Contents. Basic principles of capillary GC... 2

Size: px
Start display at page:

Download "Contents. Basic principles of capillary GC... 2"

Transcription

1 Contents Gas Chromatography Introduction Basic principles of capillary GC... phases for GC Summary.... Phase selection by column parameters Primary selection features Phase polarity... 8 Film thickness.... Inner diameter... Column length... Secondary selection features Temperature stability... Deactivation... 6 Bleeding... 8 Special selectivities... ther important GC parameters The mobile phase in GC... Working conditions for GC... Conversion tables... Derivatisation in GC... 6 Do s and don ts in GC Water on GC columns... 7 Troubleshooting... 8 Application Gallery Environmental pollutants... 7 Solvents Chemicals... 8 Fragrances Food and cosmetic components... Drugs Pharmaceutical ingredients Petrochemical products... 9 Chiral separations... 0 Appendices Chromatogram index Structure index (index of molecular formulas)... 9

2 The GC system Gas Chromatography 6 7 Application Gallery Appendices compose the chromatograph:. gas supplies: carrier gas and e. g. burner gases for a flame ionisation detector (FID). sample injector: with direct injection the sample is introduced into the column without contact with other parts from glass or metal (on-column injection); with indirect injection the sample is introduced into an evaporator, and the vapour is then transferred into the column either completely or partially (split technique); both techniques allow low temperatures, high temperatures or temperature programming. capillary column: the heart of the GC system. detector: indicates a substance by generation of an electrical signal (response). Some detectors are specific for certain classes of substances or for certain elements (P, N, etc.).. oven with temperature control 6 and/or 7 serve for evaluation of the separation 6. data station for digital evaluation of chromatograms 7. recorder for plotting or printing chromatograms The separation process Separation is achieved by repeated distribution of each sample component between two phases: in GC, the mobile phase is always a gas (mostly N, H, He). The stationary phase is a mostly viscous gum-like liquid coated to the inner wall of a capillary column (WCT = Wall Coated pen Tubular). Transport of the analytes is achieved exclusively in the gas phase, separation is accomplished in the stationary phase. The quality of a separation (resolution) depends on how long the components to be separated stay in the stationary phase and on how often they interact with this phase. The type of interaction between component and phase (selectivity) is determined by the functional groups. The polarity of the phase is a function of station- ary phase substituents.

3 Basic principles of capillary GC The chromatogram A chromatogram consists of a base line and a number of peaks. Peak areas allow quantitative determinations: t R The relative retention does not provide any information on the quality of a separation, since for equal values of α two very broad peaks may overlap, (as shown in trace a), or may be completely resolved (as in trace b), if they are correspondingly narrow. t R w / a t 0 t [min] A A: starting point of a chromatogram = time of injection of a dissolved solute A component can be identified by its retention time (qualitative determination): t Ri = t 0 + t Ri t 0 : dead time = void time = residence time of a solute in the mobile phase (time required by a component to migrate through the chromatographic system without any interaction with the stationary phase) t Ri : retention time = interval between peak i and the point of injection t Ri : net retention time = difference between total retention time and dead time t 0. It indicates how long a substance stays in the stationary phase. ther terms characterising a separation: k : capacity factor: a measure for the position of a sample peak in the chromatogram. The capacity factor is specific for a given compound and constant under constant conditions. b R: resolution: a measure for the quality of a separation, taking the peak width at half height (w / ) into account according to t R t R R = (w / ) + (w / ) N th : number of theoretical plates: characterises the quality of a column (should be determined for k > ). The height equivalent to a theoretical plate (h, HETP) is calculated by dividing the length L of the column by the number of theoretical plates N th. The smaller this value the better works the column. N th =. ( t Ri w / ) h = HETP = L N th k i = t Ri t 0 t 0

4 phases for GC Gas Chromatography Phase Composition Relative polarity max. Temperature PTIMA PTIMA MS PTIMA MS Accent PTIMA 00 % dimethylpolysiloxane 0/60 C % phenyl 9 % dimethylpolysiloxane 0/60 C PTIMA MS % diphenyl - 9 % dimethylpolysiloxane 0/60 C Application Gallery Appendices PTIMA MS Accent silarylene phase equivalent to % diphenyl 9 % dimethylpolysiloxane 0/60 C PTIMA δ- phase with autoselectivity 0/60 C PTIMA XLB phase with optimised silarylene content 0/60 C PTIMA δ-6 phase with autoselectivity 0/60 C PTIMA 0 PTIMA 6 6 % cyanopropylphenyl 9 % dimethylpolysiloxane 6 % cyanopropylphenyl 9 % dimethylpolysiloxane 00/0 C 80/00 C PTIMA 6 LB as above, low bleed phase 80/00 C = nonpolar, = polar properties first temperature for isothermal operation, second value for short isotherms in a temperature programme (please note, that for columns with 0. mm ID and for columns with thicker films temperature limits are generally lower)

5 Summary Structure USP Phases which provide a similar selectivity based on chemical and physical properties S i n G G G8 PERMABND SE-0, V-, DB-, SE-0, HP-, SPB-, CP-Sil CB, Rtx -, 007-, BP, MDN-, AT -, ZB-, V-0 Ultra-, DB-MS, HP-MS, Rtx -MS, Equity -, AT -MS, VF-MS, CP-Sil CB MS S i m S i n G7 G6 PERMABND SE-, SE-, SE-, DB-, HP-, SPB-, CP-Sil 8, Rtx -, 007-, BP, MDN-, AT -, ZB- S i S i G7 G6 m n H C H C DB-MS, HP-MS, Ultra-, Equity -, CP-Sil 8CB low bleed/ms, Rtx -SIL-MS, Rtx -MS, 007-MS, BPX, MDN-S, AT -MS, VF-MS S i S i Si S i G7 G6 m H C n H C o see description on page 0 G9 no similar phases H C H C S i S i Si S i DB-XLB, Rtx -XLB, MDN-, VF-XMS m H C n H C o see description on page 0 no similar phases HP-0, DB-0, SPB-0, Rtx -0, CP-0, NC S i (CH ) m S i n G HP-6, HP-VC, DB-6, DB-VRX, SPB- 6, CP-6, Rtx -6, Rtx -Volatiles, 007-6, BP6, VCL For special phases and phases tested for specific applications see table on page

6 phases for GC Gas Chromatography Phase Composition Relative polarity max. Temperature PTIMA 70 PTIMA MS % cyanopropylphenyl 86 % dimethylpolysiloxane silarylene phase with selectivity similar to a % diphenyl 6 % dimethylpolysiloxane phase 00/0 C 60/70 C PTIMA 7 phenylmethylpolysiloxane, 0 % phenyl 0/0 C Application Gallery Appendices PTIMA 0 PTIMA PTIMA 0 PTIMA WAX PTIMA FFAP trifluoropropylmethylpolysiloxane (0 % trifluoropropyl) 0 % cyanopropylmethyl 0 % phenylmethylpolysiloxane % cyanopropylmethyl 67 % dimethylpolysiloxane polyethylene glycol 0000 daltons polyethylene glycol -nitroterephthalate = nonpolar, = polar properties 60/80 C 60/80 C 60/80 C 0/60 C 0/60 C first temperature for isothermal operation, second value for short isotherms in a temperature programme (please note, that for columns with 0. mm ID and for columns with thicker films temperature limits are generally lower) 6

7 Summary Structure USP Phases which provide a similar selectivity based on chemical and physical properties NC S i (CH ) m S i n G6 V-70, DB-70, CP-Sil 9 CB, HP-70, Rtx -70, SPB-70, , BP0, ZB- 70 S i m S i H C Si H C n H C S i H C o G DB- MS, HP-, SPB-, Rtx-, 007-, BPX-, MDN-, AT- MS, ZB-, V-, VF- MS S i m G V-7, DB-7, HP-0+, HP-7, SPB-0, SP- 0, Rtx -0, CP-Sil CB, 007-7, ZB-0 S i G6 V-0, DB-0, Rtx -00, F C (CH ) n NC S i (CH ) S i n G7 G9 DB-, HP-, V-, Rtx -, CP-Sil, 007-, BP S i S i no similar phases NC (CH ) m n H H C H H C H H n G6 PERMABND CW 0 M, DB-Wax, Supelcowax, HP-Wax, HP-INNWax, Rtx -Wax, CP-Wax CB, Stabilwax, 007-CW, BP0, AT -Wax, ZB-Wax C N C (CH CH ) m n G G PERMABND FFAP, DB-FFAP, HP-FFAP, CP-SIL 8 CB, 007-FFAP, CP-FFAP CB, Nukol For special phases and phases tested for specific applications see table on page 7

8 Phase selection in GC Gas Chromatography Selecting the proper stationary phase is the most important decision when selecting a capillary column for a given separation task. In this chapter you will find some guidelines and concepts that simplify the process. There are four major column parameters (primary selection features) and four hardware-andproblem adapted secondary selection features: Primary selection features: phase polarity film thickness inner diameter column length + Secondary selection features: temperature stability deactivation bleeding special selectivities Phase polarity Phase selectivity is determined by the physicochemical interactions of the solute molecules with the stationary phase. Application Gallery Appendices General rule: only an adequate polarity of the GC phase leads to satisfying separation and peak shape Use similar polarities for phase and target compounds (e. g. nonpolar molecules require nonpolar polysiloxane phases in the column). offers more than 0 different phases for gas chromatography, from very nonpolar to polar columns. Nonpolar stationary phases, starting with 00 % dimethylpolysiloxane, separate by volatility (i. e. boiling point) only. Typical nonpolar phases: PTIMA or PTIMA Typical analytes: linear hydrocarbons (n-alkanes). For structures and relative polarities of PTIMA phases please refer to the table on the preceding pages. Mid-polar phases offer additional interactions, which may improve a separation. With increasing polarity, e. g. by introducing phenyl and/or cyanopropyl groups, the separation is increasingly influenced by differences in dipole moment and by charge transfer. Typical mid-polar phase: PTIMA 70 Typical analytes: molecules which can be polarised (e. g. aromatic compounds). For polar components featuring medium to strong hydrogen bonding capacities, polyethylene glycol phases (WAX) are the best choice for a separation. Typical polar phase: PTIMA WAX Typical analytes: alcohols and carboxylic acids. 8

9 Phase polarity Comparison of separation properties of selected PTIMA phases PTIMA 0 max. temp. 60/80 C Cat. No PTIMA max. temp. 60/80 C Cat. No PTIMA 0 max. temp. 60/80 C Cat. No PTIMA 7 max. temp. 0/0 C Cat. No PTIMA 70 max. temp. 0/0 C Cat. No PTIMA max. temp. 0/60 C Cat. No PTIMA max. temp. 0/60 C Cat. No increasing polarity 0 0 min All columns: 0. µm film, 0 m x 0. mm ID Sample: -PTIMA test mixture (REF 76) Injection:.0 µl, split : 0 Carrier gas: 80 kpa N Temperature: 80 C T max (isothermal), 8 C/min Detector: FID, C 6. Methyl decanoate. Undecane 7. Methyl undecanoate. Dodecane. ctanol 8. Henicosane. Dimethylaniline 9. Docosane. Decylamine 0. Tricosane 9

10 Phase selection in GC Gas Chromatography Application Gallery Appendices Autoselectivity PTIMA δ phases The polarity of all standard phases is defined by their composition. In conventional mid-polar phases an increased polarity is achieved by an increase of the phenyl content in the dimethylpolysiloxane or by adding e. g. cyanopropyl or trifluoromethyl groups to the dimethylpolysiloxane often resulting in an increased tendency for bleeding. PTIMA δ phases were developed to adjust themselves to the polarity of the target compounds: with nonpolar compounds the phase reacts nonpolar, for polar compounds the phase increases its polarity. conventional phase permanent dipole: constant interactions dipole of the analytes permanent dipole of the stationary phase induced dipole of PTIMA phases PTIMA δ permanent + induced dipole: autoselectivity The PTIMA δ phases consist of cross-linked polysiloxane block polymers with defined composition, exclusively produced for. Polar molecules are able to induce a dipole moment in the stationary phase, so that the analytes show stronger interactions. We call this phenomenon autoselectivity, because the stationary phase adjusts itself to the polarity of the analytes. Thus PTIMA δ phases cover broader ranges of polarity. Due to their structure, PTIMA δ phases show very high temperature limits of 0/60 C and low bleed levels, making them well suited for MSD or PND. PTIMA δ- PTIMA δ-6 V- SE- V-7 V-70 V-0 V-0 range of polarities covered by PTIMA δ phases Isomeric phenols are difficult to analyse on standard phases due to coelutions. The autoselective PTIMA δ- readily separates all of isomeric phenols as shown in application 0060 on page 6. 0

11 Primary selection features Polarity Most frequently used phases Selectivity has to be optimized for the critical pair of components or the main component. You should always select the least polar column which solves your separation task. About 70 % of all GC separations can be performed on non- to mid-polar columns. In fact, -type phases ( % phenyl 9 % methylpolysiloxane) are the most commonly used GC phases in the world, because they generally feature high temperature stability, low col- umn bleeding and good deactivation. Film thickness Film thickness of capillary columns reaches from 0. to.0 µm. Standard film thickness is 0. µm. Thin films (0. 0. µm) are very well suited for high-boiling or temperature labile compounds, fast separations, or very closely eluting substances. Increasing film thickness will increase the capacity, the retention time for low-boiling compounds, and improve inertness. This is especially useful for samples with widely differing concentrations, or for the separation of volatile polar substances. Better coverage of the column wall by a thicker film and a reduction of the column surface by reducing column length is favourable for extremely active substrates, which in many cases cause noticeable tailing, if they come in contact with uncoated spots of the column wall. The second most common phases are WAX and/or FFAP. They represent the other end of the polarity range and are well suited for all compounds with strong hydrogen bonding capacity (e. g. compounds with H, CH or NH x functionalities). Mid-polar phases like 0,, 7, 70, 0 and feature alternative polarities for special separations or for confirming analytical results. Thick films also mean more phase in the column, and consequently higher bleeding. This results in lower maximum operating temperatures for thick film columns. In addition, thick film columns may have a lower efficiency. Variation of the film thickness is often better than increasing the column length as may be seen in applications 0000 and 000 page 96.

12 Phase selection in GC Gas Chromatography Application Gallery Appendices Inner diameter The lower the ID of a GC column, the higher is the theoretically possible number of plates per meter mm ID for high resolution and short retention times with low carrier gas flows (Fast GC) 0. mm ID all-purpose columns for analyses of complex mixtures 0. mm ID for routine analyses with short retention times, but increased capacity 0. mm ID for rapid separations with inert surface and highest capacity Plate number as a function of ID Column ID [mm] Theoretical plates/m Plate number and capacity as function of inner diameter Theoretical plates Capacity Inner diameter [mm] Influence of inner diameter on resolution Column: 0 m, identical film thickness 0. mm ID R s = mm ID R s =.0 Decreasing the inner diameter and thus increasing resolution is useful for high speed/fast GC procedures, but some side effects have to be considered: retention time increases as well (at identical head pressure) the back pressure of a small ID column increases due to restriction the capacity of columns decreases (the loadability decreases, see table on previous page) the hardware requirements for injection systems (high pressure, high speed of injection) and detectors (highest speed of detection) increase Because of this, GC procedures can not always take profit from the increase in plate numbers!

13 Primary column parameters Sample capacity (loadability) of a 0 m column in ng Film thickness [µm] Inner diameter [mm] Phase ratio of capillary columns Column length (L) and retention times (for identical flow and pressure parameters) show a linear relation; resolution is proportional to the square root of L. If other column parameters (ID, film thickness) have to be adapted for example in case of a new GC with different dimension requirements a comparable separation can only be achieved with columns with similar phase ratio! In general a higher phase ratio implies less retention power and shorter retention times and vice versa. Calculation of the phase ratio: r β = d f with r = column radius and d f = film thickness Phase ratio as a function of inner diameter and film thickness ID \ d f

14 Phase selection in GC Gas Chromatography Application Gallery Appendices Column length Column length is directly proportional to the separation efficiency (number of plates N). Longer columns show increased resolution, however, R is proportional to the square root of N, i. e. a doubled column length only increases the resolution by a factor of., while cost and analysis time are proportional to the length. Routine separations are most frequently performed on or 0 m columns, while complex mixtures may require 0 or 60 m columns. 0 m columns with 0.0 mm ID are used for Fast GC. As a rule of thumb: use about m column length per component in your mixture. Influence of column length on resolution and retention time Columns: PTIMA, 0. mm ID, 0. µm film Carrier gas: ml/min He, isothermal FAMEs. C8:,. C8:,. C8.0 m. 0 m m 9. min 0.0 Fast GC Characteristics of Fast GC are decreased column diameters, high heating rates and decreased column length for faster GC separations with high resolution efficiency. small inner diameters combined with fast temperature programs can reduce the analysis time by up to 80 % high heating rates place special demands on stationary phases: PTIMA columns meet exactly this requirement, as they show very low bleeding and provide long lifetimes, even when continuously subjected to high heating rates small inner diameters result in high column inlet pressures and a lower volume flow of the mobile phase, which as a consequence require very fast injection of very small samples against a high pressure the amount of sample, which can be injected, is limited by the inner diameter and the thin film high sensitivity detectors with small volume and extremely short response time, as well as a very rapid data acquisition and processing are required For comparison of a separation on a 0 m standard capillary with a separation on a 0 m fast GC column see application 60 on page.

15 Secondary column parameters Temperature stability High temperature stability of a column is beneficial for high-boiling solutes with very low vapour pressures, which normally have very long retention times and rather broad peak shapes. Since PTIMA columns can be operated at increased temperatures, they elute high-boiling compounds faster and with better peak shapes. Improved peak shape at higher temperatures Injection: 0.6 µl, split :00 Carrier gas: 0. bar He a) Temperature: 00 C isothermal width of peak :. min b) Temperature: 0 C isothermal width of peak : 0. min 0 0 b) a) min min 0 Maximum operating temperatures for PTIMA phases PTIMA phase max. Temp. [ C] 0/60 MS 0/60 MS Accent 0/60 0/60 MS 0/60 MS Accent 0/60 δ- 0/60 XLB 0/60 δ-6 0/ /0 6 / 6 LB 80/ /0 MS 60/70 7 0/0 0 60/80 60/ /80 WAX 0/60 FFAP 0/60 * first temperature for isothermal operation, second value for short isotherms in a temperature programme (please note, that for columns with 0. mm ID and for columns with thicker films temperature limits are generally lower) increasing polarity, decreasing temperature stability

16 Phase selection in GC Gas Chromatography Application Gallery Appendices Deactivation The quality of deactivation in GC columns is influenced by the deactivation of the glass tube itself the binding process of the polysiloxane or polyethylene glycol to the glass wall the composition and thickness of the film the constancy / quality of the coverage of the column wall polyimide glass film polyimide glass film defect polyimide glass active area film defect optimal column with even film and perfectly covered walls column with film defect causing an active area, where analytes can interact with the glass wall, resulting in tailing thicker films help to avoid active areas, even when the film is not perfectly smooth resulting in less or no tailing The possibility of film defects increases with increasing column length and decreasing film thickness. Thus especially for polar compounds thin film columns may cause problems like tailing or deformed peaks due to uncontrolled interactions with active spots on the column wall. Quality control of PTIMA columns The deactivation process of PTIMA columns is optimized for excellent chromatographic performance, improved peak shape, efficiency and sensitivity. Performance of each GC column from is tested by stringent quality control procedures including column efficiency by measuring the separation number (number of resolved peaks between two members of a series of homologue compounds, in this case FAMEs C and C) in a temperature programme (8 C/min) polarity by measuring the retention index of octanol versus decane and undecane bleeding as difference in baseline values at start and end of the temperature programme inertness by measuring the peak height ratio for decylamine/undecane (for non- to mid-polar phases) All columns are supplied with test chromatograms of standard test mixtures stating the actual performance of the column (MS columns additionally include the chromatogram of a trace test diluted :00). Additionally, we include the corresponding test mixture. 6

17 Secondary column parameters Typical test chromatograms of an PTIMA column Examples of PTIMA column performance and deactivation Column: PTIMA MS, 0 m x 0. mm ID, 0. µm film Injection: µl, split :0, ng/peak Carrier gas:.0 ml/min He 0 C/min Temperature: 80 C 0 C (0 min) Detector: MSD. o-anisidine. -Chloroaniline. p-cresidine.,,-trimethylaniline. -Chloro-o-toluidine Column: PTIMA MS Accent, 0 m x 0. mm ID, 0. µm film Injection: µl, split :0, 0. ng/peak Carrier gas: 80 kpa He Temperature: 80 C 8 C/min 60 C Detector: MSD. ctanol. Undecane. Dimethylamine min min 7

18 Phase selection in GC Gas Chromatography Application Gallery Appendices Column bleeding Degradation of a methylpolysiloxane chain forming hexamethylcyclotrisiloxane Si H Si Si Column bleeding is a thermal degradation of the siloxane polymer caused by splitting of siloxane bonds with lower bond energies (see formula above). Bleeding is accelerated near the upper temperature limit of the stationary phase (normally above 80 C). In the presence of oxygen or water bleeding even starts at much lower temperatures. This is why the purity of the carrier gas is very important, especially when working at high temperatures. Si Si Δ Si H Si + Si Column bleed increases as column length increases, because longer columns contain more of the stationary phase. However, don t let this fact discourage you to use a longer column if necessary. Column bleed also increases as film thickness increases. Since thicker films are more retentive, later eluting peaks may shift into a region of much higher column bleed when increasing film thickness as is shown in the chromatogram below. Column bleeding at elevated temperature Column: PTIMA Amine, 0 x 0. mm ID,. µm film, REF 766.0, max. temperature 00/0 C Injection: µl, split : Carrier gas:. bar He Temperature: 80 C 8 C/min 0 C (0 min) Detector: FID ctanol. Undecane. Dimethylaniline. Dodecane. Decylamine 6. Methyl decanoate 7. Methyl undecanoate 8. Henicosane 9. Docosane 0. Tricosane 0 Si Si min 8

19 Secondary column parameters As is shown in the mass spectrum below, the major bleed ion from a -type phase is m/z = 07 resulting from hexamethylcyclotrisiloxane (D ), the second important ion m/z = 8 results from the cyclic degradation product with units (D ). Mass spectrum of a -type phase 0 C, TIC, 0 00 amu 07 Influence of the type of detector The impact of bleeding on the signal to noise ratio of a chromatogram is much more pronounced for ion trap MS detectors than for FID detectors as is shown in the graphs below. With FID detection, the ratio of D to the analyte peak A is about 0.; with MS detection it is about! This is why columns with low bleed characteristics are especially important for use with MS detection. Chromatogram of the same sample analysed with FID and MSD FID A MSD D D D D 8 A D : A ~ 0. D : A ~ Benefits of low bleed columns in GC Low bleed columns allow higher operating temperatures resulting in shorter run times less pollution of the detection system improved detectability of solutes in GC/MS analyses increased detectability due to an improved signal to noise ratio as is shown in the traces at right FID Signal in mv Standard MS Phase PTIMA MS Accent s 9

20 Phase selection in GC Gas Chromatography Low-bleed GC/MS columns Standard columns with -type phases contain phenyl and methyl substituted siloxanes in the ratio :9 as shown in the structure below S i S i Si Si The first generation of low-bleed GC/MS columns contains diphenyl siloxane groups which improve bleed characteristics due to steric hindrance of the formation of D and D. n Comparison of bleeding characteristics of -type columns Columns: 0 m x 0. mm ID, 0. µm film Injection: µl, split :0 Carrier gas: 80 kpa He Temperature: 80 C 8 C/min 60 C Detector: FID Chromatograms: a) conventional -type phase b) conventional -MS phase c) PTIMA MS Accent a) Application Gallery Appendices S i S i Si S i Silarylene-type columns (see figure below) are stabilised by insertion of arylene groups in the siloxane chain, offering lowest bleeding and high inertness even at higher temperatures. S i m S i H C Si H C n n H C S i H C o 0 b) c) min 0 0

21 Special selectivities Achiral columns for special separations Certain analytical separations can be performed more easily with chromatographic columns, which have been especially developed or tested for the respective task. The following table summarises our programme of GC speciality capillaries. Page numbers refer to the cited applications. Phase composition Recommended application Typical application Page PTIMA Amine % phenyl 9 % methylpolysiloxane especially deactivated FS-CW 0 M-AM polyethylene glycol, basic, non-immobilised polyfunctional amines such as ethanolamines, aminofunctionalised diols amines PERMABND P-00 dimethylpolysiloxane petrochemical products PERMABND SE- HKW % vinyl % phenyl 9 % methylpolysiloxane PTIMA -TG dimethylpolysiloxane volatile halogenated hydrocarbons triglycerides according to carbon number PTIMA 7-TG phenyl-methyl-polysiloxane (0 % phenyl) PERMABND Silane triglycerides according to degree of unsaturation monomeric silanes and chlorosilanes PERMABND CW 0 M-DEG polyethylene glycol, tested for diethylene glycol diethylene glycol in wine

22 Phase selection in GC Gas Chromatography Application Gallery Appendices Chiral columns for enantiomer separation For chiral columns it is not possible to make a general prediction, which phase could solve a given separation task. Even for compounds with small structural differences the enantio-differentiation can be quite different. For numerous chiral separations arranged by increasing molecular size refer to pages 0 7. Page numbers in the table below refer to the cited typical applications. Phase Composition max. Temp. Typical Page [ C] application LIPDEX cyclodextrin phases LIPDEX is patented under EP 007 and US Re LIPDEX A hexakis-(,,6-tri-pentyl)-α-cyclodextrin 00/0 08 LIPDEX B hexakis-(,6-di--pentyl- 00/ acetyl)-α-cyclodextrin LIPDEX C heptakis-(,,6-tri-pentyl)-β-cyclodextrin 00/ LIPDEX D heptakis-(,6-di--pentyl- 00/ acetyl)-β-cyclodextrin LIPDEX E octakis-(,6-di--pentyl- 00/ butyryl)-γ-cyclodextrin LIPDEX G octakis-(,-di--pentyl- 0/ methyl)-γ-cyclodextrin HYDRDEX cyclodextrin phases, diluted with optimized polysiloxanes HYDRDEX β-pm heptakis-(,,6-tri-methyl)-β-cyclodextrin 0/ HYDRDEX β-p heptakis-(,6-di--methyl- 0/ pentyl)-β-cyclodextrin HYDRDEX β-6tbdm heptakis-(,-di--methyl- 6--t-butyldimethyl-silyl)- β-cyclodextrin 0/ HYDRDEX β-tbdac HYDRDEX γ-tbdac heptakis-(,-di--acetyl- 6--t-butyldimethyl-silyl)- β-cyclodextrin octakis-(,-di--acetyl- 6--t-butyldimethyl-silyl)- γ-cyclodextrin 0/ /

