRY SCA2018_053 1/8 CHARACTERIZATION OF FLUID-ROCK INTERACTION BY ADSORPTION CALORIMETRY D. Korobkov 1, V. Pletneva 1, E. Dyshlyuk 2 1 Schlumberger, Moscow Research Center and 2 Dahran Carbonate Research Center

More information

Release coatings: Defining Performance

Release coatings: Defining Performance Release coatings: Defining Performance Igor V. Khudyakov, Michael M. Hawkins, Steven A. Barth, Lisa Y. Winckler Solutia Inc., Performance Films, Fieldale, VA, USA Abstract Films with release coatings are

More information

Bio-compatible polymer coatings using low temperature, atmospheric pressure plasma

Bio-compatible polymer coatings using low temperature, atmospheric pressure plasma High Performance and Optimum Design of Structures and Materials 579 Bio-compatible polymer coatings using low temperature, atmospheric pressure plasma S. Farhat, M. Gilliam, A. Zand & M. Rabago-Smith Department

More information

Reliable Laminating interdependency inks/adhesive. working for you.

Reliable Laminating interdependency inks/adhesive. working for you. Reliable Laminating interdependency inks/adhesive working for you. DIC Technology, Sun Chemical Service DIC is the market leader in Japan on Performance Lamination Adhesives and for adhesives research

More information

Using the Bitumen Bond Strength Test & Sessile Drop Method

Using the Bitumen Bond Strength Test & Sessile Drop Method 2011 PAVEMENT PERFORMANCE PREDICTION SYMPOSIUM Selection of Materials for Moisture Resistance HMA Using the Bitumen Bond Strength Test & Sessile Drop Method Hussain Bahia, Raquel Moraes, Raul Velasquez

More information

Light-Induced Atom Desorption in Alkali Vapor Cells

Light-Induced Atom Desorption in Alkali Vapor Cells Fundamental Physics Using Atoms, 2010/08/09, Osaka Light-Induced Atom Desorption in Alkali Vapor Cells A. Hatakeyama (Tokyo Univ. Agr. Tech.) K. Hosumi K. Kitagami Alkali vapor cells UHV cell for laser

More information

Etching Issues - Anisotropy. Dry Etching. Dry Etching Overview. Etching Issues - Selectivity

Etching Issues - Anisotropy. Dry Etching. Dry Etching Overview. Etching Issues - Selectivity Etching Issues - Anisotropy Dry Etching Dr. Bruce K. Gale Fundamentals of Micromachining BIOEN 6421 EL EN 5221 and 6221 ME EN 5960 and 6960 Isotropic etchants etch at the same rate in every direction mask

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 4: Film

More information

Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods

Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods Methods for catalyst preparation Methods discussed in this lecture Physical vapour deposition - PLD

More information

Top down and bottom up fabrication

Top down and bottom up fabrication Lecture 24 Top down and bottom up fabrication Lithography ( lithos stone / graphein to write) City of words lithograph h (Vito Acconci, 1999) 1930 s lithography press Photolithography d 2( NA) NA=numerical

More information

Plasma Enhanced Chemical Vapor Deposition (PECVD) of Silicon Dioxide (SiO2) Using Oxford Instruments System 100 PECVD

Plasma Enhanced Chemical Vapor Deposition (PECVD) of Silicon Dioxide (SiO2) Using Oxford Instruments System 100 PECVD University of Pennsylvania ScholarlyCommons Tool Data Browse by Type 2-7-2017 Plasma Enhanced Chemical Vapor Deposition (PECVD) of Silicon Dioxide (SiO2) Using Oxford Instruments System 100 PECVD Meredith

More information

How Silica Aerogels Are Made

How Silica Aerogels Are Made Page 1 of 7 How Silica Aerogels Are Made Back to the Table of Contents The discussion below relies upon the following terms: Hydrolysis: The reaction of a metal alkoxide (M-OR) with water, forming a metal

More information

ARGON RF PLASMA TREATMENT OF PET FILMS FOR SILICON FILMS ADHESION IMPROVEMENT

ARGON RF PLASMA TREATMENT OF PET FILMS FOR SILICON FILMS ADHESION IMPROVEMENT Journal of Optoelectronics and Advanced Materials Vol. 7, No. 5, October 2005, p. 2529-2534 ARGON RF PLASMA TREATMENT OF FILMS FOR SILICON FILMS ADHESION IMPROVEMENT I. A. Rusu *, G. Popa, S. O. Saied

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information Graphene transfer method 1 : Monolayer graphene was pre-deposited on both

