Radon-EDM Experiment

Size: px
Start display at page:

Download "Radon-EDM Experiment"

Transcription

1 Radon-EDM Experiment Eric Tardiff, Tim Chupp, Wolfgang Lorenzon (University of Michigan) John Behr, Matt Pearson, Gordon Ball, Greg Hackman, Martin Smith (TRIUMF) Carl Svensson, Andrew Phillips (Guelph) Mike Hayden (SFU) Norbert Pietralla, Georgi Rainovsk, Gene Sprouse (SUNY Stony Brook) TRIUMF E929 Spokesmen: Timothy Chupp & Carl Svensson E-929 Collaboration(Guelph, Michigan, SFU, TRIUMF) TRIUMF Canada's National Laboratory for Particle and Nuclear Physics Funding: NSF-Focus Center, DOE, NRC (TRIUMF), NSERC

2 What I did on my Summer Vacation I went backward in time and discovered Parity Violation.

3 Atomic Electric Dipole Moment Separation of Charge along J: <d>=g d <J> + _ P or T gd > 0 gd < 0 if T symmetry, g d =-g d <d>= e rρ d 3 r d E is P&T even We measure g d <J E>: EDM Motivations Undiscovered Study CP violation: mass scale Signal of NEW PHYSICS (beyond SM - CKM) Cosmological Baryon Asymmetry E

4 Octupole Deformation-Parity Doublets (see Feynman vol 3.) NH 3 a> β 3 b> ψ ± >= 1 ( a> ± b> ) E ++ - S ~ <+ ηr 3 cos θ -> ~ ηβ 2 β 2 3 ZA2/3 r 0 3 E + -E - E + -E - + J

5 Nuclei with Octupole Deformation/Vibration (Haxton & Henley; Auerbach, Flambaum, Spevak; Engel, Hayes & Friar, etc.) S ~ <+ ηr 3 cos θ -> ~ ηβ 2 β 2 3 ZA2/3 r 0 3 E + -E - E + -E E J Ref: Dzuba PRA66, (2002) - Uncertainties of 50% *Based on Woods-Saxon Potential Nilsson Potential Prediction is 137 kev NOTES: Ocutpole Enhancements Engel et al. agree with Flambaum et al. Even octupole vibrations enhance S (Engel, Flambaum& Zelevinsky)

6 Radon EDM Experiment 929 at TRUMF (Vancouver BC) Sarah Nuss-Warren, Eric Tardiff, W. Lorenzon, TC - UM J Behr, M. Pearson, C. Svensson, A. Phillips, M. HaydenG. Hackman, G. Ball QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture.

7 REDM

8

9 Atomic Electric Dipole Moment + _ P or T 2µ. B-d. E Δω gd > 0 gd < 0 B E Γ E - E + T 2 RF power B homogeneity Precision: (σ d ) -1 = 4EΓ 1 (S/N) signal (volts) time ( μsec) S/N = A 2 N Rn Analyzing power Need high radon polarization and long relaxation.

10 4th 3rd 2nd most sensitive EDM measurement.

11

12 Spin-Exchange Optical Pumping Optically pump the Rb with circularly polarized laser light. Spin-exchange collisions transfer the polarization to the radon nuclei. Buffer gas collisions 5p 1/2 1/2 2/3 1/3 1/2 m s =-1/2 m s =+1/2 5s 1/2 Rb Rb 209 Rn 209 Rn Binary Collision: τ~10-12 sec. N 2 Rb 209 Rn Rb 209 Rn N 2 van Der Waals Molecule: τ is dependent on 3rd body (N 2 ) pressure.

13 Gamma Ray Anisotropies Polarized nuclei emit gamma rays with calculable directional distributions. (W(0º)-W(90º))/(W(0º)+W(90º)) for j f =j i +1 W (θ) = 1 4π j i (2 j i 1) j f =j i -1 pure dipole transition m i m 2 i a mi 1 3 j ( j +1) i i P (cosθ) 2 j f =j i +1 j f =j i δ W(θ) W(θ) δ δ θ θ

14 14x10 3 Counts per bin 12x Counts per bin 10 Time (s) Time (s)

15 Studies with 209 Stony Brook 209 Fr (50 s) 197 Au ~100 MeV 16 O heating 5 kv HPGe2 HPGe1 Laser: LDA 1. Make 209 Fr and implant in foil Fr (50s) _ > 209 Rn (28.5 m) 3. Heat foil: release to target chamber 4. Freeze to cold finger 5. PUSH to cell (buffer gas) 6. Get about 500, Rn in cell

16 Rn (28.5 m) Before transfer kev 511 kev After transfer ~ 500, Rn kev 689 kev 745 kev

17 The 209 Rn Decay Scheme (7/2) - 7/ % 44% 5/2-209 Rn E.C. δ 2 = a a 2 a 1 =1 pure dipole 7/ % a 2 =1 pure quadrupole 9/2-209 At 0 require : a a 2 2 =1 γ-ray Energy Intensity δ (Mixing Ratio) > >2.86 from Table of Isotopes

18 Normalize 337 kev to 408 kev T=130 C Uncoated Pyrex Alignment 20% of maximum (bootstrap) N337/N Laser off Laser on Laser On - Laser Off P2(cos Θ) Theta Theta 60 80