23 The mobile phase in GC Sometimes it may be difficult to apply the data of a given GC application in reality, because every manufacturer of GC equipment has its own standards and specifications (depending on the country). The physical parameters are fixed, but an adaption has to be made. Sometimes an older application uses different or out-dated parameters which are no longer in use The tables and information in this chapter were compiled to separate the jungle in order to give practicable professional hints. Selection of the optimum carrier gas For optimum column performance, hydrogen carrier gas offers some strong advantages over helium or nitrogen. Hydrogen yields higher plate numbers (= better resolution) at rapid linear velocities and achieves higher velocities at lower pressures. At the same time, the presence of extra hydrogen is advantageous for flame ionization and other detectors that use hydrogen fuel gas. Nevertheless, in practical work H is not used so often, because it is the gas with the highest price and the highest danger potential! Helium is not so dangerous, cheaper, with a similar separation efficiency and for this reason the most recommended gas for modern routine analysis. For sure nitrogen has the lowest price, but many separation problems can be avoided or solved directly by switching from N to He or H. The following tables show, that H has the highest gas velocity and the lowest viscosity of all commonly used gases for GC (H, He, N ). We recommend: if a high resolution (e. g. for chiral separations) or a short analysis time is required, use hydrogen! Physical parameters of GC gases Gas Viscosity * Linear velocity at C 00 K 00 K g/mol m/s km/h Factor N Faktor He Faktor H H He N * from Handbook of Chemistry and Physics, 7 nd Edition

24 Working conditions in GC Gas Chromatography Application Gallery Appendices ptimized working conditions for GC The table below shows the optimum working conditions for standard columns with common lengths and inner diameters. If you adjust your GC parameters to these values, you can be sure to work in the optimum chromatographic region according to the van Deemter curves. If your parameters are outside these values, you will loose separation efficiency and the results may no longer be ideal (poor separation, analysis time too long, dead time too short). The short dead times mirror the high speed of H compared to the other gases. If the same inlet pressures are applied for hydrogen as for helium, peaks are eluted in less time, because the linear velocity of H is faster than that of helium. In general, when switching from helium to hydrogen retention times will be roughly cut in half if the inlet pressure is unchanged. Plate height and gas velocity The Van Deemter equation shows how the plate height h depends on the flow velocity u for different GC gases: h N h A B = u + C u He H 0 60 u 80 A Eddy diffusion; for WCT capillary columns A = 0 B molecular axial diffusion; B is a function of the diffusion coefficient of the component in the respective carrier gas C resistance to mass transfer In practice often higher velocities than u opt. are chosen, if separation efficiency is sufficient, since higher carrier velocities mean shorter retention times. N H Gas Column Average utlet flow Head pressure Dead time length ID velocity. [ml/min] [kpa] [psi] [bar] [min] [m] [mm] [cm/s] Nitrogen Helium He Hydrogen ven temperature 00 C, split 0:, injector temperature 7 C

25 Conversion tables Pressure conversion chart Multiply value for unit in the left column by the factor given in the table below the desired unit Unit kpa bar atm psi kg cm Torr kpa bar atm psi kg cm Torr Examples: to convert 0 bar to psi, multiply 0 by.08 = 66 psi to convert 000 psi to kpa, multiply 000 by = 068. kpa Conversion of concentrations and amounts of sample per injection The table shows common concentrations and injection volumes for GC. The upper half is the standard region of detectable concentrations (TCD and FID detectors) and the lower half is the region of ultra trace analysis (MS, Ion Trap, Quadrupol MS, ECD) [%] [g/g] [g/ml] Concentration Injection µl [g/kg] splitless split : 0 [g/l] [ppm] [ppb] [ng] [ng] [µg/g] [µg/ml] [mg/kg] [mg/l]

26 Derivatisation in GC Gas Chromatography Application Gallery Appendices Derivatisation The purpose of derivatisation In gas chromatography it is often advantageous to derivatise polar functional groups (mainly active hydrogen atoms) with suitable reagents. Prerequisite for successful derivatisation is quantitative, rapid and reproducible formation of only one derivative. Aim of this reaction is an improved volatility, better thermal stability or a lower limit of detection due to improved peak symmetry. The halogen atoms introduced by derivatisation (e. g. trifluoroacetates) allow specific detection (ECD) with the advantage of high sensitivity. Elution orders and fragmentation patterns in mass spectroscopy can be influenced by a specific derivatisation. The derivatisation examples in the table are meant as a first orientation and have to be adjusted or optimized for spe- cial problems. Selection guide for derivatisation of important functional groups in GC Function method derivative recommended reagents Alcohols, Phenols R H silylation R TMS BSA, MSTFA, MSHFBA, TSIM, SILYL-0, SILYL-, SILYL-9 acylation R C R TFAA, HFBA, MBTFA, MBHFBA alkylation R R TMSH ster. hindered silylation R TMS TSIM, BSTFA, SILYL-99 Amines silylation R NR TMS BSA, MSTFA, MSHFBA, SILYL-99 prim., sec. acylation R NR C R TFAA, HFBA, MBTFA, MBHFBA hydrochlorides silylation R NR TMS MSTFA Amides silylation not stable Amino acids Carboxylic acids (fatty acids) acylation R C NH C R TFAA, MBTFA, HFBA, MBHFBA silylation C TMS R CH BSA, BSTFA, MSTFA, MSHFBA NH TMS alkyl. (a) + acyl. (b) R CH C R silylation NH C R R C TMS susceptible to hydrolysis a) MeH/TMCS, TMSH b) TFAA, HFBA, MBTFA, MBHFBA BSA, MSTFA, MSHFBA, TMCS, TSIM, SILYL-0, SILYL-, Silyl-9 alkylation R C R DMF-DMA, MeH/TMCS ( M), TMSH salts silylation R C TMS TMCS susceptible to hydrolysis Carbohydrates silylation MSTFA, TSIM, HMDS, SILYL-9 acylation TFAA, MBTFA Steroids silylation BSA, TSIM acylation TFAA, MBTFA, HFBA, MBHFBA 6

27 Do s and don ts in GC Water on GC columns Water causes trouble right from the beginning because of its high expansion volume. This overload effect of the injector is called backflash and leads to poor separations and bad peak shapes. Reproducibility is not guaranteed for repeated injections. The table shows the different gas volumes of common GC solvents. Here you find the reason, why nonpolar solvents are always preferred in GC. Even very polar analytes should be injected in nonprotic solvents (if possible). Volume expansion of solvents Solvent Gas volume [µl] n-hexane 0 Ethyl acetate 8 Acetone Dichloromethane 8 Acetonitrile 0 Methanol 0 Water 00 Injection µl, injector temperature 0 C, pressure 0 psi Attention: a water sample can contain a (maybe unknown) concentration of salts. This salt load can damage each column immediately. If water cannot be avoided, some points have to be considered: In order to prevent condensation on the column, the start temperature in the oven should be at least 00 C or higher for a better peak shape. Water can extinguish the FID flame or decrease the sensitivity of an ECD. Because nonpolar GC phases cannot be wetted well by water, a compound with good solubility in water can show poor peak shapes or double peaks. GC phases which can be used with water samples without risk of a direct damage are phases without oxidizable groups, e. g. PTIMA,,, 7, Wax, FFAP types and PTIMA δ- and δ-6. More critical are 0, 70, and 0 types, because the cyano groups can be oxidised or destroyed catalytically (by acids, bases or metals). The phase has still its correct film thickness, but it is chromatographically dead! All Cyclodextrin columns are directly destroyed by water, so the samples must be dried before injection. We recommend the use of drying cartridges like CHRMAFIX Dry (REF 78). Rule: the higher film thickness is, the more stable the column is towards water. Water itself is not so critical, but the (possible) ingredients can be (salts, catalysts, acids, bases). When columns have been run with aqueous samples, they should be heated at least at 0 C in order to remove the water film completely from the column. Lower temperatures have no effect resulting in poor reproducibility. 7

28 Do s and don ts in GC Gas Chromatography Application Gallery Appendices bservation / Possible causes No peaks, no gas flow Suggested remedy detector has no power check detector power supply and cables no FID flame check FID; reignite it syringe defective / clogged use a different syringe or clean it temperature too low for the analytes check temperature programme, oven temperature (external thermometer) detector / software / computer hardware failure check integrator, cables; restart computer no gas flow check gas tubes, valves, seals; test gas flow; shorten front of GC column, change injection septum column connection leaks use new ferrules broken GC column if breakage is at the beginning or at the end, remove the short piece; breakage in the middle can be mended with a glass connector; for multiple breakages replace column Tailing sample vaporises too slowly, not evenly or condenses high-boiling analytes system leaks analytes coelute sample decomposes column absorbs or decomposes analytes split rate too low analytes always tending to tail increase injector temperature (consider max. temperature limits of the column) derivatise polar, basic or high boiling compounds check column installation; search for leaks; replace ferrules change temperature programme or use column with different selectivity check temperature programme, oven temperature (external thermometer); if analytes are not temperature-stable, reduce injector temperature; replace liner by a deactivated one check capillary ends; check intact deactivation using the test mixture; for poor results shorten both column ends by about 0 cm; or replace column; if column test does not show any defects: a) use a column with thicker film b) use phase with better deactivation c) use column with special selectivity increase split rate no chance for symmetric peaks 8

29 GC troubleshooting bservation / Possible causes Suggested remedy Fronting column overload sample vaporises too slowly, not evenly or condenses analytes coelute sample decomposes column absorbs or decomposes analytes decrease injection volume; dilute sample increase injector temperature (consider max. temperature limits of the column) change temperature programme or use column with different selectivity check temperature programme, oven temperature (external thermometer); if analytes are not temperature-stable, reduce injector temperature; replace liner check capillary ends; check intact deactivation using the test mixture; for poor results shorten both column ends by about 0 cm; or replace column; if column test does not show any defects: a) use a column with thicker film b) use phase with better deactivation c) use column with special selectivity Small peaks on fronting or tailing of bigger peaks column not properly installed temperature of injection too low solvent not compatible with GC phase splitter defect poorly deactivated column, film thickness too low check capillary ends; check tight and correct fit in injector and detector check injector temperature; if analytes are stable, increase temperature change solvent measure flow and adjust splitter check capillary ends; check intact deactivation using the test mixture; for poor results shorten both column ends by about 0 cm; or replace column Plateaus at certain temperatures steps in temperature programme too drastic avoid very short and strong heating periods 9

30 Do s and don ts in GC Gas Chromatography Application Gallery Appendices bservation / Possible causes Double peaks, doubled peak tops solvent and column not compatible solvent mixtures with large differences in boiling point and polarity sample decomposes analytes coelute detector overload Missing or overlapping peaks, poor separation efficiency syringe defective / clogged sample too diluted sample concentration too high column connection leaks, column not properly installed perforated injection septum injector temperature too low sample decomposes in the injector column oven too hot wrong flow rate column absorbs or decomposes analytes Suggested remedy change solvent or use guard column use just one solvent check temperature programme, oven temperature (external thermometer); if analytes are not temperature-stable, reduce injector temperature; replace liner by a deactivated one modify temperature programme or use longer column; possibly change column polarity inject less; control make-up flow use a different syringe or clean it increase injection volume; concentrate sample decrease injection volume; dilute sample check column installation; search for leaks; replace ferrules replace septum check temperature programme; increase injector temperature check temperature programme; reduce injector temperature; replace liner; check capillary ends check temperature programme, oven temperature (external thermometer); decrease temperature measure flow and correct it if necessary check capillary ends; check intact deactivation using the test mixture; for poor results shorten both column ends by about 0 cm; or replace column; if column test does not show any defects: a) use a column with thicker film b) use phase with better deactivation c) use column with special selectivity 0

31 GC troubleshooting bservation / Possible causes Suggested remedy Broad peaks poor focussing flow too high or too low split rate too low column overloaded no solvent focussing effect decrease start temperature of the programme measure flow, control and adjust it if necessary increase split rate decrease injection volume, dilute sample or increase split flow decrease oven temperature or use solvent with higher boiling point Cut tops of peaks, broad peaks detector overload column overload zero point is outside the display decrease injection volume; dilute sample; increase the split flow decrease injection volume; increase split flow change scale Strong noise, waves leak at column entrance or injection septum bleeding of septum / injector contaminated septum particles in column entrance column contaminated column not properly conditioned hardware defect detector contaminated increase of temperature too fast poor gas quality check column installation; search for leaks; replace ferrules make a run with lower injector temperature; if the baseline improves, replace liner, use low bleed or high temperature septa cut turn from column entrance; replace injection septum cut two turns from column entrance; rinse column with solvent (only chemically bonded phases); otherwise replace column or use guard column condition column according to manufacturers instructions (while column is not connected to the detector) check temperature programme, oven temperature (external thermometer); contact your GC manufacturer clean detector decrease temperature gradient and end temperature use gas grades recommended for GC; for longer supply lines from gas source to GC use gas purification cartridges directly connected to the GC

32 Do s and don ts in GC Gas Chromatography Application Gallery Appendices bservation / Possible causes Increasing baseline, at high temperature bleeding or noise septum particles in column entrance column contaminated increase of temperature too fast / end temperature too high column not properly conditioned detector contaminated poor gas quality film thickness in column too high column stability not sufficient for detector sensitivity Constantly rising baseline leak at column entrance or injection septum bleeding of septum / injector contaminated septum particles in column entrance column contaminated detector contaminated increase of temperature too fast poor gas quality Suggested remedy cut one turn from column entrance; replace injection septum cut two turns from column entrance; rinse column with solvent (only chemically bonded phases); otherwise replace column or use guard column decrease temperature gradient and end temperature condition column according to manufacturers instructions (while column is not connected to the detector) clean detector use gas grades recommended for GC; for longer supply lines from gas source to GC use gas purification cartridges directly connected to the GC use column with thinner film use special low bleed column types check column installation; search for leaks; replace ferrules make a run at lower injector temperature; if the baseline improves, replace liner, use low bleed or high temperature septa cut one turn from column entrance; replace injection septum cut two turns from column entrance; rinse column with solvent (only chemically bonded phases); otherwise replace column or use guard column clean detector decrease temperature gradient and end temperature use gas grades recommended for GC; for longer supply lines from gas source to GC use gas purification cartridges directly connected to the GC

33 GC troubleshooting bservation / Possible causes Suggested remedy Constantly declining baseline gas flow changes with temperature gradient check gas content in gas cylinder; pressure must be a few bar above the required pressure at max. temperature; otherwise exchange gas cylinder Short lifetime, poor resolution, lack of separation efficiency impurities on the column contamination from vials / septa or sample preparation cut two turns from column entrance; rinse column with solvent (only chemically bonded phases); otherwise replace column or use guard column check SPE and / or autosampler vials; use low bleed or high temperature septa polymerisation on the column use guard column (at least 0 m) separation efficiency decreases for repeated injections, improves after reconditioning temperature too high / temperature increase too fast cooling too fast temperature too low / condensation poor deactivation use guard column; reduce injection volume; modify temperature programme; for repeated injections increase end temperature (if possible) and use longer temperature programme decrease oven temperature and / or temperature gradient (should not be higher than C/min) do not open oven door at high temperatures increase injector temperature and/or start temperature check capillary ends; check intact deactivation using the test mixture; for poor results shorten both column ends by about 0 cm; or replace column; if column test does not show any defects: a) use a column with thicker film b) use phase with better deactivation c) use column with special selectivity use oxygen absorber or gas grade with less oxygen reduce water content air in the system water content too high head-space analysis: permanent air injections displace oxygen from vials with an inert gas

34 Do s and don ts in GC Gas Chromatography Application Gallery Appendices bservation / Possible causes Regular interfering peaks bleeding of silicon septa poor gas quality FID: dust or contaminants in the detector electronic defect, damaged cable or detector Irregular interfering peaks, spikes, ghost peaks contamination from vials / septa or sample preparation derivatisation not quantitative dirty syringe sample decomposes column absorbs or decomposes analytes sample volume too high, double injection poor gas quality Suggested remedy replace injection septum, use low bleed or high temperature septa use gas grades recommended for GC; for longer supply lines from gas source to GC use gas purification cartridges directly connected to the GC clean detector; if particles are visible in the column or column ends are not cut precisely (frayed edges), cut two turns from the column entrance replace cable, contact your GC manufacturer control SPE and / or autosampler vials; use low bleed or high temperature septa check derivatisation protocol; use more reactive derivatisation reagents use a different syringe or clean it check temperature programme, oven temperature (external thermometer); if analytes are not temperature-stable, reduce injector temperature; replace liner check capillary ends; check intact deactivation using the test mixture; for poor results shorten both column ends by about 0 cm; or replace column; if column test does not show any defects: a) use a column with thicker film b) use phase with better deactivation c) use column with special selectivity reduce sample volume or add a blank run after a high volume injection use gas grades recommended for GC; for longer supply lines from gas source to GC use gas purification cartridges directly connected to the GC

35 GC troubleshooting bservation / Possible causes Suggested remedy Decreased or differing retention times speed of gas too high oven temperature too high compare flow at column entrance and outlet with preset flow; check and / or clean gas tubes; in case of pressure build-up cut and remove one turn (0 cm) from the column or replace column check temperature programme, oven temperature (external thermometer); decrease temperature Increased or differing retention times/ low gas flow speed of gas too low column connection leaks, column not properly installed oven temperature too low strong decrease of gas pressure tubes / capillaries / column constricted or blocked increase flow check column installation; search for leaks; replace ferrules. check temperature programme, oven temperature (external thermometer); if the analytes are stable, increase temperature replace septum; for an instrument with pressure / temperature control, flow must be higher than psi above the demand at max. temperature of the programme compare flow at column entrance and outlet with preset flow; check and / or clean gas tubes; in case of pressure build-up cut and remove one turn (0 cm) from the column or replace column Negative peaks, negative signals polarity of integrator is inverted sample injected into wrong column column overload pressure fluctuations detector contaminated invert polarity at the instrument inject sample in proper column decrease injection volume; dilute sample check gas tubes, valves, seals; test gas flow; change injection septum; contact hardware manufacturer clean detector

36 Do s and don ts in GC Gas Chromatography Application Gallery Appendices bservation / Possible causes Peaks too small, poor quantification, concentrations not reproducible dirty syringe concentration of sample too low split too high sensitivity of detector too low column connection leaks, column not properly installed injector temperature too low dirty ECD FID, TCD gas flow too low sample decomposes Baseline increases or decreases before or after a peak injection volume too high column bleeding due to poor conditioning pressure fluctuations baseline not properly adjusted injector temperature too low injection septum perforated wrong TCD gas flow Suggested remedy use a different syringe or clean it increase injection volume; concentrate sample reduce split inject standard in order to test detector sensitivity check column installation; search for leaks; replace ferrules check temperature programme, increase injector temperature clean ECD correct flow according to manufacturers instructions check capillary ends; check intact deactivation using the test mixture; for poor results shorten both column ends by about 0 cm; or replace column; if column test does not show any defects: a) use a column with thicker film b) use phase with better deactivation c) use column with special selectivity decrease injection volume; dilute sample; clean injection system condition column according to manufacturers instructions (while column is not connected to the detector) check gas tubes, valves, seals; test gas flow; change injection septum; contact hardware manufacturer readjust baseline; calibrate integrator check injector temperature; if the analytes are stable, increase temperature replace septum adjust flow according to manufacturers instructions 6

37 Application Gallery Environmental Pollutants hydrocarbons PAH PCB phenols pesticides 7

38 Environmental pollutants Gas Chromatography Application Gallery Appendices Separation of PAH, PCB, pesticides and phthalates (EPA ) Appl. No. 80 Column: PTIMA XLB, 0 m x 0. mm ID, 0. µm film, REF 780.0, max. temperature 0/60 C Sample: standard according to EPA method, ng per component Injection: µl, 00 C, pressure pulsed (0. min 0 psi), splitless for 0. min Carrier:.0 ml/min He Temperature: 0 C/min C ( min) 60 C 6 C/min 0 C ( min) Detector: MSD, 80 C, scan range 0 amu. Isophorone. -Nitro-m-xylene. Dichlorvos. Hexachlorocyclopentadiene. EPTC = S-ethyl N,N-dipropylthiocarbamate 6. Butylate 7. Mevinphos 8. Vernolate 9. Pebulate 0. Etridiazole (terrazole). Dimethyl phthalate. Acenaphthene.,6-Dinitrotoluene. Acenaphthene-d 0. PCB- 6. Chloroneb 7. Tebuthiuron 8. Molinate 9. Diethyl phthalate 0.,-Dinitrotoluene. Propachlor. Fluorene. Ethoprop. Cycloate. Trifluralin 6. Chlorpropham 7. PCB- 8. Atraton 9. Prometon 0. a-bhc. Hexachlorobenzene. Propazine. Simazin. Atrazine. Metribuzin 6. Diazinon 7. Terbufos 8. Pronamide (propyzamide) 9. Pentachlorophenol 0. b-bhc. Disulfoton. Terbacil. Phenanthrene-d 0. Parathion-methyl. Phenanthrene 6. Anthracene 7. g-bhc (lindane) 8. PCB-9 9. Alachlor 0. Prometryn. Ametryn. Simetryn. d-bhc. Heptachlor. Chlorothalonil 6. Di-n-butyl phthalate 7. Terbutryn 8. Bromacil 9. Chlorpyrifos 60. Metolachlor 6. Chlorthal-methyl 6. PCB-7 6. Aldrin 6. Triadimefon 6. Cyanazine (Bladex) 66. MGK-6 (N-octyl bicycloheptene dicarboximide) 67. Diphenamid 68. Merphos 69. PCB Heptachlor epoxide B 7. Heptachlor epoxide A 7. Butachlor 7. Stirofos (tetrachlorvinphos) 7. Fenamiphos 7. a-chlordane 76. Napropamide 77. g-chlordane 78. Endosulfan I 79. trans-nonachlor 80. Pyrene-d 0 8. Pyrene 8., -DDE 8. PCB- 8. p-terphenyl-d 8. Dieldrin 86. Carboxin 87. Chlorobenzilate 88. Tricyclazole 89. Endrin 90., -DDD 9. Bis(-ethylhexyl) adipate 9. Butyl benzyl phthalate 9. Endosulfan II 9. Endrin aldehyde 9. Norflurazon 96., -DDT 97. Triphenyl phosphate 98. Hexazinone 99. Endosulfan sulphate 00. Bis(-ethylhexyl) phthalate 0. Methoxychlor 0. PCB-0 0. PCB-7 0. Endrin ketone 0. Benz[a]anthracene 06. Chrysene-d 07. Chrysene 08. Fenarimol 09. cis-permethrin 0. trans-permethrin. Benzo[b]fluoranthene. Benzo[k]fluoranthene. Fluridone (Sonar ). Benzo[a]pyrene. Perylene-d 6. Dibenz[ah]anthracene 7. Indeno[,,-cd]pyrene 8. Benzo[ghi]perylene For formulas of selected compounds see structure index from page 9. 8

39 Complex mixture min, , min 9

40 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of volatile halogenated hydrocarbons Appl. No. 060 Column: PTIMA, 60 m x 0. mm ID,.0 µm film, REF 76.60, max. temperature 0/60 C Injection: 0. µl Carrier gas: 6 ml/min N 0 C/min 00 C Temperature: 0 C ( min) Detector: ECD 00 C. Trichlorofluoromethane (F).,,-Trichlorotrifluoroethane (F). Dichloromethane. trans-,-dichloroethene. cis-,-dichloroethene 6. Trichloromethane 7.,,-Trichloroethane +,-dichloroethane 8. Tetrachloromethane 9. Trichloroethene 0. Bromodichloromethane. Dibromochloromethane. Tetrachloroethene. Tribromomethane min Analysis of a haloform test mixture Appl. No. 80 Column: PERMABND SE--HKW, 0 m x 0. mm ID, REF 79.0, max. temperature 00/0 C Injection: µl, split ~:0 Carrier gas: 0.9 bar He Temperature: C ( min) ( min) Detector: ECD 00 C Peaks [ng/ml]:. Dichloromethane [79]. Trichloromethane [7].,,-Trichloroethane [67].,-Dichloroethane [00]. Tetrachloromethane [.9] 6. Trichloroethene [.6] 7. Bromodichloromethane [0] 8. Dibromochloromethane [] 9. Tetrachloroethene [8] 0. Tribromomethane [8.9] 0 C/min 60 C min

41 Volatile hydrocarbons Separation of cis-,-dichloroethene- and bromochloromethane from excess trichloromethane (::000) Appl. No. 70 Column: PTIMA 6 LB, 0 m x 0. mm ID,.8 μm film, REF max. temperature 80/00 C Injection: μl, 80 C, split 00 ml/min Carrier gas: kpa He (.7 ml/min) Temperature: isothermal, 0 C Detector: FID 80 C. Ethanol (stabilizer). cis-,-dichloroethene. Bromochloromethane. Trichloromethane 0 0 min Please note that for such a long isothermal separation little differences in film thickness may result in longer or shorter retention times. In this case it may be necessary to adjust pressure or flow rate.