More information

Chapter 3 Engineering Science for Microsystems Design and Fabrication

Chapter 3 Engineering Science for Microsystems Design and Fabrication Lectures on MEMS and MICROSYSTEMS DESIGN and MANUFACTURE Chapter 3 Engineering Science for Microsystems Design and Fabrication In this Chapter, we will present overviews of the principles of physical and

More information

Surface Modification

Surface Modification Enabling Your Technology Micro-Particle Surface Modification Innovating Particle Functionalization 2009 Gelest, Inc. Gelest provides chemistries and deposition technologies for micro-particle modifications

More information

Interfacial Chemistry and Adhesion Phenomena: How to Analyse and How to Optimise

Interfacial Chemistry and Adhesion Phenomena: How to Analyse and How to Optimise Interfacial Chemistry and Adhesion Phenomena: How to Analyse and How to Optimise John F Watts Department of Mechanical Engineering Sciences The Role of Surface Analysis in Adhesion Studies Assessing surface

More information

WHITE PAPER. Why Three Monolayers of Moisture Are Important

WHITE PAPER. Why Three Monolayers of Moisture Are Important WHITE PAPER Why Three Monolayers of Moisture Are Important Tom Green, T.J. Green Associates, LLC 739 Redfern Lane, Bethlehem, PA 18017, USA Phone: 610-625-2158 Email: tgreen@tjgreenllc.com www.tjgreenllc.com

More information

CHIMICA DELLE SUPERFICI ED INTERFASI

CHIMICA DELLE SUPERFICI ED INTERFASI CHIMICA DELLE SUPERFICI ED INTERFASI DOTT. GIULIA FIORAVANTI UNIVERSITÀ DEGLI STUDI DELL AQUILA LAUREA MAGISTRALE IN INGEGNERIA CHIMICA A.A. 2013-2014 OUTLINE SURFACE CHEMICAL GRADIENTS DROPLET MOVEMENT

More information

Halloysite. Nanotubes Epoxy. NanoComposites

Halloysite. Nanotubes Epoxy. NanoComposites Halloysite Halloysite Nanotubes Nanotubes Epoxy Epoxy NanoComposites NanoComposites Songshan Zeng Christopher Reyes Songshan Zeng Christopher Reyes Epoxy Chemistry Epoxy systems consist of a liquid epoxy

More information

CHAPTER 6: Etching. Chapter 6 1

CHAPTER 6: Etching. Chapter 6 1 Chapter 6 1 CHAPTER 6: Etching Different etching processes are selected depending upon the particular material to be removed. As shown in Figure 6.1, wet chemical processes result in isotropic etching

More information

synthetic strategies for the generation of polymer monolayers grafting via immobilized monomers

synthetic strategies for the generation of polymer monolayers grafting via immobilized monomers synthetic strategies for the generation of polymer monolayers I I I I "grafting-to" chemisorption: groups of the polymer are reacted with suitable surface sites grafting via immobilized monomers "grafting-from"

More information

Evaluation of Capacitance in Motor Circuit Analysis Findings. Howard W Penrose, Ph.D., CMRP President, SUCCESS by DESIGN

Evaluation of Capacitance in Motor Circuit Analysis Findings. Howard W Penrose, Ph.D., CMRP President, SUCCESS by DESIGN Evaluation of Capacitance in Motor Circuit Analysis Findings Howard W Penrose, Ph.D., CMRP President, SUCCESS by DESIGN Introduction The question related to the ability of low voltage testing to detect

More information

Trends in Surface Treatment for Multi-Layer Packaging

Trends in Surface Treatment for Multi-Layer Packaging Trends in Surface Treatment for Multi-Layer Packaging Presented by Senthil Kumar C.O.O. Enercon Asia Pacific Major Presentation Topics Trends and Challenges Multi-Film Structures Wet vs. Dry Trapping on

More information

High Power Factors and Contaminants in Transformer Oil

High Power Factors and Contaminants in Transformer Oil High Power Factors and Contaminants in Transformer Oil By Russ Crutcher and Ken Warner HIGH POWER FACTORS AND CONTAMINANTS IN TRANSFORMER OIL Russ Crutcher and Ken Warner Microlab Northwest Abstract New

More information

Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for. High-Performance Photodetector. Supporting Information for

Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for. High-Performance Photodetector. Supporting Information for Supporting Information for Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for High-Performance Photodetector Zhenjun Tan,,ǁ, Yue Wu,ǁ, Hao Hong, Jianbo Yin, Jincan Zhang,, Li Lin, Mingzhan