19 Spin Exchange Pumping di/dλ (Watts/cm 2 /nm) di/dλ (Watts/cm 2 /nm) di/dλ (Watts/cm 2 /nm) Pressure broadening Gas concentration Detuning From nm (GHz) Detuning From nm (GHz) Detuning From nm (GHz) Laser Intensity Profile Radiation Trapping Buffer gas concentration Optical pumping rate Spin destruction rate Absorption Rate Rb Concentration Spin Exchange Rate Rb polarization radon relaxation (quadrupole) Radon polarization Total magnetic moment

20 Modeling Polarization Can calculate the expected angular distribution of gamma rays as a function of spinexchange and relaxation rates. The spin-exchange rate γ SE depends on the Rb density, which depends on cell temperature. The dipole and quadrupole relaxation rates, Γ 1 and Γ 2, must be determined from data. -5/2-3/2-1/2 1/2 3/2 5/2 1/7γ SE 8/35γ SE 9/35γ SE 8/35γ SE 1/7γ SE 1/21Γ 1 8/105Γ 1 3/35Γ 1 8/105Γ 1 1/21Γ 1 1/28Γ 2 9/140Γ 2 9/140Γ 2 1/28Γ 2 1/14Γ 2 1/35Γ 2 1/35Γ 2 1/14Γ 2 Γ 2 (T) = Γ 2 e ΔE/kT

21 Shows T2~4.5 h, dominated by Quadrupole Interactions (Γ 2 >>Γ 1 )

22 Modeling Polarization Quadrupole relaxation should be the dominant mechanism. As a first approximation, set Γ 1 =0, calculate γ SE for a given T, and calculate the expected anisotropies. j f =j i +1 j f =j i W(0º)/W(90º) W(0º)/W(90º) Γ Γ 2 1 Γ Γ 2 1

23 Fit for Γ 2 (T a =300 K) 0.05 Hz for uncoated 0.03 Hz for coateds Use 2.5x10-21 cm 2

24 Backgrounds σ ω = 2 1 = 2 1 T 2 (S/N) T 2 A 2 (1-B) 2 Nγ Build-up of decay products for γ-anistropy probe Change cells (weekly?) - good for systematics Scattered betas (beta asymmetry detection) Systematics Leakage currents -- must be minimized: Multiple species Electric quadrupole moment (gradients/walls) Change cells, cell shape/orientation: Multiple species Electric field effects on shields, electronics, etc. Check and measure with E=0 E 2 and E effects (Stark shifts) Multiple Species: J=1/2, 3/2, etc. Motional effects <vxe> (negligible in gas cells) Δ

25 What s next? We re done at Stony Brook Cell characterization with natural xenon: - 27% 129 Xe (J=1/2); 21% 131 Xe (J=3/2) Cell development: coatings/electrodes/temperatures Laser studies (LDA light absorption by Rb) TRIUMF set up measurements with xenon isotopes Measure Rn nuclear structure (8-π) Build up to EDM measurements (~ 3 years)

26 Beta Asymmetry No count rate limit (current detection mode) Discriminate species only by frequencies Scattered betas (lower effective A, Background)

27 Radon EDM Summary Progresss - but a lot remains to be done. 209 Rn work at Stony Brook Productive Move to TRIUMF beginning summer Rn EDM projections Gamma Anisotropy (A= ) T 2 = 30 s E=5 kv/cm

Status of the Search for an EDM of 225 Ra

Status of the Search for an EDM of 225 Ra Status of the Search for an EDM of 225 Ra I. Ahmad, K. Bailey, J. Guest, R. J. Holt, Z.-T. Lu, T. O Connor, D. H. Potterveld, N. D. Scielzo Roy Holt Lepton Moments 2006 Cape Cod Outline Why is an EDM interesting?

More information

Search for a Permanent Electric Dipole Moment in Ra EDM Spin EDM Spin EDM. Spin. Pseudo-scalar. s d

Search for a Permanent Electric Dipole Moment in Ra EDM Spin EDM Spin EDM. Spin. Pseudo-scalar. s d Search for a Permanent Electric Dipole Moment in Ra-225 + T + P - - - + EDM Spin EDM Spin EDM Spin Pseudo-scalar s d C. S. Wu 1912-1997 Parity (space reversal) x, y, z -x, -y, -z z y Parity z x x y Pseudo-scalar

More information

EDM. Spin. ν e. β - Li + Supported by DOE, Office of Nuclear Physics

EDM. Spin. ν e. β - Li + Supported by DOE, Office of Nuclear Physics T + - + - He Ra EDM Spin EDM Spin β - θ ν e He Kr 6 He 6 Li + Supported by DOE, Office of Nuclear Physics Search for a Permanent Electric Dipole Moment in Ra-225 + T + P - - - + EDM Spin EDM Spin EDM Spin

More information

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe A. Yoshimi RIKEN K. Asahi, S. Emori, M. Tsukui, RIKEN, Tokyo Institute of Technology Nuclear

More information

Nuclear structure aspects of Schiff Moments. N.Auerbach Tel Aviv University and MSU

Nuclear structure aspects of Schiff Moments. N.Auerbach Tel Aviv University and MSU Nuclear structure aspects of Schiff Moments N.Auerbach Tel Aviv University and MSU T-P-odd electromagnetic moments In the absence of parity (P) and time (T) reversal violation the T P-odd moments for a

More information

Collaborator ==============================

Collaborator ============================== RI Collaborator ============================== 20 CKM : 100 GeV (Plank scale): 10 19 GeV EDM + + + - - - Time: t -t Spin: s -s EDM: d d + + + - - - d 0 T-violation CP-violation CPT theorem Standard Model

More information

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments)

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) T Symmetry EDM s Octupole Deformation Other Nuclei Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) J. Engel University of North Carolina June 16, 2005 T