42 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of volatile hydrocarbons with headspace GC Appl. No. 00 Column: PTIMA 6, 0 m x 0. mm ID,.8 µm film, REF , max. temperature 80/00 C Injection: HS Cryofocussion, splitless, 0 C Carrier gas:. ml/min N Temperature: 6 C ( min) Detector: ECD 60 C. Dichloromethane. trans-,-dichloroethene. cis-,-dichloroethene. Trichloromethane.,,-Trichloroethane 6. Tetrachloromethane 7. Trichloroethene 8.,,-Trichloroethane 9. Tetrachloroethene 0 C/min 00 C ( min) 0 0 min Courtesy of R. Mueller, G&P Torsten Plaar Umweltanalytik, ldenburg, Germany Analysis of chlorinated hydrocarbons Appl. No Column: PTIMA 6, 0 m x 0. mm ID,. µm film, REF , max. temperature 80/00 C Sample: 6. µl/l Temperature: C ( min) C/min 80 C (8 min) Detector: FID. Isoallyl chloride. -Chloro--methylpropane. -Chloropropene. -Chloropropene. -Chloropropane 6.,-Hexadiene 7.,-Dichloropropane 8.,-Dichloropropane 9.,-Dichloropropene 0. (Z)-,-Dichloropropene. -Chloromethyloxirane (Epichlorohydrine). (E)-,-Dichloropropene.,,-Trichloropropane 0 6 Courtesy of Mrs. Kehl, DW, Stade, Germany 7 8/ min

43 Volatile hydrocarbons Analysis of volatile organic compounds (EPA 0/) Appl. No. 06 Column: PTIMA d-6, 0 m x 0.0 mm ID, 0. µm film, REF 766.0, max. temperature 0/60 C Sample: EPA 0 Volatile rganics Calibration Mix, 0 µg/ml per component in methanol Injection: µl, split 0 ml/min Carrier gas:. bar He. C/min Temperature: 0 C ( min) 70 C C/min 00 C C/min 60 C (0 min) Detector: MSD.,-Dichloroethene 7. Toluene.,,-Trichloropropane. Dichloromethane 8. trans-,-dichloropropene. -Chlorotoluene. trans-,-dichloroethene 9.,,-Trichloroethane 6.,,-Trimethylbenzene.,-Dichloroethane 0. Tetrachloroethene 7. -Chlorotoluene.,-Dichloropropane.,-Dichloropropane 8. t-butylbenzene- 6. cis-,-dichloroethene. Dibromochloromethane 9.,,-Trimethylbenzene 7. Trichloromethane.,-Dibromoethane 0. sec-butylbenzene- 8. Bromochloromethane. Chlorobenzene. p-isopropyltoluene 9.,,-Trichloroethane. Ethylbenzene.,-Dichlorobenzene 0.,-Dichloroprop--ene + tetrachloromethane. Benzene.,-Dichloroethane. Trichloroethene.,-Dichloropropane. Dibromomethane + bromodichloromethane 6. cis-,-dichloropropene 6.,,,-Tetrachloroethane 7. m-xylene + p-xylene 8. o-xylene 9. Styrene 0. Isopropylbenzene. Tribromomethane. n-propylbenzene. Bromobenzene +,,,-tetrachloroethane.,-dichlorobenzene. n-butylbenzene.,-dichlorobenzene 6.,-Dibromo--chloropropane 7. Hexachlorobutadiene 8.,,-Trichlorobenzene 9. Naphthalene 0.,,-Trichlorobenzene min 0

44 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of volatile organic compounds (EPA 0/) Appl. No. 80 Column: PTIMA 6, 0 m x 0. mm ID,. µm film, REF , max. temperature 80/00 C Sample: EPA 0 Volatile rganics Calibration Mix, Supelco 0, 000 µg/ml per component in methanol Injection: µl, split :0 Carrier gas: Temperature: Detector:.,-Dichloroethene. Dichloromethane. trans-,-dichloroethene.,-dichloroethane.,-dichloropropane 6. cis-,-dichloroethene 7. Bromochloromethane 8. Trichloromethane 9.,,-Trichloroethane 0.,-Dichloropropene. Tetrachloromethane.,-Dichloroethane. Benzene. Trichloroethene.,-Dichloropropane 6. Dibromomethane 7. Bromodichloromethane 8. cis-,-dichloropropene 0 9. bar He 0 C ( min) MSD / C/min 70 C C/min 00 C C/min 0 C ( min) 9. Toluene 0. trans-,-dichloropropene.,,-trichloroethane.,-dichloropropane. Tetrachloroethene. Dibromochloromethane.,-Dibromoethane 6. Chlorobenzene 7.,,,-Tetrachloroethane 8. Ethylbenzene 9. m-xylene 0. p-xylene. o-xylene. Styrene. Tribromomethane. Isopropylbenzene.,,,-Tetrachloroethane 6.,,-Trichloropropane Bromobenzene 8. n-propylbenzene 9. -Chlorotoluene 0.,,-Trimethylbenzene. -Chlorotoluene. t-butylbenzene-.,,-trimethylbenzene. sec-butylbenzene-.,-dichlorobenzene 6. p-isopropyltoluene 7.,-Dichlorobenzene 8. n-butylbenzene 9.,-Dichlorobenzene 0.,-Dibromo--chloropropane.,,-Trichlorobenzene. Hexachlorobutadiene. Naphthalene.,,-Trichlorobenzene min

45 Volatile hydrocarbons Analysis of volatile organic compounds (EPA 6) Appl. No. 000 Column: PTIMA 6, m x 0.0 mm ID,. µm film, REF 7678., max. temperature 80/00 C Sample: EPA 6 Volatile rganics, 0 µg/ml per component in methanol Injection: µl, split :0 Carrier gas: 0 cm/s He. C/min Temperature: 0 C (8 min) 70 C C/min 80 C Detector: MSD, EI. Dichlorofluoromethane 8.,-Dichloropropane 7.,,-Trichloropropane +. Chloromethane 9. Dibromomethane,,,-tetrachloroethane. Vinyl chloride 0. Bromodichloromethane 8. Benzyl chloride. Bromomethane. cis-,-dichloropropene 9. -Chlorotoluene. Chloroethane. Toluene + -chlorotoluene 6. Trichlorofluoromethane. trans-,-dichloropropene 0.,,-Trimethylbenzene 7.,-Dichloroethene.,,-Trichloroethane. t-butylbenzene- 8. Dichloromethane. -Chloro--propene.,,-Trimethylbenzene 9. trans-,-dichloroethene 6. Tetrachloroethene. sec-butylbenzene - 0.,-Dichloroethane. cis-,-dichloroethene. Bromochloromethane +,-dichloropropane. Trichloromethane.,,-Trichloroethane. Tetrachloromethane +,-dichloropropene 6. Benzene +,-dichloroethane 7. Trichloroethene 7. Dibromochloromethane 8.,-Dibromoethane 9. Chlorobenzene 0.,,,-Tetrachloroethane. Ethylbenzene. m-xylene + p-xylene. Styrene + o-xylene. Tribromomethane. Isopropylbenzene 6. Bromobenzene +,-dichlorobenzene.,-dichlorobenzene. o-isopropyltoluene 6.,-Dichlorobenzene 7. n-butylbenzene 8.,-Dibromo--chloropropane 9.,,-Trichlorobenzene 0. Naphthalene. Hexachloro-,-butadiene.,,-Trichlorobenzene min

46 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of volatile halogenated hydrocarbons and BTX Appl. No. 000 Column: PERMABND SE--HKW, 0 m x 0. mm ID, REF 79.0, max. temperature 00/0 C Injection: µl, 0.% in methanol, split ml/min Carrier gas:. ml/min He (constant flow) 0 C/min Temperature: 0 C ( min) 60 C Detector: MSD. Vinyl chloride. Trichloroethene. Ethanol. Dichlorobromomethane. Trichlorofluoromethane (F ). Toluene. Pentane 6. Chlorodibromomethane.,,-Trichlorotrifluoroethane (F ) 7. Tetrachloroethene 6. Dichloromethane 8. Chlorobenzene 7. trans-,-dichloroethene 9. Ethylbenzene 8. Hexane 0. m- + p-xylene 9. cis-,-dichloroethene. Tribromomethane 0. Trichloromethane. o-xylene.,,-trichloroethane +,-dichloroethane. Bromobenzene. Tetrachloromethane + benzene Abundance min min

47 Chlorinated hydrocarbons.,-dichlorobenzene.,-dichlorobenzene.,-dichlorobenzene Analysis of chlorinated hydrocarbons (EPA 6). Hexachloroethane.,,-Trichlorobenzene 6. Hexachlorobutadiene 7. Hexachlorocyclopentadiene 8. -Chloronaphthalene 9. Hexachlorobenzene Appl. No. 90 Column: PTIMA, 0 m x 0.0 mm ID, 0.0 µm film, REF , max. temperature 0/60 C Sample: chlorinated hydrocarbon standard EPA 6, 000 µg/ml per component in isooctane Injection: µl, split :0 Carrier gas:. bar He Temperature: 0 C 8 C/min Detector: MSD 60 C (0 min) Column: Sample: Appl. No. 00 PTIMA d-6, 0 m x 0.0 mm ID, 0.0 µm film, REF 766.0, max. temperature 0/60 C chlorinated hydrocarbon standard EPA 6, 00 µg/ml per component in isooctane Injection: µl, split :0 Carrier gas:.0 bar He Temperature: 0 C 8 C/min Detector: MSD 60 C (0 min) min 0 0 min 7

48 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of a mixture of neutral and basic organic compounds Appl. No. 000 Appl. No Column: PTIMA, m x 0.0 mm ID, 0. µm film, REF 7687., max. temperature 0/60 C Sample: 00 µg/ml each in -propanol Injection:.0 µl; split :0 Carrier gas: cm/s He 0 C/min Temperature: 0 C ( min) 0 C 0 C/min 0 C Detector: MSD.,-Dichlorobenzene.,-Dichlorobenzene.,-Dichlorobenzene. Hexachloroethane. Nitrobenzene 6. Isophorone 7.,,-Trichlorobenzene 8. Hexachlorobutadiene 9. Hexachlorocyclopentadiene 0. -Chloronaphthalene. -Methyl-,-dinitrobenzene. -Methyl-,-dinitrobenzene. Azobenzene. Hexachlorobenzene. Carbazole min Column: PTIMA d-, m x 0.0 mm ID, 0.0 µm film, REF 7600., max. temperature 0/60 C Injection: µl, split :0 Carrier gas: cm/s He 0 C/min Temperature: 0 C ( min) 0 C 0 C/min 0 C Detector: MSD.,-Dichlorobenzene.,-Dichlorobenzene.,-Dichlorobenzene. Hexachloroethane. Nitrobenzene 6. Isophorone 8.,,-Trichlorobenzene 7. Hexachlorobutadiene 9. Hexachlorocyclopentadiene 0. -Chloronaphthalene. -Methyl-,-dinitrobenzene. -Methyl-,-dinitrobenzene. Azobenzene. Hexachlorobenzene. Carbazole min 0 8

49 Halogenated hydrocarbons Analysis of chlorotoluene isomers Column: PTIMA 6, 0 m x 0. mm ID,.8 µm film, REF , max. temperature 80/00 C Carrier gas: 0 kpa H (7.7 ml/min) Temperature: 70 C Detector: FID 0 C Appl. No. 000 Injection: µl (% each in toluene) split 0 ml/min. o-chlorotoluene. m-chlorotoluene. p-chlorotoluene Appl. No. 000 Injection: µl (undiluted sample) split 0 ml/min. o-chlorotoluene [0.6 %]. m-chlorotoluene [98. %]. p-chlorotoluene [0.9 %] min min Structures of miscellaneous organics Isophorone Carbazole Aramite Phenacetin H C N H ( ) C S (CH ) Cl HN C H 9

50 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of semivolatile organics (EPA 870) Appl. No. 790 Column: PTIMA MS Accent, 0 m x 0. mm ID, 0. μm film, REF 780.0, max. temperature 0/60 C Sample: 6 μg/ml in CH Cl Injection: μl splitless (hold 0. min), 00 C Carrier gas:.0 ml/min He Temperature: 0 C/min C ( min) 60 C 6 C/min 0 C ( min) Detection: MSD 80 C. N-Nitrosodimethylamine-. Pyridine. Methyl methanesulfonate. -Fluorophenol. Ethyl methanesulfonate 6. Phenol-d 6 7. Phenol 8. Aniline 9. Bis(-chloroethyl) ether 0. -Chlorophenol.,-Dichlorobenzene.,-Dichlorobenzene-d.,-Dichlorobenzene.,-Dichlorobenzene. Benzyl alcohol 6. -Methylphenol 7. Bis(-chloroisopropyl) ether 8. Acetophenone 9a. -Methylphenol 9b. -Methylphenol 0. N-Nitroso-di-- n-propylamine. Hexachloroethane. Nitrobenzene-d. Nitrobenzene. Isophorone. -Nitrophenol 6.,-Dimethylphenol 7. Bis(-chloroethoxy)methane 8. Benzoic acid 9.,-Dichlorophenol 0.,,-Trichlorobenzene. Naphthalene-d 8. Naphthalene.,6-Dichlorophenol. -Chloroaniline. Hexachloropropene 6. Hexachlorobutadiene 7. -Chloro--methylphenol 8. Isosafrole 9. -Methylnaphthalene 0. -Methylnaphthalene. Hexachlorocyclopentadiene.,,,-Tetrachlorobenzene.,,6-Trichlorophenol.,,-Trichlorophenol. -Fluorobiphenyl 6. Safrole 7. -Chloronaphthalene 8. -Nitroaniline 9.,-Naphthoquinone 0. Dimethyl phthalate.,-dinitrobenzene.,6-dinitrotoluene. Acenaphthylene. Acenaphthene-d 0. -Nitroaniline 6. Acenaphthene 7.,-Dinitrophenol 8. Pentachlorobenzene 9. -Nitrophenol 60. Dibenzofuran 6.,-Dinitrotoluene 6.,,,6-Tetrachlorophenol 6. Diethyl phthalate 6. Fluorene 6. -Chlorophenyl phenyl ether 66. -Nitroaniline 67. -Methyl-,6-dinitrophenol 68. Diphenylamine 69. Azobenzene 70.,,6-Tribromophenol 7. Phenacetin 7. -Bromophenyl phenyl ether 7. Hexachlorobenzene 7. Pentachlorophenol 7. Pentachloronitrobenzene 76. Phenanthrene-d Dinoseb 78. Phenanthrene 79. Anthracene 80. Di-n-butyl phthalate 8. -Nitro-quinoline -oxide 8. Isodrin 8. Fluoranthene 8. Benzidine 8. Pyrene 86. p-terphenyl-d 87. Aramite 88. Chlorobenzilate 89. Kepone 90. Butyl benzyl phthalate 9. Benz[a]anthracene 9., -Dichlorobenzidine 9. Chrysene-d 9. Chrysene 9. Bis(-ethylhexyl) phthalate 96. Di-n-octyl phthalate 97. Benzo[b]fluoranthene 98. Benzo[k]fluoranthene 99. Benzo[a]pyrene 00. Perylene-d 0. -Methylcholanthrene 0. Indeno[,,-cd]pyrene 0. Dibenz[ah]anthracene 0. Benzo[ghi]perylene 0

51 Semivolatile organics min 6, 6 8, 9, ,

52 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of semivolatile organics (EPA 6) Appl. No. 80 Column: PTIMA MS Accent, 0 m x 0. mm ID, 0. µm film, REF 780.0, max. temperature 0/60 C Injection:.0 µl, 0 ppm (0 ppm int. std.), 0 psi 0. min, pulsed splitless (hold 0. min), 00 C Carrier gas:.0 ml/min He Temperature: 8 C/min C ( min) 70 C C/min 0 C/min 0 C 0 C ( min) Detector: MSD 80 C. N-Nitrosodimethylamine. Pyridine-d. -Fluorophenol (surrogate std.). Pentafluorophenol (int. std.). Phenol 6. Bis(-chloroethyl) ether 7. -Chlorophenol 8.,-Dichlorobenzene 9.,-Dichlorobenzene 0.,-Dichlorobenzene. Bis(-chloroisopropyl) ether. N-Nitroso-di-n-propylamine. Hexachloroethane. Nitrobenzene-d (int. std.). Nitrobenzene 6. Isophorone 7. -Nitrophenol 8.,-Dimethylphenol 9. Bis(-chloroethoxy)methane 0.,-Dichlorophenol.,,-Trichlorobenzene. Naphthalene. Hexachlorobutadiene. -Chloro--methylphenol. Hexachlorocyclopentadiene 6.,,6-Trichlorophenol 7. -Chloronaphthalene 8. Dimethyl phthalate 9.,6-Dinitrotoluene 0. Acenaphthylene. Acenaphthene.,-Dinitrophenol. -Nitrophenol.,-Dinitrotoluene. Diethyl phthalate 6. Fluorene 7. -Chlorophenyl phenyl ether 8.,6-Dinitro--methylphenol 9. Diphenylamine 0., -Dibromooctafluorobiphenyl Substituted benzene common names. -Bromophenyl phenyl ether. Hexachlorobenzene. Pentachlorophenol. Phenanthrene. Anthracene 6. Di-n-butyl phthalate 7., -Dibromobiphenyl (int. std.) 8. Fluoranthene 9. Pyrene 0. Butyl benzyl phthalate. Benz[a]anthracene. Chrysene. Bis(-ethylhexyl) phthalate. Di-n-octyl phthalate. Benzo[b]fluoranthene 6. Benzo[k]fluoranthene 7. Benzo[a]pyrene 8. Indeno[,,-cd]pyrene 9. Dibenz[ah]anthracene 60. Benzo[ghi]perylene Structure Compound R R R R R R 6 HCB = Hexachlorobenzene Cl Cl Cl Cl Cl Cl Chloroneb Cl H Cl H R Chlorthal Cl CH Cl Cl CH Cl R 6 R Dichlobenil Cl CN Cl H H H Chlorothalonil Cl CN Cl CN Cl Cl R R Tecnazene Cl Cl N R Cl Cl H Quintozene Cl Cl N Cl Cl Cl Dicloran Cl NH Cl H N H Dinoseb H sec-c- H 9 H N H N

53 Semivolatile organics 6/ min

54 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of nitro- and chloronitroaromatics Appl. No Column: PTIMA 0, m x 0. mm ID, 0. µm film, REF , max. temperature 00/0 C Injection: 0. µl, split ml/min Carrier gas: 60 kpa H (. ml/min) Temperature: C/min 0 C ( min) 0 C Detector: FID 0 C. Nitrobenzene. Isophorone. -Nitrochlorobenzene. -Nitrochlorobenzene. -Nitrochlorobenzene 6.,- and,6-dichloronitrobenzene 7.,-Dichloronitrobenzene 8.,6-Dinitrotoluene 9.,-Dinitrotoluene 0.,-Dinitrotoluene.,-Dinitrotoluene.,-Dinitrotoluene.,-Dinitrotoluene.,,6-Trinitrotoluene min

55 Aromatic hydrocarbons Analysis of nitro- and chloronitroaromatics Appl. No Column: PTIMA 70, 0 m x 0. mm ID, 0. µm film, REF 768.0, max. temperature 00/0 C Injection: µl, split ml/min Carrier gas: 00 kpa H 0 C (6 min) C/min 90 C Temperature: Detector: FID 0 C. -Nitrochlorobenzene. -Nitrochlorobenzene. -Nitrochlorobenzene.,- and,6-dichloronitrobenzene.,-dichloronitrobenzene 6.,6-Dinitrotoluene 7.,-Dinitrotoluene 8.,-Dinitrotoluene 9.,-Dinitrotoluene 0.,-Dinitrotoluene.,-Dinitrotoluene Analysis of nitroaromatic compounds (explosives) Appl. No. 00 Column: PTIMA d-, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/60 C Injection:.0 µl, on column, 0 C Carrier gas: Temperature: Detector:. Nitrobenzene. -Nitrotoluene-D 7. -Nitrotoluene. -Nitrotoluene. -Nitrotoluene 6.,6-Dinitrotoluene 7.,-Dinitrobenzene 8.,-Dinitrotoluene 9.,-Dinitrotoluene 0.,-Dinitrotoluene-D.,-Dinitrotoluene.,-Dinitrotoluene.,-Dinitrotoluene psi He 0 C ( min) MSD 0 C/min 0 C min min Courtesy of Mr. Steinbach, Inst. of rganic Chemistry, Univ. of Marburg, Germany

56 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of nitromusk compounds in domestic dust Appl. No. 8 Column: PTIMA d-, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/60 C Sample: 00 µl/l standard with -methyl-,6-dinitroanisole in n-hexane Injection: 60 C, split 0 ml/min Carrier gas: Temperature: H 0 C ( min) 7 C/min 90 C ( min) Detector: ECD 0 C Peaks for applications 8 8: Methyl-,6-dinitroanisole H C N N.,,6-Trinitrotoluene (TNT) N N N. Musk ambrette (MA) H C H C N N. Musk xylene (MX) H C H C N H C N N (continued next page) 0 min Appl. No. 8 Column: PTIMA d-6, 0 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C Sample: pooled dust sample extracted by steam distillation with t-butyl- methyl ether, spiked with 0 µg/l standard and -methyl-,6-dinitroanisole ther conditions as above min 0 0 6

57 Aromatic hydrocarbons Analysis of nitromusk compounds in domestic dust (cont.) Appl. No. 8 Samples: a) hexane extract of a single dust sample, spiked with 00 µg/l standard and 0 µg/l -methyl-,6-dinitroanisole b) hexane extract of a pooled dust sample, spiked with 0 µg/l standard, -methyl-,6-dinitroanisole and,,6-trinitrotoluene (TNT) ther conditions as in application 8 Peaks for applications 8 8 (cont.):. Musk moskene (MM) 6 7 N H C H C N 6. Musk tibetene (MT) H C H C N N a) H C 0 min 0 7. Musk ketone (MK) 6 7 H C H C N N H C b) 0 min 0 Courtesy of Sven Heegmann, AK Prof. Butte, Diplomarbeit, University of ldenburg, Germany 7

58 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of nitroaromatics (EPA 609) Appl. No. 00 Column: PTIMA d-6, 0 m x 0.0 mm ID, 0.0 µm film, REF 766.0, max. temperature 0/60 C Sample: EPA 609 Nitroaromatics and Isophorone Mix, 000 µg/ml per substance in hexane Injection:.0 µl, split :0 Carrier gas: Temperature: Detector:. Nitrobenzene. Isophorone.,6-Dinitrotoluene.,-Dinitrotoluene 8.0 bar He 00 C ( min) ( min) MSD 0 C/min 00 C min 6 Analysis of nitroaromatics (EPA 609) Appl. No. 00 Column: PTIMA MS, 0 m x 0. mm ID, 0. µm film, REF 76.0, max. temperature 60/70 C Injection:.0 µl, split :0 Carrier gas: ml/min He Temperature: 60 C 8 C/min 0 C Detector: MSD. Nitrobenzene. Isophorone.,6-Dinitrotoluene.,-Dinitrotoluene 0 min 8

59 Aromatic hydrocarbons Analysis of aromatic hydrocarbons Appl. No Column: PTIMA 0, 0 m x 0. mm ID, 0. µm film, REF , max. temperature 60/80 C Injection: 0. µl, split 6 ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 60 C (0 min) C/min 0 C Detector: FID 0 C. Benzene. Toluene. Ethylbenzene. p-xylene. Chlorobenzene + m-xylene 6. o-xylene 7. i-propylbenzene Styrene 9. n-propylbenzene 0 0. Bromobenzene 7.,,-Trimethylbenzene 6 9. o-chlorotoluene. m-chlorotoluene. p-chlorotoluene. p-isopropyltoluene 6. n-butylbenzene 7. -Methylphenol 8.,6-Dichlorotoluene 9. -Methylphenol 0.,-Dichlorotoluene + -methylphenol.,-dichlorotoluene.,-dichlorotoluene min 9

60 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of phenols (EPA 800 A) Appl. No. 000 Column: PTIMA, m x 0.0 mm ID, 0. µm film, REF 7687., max. temperature 0/60 C Sample: phenols (EPA 800 A), 0 µg/ml in -propanol Injection:.0 µl, split :0 Carrier gas: cm/s He Temperature: 60 C ( min) 8 C/min 0 C Detector: MSD. Phenol. -Chlorophenol. -Methylphenol. -Methylphenol. -Nitrophenol 6.,-Dimethylphenol 7.,-Dichlorophenol 8.,6-Dichlorophenol 9. -Chloro--methylphenol 0.,,-Trichlorophenol.,,6-Trichlorophenol.,,-Trichlorophenol.,,-Trichlorophenol.,,6-Trichlorophenol.,-Dinitrophenol 6.,,,6-Tetrachlorophenol 7.,,,6-Tetrachlorophenol 8. -Methyl-,6-dinitrophenol 9.,,-Trichlorophenol 0. Pentachlorophenol. -Isopropyl-,6-dinitrophenol min

61 Phenols Analysis of isomeric phenols (EPA 800 A) Appl. No Column: PTIMA d-, 60 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C Injection:.0 µl, split :80 Carrier gas:. bar He Temperature: 60 C ( min) 6 C/min 0 C Detector: MSD. Phenol. -Chlorophenol. -Methylphenol. -Methylphenol. -Methylphenol 6.,-Dimethylphenol 7. -Nitrophenol 8.,-Dichlorophenol 9.,6-Dichlorophenol 0. -Chloro--methylphenol.,,-Trichlorophenol.,,6-Trichlorophenol.,,-Trichlorophenol.,,-Trichlorophenol.,,6-Trichlorophenol 6.,,,6-Tetrachlorophenol 7.,,,-Tetrachlorophenol 8.,,,6-Tetrachlorophenol 9.,-Dinitrophenol 0.,,-Trichlorophenol. -Methyl-,6-dinitrophenol. -Isopropyl-,6-dinitrophenol min 6

62 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of phenols (EPA 800) Appl. No. 0 Column: PTIMA MS, 0 m x 0. mm ID, 0. µm film, REF 76.0, max. temperature 60/70 C Sample: phenols (EPA 800) Injection:.0 µl, 80 C, split 0 ml/min Carrier gas: 0.8 ml/min He Temperature: 60 C 6 C/min 80 C Detector: MSD. Phenol. -Chlorophenol. -Methylphenol. -Methylphenol. -Methylphenol 6.,-Dimethylphenol 7. -Nitrophenol 8.,-Dichlorophenol, ,6-Dichlorophenol 0. -Chloro--methylphenol.,,-Trichlorophenol.,,6-Trichlorophenol.,,-Trichlorophenol.,,-Trichlorophenol.,,6-Trichlorophenol 6.,,,6-Tetrachlorophenol ,,,-Tetrachlorophenol 8.,,,6-Tetrachlorophenol 9.,-Dinitrophenol 0. -Nitrophenol.,,-Trichlorophenol. -Methyl-,6-dinitrophenol. Pentachlorophenol. Methylpropyl-,6-dinitrophenol (Dinoseb) min 0 9 6

63 Phenols Column: Sample: Injection Analysis of phenols (EPA 8) Appl. No. 80 Carrier gas: PTIMA MS Accent, 0 m x 0. mm ID, 0. µm film, REF 780.0, max. temperature 0/60 C µl, ppm, ng/compound pulsed splitless (hold 0. min), pulsed pressure 0 psi (hold 0. min). ml/min He C/min Temperature: 0 C ( min) 00 C 0 C/min 00 C ( min) Detector: MSD 80 C. Phenol. -Chlorophenol-,,,6-d + -chlorophenol. -Methylphenol. -Nitrophenol.,-Dimethylphenol-,,6-d +,-dimethylphenol 6.,-Dichlorophenol 7. -Chloro--methylphenol 8.,-Dimethyl--nitrobenzene (int. std. ) 9.,,6-Trichlorophenol 0.,-Dinitrophenol. -Nitrophenol.,,,-Tetrachlorophenol (int. std. ). -Methyl-,6-dinitrophenol.,,6-Tribromophenol (surrogate std.). Pentachlorophenol Analysis of phenols (EPA 60) Appl. No. 70 Column: PTIMA MS, 0 m x 0. mm ID, 0. µm film, REF 76.0, max. temperature 60/70 C Injection:.0 µl, split :0 Carrier gas:. ml/min He Temperature: 60 C ( min) C/min 0 C Detector: MSD. Phenol. -Chlorophenol.,-Dimethylphenol. -Nitrophenol.,-Dichlorophenol 6. -Chloro--methylphenol 7.,,6-Trichlorophenol 8.,-Dinitrophenol 9. -Nitrophenol 0. -Methyl-,6-dinitrophenol. Pentachlorophenol min min 6