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. fabrication. A schematic of the experimental setup used for graphene Supplementary Figure 2. Emission spectrum of the plasma: Negative peaks indicate an

More information

Plasma-Surface Interactions and Impact on Electron Energy Distribution Function

Plasma-Surface Interactions and Impact on Electron Energy Distribution Function Plasma-Surface Interactions and Impact on Electron Energy Distribution Function N. Fox-Lyon(a), N. Ning(b), D.B. Graves(b), V. Godyak(c) and G.S. Oehrlein(a) (a) University of Maryland, College Park (b)

More information

Introduction. Photoresist : Type: Structure:

Introduction. Photoresist : Type: Structure: Photoresist SEM images of the morphologies of meso structures and nanopatterns on (a) a positively nanopatterned silicon mold, and (b) a negatively nanopatterned silicon mold. Introduction Photoresist

More information

Engineered Plastic Solutions TM. Surface Modification

Engineered Plastic Solutions TM. Surface Modification Engineered Plastic Solutions TM Surface Modification E n g i n e e r i n g C u s t o m F a b r i c a t i o n M a n u f a c t u r i n g Services A partnership with TriStar will give you a competitive edge.

More information

Thermal-Mechanical Decoupling by a Thermal Interface Material

Thermal-Mechanical Decoupling by a Thermal Interface Material Thermal-Mechanical Decoupling by a Thermal Interface Material Haibing Zhang, Ph.D. Research and Development Chemist Andy Cloud Product Development Manager Abstract Thermal-mechanical decoupling by a silicone

More information

The application of nano aluminum powder on solid propellant

The application of nano aluminum powder on solid propellant The application of nano aluminum powder on solid propellant Metal incendiary agent is one of the important components of modern solid propellant, which can improve the explosion heat and density of propellant.

More information

Introduction to Polymerization Processes

Introduction to Polymerization Processes Introduction to Polymerization Processes Reference: Aspen Polymers: Unit Operations and Reaction Models, Aspen Technology, Inc., 2013. 1- Polymer Definition A polymer is a macromolecule made up of many

More information

GCSE OCR Revision Chemistry. GCSE OCR Revision Chemistry. GCSE OCR Revision Chemistry. Bonding. GCSE OCR Revision Chemistry

GCSE OCR Revision Chemistry. GCSE OCR Revision Chemistry. GCSE OCR Revision Chemistry. Bonding. GCSE OCR Revision Chemistry Particle Model and Atomic Structure The following symbols describe two different substances. Deduce all the information you can from these symbols. 13 C 12 6 6 C 1 Particle Model and Atomic Structure The

More information

Introduction. Sample kit content

Introduction. Sample kit content Introduction Polymer blend sample preparation TN01062 Preparation of polymer samples available from the Lateral force, Phase imaging, and Force modulation mode kits The SBS-PMMA, SBS-PS, and SBR-PMMA samples

More information

Structuring and bonding of glass-wafers. Dr. Anke Sanz-Velasco

Structuring and bonding of glass-wafers. Dr. Anke Sanz-Velasco Structuring and bonding of glass-wafers Dr. Anke Sanz-Velasco Outline IMT Why glass? Components for life science Good bond requirements and evaluation Wafer bonding 1. Fusion bonding 2. UV-adhesive bonding

More information

Special Properties of Au Nanoparticles

Special Properties of Au Nanoparticles Special Properties of Au Nanoparticles Maryam Ebrahimi Chem 7500/750 March 28 th, 2007 1 Outline Introduction The importance of unexpected electronic, geometric, and chemical properties of nanoparticles

More information

Surface Modification Studies by Atomic Force Microscopy for Ar-Plasma Treated Polyethylene

Surface Modification Studies by Atomic Force Microscopy for Ar-Plasma Treated Polyethylene Macromolecular Research, Vol. 10, No. 5, pp 291-295 (2002) Notes Surface Modification Studies by Atomic Force Microscopy for Ar-Plasma Treated Polyethylene Eun-Deock Seo Division of Chemical Engineering,

More information

A New Dielectrophoretic Coating Process for Depositing Thin Uniform Coatings on Films and Fibrous Surfaces

A New Dielectrophoretic Coating Process for Depositing Thin Uniform Coatings on Films and Fibrous Surfaces A New Dielectrophoretic Coating Process for Depositing Thin Uniform Coatings on Films and Fibrous Surfaces by Angelo Yializis Ph.D., Xin Dai Ph.D. Sigma Technologies International Tucson, AZ USA SIGMA

More information