More information

Xe nuclear spin maser and search for atomic EDM

Xe nuclear spin maser and search for atomic EDM Xe nuclear spin maser and search for atomic EDM T. Inoue, A. Yoshimi *, M. Uchida, T. Furukawa, N. Hatakeyama, M. Tsuchiya, H. Hayashi, and K. Asahi Department of Physics, Tokyo Institute of Technology

More information

Proposed experiment for the anapole measurement in francium. Luis A. Orozco Joint Quantum Institute University of Maryland

Proposed experiment for the anapole measurement in francium. Luis A. Orozco Joint Quantum Institute University of Maryland Proposed experiment for the anapole measurement in francium Luis A. Orozco Joint Quantum Institute University of Maryland FrPNC collaboration: S. Aubin, J. A. Behr, V. Flambaum, E. Gomez, G. Gwinner, K.

More information

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt An Electron EDM Search in HfF + : Probing P & T-violation Beyond the Standard Model Aaron E. Leanhardt Experiment: Laura Sinclair, Russell Stutz & Eric Cornell Theory: Ed Meyer & John Bohn JILA, NIST,

More information

Efficient inter-trap transfer of cold francium atoms

Efficient inter-trap transfer of cold francium atoms Hyperfine Interact (2016) 237:150 DOI 10.1007/s10751-016-1347-9 Efficient inter-trap transfer of cold francium atoms J. Zhang 1 R. Collister 2 K. Shiells 2 M. Tandecki 3 S. Aubin 4 J. A. Behr 3 E. Gomez

More information

S1155 Ground State Moments of Lithium Status and Recent Results

S1155 Ground State Moments of Lithium Status and Recent Results S1155 Ground State Moments of Lithium Status and Recent Results, 2. June 2010 Lithium charge radii RMS charge radii of Li isotopes Data taken from: Sánchez et al. PRL 96, 33002 (2006) RMS charge radii

More information

magneto-optically trapped, spin-polarized 37 K

magneto-optically trapped, spin-polarized 37 K Measurement of the β-asymmetry in the decay of magneto-optically trapped, spin-polarized 37 K TRIUMF Neutral Atom Trap Texas A&M University Cyclotron Institute October, 24 Acknowledgments The TRINAT Collaboration

More information

Atomic Parity Non-Conservation in Francium: The FrPNC Experiment

Atomic Parity Non-Conservation in Francium: The FrPNC Experiment IL NUOVO CIMENTO Vol.?, N.?? Atomic Parity Non-Conservation in Francium: The FrPNC Experiment at TRIUMF S. Aubin( 1 ), E. Gomez( 2 ), J. A. Behr( 3 ), M. R. Pearson( 3 ), D. Sheng( 4 ), J. Zhang( 4 ),

More information

The hunt for permanent electric dipole moments

The hunt for permanent electric dipole moments Journal of Physics: Conference Series The hunt for permanent electric dipole moments To cite this article: W Korsch 2012 J. Phys.: Conf. Ser. 337 012064 View the article online for updates and enhancements.

More information

Gamma-ray decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 March 7, 2011

Gamma-ray decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 March 7, 2011 Gamma-ray decay Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 March 7, 2011 NUCS 342 (Lecture 18) March 7, 2011 1 / 31 Outline 1 Mössbauer spectroscopy NUCS 342 (Lecture

More information

RFSS: Lecture 6 Gamma Decay

RFSS: Lecture 6 Gamma Decay RFSS: Lecture 6 Gamma Decay Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3 Energetics Decay Types Transition Probabilities Internal Conversion Angular Correlations Moessbauer

More information

Atomic magnetometers: new twists to the old story. Michael Romalis Princeton University

Atomic magnetometers: new twists to the old story. Michael Romalis Princeton University Atomic magnetometers: new twists to the old story Michael Romalis Princeton University Outline K magnetometer Elimination of spin-exchange relaxation Experimental setup Magnetometer performance Theoretical

More information

The FrPNC Experiment, weak interaction studies in Francium at TRIUMF

The FrPNC Experiment, weak interaction studies in Francium at TRIUMF The FrPNC Experiment, weak interaction studies in Francium at TRIUMF E Gomez 1, S Aubin 2, R Collister 3, J A Behr 4, G Gwinner 3, L A Orozco 5, M R Pearson 4, M Tandecki 3, D Sheng 5, J Zhang 5 1 Institute

More information

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Wesley Ketchum and Abe Reddy EWI Group, UW REU 2006 Outline Neutrino Physics Background Double Beta Decay and the Majorana

More information

Precision tests of the Standard Model with trapped atoms 1 st lecture. Luis A. Orozco SUNYSB

Precision tests of the Standard Model with trapped atoms 1 st lecture. Luis A. Orozco SUNYSB Precision tests of the Standard Model with trapped atoms 1 st lecture Luis A. Orozco SUNYSB The Standard Model (brief review) Symmetries Conserved quantities Gauge Symmetries (local and continuous) Particles

More information

Opportunities with collinear laser spectroscopy at DESIR:

Opportunities with collinear laser spectroscopy at DESIR: Opportunities with collinear laser spectroscopy at DESIR: the LUMIERE facility GOALS of LUMIERE experiments: Gerda Neyens, K.U. Leuven, Belgium (1) measure ground state properties of exotic isotopes: (see

More information

What we know about Francium. University of Science and Technology of China Hefei, China July 2018 Luis A. Orozco