64 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of various phenols Appl. No. 00 Column: PTIMA MS, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/60 C Sample: ppm of each compound except N-i-propylaniline - (9. ppm) Method: SPME Temperature: 0 C ( min) 6 C/min 0 C 0 C/min 0 C Detector: MSD. Toluene-D 8. Phenol. -Methylphenol (o-cresol). Nitrobenzene-D. N-i-Propylaniline- 6.,-Dichlorophenol 7. -Chlorophenol 8. -Bromo--chlorophenol Bromophenol 0. -Chloro--methylphenol.,-Dibromophenol. -Hydroxybiphenyl. -Cyclohexylphenol. Hexafluorobisphenol A 0 0 min Courtesy of Riedel-de-Haën, Seelze, Germany PAH structures Naphthalene Acenaphthylene Acenaphthene Anthracene Chrysene Benz[a]anthracene Benzo[a]pyrene Fluoranthene Fluorene Phenanthrene Pyrene Dibenz[ah]anthracene Benzo[ghi]perylene Benzo[b]fluoranthene Benzo[k]fluoranthene Indeno[,,-cd]pyrene 6

65 PAH Analysis of 6 PAH according to German drinking water specifications Appl. No. 0 Column: PTIMA d-6, 0 m x 0. mm, 0. μm film, REF 766.0, max. temperature 0/60 C Sample: test mixture acc. to German drinking water specifications (REF 7), 0 µg/ml in toluene Injection: μl, 00 C, splitless Carrier gas: 0.7 ml/min He Temperature: 00 C ( min) 7 C/min 0 C Detector: ( min) MSD 80 C. Fluoranthene. Benzo[b]fluoranthene. Benzo[k]fluoranthene. Benzo[a]pyrene. Indeno[,,-cd]pyrene 6. Benzo[ghi]perylene 6 0 min 0 0 Analysis of 6 PAH (EPA 60) Appl. No. 800 Column: PTIMA MS Accent, 0 m x 0. mm ID, 0. µm film, REF 780.0, max. temperature 0/60 C Injection: 0. µl (0 µg/ml in toluene), 00 C, splitless (hold min) Carrier gas: 0 cm/s H 0 C/min Temperature: 0 C ( min) 00 C C/min 0 C ( min) Detector: FID 0 C. Naphthalene. Acenaphthylene. Acenaphthene. Fluorene. Phenanthrene 6 6. Anthracene 7 7. Fluoranthene 8 8. Pyrene 9. Benz[a]anthracene Chrysene. Benzo[b]fluoranthene 6. Benzo[k]fluoranthene. Benzo[a]pyrene. Indeno[,,-cd]pyrene. Dibenz[ah]anthracene min 6. Benzo[ghi]perylene 6

66 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of 6 PAH (EPA 60) Appl. No. 90 Column: PTIMA MS, 0 m x 0. mm ID, 0. μm film, REF 76.0, max temperature 60/70 C Injection: μl, split :0 Carrier gas: 0.6 bar H Temperature: 00 C ( min) 6 C/min 00 C (0 min) Detector: MSD. Naphthalene. Acenaphthylene. Acenaphthene. Fluorene 6. Phenanthrene 6. Anthracene 7. Fluoranthene 8. Pyrene Benz[a]anthracene 0. Chrysene. Benzo[b]fluoranthene. Benzo[k]fluoranthene Benzo[a]pyrene. Indeno[,,-cd]pyrene. Dibenz[ah]anthracene 6. Benzo[ghi]perylene min 66

67 PAH PCB Rapid separation of PCB and PAH Appl. No. 90/ 90 Column: PTIMA XLB, 0 m x 0. mm ID, 0. μm film, REF max. temperature 0/60 C Injection: μl, standard 0.00 ng/μl; 0 C, pulsed, splitless, pulse.8 bar in min Purge flow: He with purge flow 60 ml/min Temperature: 0 C/min 0 C/min 0 C ( min) 0 C ( min) 0 C ( min) Detection: MS source 0 C, interface 80 C, quadrupol 0 C a) application 90: standard; b) application 90 PCB and PAH from slag. Naphthalene. -Methylnaphthalene. Acenaphthylene. Acenaphthene. Fluorene 6. Phenanthrene 7. Anthracene 8. PCB- 9. PCB-8 0. PCB-. Fluoranthene. PCB-0. Pyrene. PCB-77. -Methylfluoranthene 6. PCB-8 7. PCB- 8. PCB-8 9. PCB-6 0. PCB-80. Benz[a]anthracene. Chrysene. PCB-69. PCB-9. Benzo[b]fluoranthene 6. Benzo[k]fluoranthene 7. Benzo[a]pyrene 8. Dibenz[ah]anthracene 9. Indeno[,,-cd)pyrene 0. Benzo[ghi]perylene 8: PCB- 9: PCB % separation in less than 0 min! 6 benzo[b]fluoranthene / benzo[k]fluoranthene 7 % separation in 7 min! 8/ min Courtesy of Centre d Analyses de Recherche, Lab. d Hydrologie, Illkirch, France 67

68 Environmental pollutants Gas Chromatography Application Gallery Appendices BZ PCB nomenclature 6 6 -Chlorobiphenyl,-Dichlorobiphenyl 8,,-Trichlorobiphenyl 0,, -Trichlorobiphenyl 8,, -Trichlorobiphenyl 9,,-Trichlorobiphenyl,,-Trichlorobiphenyl,,, -Tetrachlorobiphenyl 7,,, -Tetrachlorobiphenyl 9,,, -Tetrachlorobiphenyl,,, -Tetrachlorobiphenyl 6,,,-Tetrachlorobiphenyl 66,,, -Tetrachlorobiphenyl 70,,,-Tetrachlorobiphenyl 98,,,,6-Pentachlorobiphenyl 99,,,,-Pentachlorobiphenyl 0,,,, -Pentachlorobiphenyl 0,,,,6-Pentachlorobiphenyl 0,,,, -Pentachlorobiphenyl,,,,-Pentachlorobiphenyl 8,,,,-Pentachlorobiphenyl 8,,,,, -Hexachlorobiphenyl 8,,,,, -Hexachlorobiphenyl 9,,,,,6-Hexachlorobiphenyl,,,,, -Hexachlorobiphenyl,,,,,6 -Hexachlorobiphenyl 6,,,,,-Hexachlorobiphenyl 70,,,,,,-Heptachlorobiphenyl 7,,,,,,6-Heptachlorobiphenyl 80,,,,,, -Heptachlorobiphenyl 8,,,,,,6-Heptachlorobiphenyl 89,,,,,, -Heptachlorobiphenyl 9,,,,,,, -ctachlorobiphenyl 0,,,,,,6,6 -ctachlorobiphenyl 09 Decachlorobiphenyl Analysis of PCB (Aroclor 8) Appl. No. 00 Column: PTIMA d-, 0 m x 0.0 mm ID, 0.0 µm film, REF , max. temperature 0/60 C Injection:.0 µl, split : Carrier gas: cm/s He C/min Temperature: 00 C 0 C C/min 60 C Detector: MSD. PCB-. PCB-8. PCB-. PCB-9. PCB- 6. PCB-6 7. PCB PCB min 68

69 PCB Analysis of PCB (W congener mix) Appl. No. 80 Column: PTIMA MS, 0 m x 0.0 mm ID, 0. µm film, REF 760.0, max. temperature: 0/60 C Injection: µl PCB W congener mix, 0 µl/ml, split 80 ml/min Carrier gas: 0. bar He. C/min Temperature: 0 C 00 C ( min) Detector: ECD 00 C. PCB-8. PCB-. PCB-8. PCB-0. PCB- 6. PCB- 7. PCB-0 8. PCB-9 9. PCB-8 0. PCB-. PCB-0. PCB-8. PCB-80. PCB-70. PCB-9 Column: Injection: Carrier gas: Temperature: Detector:. PCB-8. PCB-. PCB-0. PCB-. PCB- 6. PCB-0 7. PCB-8 8. PCB-6 9. PCB-80 Analysis of PCB Appl. No PTIMA d-, 60 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C µl, splitless, 6 pg/ pg, depending on component.6 ml/min He 0 C/min 60 C ( min) 00 C. C/min 90 C ( min) ECD 00 C, ml/min Ar/CH % min min Courtesy of Mr. Bauer, Mr. Drichelt, Zentr. Inst. d. San.dienstes BW, Kiel, Germany 69

70 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of PCB from window putty Appl. No. 07 Column: PTIMA MS, 0 m x 0.0 mm ID, 0. µm film, REF 760.0, max. temperature 0/60 C Injector temp.: 00 C Carrier gas: Temperature: Detector: 0 psi He 0 C ( min) MSD.. min 0 C/min C/min 0 C/min 00 C 90 C ( min) 0 C min Courtesy of N. Bertram, LTA Labor f. Toxikol. u. Analytik, Königswinter, Germany 8. PCB-. PCB-8. PCB-. PCB-0. PCB-8 6. PCB- 7. PCB-8 8. PCB PCB

71 PCDD PCDF Column: Sample: Injection: Carrier gas: Temperature: Analysis of polychlorinated dibenzodioxins (PCDDs) Appl. No. 080 PTIMA d-, 60 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C C-labelled standards.0 µl, splitless He 00 C C/min 80 C C/min 0 C (0 min) MSD Detector: m/z. Tetrachlorodibenzodioxins.9. Pentachlorodibenzodioxins Hexachlorodibenzodioxins 0.9. Heptachlorodibenzodioxins.8. ctachlorodibenzodioxin 7.8 Analysis of polychlorinated dibenzofurans (PCDFs) in dust Appl. No. 00 Column: PTIMA d-, 60 m x 0. mm ID, 0. µm film, REF max. temperature 0/60 C Injection:.0 µl, 6 60 pg/µl depending on component Carrier gas:. ml/min He C/min Temperature: 0 C ( min) 0 C C/min 00 C ( min) Detector: MSD.,,7,8-Tetrachlorodibenzofuran.,,,7,8-Pentachlorodibenzofuran.,,,7,8-Pentachlorodibenzofuran.,,,,7,8-Hexachlorodibenzofuran +,,,6,7,8-hexachlorodibenzofuran.,,,6,7,8-Hexachlorodibenzofuran 6.,,,,6,7,8-Heptachlorodibenzofuran 7.,,,,7,8,9-Heptachlorodibenzofuran 8. ctachlorodibenzofuran m/z: a) 07 b) c) 7 Dibenzofuran d) 09 e) min 6 Courtesy of Dr. Klostermann, Mr. Ludwig, SGS Intercontrol, Wismar, Germany Cl Cl Cl Cl Cl Cl Cl Cl 7 8 ctachlorodibenzodioxin a b c d e min Courtesy of A. Dockwiller, Tredi, Strassbourg, France 7

72 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of halogenated hydrocarbons, organochlorine pesticides and PCB Appl. No. 000 Column: PTIMA 0, m x 0. mm ID, 0. µm film, REF , max. temperature 00/0 C Injection: 0.8 µl on column Carrier gas: 0 kpa H Temperature: 0 C/min 80 C 00 C C/min 70 C Detector: ECD 0 C [pg]. Hexachlorocyclopentadiene [60]. Etridiazole [60]. a-,-trichloroacetophenone [80].,,,6-Tetrachloroxylene [80]. Tecnazene [80] 6.,,,6-Tetrachloroaniline [0] 7. Trifluralin [0] 8. HCB [80] 9. Pentachloroanisole [80] 0. a-bhc [80]. Quintozene [80]. Lindane [80]. Bromocyclen [80].,,,-Tetrachloroaniline [60]. PCB-8 [80] 6. Heptachlor epoxide [80] 7. b-bhc [80] 8. PCB- [80] 9. Methyl pentachlorophenyl sulphide [80] 0. d-bhc [80]. Telodrin [80]. ctachlorostyrene [80]. cis-heptachlor epoxide [80]. Alodan (int. std.) [80]. PCB-0 [80] 6. Endosulfan a [80] 7. p,p -DDE - [80] 8. Dieldrin [80] 9. Chlorfenson [60] 0. o,p -DDD - [80]. o,p -DDT - [80]. PCB- [80]. Endosulfan b [80]. p,p -DDD - [80]. PCB-8 [80] 6. p,p -DDT - [80] 7. Chlorbenside sulphone [80] 8. Endosulfan sulphate [80] 9. PCB-80 [80] 0. Mirex [80]. Tetradifon [80] Pesticide structures: bridged diphenyl derivatives Structure Compound X R R R R R R X R R R R Bifenox Cl Cl H N C-- Fluorodifen CF N H N H Tetrasul S Cl H Cl Cl Cl Tetradifon S Cl H Cl Cl Cl Chlorbenside sulphone CH -S Cl H H Cl H Chlorfenson S Cl H H Cl H o,p -DDD- CH CHCl H Cl H Cl H p,p -DDD- CH CHCl Cl H H Cl H o,p -DDE- C=CCl H Cl H Cl H p,p -DDE- C=CCl Cl H H Cl H o,p -DDT- CH CCl H Cl H Cl H p,p -DDT- CH CCl Cl H H Cl H p,p -Methoxychlor- CH CCl H H H Chlorobenzilate C(H) C C H Cl H H Cl H Bromopropylate C(H) C i-c H 7 Br H H Br H Fenarimol H N Cl H Cl H H Nuarimol N F H Cl H H 7

73 Halogenated hydrocarbons Pesticides min Courtesy of Mr. Lembacher, Hipp Nährmittel, Pfaffenhofen, Germany 7

74 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of pesticides and PCB Appl. No Column: PTIMA d-6, 0 m x 0.0 mm ID, 0.0 µm film, REF 766.0, max. temperature 0/60 C Injection: µg/ml depending on component, splitless, purge time 0.8 min, 70 C Carrier gas:. ml/min He Temperature: C/min 0 C ( min) 80 C ( min) C/min 60 C 6 C/min 0 C ( min) Detector: ECD 00 C. Dichlobenil. Chloroneb. Trifluralin. Tecnazene. a-bhc 6. Dichloran 7. g-bhc 8. Quintozene 9. b-bhc 0. Vinclozolin. PCB-8 + heptachlor. p-chloroaniline. S. d-bhc. PCB- 6. Aldrin 7. Chlorothalonil 8. Chlorpyrifos-ethyl 9. Dichlofluanid 0. Triadimefon. Fluorochloridone. Tolylfluanid. Procymidone. Anilazine Phenylsulfamides Structure Compound R S CCl F Dichlofluanid H N S N( ) Tolylfluanid R ther formulas see structure index from page PCB-0 6. a-endosulfan 7. Captan 8. Folpet 9. Dieldrin 0. o,p -DDD-. Endrin. o,p -DDT -. PCB-. Tetrasul. b-endosulfan 6. p,p -DDT PCB-8 8. Nuarimol 9. Endosulfan sulphate 0. Bromopropylate. Captafol. Methoxychlor. PCB-80. Tetradifon. Flucythrinate ( isomers 6. Fluvalinate ( isomers) min Courtesy of Mr. Grabher, CLUA, Sigmaringen, Germany 8 6 7

75 Chlorinated hydrocarbons Pesticides Analysis of chlorinated hydrocarbons, organochlorine pesticides and PCB acc. to German Health Administration (BGA 988) Appl. No Column: PTIMA, 60 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C Split: 6 ml/min Carrier gas: 60 kpa H (. ml/min) Temperature: 0 C/min. C/min 60 C 0 C ( min) 00 C ( min) Detector: ECD 0 C.,,-Trichlorobenzene.,,-Trichlorobenzene.,,-Trichlorobenzene.,,,-Tetrachlorobenzene.,,,-Tetrachlorobenzene 6. Pentachlorobenzene 7. a-bhc 8. HCB 9. b-bhc 0. g-bhc (lindane). d-bhc. e-bhc. Bromocyclen. Musk xylene. PCB-8 6. Heptachlor 7. PCB- 8. Aldrin 9. Isodrin (int. std.) 0. ctachlorostyrene. cis-heptachlor epoxide. xychlordane. trans-heptachlor epoxide. trans-chlordane. o,p -DDE- 6. PCB-0 7. Endosulfan a 8. cis-chlordane 9. p,p -DDE- 0. Dieldrin. o,p -DDD-. Endrin. Endosulfan b. p,p -DDD-. o,p -DDT- 6. PCB- 7. Endosulfan sulphate 8. p,p -DDT- 9. PCB-8 0. Methoxychlor. PCB-80. PCB-70. Mirex min Aldrin Cl Cl Cl Cl Cl Cl rganochlorine pesticide structures Alodan Bromocyclen Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Br Cl Cl Cl Chlordane R = H Nonachlor R = Cl Cl Cl Cl R Cl Cl Cl Cl Cl 7

76 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of organochlorine pesticides and PCB Appl. No. 00 Column: PTIMA d-, 0 m x 0.0 mm ID, 0.0 µm film, REF , max. temperature 0/60 C Injection: µg/ml depending on component, splitless, purge time 0. min Carrier gas:.7 ml/min He Temperature: C/min 0 C ( min) 80 C ( min) C/min 60 C ( min) C/min 00 C (0 min) Detector: ECD. Chloroneb. Pentachlorobenzene. a-bhc. HCB. g-bhc 6. Quintozene 7. Bromocyclen 8. b-bhc 9. PCB-8 0. p-chloroaniline. Heptachlor. d-bhc. PCB-. Aldrin. Isodrin 6. xychlordane 7. o,p -DDE- 8. PCB-0 9. trans-nonachlor 0. cis-chlordane. p,p -DDE-. Dieldrin. o,p -DDD-. Endrin. p,p -DDD- 6. PCB- 7. p,p -DDT- 8. PCB-8 9. PCB Mirex Courtesy of Mr. Grabher, CLUA, Sigmaringen, Germany Dieldrin Cl Cl Cl Cl Cl Cl min rganochlorine pesticide structures Endosulfan Cl Cl Endrin Cl Cl Cl Cl =S Cl Cl Cl Cl Cl Cl Heptachlor 9 Cl 0 Cl Cl Cl Cl Cl Cl 76

77 rganochlorine Pesticides PCB Analysis of organochlorine pesticides and PCB Appl. No Column: PTIMA d-6, 0 m x 0.0 mm ID, 0.0 µm film, REF 766.0, max. temperature 0/60 C Injection: µg/ml depending on component, splitless, purge time 0.8 min, 70 C Carrier gas:. ml/min He Temperature: C/min 0 C ( min) 80 C ( min) C/min 60 C 6 C/min 0 C ( min) Detector: ECD 00 C. Chloroneb. Pentachlorobenzene. a-bhc. HCB. g-bhc 6. Quintozene 7. Bromocyclen 8. b-bhc 9. PCB-8 + heptachlor 0. p-chloroaniline. d-bhc. PCB-. Aldrin. Isodrin. xychlordane 6. o,p -DDE- 7. PCB-0 8. cis-chlordane 9. p,p -DDE- 0. Dieldrin. o,p -DDD-. Endrin. o,p -DDT-. PCB-. p,p -DDD- 6. p,p -DDT- 7. PCB-8 8. Methoxychlor 9. PCB Mirex min 60 Courtesy of Mr. Grabher, CLUA, Sigmaringen, Germany Isobenzan Cl Cl Cl Cl Cl Cl Cl Cl rganochlorine pesticide structures Isodrin Cl Cl Kepone Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Mirex Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl 77

78 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of halogenated hydrocarbons, organochlorine pesticides and PCB Appl. No. 00 Column: PTIMA 70, 0 m x 0.0 mm ID, 0.0 µm film, REF 768.0, max. temperature 00/0 C Injection: accu-pesticide test mixture, 0 µg/ml, split :0 Carrier gas:. bar He Temperature: 00 C ( min) C/min 0 C, then isothermal Detector: MSD EI. Hexachlorobutadiene. Pentachlorobenzene. Hexachlorobenzene. a-bhc. b-bhc 6. PCB-8 7. Heptachlor 8. PCB- 9. Aldrin 0. g-bhc. Isobenzan. d-bhc. Isodrin. Heptachlor epoxide A. Heptachlor epoxide B 6. PCB-0 7. o,p -DDE- 8. Endosulfan 9. p,p -DDE- 0. Dieldrin o,p -DDD-. PCB-8. Endrin. p,p -DDD-. PCB-8 6. o,p -DDT- 7. PCB- + endosulfan 8. p,p -DDT- 9. PCB min

79 rganochlorine pesticides PCB Analysis of halogenated hydrocarbons, organochlorine pesticides and PCB Appl. No. 00 Column: PTIMA MS, m x 0.0 mm ID, 0. µm film, REF 76., max. temperature 0/60 C Sample: accu-pesticide test mixture, 0 ng/peak Injection: µl, min splitless Carrier gas: 0 cm/s He Temperature: 7 C ( min) C/min 80 C Detector: MSD. Hexachlorobutadiene. Pentachlorobenzene. a-bhc. Hexachlorobenzene. b-bhc 6. g-bhc 7. d-bhc 8. PCB-8 9. Heptachlor 0. PCB-. Aldrin. Isobenzan. Isodrin. Heptachlor epoxide A. Heptachlor epoxide B 6. o,p -DDE- 7. PCB-0 8. Endosulfan 9. p,p -DDE- 0. Dieldrin. o,p -DDD-. Endrin. Endosulfan. PCB-8. p,p -DDD- 6. o,p -DDT- 7. PCB- 8. p,p -DDT- 9. PCB-8 0. PCB min 79

80 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of organochlorine pesticides and PCB Appl. No. 000 Column: PTIMA d-, 60 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C Injection: µl, 8 pg/µl depending on component, 70 C Carrier gas:.7 ml/min H (.76 bar) Temperature: Detector: ECD 00 C. TCNB =,,,-Tetrachloro- -nitrobenzene = Tecnazene. a-bhc. HCB. Lindane. Bromocyclen 6. Musk xylene 7. b-bhc 8. PCB-8/ 9. Heptachlor 0. PCB-. PCB-9. Aldrin. Musk ketone 0 0 C ( min) C/min 00 C ( min) xychlordane. cis-heptachlor epoxide 6. trans-heptachlor epoxide 7. o,p -DDE- 8. trans-chlordane 9. PCB-0 0. cis-chlordane. a-endosulfan. p,p -DDE-. Dieldrin. o,p -DDD-. Parlar 6 6. Endrin 7. o,p -DDT p,p -DDD- 9. PCB- 0. b-endosulfan. p,p -DDT-. PCB-8. PCB-8. Endosulfan sulphate. Parlar 0 6. PCB-6 7. PCB Ketoendrin 9. Parlar 6 0. PCB-89. Deca-PCB = PCB min Courtesy of Mr. Münch, Staatl. Med. Lebensm. u. Vet. UA, Gießen, Germany

81 rganochlorine pesticides PCB Analysis of organochlorine pesticides and PCB Appl. No Column: PTIMA 7, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/0 C Injection: 0. µl (00 pg each), splitless, 80 C Carrier gas: 0 kpa H 0 C/min 80 C 0 C 6 C/min 80 C Temperature: Detector: ECD 0 C. HCB. a-bhc. Lindane. b-bhc. PCB-8 6. d-bhc 7. PCB- 8. Telodrin 9. Methyl pentachlorophenyl sulphide 0. ctachlorostyrene. Alodan (int. std.). cis-heptachlor epoxide. trans-heptachlor epoxide. PCB-0. o,p -DDE- 6. Endosulfan a 7. p,p -DDE- 8. Dieldrin 9. o,p -DDD- 0. PCB-. p,p -DDD-. Endosulfan b. PCB-8. Endosulfan sulphate. PCB Mirex min 0 Courtesy of Mr. Lembacher, Hipp Nährmittel, Pfaffenhofen, Germany 8

82 Environmental pollutants Gas Chromatography Application Gallery Appendices Separation of organochlorine pesticides (EPA 808) Appl. No. 00 Column: PTIMA d-6, 0 m x 0.0 mm ID, 0. µm film, REF 766.0, max. temperature 0/60 C Sample: EPA 808 organochlorine pesticide calibration mix (Restek), 00 µg/ml each in toluene hexane (:, v/v) Injection: µl, split : 0 Carrier gas:.0 bar He Temperature: 80 C C/min 00 C (0 min) Detector: MSD. a-bhc. g-bhc (lindane). b-bhc. Heptachlor. d-bhc 6. Aldrin 7. Heptachlor epoxide 8. g-chlordane 9. a-chlordane 0. Endosulfan I., -DDE. Dieldrin. Endrin., -DDD. Endosulfan II 6., -DDT 7. Endrin aldehyde 8. Endosulfan sulphate 9. Methoxychlor 0. Endrin ketone

83 rganochlorine pesticides Separation of organochlorine pesticides (EPA 608) Appl. No. 0 Column: PTIMA MS, 0 m x 0. mm ID, 0. µm film, REF 76.0, max. temperature 60/70 C Sample: EPA 608 organochlorine pesticide mix Injection: µl, split 0 ml/min Carrier gas: 0.8 ml/min He Temperature: 60 C 6 C/min 60 C (0 min) Detector: MSD. a-bhc 7. Heptachlor epoxide., -DDD. g-bhc (lindane) 8. Endosulfan I. Endosulfan II. b-bhc 9., -DDE., -DDT. Heptachlor 0. Dieldrin. Endrin aldehyde. d-bhc. Endrin 6. Endosulfan sulphate 6. Aldrin min 0 8

84 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of organochlorine pesticides from cod liver oil Appl. No. 70 Column: PTIMA d-, 60 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C Sample: a) pesticide standard (0 pg/µl of each compound) b) NP-HPLC group separation of NIST reference material SRM 88 (semivolatile organohalogen compounds in cod liver oil) on 0 x mm NUCLESIL 00-0 NH using 0 ml n-hexane (fraction ) and ml n-hexane dichloromethane (90:0 v/v, fraction ), flow rate ml/min (see application 00 for chromatogram of fraction ) Injection: µl of fraction, on column Carrier gas: 80 kpa H 0 C/min. C/min Temperature: 80 C ( min) 00 C 90 C ( min) Detector: ECD 00 C. Pentachlorobenzene.,,6-Tribromoanisole. Tetrachloro-,-dimethoxybenzene. a-bhc. Pentachloroanisole 6. HCB 7. g-bhc 8. b-bhc 9. Heptachlor 0. e-bhc. Aldrin.,,,-Tetrachloronaphthalene (TCN). PCB-0. xychlordane. cis-heptachlor epoxide 6., -DDE 7. trans-chlordane 8. cis-chlordane + trans-nonachlor 9. Endosulfan 0., -DDE. Dieldrin., -DDD. Endrin., -DDT. cis-nonachlor 6., -DDD 7. Endosulfan 8., -DDT 9. Parlar 0. Parlar 0. Parlar. Endosulfan sulphate. Parlar 0. Mirex a) b) min 0 R. Looser, K. Ballschmiter, J. Chromatogr. A 86 (999)

85 Halogenated hydrocarbons Analysis of organohalogen compounds incl. PCB from cod liver oil Appl. No. 00 Column: PTIMA d-, 60 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C Sample: NP-HPLC group separation of NIST reference material SRM 88 (semivolatile organohalogen compounds in cod liver oil) on 0 x mm NUCLESIL 00-0 NH using 0 ml n-hexane (fraction ) and ml n-hexane dichloromethane (90:0 v/v, fraction ), flow rate ml/min (see application 70 for chromatogram of fraction ) Injection: µl of fraction, on column Carrier gas: 80 kpa H 0 C/min. C/min Temperature: 80 C ( min) 00 C 90 C ( min) Detector: ECD 00 C. Pentachlorobenzene 8. PCB PCB-9 6. PCB-8.,,6-Tribromoanisole 9., -DDE 8. PCB-8 7. PCB-80. HCB 0. PCB-0 9. PCB-6 8.,,, -Tetrabromodiphenyl. PCB-8. PCB PCB- ether. PCB-., -DDE. PCB-0 9. Mirex 6.,,,-Tetrachloronaphthalene (TCN, recovery standard). PCB-87. Parlar 6. PCB-. PCB-7. PCB-8. PCB-87 0.,,,,6-Pentabromodiphenyl ether.,,,,-pentabromodiphenyl 7. PCB-0 (int. std.) 6. PCB-8. Parlar 0 ether R. Looser, K. Ballschmiter, J. Chromatogr. A 86 (999) min 60 8

86 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of a pesticide mixture Appl. No. 070 Column: PTIMA d-6, 0 m x 0.0 mm ID, 0.0 µm film, REF 766.0, max. temperature 0/60 C Injection: µg/ml, depending on component, splitless, purge time 0.8 min, 70 C Carrier gas:. ml/min He C/min Temperature: 0 C ( min) 80 C ( min) C/min 60 C 6 C/min 0 C ( min) Detector: ECD 00 C. Musk xylene. Musk ketone. cis-heptachlor epoxide. trans-heptachlor epoxide. trans-chlordane 6. a-endosulfan 7. Toxaphene 6 = Parlar 6 8. b-endosulfan 9. Toxaphene 0 = Parlar 0 0. Endosulfan sulphate. Ketoendrin. Toxaphene 6 = Parlar min 60 Courtesy of Mr. Grabher, CLUA, Sigmaringen, Germany Pesticide structures: carbamates R N R Compound R R R Butylate i-c- H 9 i-c- H 9 C H Cycloate C H cyclohexyl C H EPTC n-c H 7 n-c H 7 C H Prothiocarb H (CH ) C H N( ) Pebulate C H n-c H 9 n-c H 7 Vernolate n-c H 7 n-c H 7 n-c H 7 Thiobencarb C H C H Cl Compound Carbaryl Carbofuran S R Structure N H N H CH Molinate N S Pirimicarb H C H C N N C H N( ) N( ) 86

87 Pesticides Column: Injection: Carrier gas: Pressure: Temperature: 60 C ( min) Detector: MSD 0 C. Carbaryl. Trifluralin. a-bhc. HCB. Lindane 6. Quintozene 7. b-bhc 8. Heptachlor 9. d-bhc 0. e-bhc Analysis of 8 pesticides (Ökotex 00) Appl. No. 070 PTIMA d-, 0 m x 0. mm ID, 0. µm film, REF760.0, max. temperature 0/60 C 0 C, splitless, purge time min He. kpa ( min) 9 kpa/min. kpa/min.9 kpa 7 kpa (0 min) 0 C/min.8 C/min 0 C 80 C (0 min). Parathion-methyl. Malathion. Aldrin. Parathion. cis-heptachlor epoxide 6. trans-heptachlor epoxide 7. o,p -DDE- 8. a-endosulfan 9. p,p -DDE- 0. Dieldrin. o,p -DDD-. Endrin. o,p -DDT-. p,p -DDD-. b-endosulfan 6. p,p -DDT- 7. Methoxychlor 8. Mirex 7 7 / min Courtesy of K. Friedrichs, Chem. Untersuchungsamt, Bielefeld, Germany 87

88 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of toxaphenes Appl. No. 90 Column: PTIMA 7, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/0 C Injection: µl,.0 min splitless, 0 C Carrier gas: He C/min. C/min 0 C/min Temperature: 70 C ( min) 80 C 0 C ( min) 90 C ( min) Detector: MSD. Parlar (±)-,,-exo-trichloro,,-bis(chloromethyl),6-(e)-chloromethylene-8,9,0-trinorbornane. Parlar (±)--exo,6-endo-dichloro,-endo-chloromethyl,-(e)-chloromethylene-8,9,0-trinorbornane. Parlar (±)--exo,6-endo,7-anti-trichloro,,-bis(chloromethyl),-(e)-chloromethylene- 8,9,0-trinorbornane. Parlar (±)-,,,-9c,0a,0b-Heptachlorobornane. Parlar 6 (±)--endo,-exo,-endo,6-exo,8b,8c,0a,0c-ctachlorobornane 6. Parlar (±)-,,,-exo-trichloro,-endo-chloromethyl,6-(e)-chloromethylene-- dichloromethyl,8,9,0-trinorbornane 7. Parlar (±)-,,-exo-trichloro,6-(e)-chloromethylene,,-bis(dichloromethyl),8,9,0-trinorbornane 8. Parlar (±)-,,-endo,6-exo,8c,9b,0a-heptachlorobornane 9. Parlar 8 (±)-,,,,9b,9c,0a,0b-ctachlorobornane 0. Parlar 9 (±)-,,-exo,-endo,6-exo,8c,9b,0a-ctachlorobornane. Parlar (±)--exo,-endo,-exo,8c,9b,9c,0a,0b-ctachlorobornane. Parlar 0 (±)--endo,-exo,-endo,6-exo,8b,9c,0a,0c-ctachlorobornane. Parlar a (±)-,,-endo,6-exo,8b,8c,9c,0a-ctachlorobornane. Parlar b (±)-,,-endo,6-exo,8c,9b,9c,0a-ctachlorobornane. Parlar (±)--exo,,,8c,9b,9c,0a,0b-ctachlorobornane 6. Parlar 0 (±)--endo,-exo,-endo,6-exo,8b,8c,9c,0a,0c-nonachlorobornane 7. Parlar (±)-,,,,8c,9b,0a,0b-ctachlorobornane + Parlar 6 (±)-,,-endo,6-exo,8b,8c,9c,0a,0b-nonachlorobornane 8. Parlar 8 (±)-,,-exo,,,8c,9b,0a,0b-nonachlorobornane 9. Parlar 9 (±)-,,,endo,6-exo,8c,9b,9c,0a,0b-nonachlorobornane 0. Parlar 6 (±)-,,,,8c,9b,9c,0a,0b-Nonachlorobornane. Parlar 6 (±)--exo,-endo,-exo,6-exo,8b,8c,9c,0a,0c-nonachlorobornane. Parlar 69 (±)-,,,,6-exo,8c,9b,9c,0a,0b-Decachlorobornane min 76 endo exo exo endo M. Kaltenecker, Dissertation, Universität Wuppertal, Germany and M. Kaltenecker, K.-H. Schwind, K.-H. Ueberschär, H. Hecht, M. Petz, rganohalogen Compounds (998) exo endo endo exo 88

89 Toxaphenes Analysis of a complex toxaphene mixture Appl. No. 00 Column: PTIMA d-, 0 m x 0.0 mm ID, 0. µm film, custom-made column we recommend REF , max. temperature 0/60 C Injection: µl, splitless Carrier gas:. ml/min He Temperature: 00 C 7 C/min 70 C Detector: ECD. Parlar. Parlar. Parlar. Parlar. Parlar 6 6. Parlar 7. Parlar 8. Parlar 6 9. Parlar 8 0. Parlar 9. Parlar. Parlar 0 0. Parlar a. Parlar b. Parlar 6. Parlar 0 7. Parlar Parlar Parlar 8 9. Parlar 9 0. Parlar 6. Parlar 6 6. Parlar min Courtesy of R. Baycan-Keller, M. ehme, Inst. rg. Anal. Chem., University of Basel, Switzerland 89

90 Environmental pollutants Gas Chromatography Application Gallery Appendices Structures of organophosphorus pesticides Structure Compound X R R R R R R X R P R R R Chlorfenvinphos Cl H Cl Cl C H C H Crotoxyphos C CH(C 6 H ) H Dichlorphos Cl Cl H Dicrotophos C N( ) H Mevinphos C H Monocrotophos C NH H Phosphamidon C N(C H ) Cl Tetrachlorvinphos Cl H Cl Methacrifos S C H C H C H Structure Compound R R R S S R P R R Chlormephos CH Cl C H C H Fonofos C 6 H C H C H Malathion CH C C H CH C C H Dimethoate CH C NH Amidithion CH C NH (CH ) Mecarbam CH C N( ) C C H C H C H Phorate CH S C H C H C H Terbufos CH S C( ) C H C H Carbophenothion CH S -C 6 H Cl C H C H Phenkapton CH S,-C 6 H Cl C H C H Disulfoton (CH ) S C H C H C H Thiometon (CH ) S C H Phosmet X = CH Dialifos NX X = CH CH Cl C H C H Phosalone Methidathion CH C H C H N Cl S N CH N Azinphos-methyl N N CH N Azinphos-ethyl C H C H Cl Cl 90

91 rganophosphorus pesticides Structures of organophosphorus pesticides Structure Compound R R R R P R R Acephate NH C S Dimefox N( ) N( ) F Edifenphos C H SC 6 H SC 6 H Ethoprophos C H S n-c H 7 S n-c H 7 Heptenophos Cl Naled CHBr CBrCl Trichlorfon CH(H) CCl Vamidothion S (CH ) S CH( ) C NH Coumaphos C H C H Cl Chlorpyrifos Cl N C H C H S R P R R Cl Cl Diazinon X X =, X = i-c- H 7 C H C H Etrimfos N N X = C H, X = C H Pirimiphos-ethyl X =, X = N(C H ) C H C H X Pirimiphos-methyl X =, X = N(C H ) Pyridaphenthion N C H C H N Quinalphos Thionazin N N N N C H C H C H C H Isazofos N N X = i-c- H 7, X = Cl C H C H X Triazophos N X = C 6 H 7, X = H C H C H X Structure Compound X X R R Demeton- S C H C H X R Demeton-S S C H C H S X Demeton--methyl S C P H R Demeton-S-methyl S C H R Demephion- S Demephion-S S X X TEPP C H X P Ethion S CH S S C H P R R Dioxathion S C H R R S Sulfotep S C H S 9

92 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of organophosphorus pesticides (EPA 80 / 8 / 8 A) Appl. No. 00 Column: PTIMA MS Accent, 0 m x 0. mm ID, 0.0 μm film, REF Sample: 0. μg/ml in hexane, 80/8 P pesticides calibration mix A and 8 P pesticides calibration mix B; IS triphenyl phosphate and tributyl phosphate Injection: splitless (hold min), 0 C Carrier gas: He, ml/min, constant pressure 0 C/min 8 C/min Temperature: 00 C 80 C ( min) 00 C ( min) Detector: FPD (Flame Photometric Detector), 80 C. Dichlorvos,. Hexamethylphosphoramide,. Mevinphos,. Trichlorfon,. TEPP, 6. Thionazin, 7. Demeton-, 8. Ethoprop 9. Tributyl phosphate (IS), 0. Dicrotophos,. Monocrotophos,. Naled,. Sulfotepp,. Phorate,. Dimethoate, 6. Demeton-S, 7. Dioxathion, 8. Terbufos, 9. Fonofos, 0. Phosphamidon isomer,. Diazinon,. Disulfoton,. Phosphamidon,. Dichlofenthion,. Parathion-methyl, 6. Chlorpyrifos methyl, 7. Ronnel, 8. Fenitrothion, 9. Malathion, 0. Fenthion,. Chlordane,. Parathion-ethyl,. Chlorpyrifos,. Trichloronate,. Chlorfenvinphos, 6. Merphos, 7. Crotoxyphos, 8. Stirofos, 9. Tokuthion (prothiophos), 0. Merphos oxidation product,. Fensulfothion,. Famphur,. Ethion,. Bolstar,. Carbophenothion, 6. Triphenyl phosphate (IS), 7. Phosmet, 8. EPN, 9. Azinphos-methyl, 0. Leptophos,. Tri-o-cresyl phosphate,. Azinphos-ethyl,. Coumaphos min

93 rganophosphorus pesticides Separation of organophosphorus pesticides (EPA 80 / 8) Appl. No. 00 Column: PTIMA d-6, 0 m x 0.0 mm ID, 0. µm film, REF 766.0, max. temperature 0/60 C Sample: EPA 80 P pesticide calibration mix (Restek), 00 µg/ml each in hexane acetone (9:, v/v) Injection: µl, split :0 Carrier gas:.0 bar He Temperature:. C/min 0 C 00 C (0 min) Detector: MSD Merphos: (CH ) S H C(CH ) P S S (CH ) Dichlorvos. Mevinphos. Demeton-S. Ethoprop. Naled 6. Phorate 7. Demeton- 8. Diazinon 9. Disulfoton 0. Ronnel. Parathion-methyl. Chlorpyrifos. Trichloronate. Fenthion. Merphos 6. Stirofos 7. Tokuthion (prothiophos) 8. Merphos oxidation product 9. Fensulfothion 0. Bolstar. Azinphos-methyl. Coumaphos min 9

94 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of organophosphorus insecticides Appl. No Column: PTIMA 0, m x 0. mm ID, 0. µm film, REF , max. temperature 00/0 C Injection: 0. µl on column Carrier gas: 80 kpa H Temperature: 0 C/min 80 0 C C/min 70 C Detector: PND [ng]. Dimefox [0.]. Triethyl phosphate [0.]. Dichlorvos [0.]. Chlormephos [0.]. Mevinphos [0.] 6. Methacrifos [0.] 7. Demephion [0.] 8. Heptenophos [0.] 9. TEPP [0.] 0. Ethoprophos [0.]. Tributyl phosphate [0.]. Sulfotep [0.]. Thiometon [0.]. Diazinon [0.]. Disulfoton [0.] 6. Tris--chloroethyl phosphate [0.] 7. Isazofos [0.] 8. Dichlofenthion [0.] 9. Dursban-methyl = Chlorpyrifos-methyl [0.] 0. Tolclofos-methyl [0.]. Fenchlorphos [0.]. Pirimiphos-methyl [0.]. Dursban-ethyl = Chlorpyrifos-ethyl [0.]. Malathion [0.]. Pirimiphos-ethyl [.0] 6. Parathion-ethyl [0.] 7. Amidithion [0.] 8. Crufomate [0.] 9. Quinalphos (0.] 0. Bromophos-ethyl [0.]. Methidathion [0.]. Iodofenphos [0.]. Prothiophos [0.]. Fenamiphos [0.]. Vamidothion [0.] 6. Ethion [0.] 7. Sulprofos [0.] 8. Carbophenothion [0.] 9. Edifenphos [0.] 0. Triazophos [0.]. Triphenyl phosphate [0.]. Phenkapton [0.]. Pyridaphenthion [0.]. Azinphos-methyl [0.]. Phosalone [0.] 6. Azinphos-ethyl [0.] 7. Dialifos [0.] 8. Tri-p-cresyl phosphate [0.] 9. Coumaphos [0.] Structures of organophosphorus pesticides Structure Compound X R R R R R R 6 R 7 Bromophos-ethyl S Cl H Br Cl H C H C H Chlorthion S H Cl N H H Crufomate Cl H C( ) H H NH Dichlofenthion S Cl H Cl H H C H C H EPN S H H N H H C H C 6 H Famphur S H H S N( ) H H R R Fenamiphos H S H H C H NH i-c H 7 R Fenchlorphos S Cl H Cl Cl H Fenitrothion S H CH R N H H R Fensulfothion S H H S-CH H H C H C H X Fenthion S H S H H P Iodofenphos S Cl H I Cl H R 6 R 7 Leptophos S Cl H Br Cl H C 6 H Parathion-ethyl S H H N H H C H C H Profenofos Cl H Br H H C H S n-c H 7 Prothiofos S Cl H Cl H H C H S n-c H 7 Sulprofos S H H S H H C H S n-c H 7 Tolclofos-methyl S Cl H H Cl Trichloronat S Cl H Cl Cl H C H C H 9

95 rganophosphorus pesticides min Courtesy of Mr. Lembacher, Hipp Nährmittel, Pfaffenhofen, Germany 9

96 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of organophosphorus pesticides Appl. No. 80 Column: PTIMA MS, 0 m x 0. mm ID, 0. µm film, REF 76.0, max. temperature 60/70 C Injection:.0 µl, 0 C, split : Carrier gas:. ml/min He 6 Temperature: 0 C 6 C/min 00 C 7 Detector: MSD. Demeton-. Phorate. Demeton-S. Disulfoton 8 9. Trichloronate 6. Fenthion 7. Prothiophos 8. Sulprofos 9. Fensulfothion 0. Azinphos-methyl. Coumaphos Pesticide structures: dinitroaniline herbicides 0 min 0 Structure Compound R R R R R R N N N R Fluchloralin C H Cl n-c H 7 H CF Isopropalin n-c H 7 n-c H 7 H CH( ) Ethalfluralin C H CH C( )=CH H CF R Pendimethalin H CH(C H ) Profluralin n-c H 7 cyclopropylmethyl H CF Trifluralin n-c H 7 n-c H 7 H CF Pesticide structures: triazines Structure Compound R R R R N Isomethiozin C(CH N ) S N=CH CH( ) Metamitron C N 6 H NH R R Metribuzin C( ) S NH N( ) N N N Hexazinone For more triazine structures see page

97 Pesticides Pesticide structures: triazole and imidazole derivatives, conazoles Structure Compound R R R R R R Cyproconazole H H -cyclopropylethyl H R Diclobutrazole CH(H) C( ) H H Cl R N Hexaconazole H H n-c H 9 Cl Cl N Myclobutanil H CN n-c H 9 H N Penconazole H H n-c H 7 Cl N N N R F R F H N N N Bitertanol CH(H) C( ) C 6 H Triadimefon C C( ) Cl Triadimenol CH(H) C( ) Cl Flutriafol Tebuconazole Imazalil C( ) Cl CH CH=CH Cl H N N N Flusilazole Propiconazole Prochloraz F H C Cl Cl Cl N N Si F H C N N N Fluotrimazole CF N N N Cl Cl Cl N N N Triflumizole Cl N N N F C N N N Pesticide structures: urea derivatives Structure Compound R R R R R Fluometuron H F C N N R Tebuthiuron (H C) C S H N N 97

98 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of a pesticide mixture Appl. No. 070 Column: PTIMA d-6, 0 m x 0.0 mm ID, 0.0 µm film, REF 766.0, max. temperature 0/60 C Injection: µg/ml depending on component, splitless, purge time 0.8 min, 70 C Carrier gas:. ml/min He Temperature: 0 C ( min) Detector: PND 00 C. Dichlorvos. Degradation product of ethion/ dioxathion. Mevinphos. Propham. Methacrifos 6. Heptenophos 7. Sulfotep/ degradation product of diazinon 8. Diphenylamine 9. Chlorpropham 0. Diazinon /9 C/min 80 C ( min) C/min 60 C 6 C/min 0 C ( min) 0. Dioxathion. Dimethoate. Etrimfos. Fenchlorphos/pirimiphos. Tolclofos-methyl 6. Malathion 7. Fenthion 8. Bromophos-methyl 9. Chlorthion 0. Chlorfenvinphos. Penconazole. Quinalphos Methidathion. Imazalil. Flusilazole 6. Myclobutanil 7. Ethion 8. Carbophenothion 9. Tebuconazole 0. Pyridaphenthion. Phenkapton. Azinphos-methyl. Bitertanol. Azinphos-ethyl min 60 Courtesy of Mr. Grabher, CLUA, Sigmaringen, Germany

99 Pesticides Analysis of pyrethroid insecticides Appl. No. 070 Column: PTIMA d-6, 0 m x 0.0 mm ID, 0.0 µm film, REF 766.0, max. temperature 0/60 C Injection: µg/ml depending on component, splitless, purge time: 0.8 min, 70 C Carrier gas:. ml/min He Temperature: C/min 0 C ( min) 80 C ( min) C/min 60 C 6 C/min 0 C ( min) Detector: ECD 00 C. Bioallethrin isomers. Chlorthion. Fenpropathrin + tetramethrin isomer. Tetramethrin isomer. Cyhalothrin 6. Permethrin isomers 7. Cyfluthrin isomers 8. Alphamethrin = a-cypermethrin 9 9. Fenvalerate isomers 7 8 Courtesy of Mr. Grabher, CLUA, Sigmaringen, Germany min 6 Pesticide structures: pyrethroids R R Structure Compound R R R R Cyfluthrin CH=CCl R H CN F Cyhalothrin CH=CCl CF H CN H a-cypermethrin CH=CCl H CN H H C R Fenpropathrin CN H Permethrin CH=CCl H H H CN Fenvalerate -Cl-phenyl H C Flucythrinate -CHF -phenyl Fluvalinate -CF,-Cl-phenyl NH R H C Bioallethrin H C R Tetramethrin CH CH=CH CH N 99

100 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of acaricides and fungicides for peel-treatment Appl. No. 00 Column: PTIMA d-, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/60 C Injection:.0 µl, 0 C, min splitless, then : Carrier gas: He Pressure: 6. kpa ( min) 7 kpa/min. kpa/min.9 kpa 7 kpa (0. min) Temperature: 0 C/min 80 C ( min) 0 C.8 C/min 80 C (0 min) Detector: MSD. Mecarbam. Imazalil. Chlorfenson. Tetradifon Courtesy of K. Friedrichs, Chem. Untersuchungsamt, Bielefeld, Germany Pesticide structures: carboxylic acid amides 0 min Structure Compound R R R R Acetochlor CH Cl CH C H C H Alachlor CH Cl CH C H C H Butachlor CH Cl CH n-c H 9 C H C H R R Fenfuram o-methylfuranyl H H H N R Metalaxyl CH CH( ) C Metazachlor CH Cl CH R N N Methfuroxam trimethylfuranyl H H H Metolachlor CH Cl CH( ) CH C H furace CH Cl g-butyrolactone Propachlor CH Cl CH( ) H H R Chlorpropham i-c H 7 H Cl H R N R Flamprop C 6 H CH( ) CH Cl F Pentanochlor CH(CH R ) i-c H 7 H Cl Propanil C H H Cl Cl Propham i-c H 7 H H H R Diethyltoluamide C H C H H R Propyzamide C( ) C CH H Cl Cl R N R R N R R Diphenamid CH(C 6 H ) Isocarbamid CH CH( ) H H N Napropamide C H C H CH( ) -naphthyl N 00

101 Pesticides Analysis of fungicides Appl. No Column: PTIMA, m x 0. mm ID, 0. µm film, REF 760., max. temperature 0/60 C Injection: µl on column Carrier gas: 0 kpa H Temperature: 0 C/min 80 C 00 C 6 C/min 80 C Detector: PND 00 C [ng]. Etridiazole []. Prothiocarb [.]. Diphenylamine []. Azobenzene []. Cycloate [.] 6. Ethalfluralin [] 7. Dicloran [.] 8. Ethoxyquin [] 9. Benzo[h]quinoline [] 0. Fenfuram [.]. Fluchloralin [.]. Vinclozolin []. Alachlor []. Metalaxyl []. Dichlofluanid [] 6. Thiobencarb [.] 7. Methfuroxam [] 8. Triadimefon [] 9. Fenpropimorph [] 0. Thiabendazole [.]. Penconazole []. Triadimenol [.]. Quinomethionate [.]. Triflumizole [.]. Flutriafol [] 6. Flurodifen [] 7. Hexaconazole [] 8. Myclobutanil [] 9. Diclobutrazol [] 0. Thioquinox []. furace []. Nuarimol []. Fenarimol [.]. Bitertanol [.]. Prochloraz [] ( ) C Fenpropimorph H C N H C min Courtesy of Mr. Lembacher, Hipp-Nährmittel, Pfaffenhofen, Germany 0

102 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of herbicides Appl. No Column: PTIMA 0, m x 0. mm ID, 0. µm film, REF , max. temperature 00/0 C Injection: 0. µl, splitless, 80 C Carrier gas: 0 kpa H 0 C/min Temperature: Detector: PND 0 C [ng]. EPTC []. Butylate []. Vernolate []. Pebulate []. Propham [] 6. Molinate [] 7. Azobenzene [.] 8. Cycloate [] 9. Diphenylamine [] 0. Ethalfluralin []. Terbumeton desethyl [] C C/min 70 C. Desethyldesisopropylatrazine [.]. Desisopropylatrazine [.]. Desethylatrazine [.]. Terbuthylazine desethyl [.] 6. Atraton [.] N R N R N R 7. Prometon [.] 8. Trietazine [.] 9. Atrazine [.]) 0. Sebuthylazine desethyl [.]. Isocarbamid [.]. Fluchloralin []. Sebuthylazine [.]. Desmetryn [.]. Simetryn [.] 6. Metalaxyl [] 7. Terbutryn [.] 8. Isomethiozin [.] 9. Metolachlor [] 0. Propanil []. Pentanochlor []. Isopropalin [.] Pesticide structures: triazines Compound R R R. Dimethametryn [.]. Metazachlor [.]. Bromacil [] 6. Triadimenol [] 7. xadiazon [] 8. Methoprotryn [.] 9. Fluazifop-butyl [] 0. Thioquinox [.]. Fluorodifen []. Flamprop-isopropyl []. Metamitron [.]. Propiconazole []. Fluotrimazole [] 6. Lenacil [] 7. Hexazinone [] Atrazine Cl NH C H NH CH( ) Cyanazine Cl NH C H NH C( ) CN Propazine Cl NH CH( ) NH CH( ) Sebuthylazine Cl NH C H NH (CH ) Simazin Cl NH C H NH C H Terbuthylazine Cl NH C H NH C( ) Trietazine Cl NH C H N(C H ) Anilanzine Cl Cl NH (o-cl-c 6 H ) Atratone NH C H NH CH( ) Prometon NH CH( ) NH CH( ) Secbumeton NH C H NH CH( ) C H Terbumeton NH C H NH C( ) Ametryn S NH C H NH CH( ) Desmetryn S NH NH CH( ) Dimethametryn S NH C H NH CH( ) CH( ) Methoprotryn S NH CH( ) NH (CH ) Prometryn S NH CH( ) NH CH( ) Simetryn S NH C H NH C H Terbutryn S NH C H NH C( ) 0