What we know about Francium. University of Science and Technology of China Hefei, China July 2018 Luis A. Orozco What we know about Francium University of Science and Technology of China Hefei, China July 2018 Luis A. Orozco www.jqi.umd.edu The slides are available at: http://www.physics.umd.edu/rgroups/amo/orozco/results/2018/results18.htm

More information

GEANT4 SIMULATIONS FOR THE RADON ELECTRIC DIPOLE MOMENT SEARCH AT TRIUMF. A Thesis. Presented to. The Faculty of Graduate Studies

GEANT4 SIMULATIONS FOR THE RADON ELECTRIC DIPOLE MOMENT SEARCH AT TRIUMF. A Thesis. Presented to. The Faculty of Graduate Studies GEANT4 SIMULATIONS FOR THE RADON ELECTRIC DIPOLE MOMENT SEARCH AT TRIUMF A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by EVAN THOMAS RAND In partial fulfilment of requirements

More information

High-precision studies in fundamental physics with slow neutrons. Oliver Zimmer Institut Laue Langevin

High-precision studies in fundamental physics with slow neutrons. Oliver Zimmer Institut Laue Langevin High-precision studies in fundamental physics with slow neutrons Oliver Zimmer Institut Laue Langevin ILL, 20 September 2016 Topics The impossible particle and its properties Search for an electric dipole

More information

Shuichiro Kojima, Chikako Funayama, Shunya Tanaka, Yu Sakamoto, Yuichi Ohtomo, Chika Hirao, Masatoshi Chikamori, Eri Hikota

Shuichiro Kojima, Chikako Funayama, Shunya Tanaka, Yu Sakamoto, Yuichi Ohtomo, Chika Hirao, Masatoshi Chikamori, Eri Hikota Development Of 131 Xe Co-magnetometry For Xe Atomic EDM Search, Yuichi Ichikawa, Koichiro Asahi Department of Physics, Tokyo Tech./RIKEN Nishina Center E-mail: tomoya.sato@riken.jp Shuichiro Kojima, Chikako

More information

Fundamental interactions experiments with polarized trapped nuclei

Fundamental interactions experiments with polarized trapped nuclei Fundamental interactions experiments with polarized trapped nuclei β + DESIR meeting Leuven, 26-28 May 2010 ν e Nathal Severijns Kath. University Leuven, Belgium 5/31/2010 N. Severijns, DESIR Workshop

More information

Axion Detection With NMR

Axion Detection With NMR PRD 84 (2011) arxiv:1101.2691 + to appear Axion Detection With NMR Peter Graham Stanford with Dmitry Budker Micah Ledbetter Surjeet Rajendran Alex Sushkov Dark Matter Motivation two of the best candidates:

More information

Improvements to the Mercury Electric Dipole Moment Experiment

Improvements to the Mercury Electric Dipole Moment Experiment Improvements to the Mercury Electric Dipole Moment Experiment Kyle Matsuda Advisor: Blayne Heckel INT REU, University of Washington August 2015 Table of Contents 1 Introduction 2 Experimental Setup 3 Current

More information

Time Reversal and the electron electric dipole moment. Ben Sauer

Time Reversal and the electron electric dipole moment. Ben Sauer Time Reversal and the electron electric dipole moment Ben Sauer Mysteries of physics Mysteries of physics Baryon asymmetry Why is there more matter than antimatter in the observable universe? Breaking

More information

Schiff Moments. J. Engel. May 9, 2017

Schiff Moments. J. Engel. May 9, 2017 Schiff Moments J. Engel May 9, 2017 Connection Between EDMs and T Violation Consider non-degenerate ground state g.s. : J, M. Symmetry under rotations R y (π) for vector operator like d i e i r i implies:

More information

Nuclear structure and the anapole moment in francium; experiments and proposals. Luis A. Orozco UMD

Nuclear structure and the anapole moment in francium; experiments and proposals. Luis A. Orozco UMD Nuclear structure and the anapole moment in francium; experiments and proposals. Luis A. Orozco UMD Work done in collaboration with Prof. Gene Sprouse from SUNYSB And Prof. David DeMille from Yale University.

More information

Physics beyond the Standard Model with trapped atoms in the LHC era

Physics beyond the Standard Model with trapped atoms in the LHC era Physics beyond the Standard Model with trapped atoms in the LHC era M. Anholm 1, D. Ashery 2, O. Aviv 2, S. Behling 3, J.A. Behr 4, I. Cohen 2, B. Fenker 3, A. Gorelov 4, G. Gwinner 5, K.P. Jackson 4,

More information

Reassessing the Vibrational Nuclear Structure of 112 Cd

Reassessing the Vibrational Nuclear Structure of 112 Cd Reassessing the Vibrational Nuclear Structure of 112 Cd February 212 1 Vibrational Nuclear Structure Nuclear Vibrations in the Collective Model Vibrational Structure of the 112 Cd Sources of Inconsistency

More information

Gamma-Ray coincidence and 60 Co angular correlation

Gamma-Ray coincidence and 60 Co angular correlation Gamma-Ray coincidence and 60 Co angular correlation With two γ-ray detectors, it is possible to determine that two g-rays are part of the same cascade by measuring the spectrum in one detector coincident

More information

Low Field MRI of Laser Polarized Noble Gases. Yuan Zheng, 4 th year seminar, Feb, 2013

Low Field MRI of Laser Polarized Noble Gases. Yuan Zheng, 4 th year seminar, Feb, 2013 Low Field MRI of Laser Polarized Noble Gases Yuan Zheng, 4 th year seminar, Feb, 2013 Outline Introduction to conventional MRI Low field MRI of Laser Polarized (LP) noble gases Spin Exchange Optical Pumping

More information

Electron EDM Searches

Electron EDM Searches Electron EDM Searches Paul Hamilton Yale University INT Workshop Seattle, October 2008 Outline Theoretical Motivation General detection method Past and current eedm searches Molecular eedm searches and

More information

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy.