103 Herbicides min Courtesy of Mr. Lembacher, Hipp Nährmittel, Pfaffenhofen, Germany 0

104 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of triazine herbicides Appl. No Column: PERMABND FFAP, m x 0. mm ID, 0. µm film, REF 796., max. temperature 0/0 C Injection:. µl, min splitless, then split :0 Carrier gas: 0 kpa He Temperature: 00 C C/min 0 C Detector: PND 0 C [ng/ml]. Azobenzene [768]. Prometon [76]. Terbumeton [66]. Atraton [70]. Propazine [80] 6. Terbuthylazine [780] 7. Secbumeton [78] 8. Atrazine [88] 9. Prometryn [79] 0. Terbutryn [78]. Simazin [86]. Ametryn [76]. Cyanazine [78]. Simetryn [86]. Desethylatrazine [87] 6. Metribuzin [7] 7. Desisopropylatrazine [78] 8. Anilazine [88] 9. Methoprotryn [] Courtesy of J. Heering, Diplomarbeit FH Köln, Germany min 8 9 0

105 Herbicides Analysis of triazine herbicides Appl. No. 00 Column: PTIMA Amine, m x 0.0 mm ID, 0. µm film, REF 76., max. temperature 00/0 C Carriergas: cm/s He Temperature: 70 C ( min) 8 C/min 00 C Detector: MSD. Benzothiazole. Tetradecane. Desisopropylatrazine. Simazin. Atrazine 6. Propazine 9 7. Terbuthylazine 8. Ametryn 9. Prometryn 0. Terbutryn 7. Metolachlor. Metazachlor 6 8. Docosane. Tetracosane 6. Methoxychlor 0 6. Eicosane min 0

106 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of triazines App. No. 00 Column: PTIMA MS, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/60 C Injection: splitless Carrier gas: cm/s He Temperature: 0 C ( min) C/min 80 C Detector: MSD [ppm]. Desisopropylatrazine [0.0]. Desethylatrazine [.]. Desethylterbuthylazine [0.9]. Simazin [9.8]. Atrazine [0.] 6. Propazine [0.8] 7. Terbuthylazine [.] 8. Sebuthylazine [.] 9. Ametryn [9.7] 0. Prometryn [.]. Terbutryn [9.]. Metolachlor [.8]. Metazachlor [.6] min Analysis of dinitroanilline herbicides (EPA 67) Appl. No Column: PTIMA 0, m x 0. mm ID, 0. µm film, REF , max. temperature 00/0 C Injection: 0. µl on column, 00 pg each Carrier gas: 0 kpa H 0 C/min Temperature: 80 C 00 C C/min 70 C Detector: ECD 0 C. Trifluralin. Ethalfluralin. Profluralin. Isopropalin 0 0 min Courtesy of Mr. Lembacher, Hipp Nährmittel, Pfaffenhofen, Germany 06

107 Pesticides Analysis of organo-nitrogen pesticides (EPA 6) Appl. No. 00 Column: Injection: Carrier gas: Temperature: Detector: PTIMA d-, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/60 C.0 µl, s splitless. bar He 0 C/min 0 C/min 0 C 0 C 0 C MSD. Diethyltoluamide (DEET). Terbacil. Metribuzin. Triadimefon. Bromacil 6. Hexazinone Analysis of carbamate/urea pesticides (EPA 6) Appl. No Column: PTIMA, m x 0.0 mm ID, 0.0 µm film, REF 7687., max. temperature 0/60 C Injection:.0 µl carbamate/urea pesticides (EPA 6), 0 µg/ml each in MeH, s splitless Carrier gas: cm/s He 0 C/min Temperature: 0 C ( min) 0 C 0 C/min 0 C Detector: MSD. xamyl. Methomyl. Fluometuron. Carbofuran min Pesticide structures: uracil derivatives 6 min Structure Compound R R Bromacil Br CH( ) C H R R N Terbacil Cl C( ) H C N H N H N Lenacil Pesticide structures: oxime carbamates Structure Compound R NH H CS N R Methomyl xamyl C N( ) 07

108 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of phenoxycarboxylic acid herbicides Appl. No Column: PTIMA 0, m x 0. mm ID, 0. µm film, REF , max. temperature 00/0 C Injection: 0. µl on column Carrier gas: 70 kpa H Temperature: 0 C/min 80 0 C C/min 70 C Detector: ECD 0 C [ng]. Chlorfenprop-methyl [0.].,-D methyl ester [0.].,,-TP methyl ester [0.].,,-T methyl ester [0.].,-D isobutyl ester [0.] 6.,-D -butyl ester [0.] 7. Alodan (int. std.)[0.0] 8. Dichlorprop -ethyl -hexyl ester [0.0] 9.,-D isooctyl ester [0.0] 0.,,-T isooctyl ester [0.]. Dichlorprop methyl ester [0.0].,,-T octyl ester [0.0] 7 8 Courtesy of Mr. Lembacher, Hipp Nährmittel, Pfaffenhofen, Germany min 08

109 Phenoxycarboxylic acid pesticides Analysis of phenoxycarboxylic acid herbicides (DIN 807-) Appl. No. 80 Column: Injection: Carrier gas: Temperature: Detector: methyl esters of. Mecoprop. MCPA. Dichlorprop.,-D PTIMA MS, 0 m x 0. mm ID, 0. µm film, REF 76.0, max. temperature 60/70 C µl, 80 C, analytes derivatised with TMSH split 0 ml/min bar He C C/min 0 C MSD. Fenoprop 6. MCPB 7.,,-T 8.,-DB 7 8 Pesticide structures: phenoxycarboxylic acids Compound R R R Phenoxyacetic acid derivatives R R H R,-D Cl Cl H,,-T Cl Cl Cl MCPA Cl H Phenoxypropionic acid derivatives R R H R,-DP = Dichlorprop,,-TP = Fenoprop MCPP = Mecoprop Fluazifop Chlorfenprop Cl Cl H Cl Cl Cl Cl H H N Cl CF H H Cl 6 Phenoxybutyric acid derivatives R H R,-DB Cl Cl MCPB Cl 0 0 min 0 09

110 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of a pesticide mixture Appl. No Column: PTIMA d-, 0 m x 0.0 mm ID, 0.0 µm film, REF , max. temperature 0/60 C Injection: µl, 8 ng/µl, splitless, C/s KAS 60 C 0 C ( min) Carrier gas: 0 ml/min He, psi C/min Temperature: 00 C ( min) 0 C ( min) C/min 0 C (0 min) Detector: MSD. Acephate. Pirimicarb. Metalaxyl. Metazachlor. a-endosulfan 6. Profenofos 7. Propiconazole 8. Methoxychlor 9. Phosalone min Courtesy of Mr. Heinzler, Staatl. Medizinal-, Lebensmittel- und Veterinär-Untersuchungsamt, Kassel, Germany Analysis of organochlorine pesticides Appl. No. 080 Column: Injection: Carrier gas: H Temperature: PTIMA d-6, 0 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C 0 µg/ml in acetone 0 C/min 0 C 60 C ( min) 8 C/min 00 C (6 min) MSD (ion trap) Detector:. a-bhc. Quintozene. b-bhc. Heptachlor. d-bhc 6. Chlorothalonil 7. Aldrin 8. Isodrin 9. cis-heptachlor epoxide 0. trans-heptachlor epoxide. p,p -DDE-. Dieldrin. Endrin. o,p -DDT-. p,p -DDT- 6. Methoxychlor min Courtesy of Mrs. Geilen, Berg. Wasser- u. Umweltlabor, Wuppertal Germany 0

111 Pesticides Column and conditions as in application 080 Appl. No. 080 Plant-protective pesticides. Carbofuran. Dichlobenil. Propazine. Atrazine. Simazin 6. Terbuthylazine 7. g-bhc 8. Alachlor 9. Parathion-methyl 0. Metolachlor. Parathion-ethyl. Bromacil. Chlorfenvinphos. Metazachlor. a-endosulfan 6. b-endosulfan 7. Chloridazon 8. Azinphos-ethyl Appl. No Propham. Trifluralin. Chlorpropham. Desethylatrazine. Desethylterbuthylazine 6. Desisopropylatrazine 7. Sebuthylazine 8. Vinclozolin 9. Desmetryn 0. Prometryn. Ametryn. Metribuzin. Terbutryn. Cyanazine. Pendimethalin 6. Triadimenol 7. Flusilazole 8. Methoprotryn 9. Cyproconazole 0. Metamitron. Tebuconazole. Prochloraz min rganonitrogen pesticides / min Courtesy of Mrs. Geilen, Berg. Wasser- u. Umweltlabor, Wuppertal Germany

112 Environmental pollutants Gas Chromatography Application Gallery Appendices Separation of pesticides and aromatic hydrocarbons (EPA 6 mix) Appl. No. 80 Column: PTIMA MS Accent, 0 m x 0. mm ID, 0. µm film, REF 780.0, max. temperature 0/60 C Sample: EPA method 6 mix, 0 ppm (0 ppm internal standard) Injection: µl splitless, hold 0. min, 00 C Carrier gas: 0.8 ml/min He Temperature: 0 C/min 0 C/min 0 C ( min) 00 C ( min) 0 C ( min) Detector: MSD 80 C. Nitrobenzene.,-Dichlorophenol.,-Dimethyl--nitrobenzene.,,6-Trichlorophenol. Acenaphthene-d 0 (int. st.) 6. Azobenzene (decomposition product of,-diphenylhydrazine) 7. Prometon 8. Terbufos 9. Diazinon 0. Fonofos. Phenanthrene-d 0 (int. st.). Disulfoton. Acetochlor. Cyanazine. Triphenyl phosphate Chrysene-d Pesticide structures: miscellaneous heterocyclic aromatic compounds Structure Compound R R R R R Fluorochloridone H CF N H H R R R Iprodione xadiazon R R Procymidone Vinclozolin ClH C N Cl N C NH CH( ) N N H Cl H Cl ( ) C Cl H Cl -CH( ) H C N N H C CH=CH H Cl H Cl H Cl H Cl 6

113 Pesticides n-column analysis of a pesticide mixture Appl. No. 00 Column: PTIMA, 0 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C Retention gap: Me-Sil deactivated,.6 m x 0. mm ID, REF (0 m) Injection: µl on column Flow: 0.8 bar.0 bar, 0.0 bar/min Temperature: 60 C ( min) C/min 0 C/min 70 C 0 C (8 min) Detector: MSD. Dichlorvos. Trichlorfon. Tecnazene. Sulfotep. a-bhc 6. HCB 7. Dimethoate 8. b-bhc 9. g-bhc 0. Quintozene. Diazinon. Disulfoton. Chlorpyrifos-methyl. Parathion-methyl. Demeton-S-methylsulfon 6. Heptachlor 7. Fenitrothion 8. Pirimiphos-methyl 9. Malathion 0. Aldrin. Fenthion. Chlorpyrifos-ethyl. Chlorthion. Bromophos-methyl. trans-heptachlor epoxide 6. cis-heptachlor epoxide 7. Chlorfenvinphos 8. Methidathion 9. trans-chlordane 0. Bromophos-ethyl 6. o,p -DDE-. a-endosulfan. cis-chlordane. p,p -DDE-. Dieldrin 6. o,p -DDD- 7. Endrin 8. b-endosulfan 9. p,p -DDD- 0. o,p -DDT-. Ethion. p,p -DDT-. Methoxychlor. Azinphos-methyl. Azinphos-ethyl 6 9 / 8/9 0/ min

114 Environmental pollutants Gas Chromatography Application Gallery Appendices Analysis of pesticide mixtures Column: PTIMA 0, 60 m x 0. mm ID, 0. µm film, REF , max. temperature 00/0 C Injection: µl, 0. ng/µl, 80 C ( min) 0 C ( min), pulsed splitless Carrier gas: ml/min He Temperature: 0 C/min 80 C ( min) 90 C ( min) C/min 0 C/min 0 C ( min) 60 C (0 min) Detector: ECD Appl. No Phosphamidon. Tecnazene. a-bhc. Lindane. Chlorothalonil 6. Fenchlorphos 7. Metazachlor 8. Bromophos-ethyl 9. Prothiophos 0. Dieldrin + profenofos. o,p -DDT. Nuarimol. Bromopropylate. Bifenox. Tetradifon Cypermethrin, stereoisomers Appl. No Dimethoate. Propyzamide. Demeton-S-methyl + chlorpyrifos-ethyl. Parathion-ethyl. Quinalphos + penconazole 6. Procymidone + methidathion 7. Dieldrin + profenofos 8. Myclobutanil 9. PCB-8 + b-endosulfan + ethion 0. PCB-. Propiconazole min min Courtesy of Mrs. Goda, Lebensmitteluntersuchungsamt, Braunschweig, Germany

115 Pesticides Sample: Injection: Carrier gas: Temperature: Detector: Analysis of a pesticide mixture pesticide standard of Kantonal Laboratory Schaffhausen (Switzerland) 0. mg/ml or 0.0 mg/ml each.0 µl, s splitless cm/s He 00 C ( min) 8 C/min 0 C/min 0 C 0 C MSD Appl. No Column: PTIMA, m x 0.0 mm ID, 0.0 µm film, REF 7687., max. temperature 0/60 C. Dichlorvos. Naled. Chlorothalonil. Vinclozolin. Dichlofluanid 6. Chlorpyrifos 7. Captan 8. Folpet 9. Procymidone 0. Carbophenothion. Captafol. Iprodione. Coumaphos min Appl. No Column: PTIMA 7, m x 0.0 mm ID, 0.0 µm film, REF 7606., max. temperature: 0/0 C. Dichlorvos. Naled. Vinclozolin. Chlorothalonil. Chlorpyrifos 6. Dichlofluanid 7. Procymidone 8. Captan 9. Folpet 0. Carbophenothion. Iprodione. Captafol. Coumaphos min min Pesticide structures: phthalimide derivatives Structure Compound R Structure Compound Captan CCl Folpet N S Captafol CCl CCl H N S R CCl

116 Environmental pollutants Gas Chromatography Application Gallery Appendices Miscellaneous pesticide structures Structure Compound R R Structure Compound R N H N N Cl R Chloridazon H H Norflurazon CF C H S N N CCl Etridiazole N S Quinomethionat Fluridone R R N S Thioquinox H S S C H H N H N Carboxin N N S N H Thiabendazole Ethoxyquin Analysis of halogenated acetic acids (EPA.) Appl. No. 0 S N N N Tricyclazole Column: PTIMA MS, 0 m x 0. mm ID, 0. µm film, REF 76.0, max. temperature 60/70 C Injection: µl, split :0 Carrier gas: ml/min He Temperature: 0 C ( min) Detector: MSD. Chloroacetic acid methyl ester. Dichloroacetic acid methyl ester. Bromoacetic acid methyl ester. Trichloroacetic acid methyl ester. Bromochloroacetic acid methyl ester 6. Bromodichloroacetic acid methyl ester 7. Dibromoacetic acid methyl ester 8. Dibromochloroacetic acid methyl ester 9. Tribromoacetic acid methyl ester 0 C/min 00 C (0 min), min 9 6

117 rganic acids Analysis of acetic acid and trifluoroacetic acid Appl. No. 0 Column: PTIMA FFAP, m x 0. mm ID, 0. µm film, REF 766., max. temperature 0/60 C Injection: µl, split :0 Carrier gas: 0.9 bar He Temperature: 0 C ( min) Detector: FID 0 C. Trifluoroacetic acid (TFA). Acetic acid 0 C/min 0 C Analysis of acetic acid and acetic acid anhydride Appl. No. 060 Column: PERMABND FFAP, m x 0. mm ID,.0 µm film, REF 7., max. temperature 00/0 C Injection: 0.6 µl, split :00 Carrier gas: 0. bar He Temperature: a) 00 C, b) 0 C Detector: FID 00 C. Acetic acid anhydride ( %). Acetic acid(99 %) a) b) 0 min min Although retention times are drastically decreased at higher temperatures, the title compounds are still perfectly separated at 0 C with an even better peak shape. 7

118 Solvents Chemicals Gas Chromatography Application Gallery Appendices Solvents Chemicals 8

119 Aromatic hydrocarbons Analysis of aromatic hydrocarbons (BTX) Appl. No. 000 Column: PTIMA 0, 0 m x 0. mm ID, 0. µm film, REF , max. temperature 60/80 C Injection: 0. µl, split 0 ml/min Carrier gas: 0 kpa N (. ml/min) Temperature: 0 C Detector: FID 0 C. Benzene. Toluene. Ethylbenzene. p-xylene. m-xylene 6. o-xylene Analysis of aromatic hydrocarbons (BTX) Appl. No. 000 Column: PERMABND CW 0 M, m x 0. mm ID, 0. µm film, REF 7060., max. temperature 0/0 C Injection: 0. µl, split :0 Carrier gas: 0.8 bar N Temperature: Detector: FID 60 C. Benzene. Toluene. Ethylbenzene. p-xylene. m-xylene 6. o-xylene 0 C ( min) C/min 80 C min 0 0 min 9

120 Solvents Chemicals Gas Chromatography Application Gallery Appendices Analysis of aromatic hydrocarbons (BTX with toluene-d 8 ) Appl. No Column: Split: Carrier gas: FS-HYDRDEX b-pm, 0 m x 0. mm ID, REF 770.0, max. temperature 0/0 C 8 ml/min 0 kpa H ( ml/min) Temperature: 60 C C/min 00 C Detector: FID 0 C Peaks in n-hexane:. Benzene. Toluene-d 8. Toluene. p-xylene. m-xylene 6. Ethylbenzene 7. o-xylene min Analysis of aromatic hydrocarbons Appl. No. 090 Column: PTIMA d-, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/60 C Injection: 0. µl, 0 C, split :0 Carrier gas: He Temperature: 0 C Detector: MSD. Ethylbenzene. p-xylene. o-xylene. Cumene. n-propylbenzene 6. -Ethyltoluene 7.,,-Trimethylbenzene 8. -Ethyltoluene 9.,,-Trimethylbenzene 0.,,-Trimethylbenzene C/min 00 C 7 min Courtesy of Mr. B. Sievers, Riedel-de Haen AG, Seelze, Germany

121 Aromatic hydrocarbons Analysis of aromatic solvents Column: PTIMA 0, Appl. No m x 0. mm ID, 0. µm film, REF , max. temperature 60/80 C Injection: 0. µl, split 89 ml/min Carrier gas: 60 kpa N Temperature: 0 C (0 min) C/min 80 C (0 min) Detector: FID 60 C. n-butane. n-propylbenzene. n-hexane. p-ethyltoluene. Cyclohexane. m-ethyltoluene. Methylcyclohexane 6.,,-Trimethylbenzene. Benzene 6. Toluene 7. Indane 7. n-nonane 8. Ethylbenzene 9. p-xylene 8. Tetralin 6 0. m-xylene. o-xylene 9. Naphthalene. i-propylbenzene Appl. No Appl. No min min min 0 Courtesy of Aral Aromatics GmbH, Gelsenkirchen, Germany

122 Solvents Chemicals Gas Chromatography Application Gallery Appendices Analysis of solvents Appl. No. 090 Column: PTIMA, 60 m x 0. mm ID,.0 µm film, REF 76.60, max. temperature 0/60 C Sample: solvent mixture, courtesy of J. Lutz, Alcan Rorschach, Switzerland Injection: 0. µl, split :60 Carrier gas: 0 kpa H Temperature: 0 C (9 min) C/min C/min 90 C 80 C ( min) Detector: FID 00 C. Methanol 6. -Ethoxy--propanol. Ethanol 7. Toluene. Acetone 8. i-butyl - acetate. Propanol- 9. n-butyl acetate. Methyl acetate 0. -Hydroxy--methyl--pentanone 6. Propanol-. -Methoxy--propyl acetate 7. Methyl ethyl ketone. Xylene 8. Ethyl acetate. Cyclohexanone 9. Isobutanol. Ethyl glycol acetate 0. Butanol-. Butyl glycol. -Methoxy--propanol 6. Heptanol. Isooctane 7. Ethyldiglycol. Ethylglycol 8. Butyldiglycol. Isoheptane 9. Butyl glycol acetate. Methyl isobutyl ketone 0. Butyldiglycol acetate min 0

123 Solvents Analysis of solvents Appl. No. 0 Column: PTIMA MS Accent, 60 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C Injection: µl, split :0 Carrier gas: bar He Temperature: 0 C ( min) ( min) Detector: FID 80 C. Methanol. Ethanol. Acetone. Propanol-. Dichloromethane 6. t-butyl - ethyl ether 7. Methyl ethyl ketone 8. Hexane 9. Tetrahydrofuran (THF) 0. Dioxane. Heptane. Toluene 0 C/min 60 C Analysis of volatile solvents Appl. No. 000 Column: PTIMA d-, 60 m x 0. mm ID, µm film, REF 76.60, max. temperature 0/60 C Injection: µl, split :7 Carrier gas:. bar He Temperature: C ( min) C/min 0 C 6 C/min 00 C 8 C/min 00 C ( min) Detector: FID. Methanol. Methyl formate. Methyl acetate. Acetonitrile. n-hexane 6. Ethyl acetate 7. Cyclohexane min 6 8 min

124 Solvents Chemicals Gas Chromatography Application Gallery Appendices Analysis of solvents Appl. No. 060 Column: PTIMA d-, 60 m x 0. mm ID, µm film, REF 76.60, max. temperature 0/60 C Injection: 0. µl, split :00 Carrier gas:. bar He Temperature: 60 C ( min) 6 C/min 0 C ( min) Detector: FID. Methanol. Ethanol. Pentane. Propanol-. Acetone 6. Ethyl acetate 7. Benzene min Analysis of solvents by headspace GC Appl. No. 960 Column: ptima WAX, 0 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C Sample: headspace: heat ml water + 0 µl of each solvent to 80 C in a headspace vial for min Injection: 0 C, split.6: Carrier gas: 7. psi He, ml/min 0 C/min Temperature: Detector:. Cyclohexane. Acetone. Tetrahydrofuran. Ethyl acetate. Dichloromethane 6. Propanol- 7. Trichloromethane 8. Toluene.0 C ( min) 80 C 0 C/min 0 C ( min) ( min) MSD min Courtesy of V. Cirimele, Laboratoire ChemTox, Illkirch Graffenstaden, France

125 Solvents Rapid analysis of a complex solvent mixture Appl. No. 000 Column: PTIMA d-, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/60 C Injection:.0 µl, split :80 Carrier gas: Temperature: Detector:. Methanol. Ethanol. Propanol-. Acetone. Dichloromethane 6. n-hexane 7. Vinyl acetate 8. Butanol- 9. Ethyl acetate 0. Trichloromethane 00 kpa He C (.8 min) FID C/min 70 C/min 0 C 00 C ( min). Benzene. Trichloroethene.,-Dioxane. Propylene glycol. Toluene + pentenol 6. Heptanol- 7. Limonene 8. Cineole 9. Linalool 0. -Vinylpyrrolidone. Menthofuran + menthone. Isomenthone + pulegone. Menthyl acetate. Carvone. Anethole 6. Anisaldehyde 7. Dodecanol Courtesy of M. Bürkler, Solco Basel AG, Birsfelden, Switzerland min 0

126 Solvents Chemicals Gas Chromatography Application Gallery Appendices Analysis of solvents and semi-volatiles Appl. No. 0 Column: PTIMA 6 LB, 0 m x 0. mm ID,.8 µm film, REF max. temperature 80/00 C, retention gap Phe-Sil 0. m x 0. mm, REF 77.0 Injection: µl, cold on-column, 0 ppm per substance in acetone Carrier gas: Temperature: Detection: FID 80 C. Acetone. Ethyl acetate. Tetrahydrofuran. Cyclohexane. -Methylbutanol- 6. Butanol- 7. Pyridine 8. Toluene 9. Dimethylformamide 0. Dimethylsulfoxide. bar He C ( min) 6 C/min 0 C C/min 00 C (0 min). Decane. ctanol-. Acetophenone. Butyrophenone. Heptanophenone 6. Methoxy--indole 7. Dibenzylamine 8. Methyl eicosanoate 9. Methyl cis--docosenoate 0. Methyl docosanoate min

127 Solvents. Tetrachloroethene. Ethoxypropanol 6. n-butyl acetate 7. Ethylbenzene 8. m-xylene + p-xylene 9. Methyl glycol acetate 0. -Methoxypropyl acetate-. o-xylene. -Methoxypropyl acetate-. Ethyl glycol acetate. Butyl glycol + ethoxypropyl acetate. Cyclohexanone 6. Glycolic acid n-butyl ester Analysis of solvents Appl. No. 00 Column: PTIMA 70, 0 m x 0. mm ID,.0 µm film, REF , max. temperature 00/0 C Injection: 0. µl, split 7 ml/min Carrier gas: 0 kpa He ( ml/min) Temperature: 0 C ( min) C/min 60 C Detector: FID 0 C. Methanol. Ethanol. Acetone. Propanol- + methyl acetate. Dichloromethane 6. t-butanol- 7. Propanol- 8. Ethyl acetate 9. Butanone (MEK) 0. Trichloroethane. Trichloromethane. Benzene. i-propyl - acetate 8. i-butanol-. Methyl glycol 6. -Methoxypropanol- 7. Butanol- 8. n-propyl acetate 9. Glycolic acid 6 0. Ethyl glycol 0. Toluene. i-butyl- methyl ketone 9. i-butyl - acetate min 6 7

128 Solvents Chemicals Gas Chromatography Application Gallery Appendices Analysis of solvents Appl. No. 00 Column: PERMABND CW 0 M, 0 m x 0. mm ID, 0. µm film, REF 796.0, max. temperature 0/0 C Injection: 0. µl, split 90 ml/min Carrier gas: bar N Temperature: 60 C ( min) C/min 0 C Detector: FID 0 C. Acetone. -Methoxypropanol-. Methyl acetate. Ethylbenzene. Ethyl acetate. Butanol- + p-xylene. Methanol + isopropyl acetate 6. m-xylene. Butanone (MEK) 7. Ethoxypropanol 6. Propanol- 8. o-xylene 7. Ethanol 9. -Methoxypropyl acetate- 8. Isobutyl methyl ketone 0. Ethyl glycol 9. Propanol-. -Methoxypropyl acetate- 0. Toluene. Ethyl glycol acetate. n-butyl acetate. Cyclohexanone. i-butanol-. Ethylene glycol min 8