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy. Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy Hiroshi Watanabe Outline Prospects for decay spectroscopy of neutron-rich

More information

Test of Time Reversal Symmetry using polarized 8 Li at TRIUMF-ISAC

Test of Time Reversal Symmetry using polarized 8 Li at TRIUMF-ISAC Test of Time Reversal Symmetry using polarized 8 Li at TRIUMF-ISAC J. Murata 123, H. Baba 3, J.A. Behr 4, M. Hata 1, Y. Hirayama 5, M. Ikeda 1, D. Kameda 3, H. Kawamura 36, R. Kishi 1, C.D.P. Levy 4, Y.

More information

Rb-Xe spin relaxation in dilute Xe mixtures

Rb-Xe spin relaxation in dilute Xe mixtures PHYSICAL REVIEW A, VOLUME 65, 012712 Rb-Xe spin relaxation in dilute Xe mixtures I. A. Nelson and T. G. Walker Department of Physics, University of Wisconsin Madison, Madison, Wisconsin 53706 Received

More information

Measurement of Spin-Polarized Observables in the β + decay of 37 K

Measurement of Spin-Polarized Observables in the β + decay of 37 K Measurement of Spin-Polarized Observables in the β + decay of 37 K Texas A&M University Cyclotron Institute June 18, 2014 Outline Brief physics goals Outline of TRINAT s double-mot system Overview of recent

More information

Nuclear vibrations and rotations

Nuclear vibrations and rotations Nuclear vibrations and rotations Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 29 Outline 1 Significance of collective

More information

Schiff Moments. J. Engel. November 4, 2016

Schiff Moments. J. Engel. November 4, 2016 Schiff Moments J. Engel November 4, 2016 One Way Things Get EDMs Starting at fundamental level and working up: Underlying fundamental theory generates three T-violating πnn vertices: N? ḡ π New physics

More information

First Results from GRIFFIN Half-lives of Neutron Rich Cd and 131 In! Ryan Dunlop Physics Dept. University of Guelph, Canada INPC 2016

First Results from GRIFFIN Half-lives of Neutron Rich Cd and 131 In! Ryan Dunlop Physics Dept. University of Guelph, Canada INPC 2016 First Results from GRIFFIN Half-lives of Neutron Rich 128-130 Cd and 131 In! Ryan Dunlop Physics Dept. University of Guelph, Canada INPC 2016 r-process High n density! fast capturing! x! Produces many

More information

Nuclear and Atomic Electric Dipole Moments

Nuclear and Atomic Electric Dipole Moments Nuclear Physics A 827 (2009) 428c 435c www.elsevier.com/locate/nuclphysa Nuclear and Atomic Electric Dipole Moments Tim Chupp Physics Department, FOCUS and MCTP University of Michigan Ann Arbor, Michigan

More information

Parity Nonconservation in Atoms: The Weak Charge and Anapole Moment of 133 Cs

Parity Nonconservation in Atoms: The Weak Charge and Anapole Moment of 133 Cs Parity Nonconservation in Atoms: The Weak Charge and Anapole Moment of 133 Cs Walter Johnson University of Notre Dame 1) Weak charge Q W of 133 Cs provides a test of the Standard Electroweak Model. 2)

More information

Paul Huffman! Investigating Hadronic Parity Violation Using the γd np Reaction at the Proposed HIGS2 facility at TUNL

Paul Huffman! Investigating Hadronic Parity Violation Using the γd np Reaction at the Proposed HIGS2 facility at TUNL Investigating Hadronic Parity Violation Using the γd np Reaction at the Proposed HIGS2 facility at TUNL Paul Huffman! North Carolina State University Triangle Universities Nuclear Laboratory!!!! M.W. Ahmed!

More information

Tests of Lorentz Invariance with alkalimetal noble-gas co-magnetometer. (+ other application) Michael Romalis Princeton University

Tests of Lorentz Invariance with alkalimetal noble-gas co-magnetometer. (+ other application) Michael Romalis Princeton University Tests of Lorentz Invariance with alkalimetal noble-gas co-magnetometer (+ other application) Michael Romalis Princeton University Tests of Fundamental Symmetries Parity violation weak interactions CP violation

More information

13. Basic Nuclear Properties

13. Basic Nuclear Properties 13. Basic Nuclear Properties Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 13. Basic Nuclear Properties 1 In this section... Motivation for study The strong nuclear force Stable nuclei Binding

More information

Angular Correlation Experiments

Angular Correlation Experiments Angular Correlation Experiments John M. LoSecco April 2, 2007 Angular Correlation Experiments J. LoSecco Notre Dame du Lac Nuclear Spin In atoms one can use the Zeeman Effect to determine the spin state.

More information

Structure of neutron-rich Mg isotopes explored by beta-decay of spin-polarized Na isotopes

Structure of neutron-rich Mg isotopes explored by beta-decay of spin-polarized Na isotopes Structure of neutron-rich Mg isotopes explored by beta-decay of spin-polarized Na isotopes K. Tajiri, T. Shimoda, K. Kura, M. Kazato, M. Suga, A. Takashima, T. Masue, T. Hori, T. Suzuki, T. Fukuchi, A.