129 Solvents Analysis of solvent residues in ethanolic tinctures Appl. No Column: PERMABND CW 0 M, 60 m x 0. mm ID, 0. µm film, REF , max. temperature 0/0 C Injection: µl, split 0 ml/min Carrier gas: 0 kpa N Temperature: Detector: FID 0 C. Acetone. Ethyl acetate. Methanol. Methyl ethyl ketone. Propanol- 6. Ethanol 7. Isobutyl methyl ketone 8. Propanol- 60 C (9 min) C/min 00 C 6 Analysis of glycols Appl. No. 090 Column: PTIMA d-, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/60 C Injection: µl, split 00 ml/min Carrier gas: 70 kpa He 0 C/min Temperature: 0 C 0 C ( min) Detector: FID. Diethylene glycol. Triethylene glycol. Tetraethylene glycol. Pentaethylene glycol 6 min min Courtesy of Mr. Fischer, Pharmaz. Fabrik Evers & Co. GmbH, Hamburg, Germany 9

130 Solvents Chemicals Gas Chromatography Application Gallery Appendices Analysis of alcohols in dichloromethane Appl. No. 060 Column: PTIMA, m x 0. mm ID,.0 µm film, REF 769., max. temperature 00/0 C Injection: µl, split 0 ml/min Carrier gas: bar N Temperature: 60 C Detector: FID 0 C. Methanol. Ethanol. Propanol-. Dichloromethane. Propanol- 0 min 0 Analysis of alcohols Appl. No. 00 Column: PTIMA 7, 0 m x 0. mm ID, 0. µm film, REF 77.0, max. temperature 0/0 C Injection: µl, split :0 Carrier gas: 0 kpa N 0 C C/min 00 C Temperature: Detector: FID 0 C. Methanol. Ethanol. Propanol-. Propanol-. Butanol- 6. Hexanol- 7. Cyclohexanol 8. ctanol min 0 8 0

131 Alcohols Headspace analysis of alcohols Appl. No. 60 Column: PTIMA 6, 60 m x 0. mm ID,.80 μm film, REF , max. temperature 80/00 C Injection: headspace 00 C, sample temperature 60 C for 0 min, needle temperature 70 C, transfer line 80 C Carrier gas: 0 kpa He Temperature: 0 C ( min) Detector: FID 00 C. Acetaldehyde. Methanol. Ethanol. Acetone. Propanol- 6. Propanol- 7. Butanol- 0 C/min 00 C Headspace analysis of alcohols Appl. No. 90 Column: PTIMA WAX, 0 m x 0. mm ID, 0. μm film, REF , max. temperature 0/60 C Sample: headspace: heat ml water + 0 µl of each alcohol to 80 C in a headspace vial for min Injection: 0 C, split 0: Carrier gas:.78 psi He, ml/min Temperature: 70 C (0 min) Detector: MSD. Acetone. Methanol. Propanol-. Ethanol. Propanol- 6. Butanol min 6 min 6 Courtesy of Mr. Kress, INSTAND e.v., Düsseldorf, Germany Courtesy of V. Cirimele, Laboratoire ChemTox, Illkirch Graffenstaden, France

132 Solvents Chemicals Gas Chromatography Application Gallery Appendices Column: Injection: Headspace analysis of alcohols Appl. No. 90 Carrier gas: Temperature: Detector:. Acetone. Ethanol. Propanol-. Acetic acid. Butyric acid 6. Piperidinone- PTIMA WAX, 0 m x 0. mm ID, 0. μm film, REF , max. temperature 0/60 C headspace: heat ml blood + 0 µl int. std. (0 mg/l propanol-) to 80 C in a headspace vial for min; 0 C, split.6: 7. psi He, ml/min 0 C/min C ( min) 80 C 0 C/min 0 C ( min) ( min) MSD N H 8 6 min Courtesy of V. Cirimele, Laboratoire ChemTox, Illkirch Graffenstaden, France 6

133 Neutral and basic organics Analysis of a mixture of neutral and basic organic compounds Sample: Base/Neutrals Mix, 00 µg/ml each in -propanol Injection:.0 µl, split :0 Carrier gas: cm/s He Detector: MSD. N-Nitrosodimethylamine 9. Diethyl phthalate. s-dichloroethyl ether 0. N-Nitrosodiphenylamine. Bis(-chloroisopropyl) ether. -Bromophenoxybenzene. Bis(-chloroisopropyl) ether. Dibutyl phthalate. N-Nitroso-di-n-propylamine. Benzyl butyl phthalate 6. Bis(-chloroethoxy)methane. Bis(-ethylhexyl) phthalate 7. Dimethyl phthalate. Di-n-octyl phthalate 8. -Chlorophenoxybenzene Appl. No. 070 Column: PTIMA, m x 0.0 mm ID, 0.0 µm film, REF 7687., max. temperature: 0/60 C Temperature: C ( min) 8 C/min 0 C Appl. No. 080 Column: PTIMA 7, m x 0.0 mm ID, 0.0 µm film, REF 7606., max. temperature 0/0 C Temperature: 0 C ( min) 8 C/min 0 C min min

134 Solvents Chemicals Gas Chromatography Application Gallery Appendices Analysis of organic pollutants from water-packaging materials Appl. No. 870 Column: PTIMA 7, m x 0. mm ID,.0 µm film, REF max. temperature 00/0 C Injection: splitless, 70 C Carrier gas: 0 ml/min N Temperature: 0 C ( min) (0 min) Detector: FID 00 C. Chlorobenzene. Isopentyl acetate. Styrene. Phenol. Benzyl alcohol 6. Cyclohexylbenzene 7. Benzophenone 8. Diazinon 9. Dibutyl phthalate C/min 70 C 0 0 min S. Guillot, M. T. Kelly, H. Fenet, M. Larroque, J. Chromatogr. A 0 (006) Analysis of,-dinitrophenylhydrazones Appl. No. 00 Column: PTIMA, 0 m x 0. mm ID, 0.0 µm film, REF 769.0, max. temperature 0/0 C Injection: µl, split :0 Carrier gas: 0. bar H 0 C/min Temperature: 60 C 60 C 8 C/min 00 C Detector: FID 0 C DNP hydrazones of. Benzanthrone. Benzophenone. Fluorenone 0 0 min

135 Miscellaneous Analysis of plasticizers Appl. No. 000 Column: PTIMA, 0 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C Injection: µl on column, 0 ng each Carrier gas: 0 kpa H 0 C/min Temperature: 80 0 C 6 C/min 80 C Detector: FID. Dimethyl phthalate 0. Di(-ethylhexyl) adipate. Diethyl phthalate. Triphenyl phosphate. Diallyl phthalate. Diphenyl-(-ethylhexyl) phosphate. Dipropyl phthalate. Tri(-ethylhexyl) phosphate. Diisobutyl phthalate. Dicyclohexyl phthalate 6. Di-n-butyl phthalate. Di(-ethylhexyl) phthalate 7. Methyl glycol phthalate 6. Diphenyl phthalate 8. Dibutyl sebacate 7. Di-n-octyl phthalate 9. Butyl benzyl phthalate 8. Tri-p-cresyl phosphate min Courtesy of Mr. Lembacher, Hipp Nährmittel, Pfaffenhofen, Germany

136 Solvents Chemicals Gas Chromatography Application Gallery Appendices Analysis of phthalates (EPA 606) Appl. No. 60 Column: PTIMA d-, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/60 C Injection: µl, split :0 Carrier gas:. ml/min H C/min Temperature: 00 C 0 C Detector: MSD. Dimethyl phthalate. Diethyl phthalate. Dibutyl phthalate. Butyl benzyl phthalate. Di(-ethylhexyl) phthalate 6. Di-n-octyl phthalate min 6 Analysis of phosphonic acid diethyl esters Appl. No. 860 Column: PTIMA d-, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/0 C Injection: 0. µl, 0 C, split 0 ml/min Carrier gas: 80 kpa He Temperature: 60 C C/min 0 C/min 0 C 00 C Detector: FID 00 C. Diethyl methylphophonate. Diethyl ethylphosphonate. Diethyl allylphosphonate. Tetraethyl-ethylene-,-diphosphonate. Tetraethyl-propylene-,-diphosphonate 6. Tetraethyl-butylene-,-diphosphonate min 0 VeZerf Laborsynthesen GmbH, Idar-berstein, Germany 6

137 Miscellaneous Analysis of halogeno- and phosphororganic compounds Appl. No. 00 Column: PTIMA, 0 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C Injection:.0 µl, splitless Carrier gas:. bar H 0 C/min C/min Temperature: 9 C ( min) 0 C 80 C (0 min) Detector: MSD. Dimethyl methylphosphonate. Trimethyl phosphate Fluorophenol.,-Dichlorobenzene. -ctanol 6.,6-Dimethylphenol Triethyl phosphate 8.,6-Dimethylbenzylamine 9. Naphthalene 0. n-dodecane. -Dodecanol. -Chloro--methylbenzylamine. Tributyl phosphate. Dibenzothiophene. Malathion 6. Methyl octadecanoate min 0 Courtesy of Mr. Kremer, Wehrwissenschaftl. Inst. für Schutztechnologien, Munster, Germany 7

138 Solvents Chemicals Gas Chromatography Application Gallery Appendices Analysis of methylamines Appl. No. 090 Column: PTIMA, 0 m x 0. mm ID,.0 µm film, REF 769.0, max. temperature 00/0 C Split: 08 ml/min Carrier gas:. ml/min He Temperature: 8 C Detector: FID 0 ng/peak. Methylamine. Dimethylamine. Trimethylamine 6 min Analysis of ethylamines Appl. No. 000 Column: PTIMA Amine, 0 m x 0. mm ID,.0 µm film, REF 76.0, max. temperature 00/0 C Injection: µl, split :70 Carrier gas: 0. bar H Temperature: 0 C C/min 00 C Detector: FID. Ethylamine. Diethylamine. Triethylamine min 8

139 Amines Analysis of amines Appl. No. 00 Column: FS-CW 0 M-AM, m x 0. mm ID, 0. µm film, REF 70., max. temperature 0/0 C Injection: 0. µl, split :00 Carrier gas: 0. bar N Temperature: Detector: FID 0 C. Butylamine. Di-i-propylamine-. Dibutylamine. Nonylamine. Decylamine 6. Undecylamine 80 C ( min) 8 C/min 80 C Analysis of amines Appl. No. 00 Column: FS-CW 0 M-AM, m x 0. mm ID, 0. µm film, REF 799., max. temperature 0/0 C Injection: 0. µl Carrier gas: 0. bar N 0 C/min Temperature: 80 C 90 C Detector: FID 0 C. Dibutylamine. n-nonylamine. n-decylamine. Benzylamine. n-undecylamine 6. Dicyclohexylamine min 0 min 9

140 Solvents Chemicals Gas Chromatography Application Gallery Appendices Separation of the PTIMA Amine test mixture (REF 77) Appl. No. 000 Column: PTIMA Amine, 0 m x 0. mm ID,.0 µm film, REF 76.0, max. temperature 00/0 C Injection: µl, split :0 Carrier gas: 0.6 bar H 0 C/min Temperature: 00 C 80 C Detector: FID. Di-i-butylamine-. Diethanolamine.,6-Dimethylaniline. o-propanol-pyridine. Dicyclohexylamine 6. Dibenzylamine min Analysis of secondary and tertiary amines Appl. No. 080 Column: PTIMA Amine, 0 m x 0. mm ID,.0 µm film, REF 768.0, max. temperature 00/0 C Injection:.0 µl, 0.0 % in pentane split :00 Carrier gas: 0. bar H 0 C/min Temperature: 0 C ( min) 80 C (0 min) Detector: FID 80 C. Diethylamine. Di-i-propylamine-. Triethylamine. Di-n-propylamine. Di-n-butylamine 6. Tri-n-propylamine 7. Di-i-butylamine - 8. Tri-n-butylamine 9. Di-i-hexylamine- 0. Dicyclohexylamine. Dibenzylamine. Tri-n-hexylamine min 0 0

141 Amines Analysis of ethanolamines Appl. No. 000 Column: PTIMA Amine, 0 m x 0. mm ID,.0 µm film, REF 76.0, max. temperature 00/0 C Injection: µl, 0 % in methanol split :0 Carrier gas: 0.6 bar H 0 C/min Temperature: 80 C 00 C Detector: FID. Ethanolamine. Diethanolamine. Triethanolamine Analysis of pyridine compounds Appl. No. 060 Column: PTIMA Amine, m x 0.0 mm ID, 0. µm film, REF 76., max. temperature 00/0 C Injection: 0 C Carrier gas: cm/s He Temperature: 0 C ( min) 8 C/min 90 C Detector: MSD. Pyridine. o-propanolpyridine. m-propanolpyridine. p-propanolpyridine 0 0 min 0 min 0

142 Solvents Chemicals Gas Chromatography Application Gallery Appendices Analysis of an oxazole derivative of N,N-dimethylformamide- Appl. No. 00 Column: PTIMA 0, m x 0. mm ID, 0. µm film, REF , max. temperature 60/80 C Injection: 0. µl, split 00 ml/min Carrier gas: 0.8 bar He Temperature: 0 C 7 C/min 00 C Detector: FID 80 C. N,N-Dimethylformamide-. -Cyano--methyloxazole. Methyl decanoate. N-Methylpyrrolidone-. -Methyl--oxazole-carboxylic acid amide 0 0 min Courtesy of Hoffmann-La Roche AG, Basel, Switzerland N-Methylpyrrolidone N xazole N Analysis of aniline derivatives Appl. No. 080 Column: PTIMA Amine, m x 0.0 mm ID, 0. µm film, REF 76., max. temperature 00/0 C Injection: 0 C Carriergas: cm/s He Temperature: 0 C ( min) 8 C/min 90 C Detector: MSD. Pyridine. Aniline. Benzylamine. -Methylaniline.,6-Dimethylaniline 6. -Ethanolaniline 0 min 0 6

143 Aromatic amines Analysis of substituted anilines Appl. No. 060 Column: FS-CW 0 M-AM, m x 0. mm ID, 0. µm film, REF 70., max. temperature 0/0 C Injection: µl, split :0 Carrier gas: 80 kpa He Temperature: 80 C ( min) C/min 0 C (0 min) Detector: MSD. Aniline. o-toluidine. p-toluidine. m-toluidine. o-chloroaniline 6. -Chloro-6-methylaniline 7.,6-Dichloroaniline 8. -i-propylaniline (int. std.) 9. -Chloro--methylaniline 0. p-chloroaniline.,,6-trichloroaniline. m-chloroaniline. -Chloro--methylaniline. -Chloro--methylaniline. -Chloro--methylaniline 6. m-phenetidine 7.,-Dichloroaniline 8.,-Dichloroaniline 9.,-Dichloroaniline 0.,-Dichloroaniline.,-Dichloroaniline.,,-Trichloroaniline. -Naphthylamine (int. std.).,,-trichloroaniline. -Chloro--nitroaniline 6. -Chloro--nitroaniline 7. -Chloro--nitroaniline 8.,,-Trichloroaniline 9. -Chloro--nitroaniline 0. -Chloro--nitroaniline 7 / / min B. Scholz, N. Palauschek, Z. Anal. Chem. (988) 8 89

144 Solvents Chemicals Gas Chromatography Application Gallery Appendices Analysis of aromatic amines Appl. No. 0 Column: PTIMA MS, 0 m x 0. mm ID, 0. µm film, REF 76.0, max. temperature 60/70 C Injection: µl, split :0 Carrier gas:.0 ml/min He Temperature: 0 C/min 80 C 0 C (0 min) Detector: MSD. o-toluidine. o-anisidine. -Chloroaniline. p-cresidine.,,-trimethylaniline 6. -Chloro-o-toluidine 7.,-Diaminotoluene 8.,-Diaminoanisole 9. -Naphthylamine 0. -Nitro-o-toluidine o-toluidine H C NH 6 o-anisidine NH. -Aminobiphenyl. -Aminoazobenzene., -xydianiline. Benzidine +, -diaminodiphenylmethane. o-aminoazotoluene +, -dimethyl-, -diaminodiphenylmethane 6., -Dimethylbenzidine 7., -Thiodianiline 8., -Dichlorobenzidine 9., -Methylene-bis-(-chloroaniline) 0., -Dimethoxybenzidine min 0 Structures of selected aromatic amines p-cresidine H N H C,-Diaminoanisole NH H N 6 7 Benzidine H N 8 9 NH

145 Aromatic amines Analysis of azo-dyes and aromatic amines by fast GC Appl. No. 080 Column: PTIMA d-, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/60 C Injection:.0 µl, 0 C Carrier gas: 8 ml/min, splitless Pressure: kpa/min 80 kpa ( min) 966 kpa ( min) Temperature: 0 C ( min) Detector: MSD 0 C. o-toluidine.,- and,6-dimethylaniline. o-anisidine. -Chloroaniline. p-cresidine 6.,,-Trimethylaniline 7. -Chloro-o-toluidine 8.,-Diaminotoluene 9.,-Diaminoanisole 0. -Naphthylamine. -Nitro-o-toluidine. -Aminobiphenyl C/min 80 C ( min). -Aminoazobenzene., -xydianiline., -Diaminodiphenylmethane 6. Benzidine 7. o-aminoazotoluene 8., -Dimethyl-, -diaminodiphenylmethane 9., -Dimethylbenzidine 0., -Thiodianiline., -Dimethoxybenzidine +, -methylene-bis-(-chloroaniline) +, -dichlorobenzidine min Courtesy of Mrs. K. Friedrichs, Chem. Untersuchungsamt, Bielefeld, Germany

146 Solvents Chemicals Gas Chromatography Application Gallery Appendices Analysis of azo-dyes and aromatic amines Appl. No. 070 Column: PTIMA Amine, 0 m x 0. mm ID, 0. µm film, REF 76.0, max. temperature 00/0 C Injection:.0 µl Carrier gas: He Temperature: 0 C 7 C/min 00 C Detector: MSD. o-toluidine. o-anisidine. -Chloroaniline. p-cresidine.,,-trimethylaniline 6. -Chloro-o-toluidine 7.,-Diaminotoluene 8.,-Diaminoanisole 9. -Naphthylamine 0. -Nitro-o-toluidine. -Aminobiphenyl. -Aminoazobenzene 6 6., -xydianiline. Benzidine., -Diaminodiphenylmethane 6. o-aminoazotoluene 7., -Dimethyl-, -diaminodiphenylmethane 8., -Dimethylbenzidine 9., -Thiodianiline 0., -Methylene-bis-(-chloroaniline) +, -dichlorobenzidine +, -dimethoxybenzidine min Courtesy of Mrs. Friedrichs, Chem. Untersuchungsamt Bielefeld, Germany o-aminoazotoluene H N H C N=N H C Structures of selected aromatic amines NH H N X NH 6, -xydianiline X =, -Thiodianiline X = S

147 Miscellaneous Analysis of organotin compounds Appl. No. 070 The sample is dissolved in n-hexane. After the Grignard reaction with pentylmagnesium bromide the residue is extracted with diethyl ether and dried with Na S. Column: PTIMA MS, m x 0.0 mm ID, 0. µm film, REF 76., max. temperature 0/60 C Septum purge:. ml/min Injection: µl, 0 C, splitless Carrier gas: ml/min He (0 kpa) Temperature: 90 C 6 C/min 80 C ( min) Detector: MSD 80 C, EI, SIM. Tetrabutyl tin (internal standard). Tributyl pentyl tin. Dibutyl dipentyl tin Qualitative determination of organotin compounds Appl. No. 0 Column: PTIMA, m x 0. mm ID, 0. µm film, REF 7687., max. temperature 0/60 C Injection: µl, split ml/min Carrier gas: He Temperature: 0 C 6 C/min 00 C Detector: MSD, transfer line 00 C. BuSnEt. Bu SnEt. Bu SnEt. Bu Sn. i-cbu- SnEt 6. c SnEt 6 7 min Courtesy of Mr. Wohlfarth, Staatl. Med. Lebensm, Vet. UA, Wiesbaden, Germany min 0 7

148 Solvents Chemicals Gas Chromatography Application Gallery Appendices Analysis of methyl silanes Appl. No Column: PERMABND Silane, 0 m x 0. mm ID, REF 709.0, max. temperature 60/80 C Injection: ml gas Carrier gas: 60 kpa He Temperature: C Detector: MSD. Methylsilane. Dimethylsilane. Trimethylsilane min Courtesy of Th. Goldschmidt AG, Essen, Germany Analysis of chloromethyl silanes Appl. No Column: PERMABND Silane, 0 m x 0. mm ID, REF 709.0, max. temperature 60/80 C Injection: 0. µl, split 80 ml/min Carrier gas: ml/min He (constant flow) Temperature: 0 C ( min) C/min 00 C Detector: MSD. Tetramethylsilane. Dichloromethane. Tetrachlorosilane. Chlorotrimethylsilane. Methyltrichlorosilane 6. Dichlorodimethylsilane 7. Hexamethyldisiloxane 6 8 min

149 Silanes Analysis of silanes Appl. No Column: PERMABND Silane, 0 m x 0. mm ID, REF 709.0, max. temperature 60/80 C Injection: 0. µl, split 80 ml/min Carrier gas:. ml/min He (constant flow) 0 C/min Temperature: 60 C (6 min) 0 C ( min) Detector: MSD. Trimethylmethoxysilane 9.,-Divinyltetramethyldisiloxane. Methylhydrodimethoxysilane 0.,-Divinyltetramethyldisilazane. Vinyldimethylmethoxysilane. ctamethylcyclotetrasiloxane (D ). Dimethyldimethoxysilane. (Cyanopropyl)methyldimethoxysilane. Hexamethyldisiloxane. (Phenylpropyl)methyldimethoxysilane 6.,,,-Tetramethyldisiloxane. Diphenyldimethoxysilane 7. Hexamethyldisilazane (HMDS).,-Diphenyltetramethyldisilazane 8. Vinyltrimethoxysilane 6.,-Dicyanopropyltetramethyldisiloxane min 9

150 Solvents Chemicals Gas Chromatography Application Gallery Appendices Analysis of bifunctional alkyl nitrates Appl. No. 090 Column: PTIMA 70, 0 m x 0. mm ID, 0. µm film, REF 768.0, max. temperature 00/0 C Carrier gas: H Temperature: Detector: ECD 60 C. -Nitrooxypropanol-. -Nitrooxyethanol 0 C ( min) C/min 00 C (0 min). RR/SS--Nitrooxybutanol--. -Nitrooxypropanol-. RS/SR--Nitrooxybutanol Nitrooxybutanol- 7.,-Ethanediol dinitrate /,-Propanediol dinitrate / -Nitrooxybutanol- 8.,-Butanediol dinitrate 9.,-Butanediol dinitrate 0. -Hydroxy--nitrooxycyclopentane ,-Propanediol dinitrate.,-butanediol dinitrate.,-pentanediol dinitrate. -Hydroxy--nitrooxycyclohexane.,-Hexanediol dinitrate 6. trans-,-cyclohexanediol dinitrate 7. cis-,-cyclohexanediol dinitrate 8. cis-/trans-,-cyclohexanediol dinitrate 9. trans-,-cycloheptanediol dinitrate / cis-/trans-,-cyclohexanediol dinitrate min J. Kastler, K. Ballschmiter, Fresenius J Anal Chem 60 (998)

151 Miscellaneous Comparison of a separation on a 0 m standard capillary with separation on a 0 m fast GC column Appl. No. 60 A) Fast GC column Column: PTIMA, 0 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C injection µl, split :0, carrier gas 0.7 bar He B) standard GC column Column: PTIMA, 0 x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C injection µl, split :, carrier gas. bar He both separations: temperature: 80 C 8 C/min 0 C (0 min), detector: FID While maintaining the temperature programme and halving the pressure a time saving of 0 % results with identical separation efficiency.. ctanol. Undecane. Dimethylaniline. Dodecane. Decylamine 6. Methyl decanoate 7. Methyl undecanoate 8. Henicosane 9. Docosane 0. Tricosane min min

152 Food and cosmetic components Gas Chromatography Application Gallery Appendices Food and Cosmetic Components Fragrances FAMEs

153 Fragrances Analysis of a perfume standard Appl. No. 00 Column: PTIMA, m x 0.0 mm ID, 0.0 µm film, REF 7687., max. temperature 0/60 C Injection:.0 µl of a standard of perfume ingredients, :00 in EtH, split :00 sample courtesy of Mr. Vogel, Luzi AG, Dietlikon, Switzerland Carrier gas: cm/s He Temperature: 70 C ( min) C/min 0 C Detector: MSD. Benzaldehyde. b-pinene. Limonene. Eucalyptol (Cineole). Benzyl alcohol 6.,6-Dimethyl-7-octen--ol 7. Hexanoic acid -propenyl ester 8. Benzoic acid methyl ester 9. Phenylethanol 0. p-menth-(7)-en-9-ol.,7-dimethyl-6-octenal. Phenylacetic acid methyl ester. Menthol. Acetic acid isononyl ester. Linalyl propanoate 6. a-methylbenzyl acetate 7. -Methoxybenzaldehyde 8. Bornyl acetate 9. Nonanoic acid ethyl ester 0. -Phenyl--propen--ol. Piperonal. -Aminobenzoic acid methyl ester. -Carene. Eugenol. Diphenyl ether 6. a-isomethyl ionone 7. Lilial 8. Diethyl phthalate 9. -Naphthyl methyl ketone 0. Methyl dihydrojasmonate. Benzyl benzoate. Isopropyl myristate min

154 Food and cosmetic components Gas Chromatography Application Gallery Appendices Analysis of commercial perfume Appl. No. 060 Column: PTIMA, m x 0.0 mm ID, 0.0 µm film, REF 7687., max. temperature 0/60 C Injection:.0 µl perfume sample, :00 in EtH, s splitless Carrier gas: cm/s He Temperature: 00 C ( min) C/min 0 C Detector: MSD. Benzyl alcohol 7. Linalyl butyrate. Phenylethanol. Phenylacetic acid methyl ester. a-methylbenzyl acetate 6 6.,7-Dimethyl-octen--ol 7.,7-Dimethyl-,6-octadien--ol 8. 7-Hydroxy-,7-dimethyl-octanal 8 9. Piperonal 0. Vanillin. Ethylvanillin. a-isomethyl ionone. b-methylionone. Butylated hydroxytoluene. Diethyl phthalate 6. Methyl dihydrojasmonate 7. Benzyl benzoate Hydroxycyclopentadecanone min 0 Structures of selected perfume ingredients Structure Compound R Structure Compound H C R Vanillin CH H C Vinylguaiacol CH=CH H Eugenol CH CH=CH H C R R Piperonal CH Safrole CH CH=CH Anisaldehyde CH Anethole CH=CH H C H C C b-methylionone Methyl dihydrojasmonate -Carene