More information

Parity Violation in Diatomic Molecules

Parity Violation in Diatomic Molecules Parity Violation in Diatomic Molecules Jeff Ammon, E. Altuntas, S.B. Cahn, R. Paolino*, D. DeMille Physics Department, Yale University *Physics Department, US Coast Guard Academy DeMille Group Funding:

More information

POLARIMETRY FOR A STORAGE-RING ELECTRIC-DIPOLE-MOMENT MEASUREMENT MARIA ŻUREK FOR THE JEDI COLLABORATION

POLARIMETRY FOR A STORAGE-RING ELECTRIC-DIPOLE-MOMENT MEASUREMENT MARIA ŻUREK FOR THE JEDI COLLABORATION POLARIMETRY FOR A STORAGE-RING ELECTRIC-DIPOLE-MOMENT MEASUREMENT 8 JUNE 2018 MARIA ŻUREK FOR THE JEDI COLLABORATION MOTIVATION Barion Asymmetry Problem Barion Asymmetry Observation Standard Cosmological

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

EDMs of stable atoms and molecules

EDMs of stable atoms and molecules W.Heil EDMs of stable atoms and molecules outline Introduction EDM sensitivity Recent progress in -EDMs paramagnetic atoms/molecules -EDMs diamagnetic atoms Conclusion and outlook Solvay workshop Beyond

More information

Space-Time Symmetries

Space-Time Symmetries Space-Time Symmetries Outline Translation and rotation Parity Charge Conjugation Positronium T violation J. Brau Physics 661, Space-Time Symmetries 1 Conservation Rules Interaction Conserved quantity strong

More information

Laser Spectroscopy on Bunched Radioactive Ion Beams

Laser Spectroscopy on Bunched Radioactive Ion Beams Laser Spectroscopy on Bunched Radioactive Ion Beams Jon Billowes University of Manchester Balkan School on Nuclear Physics, Bodrum 2004 Lecture 1. 1.1 Nuclear moments 1.2 Hyperfine interaction in free

More information

The New Search for a Neutron EDM at the SNS

The New Search for a Neutron EDM at the SNS The New Search for a Neutron EDM at the SNS Jen-Chieh Peng University of Illinois at Urbana-Champaign The Third International Symposium on LEPTON MOMENTS, Cape Cod, June 19-22, 2006 Physics of neutron

More information

Search for a Permanent Electric Dipole Moment of 199 Hg

Search for a Permanent Electric Dipole Moment of 199 Hg Search for a Permanent Electric Dipole Moment of 199 Hg NIST, Boulder: University of Washington: Princeton University: W. Clark Griffith M. David Swallows David Meyer Blayne Heckel E. Norval Fortson Michael

More information

EDM Measurements using Polar Molecules

EDM Measurements using Polar Molecules EDM Measurements using Polar Molecules B. E. Sauer Imperial College London J. J. Hudson, M. R. Tarbutt, Paul Condylis, E. A. Hinds Support from: EPSRC, PPARC, the EU Two motivations to measure EDMs EDM

More information

3. Perturbed Angular Correlation Spectroscopy

3. Perturbed Angular Correlation Spectroscopy 3. Perturbed Angular Correlation Spectroscopy Dileep Mampallil Augustine K.U.Leuven, Belgium Perturbed Angular Correlation Spectroscopy (PAC) is a gamma ray spectroscopy and can be used to investigate

More information

Schiff Moments. J. Engel. October 23, 2014

Schiff Moments. J. Engel. October 23, 2014 Schiff Moments J. Engel October 23, 2014 One Way Things Get EDMs Starting at fundamental level and working up: Underlying fundamental theory generates three T -violating πnn vertices: N? ḡ π New physics

More information

Chapter 6. Summary and Conclusions

Chapter 6. Summary and Conclusions Chapter 6 Summary and Conclusions The basic aim of the present thesis was to understand the interplay between single particle and collective degrees of freedom and underlying nuclear phenomenon in mass

More information

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron.

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron. 1 Lecture 3 Nuclear Decay modes, Nuclear Sizes, shapes, and the Liquid drop model Introduction to Decay modes (continued) Gamma Decay Electromagnetic radiation corresponding to transition of nucleus from

More information

Electric dipole moment experiments

Electric dipole moment experiments Photo by Reidar Hahn, Fermilab with Sandbox Studio, Chicago Electric dipole moment experiments S. Roccia Outlines Setting the stage The EDM landscape EDM of radioactive nuclei 2 Setting the stage 3 A nonzero

More information

Polarized muon decay asymmetry measurement: status and challenges

Polarized muon decay asymmetry measurement: status and challenges Polarized muon decay asymmetry measurement: status and challenges Glen Marshall, for the TWIST Collaboration Muon Physics in the LHC Era Symposium at the Institute of Nuclear Theory Seattle, October 008

More information

arxiv: v3 [nucl-ex] 12 Jan 2012

arxiv: v3 [nucl-ex] 12 Jan 2012 Fast-timing measurements in 95,96 Mo arxiv:2.539v3 [nucl-ex] 2 Jan 202 S Kisyov, S Lalkovski, N Mǎrginean 2, D Bucurescu 2, L Atanasova 3, D Balabanski 3, Gh Cata-Danil 2, I Cata-Danil 2, D Deleanu 2,

More information

Nuclear spin maser and experimental search for 129 Xe atomic EDM

Nuclear spin maser and experimental search for 129 Xe atomic EDM Hyperfine Interact DOI 10.1007/s10751-012-0751-z Nuclear spin maser and experimental search for 129 Xe atomic EDM T. Inoue T. Furukawa A. Yoshimi Y. Ichikawa M. Chikamori Y. Ohtomo M. Tsuchiya N. Yoshida

More information

Standard Model and ion traps: symmetries galore. Jason Clark Exotic Beam Summer School July 28 August 1, 2014

Standard Model and ion traps: symmetries galore. Jason Clark Exotic Beam Summer School July 28 August 1, 2014 Standard Model and ion traps: symmetries galore Jason Clark Exotic Beam Summer School July 8 August 1, 014 Overview of lectures Overview of the Standard Model (SM) Nature of the weak interaction and β

More information

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL SURROGATE REACTIONS An overview of papers by Jason Burke from LLNL Compound Nuclear Reaction cross sections Cross sections for compound-nuclear reactions are required input for astrophysical models and

More information

A new measurement of the electron edm. E.A. Hinds. Centre for Cold Matter Imperial College London

A new measurement of the electron edm. E.A. Hinds. Centre for Cold Matter Imperial College London A new measurement of the electron edm E.A. Hinds Centre for Cold Matter Imperial College London Birmingham, 26 October 2011 How a point electron gets structure + + + - + point electron polarisable vacuum

More information

Creation of polarized ultracold neutrons and observation of Ramsey resonance for electric dipole moment measurement

Creation of polarized ultracold neutrons and observation of Ramsey resonance for electric dipole moment measurement Hyperfine Interact (2013) 220:89 93 DOI 10.1007/s10751-013-0855-0 Creation of polarized ultracold neutrons and observation of Ramsey resonance for electric dipole moment measurement K. Matsuta Y. Masuda

More information

Electromagnetic Dipole Strength distribution in 124,128,134 Xe below the neutron separation energy

Electromagnetic Dipole Strength distribution in 124,128,134 Xe below the neutron separation energy Electromagnetic Dipole Strength distribution in 124,128,134 Xe below the neutron separation energy Ralph Massarczyk Helmholtz-Zentrum Dresden-Rossendorf 29.05.2013 R.Massarczyk (HZDR) dipole strength in

More information

Spin-tracking studies for EDM search in storage rings

Spin-tracking studies for EDM search in storage rings Università degli Studi di Ferrara Dottorato in Fisica - XXVI ciclo Ferrara, 13 Dicembre 2013 Spin-tracking studies for EDM search in storage rings Tutor: Prof. Paolo Lenisa External Tutor: PD Dr. Andreas

More information

Nuclear Structure (II) Collective models

Nuclear Structure (II) Collective models Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France NSDD Workshop, Trieste, March 2014 TALENT school TALENT (Training in Advanced Low-Energy Nuclear Theory, see http://www.nucleartalent.org).

More information

7.1 Atomic Theory and Radioactive Decay

7.1 Atomic Theory and Radioactive Decay 7.1 Atomic Theory and Radioactive Decay exists all around us. This radiation consists of high energy particles or waves being emitted from a variety of materials. is the release of high energy particles

More information

Lecture 11: Weak Interactions

Lecture 11: Weak Interactions Lecture 11: Weak Interactions Cross-Section and the W Coupling The Cabibbo Angle and the CKM Matrix Parity Violation Kaons and Mixing CP Violation Useful Sections in Martin & Shaw: Sections 4.51, 8.1,

More information

Nuclear spin maser for 129 Xe atomic EDM measurement - present status -

Nuclear spin maser for 129 Xe atomic EDM measurement - present status - Nuclear spin maser for atomic EDM measurement - present status -. Inoue a), K. Asahi a), S. Kagami a), N. Hatakeyama a), M. Uchida a), and A. Yoshimi b) a) Department of Physics, okyo Institute of echnology

More information

arxiv: v1 [physics.atom-ph] 10 Aug 2018

arxiv: v1 [physics.atom-ph] 10 Aug 2018 Enhanced nuclear Schiff moment and time reversal violation in 229 Th molecules V.V. Flambaum 1,2 1 School of Physics, University of New South Wales, Sydney 2052, Australia and 2 Johannes Gutenberg-Universität

More information

Fundamental Symmetries in Laser Trapped Francium

Fundamental Symmetries in Laser Trapped Francium CAADA S ATIOAL LABORATORY FOR PARTICLE AD UCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the ational Research Council Canada Fundamental

More information

Nuclear and Particle Physics

Nuclear and Particle Physics Nuclear and Particle Physics W. S. С Williams Department of Physics, University of Oxford and St Edmund Hall, Oxford CLARENDON PRESS OXFORD 1991 Contents 1 Introduction 1.1 Historical perspective 1 1.2

More information

Physics and Chemistry with Diatomic Molecules Near Absolute Zero. Tanya Zelevinsky & ZLab Columbia University, New York

Physics and Chemistry with Diatomic Molecules Near Absolute Zero. Tanya Zelevinsky & ZLab Columbia University, New York Physics and Chemistry with Diatomic Molecules Near Absolute Zero Tanya Zelevinsky & ZLab Columbia University, New York Pupin Labs @ Columbia E. Fermi I. I. Rabi 10 What is Ultracold? MK kk 7 6 5 4 3 2

More information

If Baryon Asymmetry of the Universe (multiverse?) is due to CP violation

If Baryon Asymmetry of the Universe (multiverse?) is due to CP violation If Baryon Asymmetry of the Universe (multiverse?) is due to CP violation 6 x 10^-28 e-cm

More information

Klaus Jungmann 2006 EDM Experiments

Klaus Jungmann 2006 EDM Experiments Klaus Jungmann 2006 EDM Experiments Heavy Quarks and Leptons16.10-20.10.2006 Munich, Germany Fundamental Symmetries and Forces Discrete Symmetries Fundamental Fermions Models Beyond Standard Theory Precision

More information

The Search for the Neutron Electric Dipole Moment

The Search for the Neutron Electric Dipole Moment The Search for the Neutron Electric Dipole Moment University of Sussex Rutherford Appleton Laboratory Institut Laue Langevin R.A.L. /Sussex/ILL/Kure /Sussex/ILL collaboration Tony Baker David Shiers Keith

More information

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Chapter 7. Nuclear Magnetic Resonance Spectroscopy Chapter 7 Nuclear Magnetic Resonance Spectroscopy I. Introduction 1924, W. Pauli proposed that certain atomic nuclei have spin and magnetic moment and exposure to magnetic field would lead to energy level

More information

CHAPTER 7 TEST REVIEW

CHAPTER 7 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 94 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 7 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

The cryogenic neutron EDM experiment at ILL

The cryogenic neutron EDM experiment at ILL The cryogenic neutron EDM experiment at ILL and the result of the room temperature experiment James Karamath University of Sussex In this talk (n)edm motivation & principles Room-temperature nedm experiment

More information

ARIEL at TRIUMF: science, status and opportunities

ARIEL at TRIUMF: science, status and opportunities Canada s National Laboratory for Particle and Nuclear Physics ARIEL at TRIUMF: science, status and opportunities Jens Dilling Associate Laboratory Director TRIUMF - Physical Sciences Division September

More information

Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays

Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays F. Bezrukov MPI für Kernphysik, Heidelberg, Germany 11-12-2008 Kaffeepalaver Outline Outline 1 Implications for light

More information

Searches for Permanent Electric Dipole Moments (EDM) of Atoms, Molecules, and the Neutron. Dmitry Budker

Searches for Permanent Electric Dipole Moments (EDM) of Atoms, Molecules, and the Neutron. Dmitry Budker Searches for Permanent Electric Dipole Moments (EDM) of Atoms, Molecules, and the Neutron Dmitry Budker University of California, Berkeley and Nuclear Science Division, LBNL http://socrates.berkeley.edu/~budker

More information

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV Dedicated Arrays: MEDEA GDR studies (E γ = 10-25 MeV) Highly excited CN E*~ 250-350 MeV, 4 T 8 MeV γ-ray spectrum intermediate energy region 10 MeV/A E beam 100 MeV/A - large variety of emitted particles

More information

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University TAMU-TRAP facility for Weak Interaction Physics P.D. Shidling Cyclotron Institute, Texas A&M University Outline of the talk Low energy test of Standard Model T =2 Superallowed transition Facility T-REX

More information

Atomic and Nuclear Physics Review (& other related physics questions)

Atomic and Nuclear Physics Review (& other related physics questions) Atomic and Nuclear Physics Review (& other related physics questions) 1. The minimum electron speed necessary to ionize xenon atoms is A. 2.66 10 31 m/s B. 5.15 10 15 m/s C. 4.25 10 12 m/s D. 2.06 10 6

More information

Towards a Precise Measurement of Atomic Parity Violation in a Single Ra + Ion

Towards a Precise Measurement of Atomic Parity Violation in a Single Ra + Ion Towards a Precise Measurement of Atomic Parity Violation in a Single + Ion TRIµP Program Trapped dioactive Isotopes: µ-laboratories for fundamental Physics Kernfysisch Versneller Instituut (KVI) University

More information

EDM measurement in 129 Xe atom using dual active feedback nuclear spin maser

EDM measurement in 129 Xe atom using dual active feedback nuclear spin maser Hyperfine Interact DOI 10.1007/s10751-014-1113-9 EDM measurement in 129 Xe atom using dual active feedback nuclear spin maser T. Sato Y. Ichikawa Y. Ohtomo Y. Sakamoto S. Kojima C. Funayama T. Suzuki M.

More information

beta-nmr: from nuclear physics to biology

beta-nmr: from nuclear physics to biology beta-nmr: from nuclear physics to biology University of Copenhagen CERN KU Leuven M. Stachura, L. Hemmingsen D. Yordanov M. Bissell, G. Neyens Free University Berlin University of Saarland University of

More information

Radium Atom. Electron and Nuclear EDM s. Trapped Radioactive Isotopes: µ icro laboratories for Fundamental Physics

Radium Atom. Electron and Nuclear EDM s. Trapped Radioactive Isotopes: µ icro laboratories for Fundamental Physics Radium Atom Electron and Nuclear EDM s TRIµ P: Trapped Radioactive Isotopes: µ icro laboratories for Fundamental Physics Lorenz Willmann, University of Groningen, KVI PandT2008, Heidelberg, 9 June 2008

More information

Photofission of 238-U Nuclei

Photofission of 238-U Nuclei Photofission of 238-U Nuclei International Thorium Energy Conference - ThEC18, 29-31st of October 2018, Belgium İsmail Boztosun This research has been supported by TÜBİTAK with grant number 114F220 Motivations

More information

The wavefunction ψ for an electron confined to move within a box of linear size L = m, is a standing wave as shown.

The wavefunction ψ for an electron confined to move within a box of linear size L = m, is a standing wave as shown. 1. This question is about quantum aspects of the electron. The wavefunction ψ for an electron confined to move within a box of linear size L = 1.0 10 10 m, is a standing wave as shown. State what is meant

More information