155 Fragrances Analysis of a perfume standard Appl. No. 00 Column: PTIMA d-6, 0 m x 0.0 mm ID, 0.0 µm film, REF 766.0, max. temperature 0/60 C Injection:.0 µl of a standard of perfume ingredients, :0 in EtH, split :0 sample courtesy of Mr. Vogel, Luzi AG, Dietlikon, Switzerland Carrier gas:.8 bar He Temperature: 60 C C/min 80 C ( min) Detector: MSD. Limonene. Cineole. Linalool. -Phenylethanol. Menthol 6. Benzyl acetate 7. Styralyl acetate (-phenylethyl acetate) 8.,7-Dimethyl-6-octen--ol 9. Linalyl anthranilate 0. Ethyl nonanoate. Bornyl acetate. Hydroxycitronellal. -t-butylcyclohexyl - acetate. a-isomethyl ionone. Lilial 6. Diethyl phthalate 7.,-Di-t-butylphenol- 8. Methyl dihydrojasmonate 9. Isopropyl myristate 0. Methyl atratate (methyl,-dihydroxy-,6-dimethylbenzoate). Hexylcinnamic aldehyde. Benzyl benzoate. AETT (acetylethyltetramethyltetralin). xacyclohexadecan--one. Benzyl salicylate min

156 Food and cosmetic components Gas Chromatography Application Gallery Appendices Analysis of essential oils Appl. No. 00 Column: PERMABND CW 0 M, 0 m x 0. mm ID, 0. µm film, REF 796.0, max. temperature 0/0 C Injection: µl Carrier gas:. bar He Temperature: 60 C ( min) 8 C/min 0 C (0 min) Detector: FID 0 C. a-pinene. Camphene. b-pinene. Sabinene. Carene 6. Myrcene 7. a-terpinene 8. Limonene 9. Cineole 0. g-terpinene. Hexanol-. Fenchone. L-Menthone. Menthofuran Isomenthone 6. Linalool 7. Camphor 8. Linalyl acetate 9. Menthyl acetate 0. Bornyl acetate. Menthol. a-terpineol. Borneol. Menthyl valerianate. Carvone 6. Geraniol 7. Anethole min Benzyl alcohol 9. Safrole 0. Dodecanol. Thymol. Eugenol. a-bisabolol ( ) C CH (CH Geraniol CH ) CH ( ) CH CH H C H H C H Lilial Thymol a-terpinene Myrcene H C CH CH 6

157 Essential oils Analysis of essential oils Appl. No. 00 Column: PTIMA, 0 m x 0. mm ID, 0. µm film, REF 766.0, max. temperature: 0/60 C Injection: 0. µl, split :0 Carrier gas: bar N Temperature: Detector: FID 80 C. a-pinene. b-pinene. Int. std.. D -Carene. Limonene 6.,8-Cineole 7. Camphor 8. Menthol 9. Int. std. 0. Bornyl acetate 9 C (0 min) 6 C/min 00 C 7 Analysis of essential oils Appl. No. 070 Column: PERMABND FFAP, 0 m x 0. mm ID, 0. µm film, REF 7.0, max. temperature 0/0 C Injection: 0. µl, split :0 Carrier gas: 0.7 bar N Temperature: (0 min) Detector: FID 0 C. a-pinene. b-pinene. D -Carene. Limonene. Eucalyptol (Cineole) 6. Camphor 7. Linalool 8. Bornyl acetate 9. Menthol 0. Carvone 60 C (6 min) 8 C/min 00 C min H C,8-Cineole min H C 7

158 Food and cosmetic components Gas Chromatography Application Gallery Appendices Key odorants in beer Appl. No. 880 Column: PERMABND FFAP, 60 m x 0. mm ID, 0. µm film, REF 76.60, max. temperature 0/0 C Injection: µl, splitless (split open at.0 min) Carrier gas: H (.0) Temperature: 0 C ( min) C/min 0 C (0 min) Detector: FID. -Methylpropyl acetate : Ethyl butanoate. Methyl pentanoate. -Methylbutyl acetate. Methyl hexanoate 6. Ethyl hexanoate 7. Methyl heptanoate 8. Ethyl octanoate 9. -Methylthioethanol 0. -Methylpropionic acid. Butyric acid. -Methylbutyric acid. -Methylthiopropanol. -Phenylethyl acetate. Hexanoic acid 6. Benzyl alcohol 7. -Ethyl--hydroxy- -cyclopenten--one 8. -Phenylethanol 9. (E)--Hexenoic acid 0. Maltol. Furaneol. ctanoic acid. Eugenol. -Vinylguaiacol. Phenylacetic acid 6. Vanillin B. Thum, W. Back, EBC Congress Furaneol Maltol Bisabolol H C H H 7 HC min H C H 6 8

159 Alcoholic beverages Analysis of a plum brandy Appl. No. 090 Column: PERMABND CW 0 M, m x 0. mm ID, 0. µm film, REF 796., max. temperature 0/0 C Injection: ml, 0 C, split :0 Carrier gas: N, 0 Kpa ( ml/min) Temperature: 0 C ( min) C/min 60 C 0 C/min 0 C (9 min) ( min) 0 C/min 70 C ( min) Detector: FID 80 C. Acetaldehyde. Ethyl acetate. Methanol. Ethanol. Propanol- 6. -Methylpropanol- 7. Butanol- 8. Isoamyl alcohol 9. Pentanol- 9 9 Analysis of brandy made from wine Appl. No. 080 Column: PTIMA, 0 m x 0. mm ID,.0 µm film, REF 76.0, max. temperature 0/60 C Injection: 0. µl, split 0 ml/min Carrier gas: bar N Temperature: Detector: FID 0 C. Acetaldehyde/methanol. Ethanol. Acetone. Propanol-. Ethyl acetate 6. i-butanol- 7. Diethyl acetal 8. -Methyl--butanol 9. -Methyl--butanol 60 C (0 min) C/min 80 C min 0 min Courtesy of Dr. Nilles, Wein- u. Bodenlabor, Volkach, Germany 9

160 Food and cosmetic components Gas Chromatography Application Gallery Appendices Analysis of brandy made from wine Appl. No. 090 Column: PERMABND CW 0 M, 0 m x 0. mm ID, 0. µm film, REF 796.0, max. temperature 0/0 C Injection: µl, split 0 ml/min Carrier gas: bar N Temperature: Detector: FID 0 C. Acetaldehyde. Acetone. Methyl acetate. Ethyl acetate. Methanol 6. Ethanol 7. Propanol- 60 C (0 min) C/min 0 C 8. i-butanol- 9. -Methyl--butanol/-methyl--butanol min 8 9 Analysis of DEG standard ( g/l ethanol) for wine analysis Appl. No. 000 Column: PERMABND CW 0 M-DEG m x 0. mm ID, 0. µm film, REF 706., max. temperature 0/0 C Injection: 0. µl, split :0 Carrier gas:. bar N 0 C/min Temperature: 80 C 00 C Detector: FID 60 C DEG standard.,-butanediol. Diethylene glycol (DEG). Glycerol 0 0 min 60

161 Fatty acid methyl esters (FAME) Summary of important saturated fatty acids Code Common name Systematic name C:0 acetic acid ethanoic acid C:0 propionic acid propanoic acid C:0 butyric acid butanoic acid C:0 iso isobutyric acid -methylpropanoic acid C:0 valeric acid pentanoic acid C:0 iso isovaleric acid -methylbutanoic acid C6:0 caproic acid hexanoic acid C6:0 iso isocaproic acid -methylvaleric acid C7:0 enanthic acid heptanoic acid C8:0 caprylic acid octanoic acid C9:0 pelargonic acid nonanoic acid C0:0 capric acid decanoic acid C:0 lauric acid dodecanoic acid C:0 myristic acid tetradecanoic acid C:0 iso isomyristic acid -methyltridecanoic acid C:0 pentadecanoic acid C:0 iso -methylmyristic acid -methyltetradecanoic acid C:0 anteiso -methylmyristic acid -methyltetradecanoic acid C6:0 palmitic acid hexadecanoic acid C6:0 iso isopalmitic acid -methylpentadecanoic acid C7:0 margaric acid heptadecanoic acid C7:0 iso isomargaric acid -methylhexadecanoic acid -methylpalmitic acid C7:0 anteiso anteisomargaric acid -methylhexadecanoic acid -methylpalmitic acid C8:0 stearic acid octadecanoic acid C9:0 cyclo methylene stearic acid methylene octadecanoic acid C0:0 arachidic acid eicosanoic acid C:0 behenic acid docosanoic acid C:0 trocosanoic acid tricosanoic acid C:0 lignoceric acid tetracosanoic acid C6:0 cerotic acid hexacosanoic acid 6

162 Food and cosmetic components Gas Chromatography Application Gallery Appendices Summary of important unsaturated fatty acids Code Systematic name ω reference system C: propenoic acid Common name ω- acid acrylic acid C6:,-hexadienoic acid C6:n sorbic acid C: cis-9-tetradecenoic acid C:nc myristoleic acid trans-9-tetradecenoic acid C:nt myristelaidic acid C: cis-0-pentadecenoic acid C:n C6: cis-9-hexadecenoic acid C6:n7c palmitoleic acid trans-9-hexadecenoic acid C6:n7t palmitelaidic acid C7: cis-0-heptadecenoic acid C7:n7 C8: cis-9-octadecenoic acid C8:n9c oleic acid trans-9-octadecenoic acid C8:n9t elaidic acid cis--octadecenoic acid C8:n7 vaccenic acid C8: cis-9,-octadecadienoic acid C8:n6c linoleic acid x trans-9,-octadecadienoic acid C8:n6t linolelaidic acid x C8: cis-9,,-octadecatrienoic acid C8:n a -linolenic acid x cis-6,9,-octadecatrienoic acid C8:n6 g-linolenic acid x C8: cis-6,9,,-octadecatetraenoic acid C8:n stearidonic acid x C0: cis--eicosenoic acid C0:n9 gondoic acid C0: cis-,-eicosadienoic acid C0:n6 x C0: cis-,8,-eicosatrienoic acid C0:n9 mead acid cis-8,,-eicosatrienoic acid C0:n6 x cis-,,7-eicosatrienoic acid C0:n x C0: cis-,8,,-eicosatetraenoic acid C0:n6 arachidonic acid x cis-8,,,7-eicosatetraenoic acid C0:n x C0: cis-,8,,,7-eicosapentaenoic acid C0:n x C: cis--docosenoic acid C:n9 erucic acid C: cis-,6-docosadienoic acid C:n6 x C: cis-,6,9-docosatrienoic acid C:n x C: cis-7,0,,6-docosatetraenoic acid C:n6 adrenic acid x C: cis-7,0,,6,9-docosapentaenoic a. C:n clupanodonic acid x C:6 cis-,7,0,,6,9-docosahexaenoic a. C:6n x C: cis--tetracosenoic acid C:n9 nervonic acid ω-6 acid 6

163 Fatty acids Determination of butyric acid content in edible fats Appl. No. 00 In so-called mixed spreads unsaturated vegetable oils and fats replace a certain percentage of milk fat (MF). The proportion of MF in the product has to be labelled to protect the consumer from fraudulent malpractise, since the price of MF is higher than that of other relevant raw materials. In order to check correct labelling of mixed spreads, food inspection authorities need a reliable analytical method to determine the percentage of MF in the spread. The most distinctive feature of MF, i.e. the unique occurence of butyric acid, is most often determined by chromatography and used as an indicator for calculating the MF content in foodstuffs. MF (00 mg) is weighed in a 0 ml HS vial, ml sodium methoxide (0. % metallic sodium in methanol), ml internal standard solution (isobutyric acid, valeric acid) are added, and the vial is sealed with a PTFE-lined crimp cap. Column: PTIMA, m x 0. mm ID,.0 µm film, REF 76., max. temperature 0/60 C Injection: head space, split :, 0 C Carrier gas: ml/min H, 0 kpa headpressure Temperature: Detector: FID 0 C. C iso. C. C 0 C (7 min) C/min 60 C Column: Analysis of free carboxylic acids C C7 Appl. No. 070 PERMABND FFAP, 0 m x 0. mm ID, 0. µm film, REF 76.0, max. temperature 0/0 C Injection: 0. µl, split :0 Carrier gas: 0. bar N Temperature: Detector: FID 60 C. C. C. C iso. C. C iso 6. C 7. C6 iso 8. C6 9. C7 0 C 6 C/min 0 C (0 min) min min 8 F. Ulberth, Z. Lebensm. Unters. Forsch. A, 06 (998)

164 Food and cosmetic components Gas Chromatography Application Gallery Appendices Separation of C8 FAMEs Appl. No. 60 Column: PTIMA d-6, 0 m x 0.0 mm ID, 0. µm film, REF 766.0, max. temperature 0/60 C Injection: µl, 0. % FAME in hexane split 0 ml/min Carrier gas:. bar He Temperature: 0 C 6 C/min 80 C C/min 00 C ( min) Detector: MSD 80 C. C8:n9c. C8:n6c. C8:n9t. C8:0. C8:n 7 min 8 Analysis of FAMEs C0:0 C8: Appl. No Column: PERMABND FFAP, m x 0. mm ID, 0. µm film, REF 76., max. temperature 0/0 C Injection: 0. µl, split :0 Carrier gas: bar N Temperature: 00 C Detector: FID 60 C. C0:0. C6:0. C8:0. C8:n9c. C8:n6c 6. C8: (cis, cis, 9, ) 7. C8: (cis, trans, 9, ) 8. C8: (trans, trans, 9, ) min 6

165 FAMEs Analysis of FAMEs Appl. No. 00 Column: PTIMA d-, m x 0.0 mm ID, 0.0 µm film, REF 7600., max. temperature 0/60 C Injection: µl, split :0 Carrier gas:. bar He Temperature: 00 C ( min) 6 C/min 00 C ( min) Detector: MSD. C6:0. C8:0. C0:0. C:0. C:0 6. C:0 7. C: 8. C:0 9. C: 0. C:0. C6:. C6:0. C7:. C7:0. C8: 6. C8: 7. C8:0 8. C8: 9. C0: 0. C0:. C0:. C0:. C0:0. C0:. C:0 6. C0: 7. C: 8. C: 9. C:0 0. C:0. C:. C: min 6

166 Food and cosmetic components Gas Chromatography Application Gallery Appendices Analysis of FAMEs Appl. No. 070 Column: PTIMA d-6, 0 m x 0.0 mm ID, 0.0 µm film, REF 766.0, max. temperature 0/60 C Injection: µl, 0 mg FAME mix per ml in CH Cl, split :0 Carrier gas:. bar He Temperature: 0 C 6 C/min 80 C C/min 00 C ( min) Detector: MSD. C6:0. C8:0. C0:0. C:0. C:0 6. C:0 7. C:0 + C:nc 8. C:0 + C:nc 9. C6:n7c C6:0. C7:n7. C7:0. C8:n6. C8:n9c. C8:n6c 6. C8:n9t 7. C8:n6t C8:0 9. C8:n 0. C0:n6. C0:n6. C0:n. C0:n9. C0:n6. C0: C0:n 7. C:0 8. C:n9 9. C:n6 0. C:0. C:0. C:n9. C:0 6 6 min min 60 66

167 FAMEs Analysis of FAMEs in porcine fat Appl. No Column: PTIMA, m x 0. mm ID, 0. µm film, REF 76., max. temperature 60/80 C Injection: µl, split :0 Carrier gas: 60 kpa H Temperature: 0 C ( min) 0 C/min 0 C (0 min) Detector: FID 60 C. C:0. C:0. C6:0. C8:0. C0:0 6. C:0 7. C:0 8. C:0 9. C: 0. C:0 0 C/min C C/min 0 C/min 60 C 80 C C/min 00 C. C:nc. C:0. C:. C6:0. C6:n7c 6. C7:0 7. C7: 8. C8:0 9. C8:n9c 0. C8:n6c. C8:. C9:0. C0:0. C0:. C0: 6. C0:n6 7. C0: 8. C0: 9. C:0 0. C:. C:. C:6. C:0. C:n9 FAME standard FAMEs in porcine fat min min Courtesy of Dr. Bantleon, Mr. Leusche, Mr. Hagemann, VFG-Labor, Versmold, Germany 67

168 Food and cosmetic components Gas Chromatography Application Gallery Appendices Analysis of FAMEs from pork and salmon Appl. No / 000 Column: PTIMA, m x 0. mm ID, 0. µm film, REF 76., max. temperature 60/80 C Injection: µl, split :0 Carrier gas: 60 kpa H 0 C/min C C/min 0 C/min 60 C 80 C C/min 00 C Temperature: 0 C ( min) 0 C/min 0 C (0 min) Detector: FID 60 C Application 0990: FAME mixture Application 000: FAMEs from pork and salmon. C:0. C:0. C6:0. C8:0. C0:0 6. C:0 7. C:0 8. C:0 9. C:0 0. C:n. C:0. C:n. C6:0. C6:n7. C7:0 6. C7:n C8:0 8. C8:n9c+t 9. C8:n6t 0. C8:n6c. C8:n6. C8:n. C9:0. C0: C0:n9 6. C0:n6 7. C0:n6 8. C0:n6 9. C0:n 0. C:0. C0:n. C: C:n9. C:n6. C:0 6. C:6n 7. C:0 8. C:n Courtesy of Dr. Bantleon, Mr. Leusche, Mr. Hagemann, VFG-Labor, Versmold, Germany 0 min

169 FAMEs Fast analysis of a FAME mixture Appl. No. 80 Column: PTIMA, 0 m x 0. mm ID, 0. µm film, REF , max. temperature 60/80 C Injection: µl, split :0 Carrier gas: 80 kpa H 0 C/min Temperature: 0 C ( min) 60 C 6 C/min C/min 00 C 0 C ( min) Detector: FID 60 C. C:0. C6:0. C8:0. C0:0. C:0 6. C:0 7. C:0 8. C:0 9. C: 0. C:0. C:n. C6:0. C6:. C7:0. C7:n7 6. C8:0 7. C8:n9c+t 8. C8:n6t 9. C8:n6c 0. C8:n6. C8:n. C0:0. C0:n9. C0:n6. C0:n6 6. C0:n6 7. C0:n 8. C:0 9. C0:n 0. C:0. C:n9. C:n6. C:0. C:6n. C:0 6. C: min 69

170 Food and cosmetic components Gas Chromatography Application Gallery Appendices Analysis of FAMEs incl. cis/trans s C8: Appl. No. 060 Column: PTIMA 0, 60 m x 0. mm ID, 0. µm film, REF , max. temperature 60/80 C Injection:.0 µl of a FAME mixture, split : Carrier gas: 0 kpa H Temperature: 0 C/min 80 C 0 C C/min 60 C (0 min) Detector: FID 80 C. C:0. C:0. C8:0. C0:0. C:0 6. C:0 7. C:0 8. C:0 9. C: 0. C:0. C:. C6:0. C6:. C7:0. C7: 6. C8: C8:n9t 8. C8:n9c 9. C8: 0. C8:. C8:. C0:0. C0:. C0: C0: 6. C0: 7. C0: 8. C:0 9. C: 0. C:. C: min

171 FAMEs Analysis of FAMEs Appl. No Column: PERMABND FFAP, m x 0. mm ID, 0. µm film, REF 796., max. temperature 0/0 C Injection: 0. µl, split 0 ml/min Carrier gas: 0.7 bar H Temperature: 00 C 6 C/min 0 C ( min) Detector: FID 0 C. C8:0. C0:0. C:0. C:0. C:0 6. C:0 iso 7. C:0 8. C:0 iso 9. C:0 anteiso 0. C:0. C6:0 iso. C6:0. C6:. C7:0 iso. C7:0 anteiso 6. C7:0 7. C8:0 8. C8:n9c 9. C8:n9t 0. C8:. C9:0 + C8:n6. C9:0 cyclo. C8:n. C8:. C0:0 6. C0: 7. C0: 8. C0: 9. C:0 0. C0:. C0:n. C0:. C:0. C:. C:0 6. C: 7. C: min 7

172 Food and cosmetic components Gas Chromatography Application Gallery Appendices Analysis of a FAME standard Appl. No. 70 Column: PERMABND FFAP, 0 m x 0. mm ID, 0. µm film, REF 76.0, max. temperature 0/0 C Injection:.0 µl, FAME standard, 0 C Carrier gas: 80 kpa H Temperature: 00 C (0 min) C/min 0 C Detector: FID 0 C C0:0. C:0. C:0. C:0. C:0 6. C:n 7. C:0 8. C:n 9. C6:0 0. C6:n7. C7:0. C7:n min Courtesy of Dr. E. Most, Institut für Tierernährung und Ernährungsphysiolgie, Justus-Liebig-Universität, Gießen, Germany 9. C8:0. C8:n9t + C8:n9c. C8:n6t + C8:n6c 6. C8:n6 7. C8:n 8. C0:0 9. C0: 0. C0:. C:0. C0:n. C0:n6. C0:n6. C:0 6. C0:n 7. C:n9 8. C:n6 9. C:0 0. C:0. C:n9. C:6n 0 7

173 FAMEs Analysis of FAMEs in rapeseed oil by fast GC Appl. No. 00 Column: PERMABND FFAP, 0 m x 0.0 mm ID, 0.µm film, REF 780.0, max. temperature 0/0 C Injection: 0. µl Carrier gas: 70 kpa C/min 0 C/min Temperature: 60 C 0 C C/min 0 C ( min) 0 C (0 min) Detector: FID 00 C. C6:0. C8:0. C8:n9c. C8:. C8: 6. C0:0 7. C0: 8. C0: 9. C:0 + C:n9 0. C:. C:0. C: Analysis of FAMEs in rapeseed oil by fast GC Appl. No. 0 Column: PERMABND FFAP, 0 m x 0.0 mm ID, 0. µm film, REF 78.0, max. temperature 0/0 C Injection:.0 µl, 0 C Carrier gas: He C/min Temperature: 60 C 0 C (.67 min) Detector: FID 00 C a) fraction rich in oleic acid b) fraction of rapeseed oil rich in erucic acid. C:0. C:0. C6:0. C6:. C7:0 6. C8:0 7. C8:n9c 8. C8: 9. C8: 0. C0:0. C0:. C0:. C:0. C:0. C:n9 6. C: 7. C 8. C: a) b) min 0 0 min 0 7

174 Food and cosmetic components Gas Chromatography Application Gallery Appendices Column: Analysis of FAMEs from olive oil Appl. No. 00 Injection: Carrier gas:. ml/min H PERMABND FFAP, m x 0. mm ID, 0. µm film, REF 7., max. temperature 0/0 C µl, split 0 ml/min Temperature: 0 C ( min) 6 C/min 0 C Detector: FID 60 C. C6:0. C6:. C7:0. C8:0. C8: 6. C8: 7. C8: 0 0 min 6 7 Analysis of ethoxylated fatty alcohols C and C (TMS) Appl. No Column: PTIMA, m x 0.0 mm ID, 0. µm film, REF 7687., max. temperature 0/60 C Sample: ethoxylated fatty alcohols R ( CH CH ) n TMS, silylated with BSTFA, R = C and C Injection: 0. µl, 00 C, split :0 Carrier gas: cm/s He Temperature: 0 C ( min) Detector: MSD n = degree of ethoxylation n= n= n= n= n= n=6 n=7 0 C/min 0 C n=8 n=9 n=0 0 0 min 0 7

175 Lipids Analysis of triglycerides from butter Appl. No Column: PTIMA -TG, m x 0. mm ID, REF 76., max. temperature 70 C Injection: 0. µl Carrier gas: 80 kpa H Temperature: 80 C ( min) Detector: FID 80 C. Cholesterol. T-0. T-. T-8. T- 6. T-6 7. T-0 8. T- 0 C/min 0 C C/min 70 C (0 min) C min 0 7

176 Food and cosmetic components Gas Chromatography Application Gallery Appendices Analysis of triglycerides from butter Appl. No Column: PTIMA 7-TG, m x 0. mm ID, REF 760., max. temperature 70 C Injection: µl Carrier gas: 00 kpa H 60 C C/min 70 C (0 min) Temperature: Detector: FID 70 C not baseline-corrected. T-6. Cholesterol. T-0. T-6. T-0 6. T-6 7. T-0 8. T- Column: Injection: 0. µl Carrier gas: 80 kpa H min Analysis of triglycerides from olive oil Appl. No PTIMA -TG, m x 0. mm ID, REF 76., max. temperature 70 C 0 C/min 0 C Temperature: 80 C ( min) C/min 70 C (0 min) Detector: FID 80 C. T-0. T-. T C min 76

177 Miscellaneous Ceramide analysis by GC/MS Appl. No. 980 Column: PTIMA, 0 m x 0. mm ID, 0. µm film, REF 76.0, max. temperature 0/60 C Injection: 0. µl, 0 C, splitless Carrier gas: He, 0.6 bar He Temperature: 60 C C/min 60 C (0 min) Detector: MSD a) Ceramide IV (-hydroxy fatty acid ceramides, X = H). 8:0. :0. :0. :. :0 R 6. : 7. :0 8. 6: 9. 6:0 b) Ceramide III (nonhydroxy fatty acid ceramides, X = H). 8:0. : X Analysis of parsols Appl. No. 00 Column: PTIMA, m x 0.0 mm ID, 0.0 µm film, REF 7687., max. temperature 0/60 C Injection:.0 µl parsol mixture, :000 in MeH, split :0 Carrier gas: cm/s He 0 C/min Temperature: 0 C ( min) 0 C 0 C/min 0 C Detector: MSD. Parsol 000 = -( -Methylbenzylidene)camphor. Parsol MCX = p-methoxycinnamic acid -ethylhexyl ester (cis isomer). Parsol MCX (trans isomer) H C H C HN H H H C H C H C min 0 0 min K. Raith, J. Darius, R.H.H. Neubert, J. Chromatography A, 876 (000) 9 6 min 77

178 Food and cosmetic components Gas Chromatography Application Gallery Appendices Determination of benzimidazole anthelmintics in meat samples Appl. No. 00 Column: PTIMA, 0 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C Injection: µl, 70 C, splitless Carrier gas: ml/min He 0 C/min Temperature: 60 C (0. min) 0 C 6 C/min 00 C Detector: PND 0 C Chromatogram a) Chromatogram b) extract of a kidney sample from a pig treated extract of a blood sample from a pig treated with fenbendazole, derivatized with pentafluorobenzyl bromide with fenbendazole, derivatized with methyl iodide. and. PFB derivatives of fenbendazole. and. PFB derivatives of the metabolite fenbendazole sulphone 0 Fenbendazole N H C C NH N H 0 0 min 0 S xfendazole N H C C NH N H. and. Me derivatives of fenbendazole. and. Me derivatives of the metabolite fenbendazole sulphone. and 6. Me derivatives of the metabolite oxfendazole A.M. Marti, A.E. Mooser, H. Koch, J. Chromatography 98 (990) 7 0 S, min 0 Fenbendazole sulphone N H C C NH N S H 78

179 Miscellaneous Determination of melamine, ammeline, ammelide and cyanuric acid in accordance with FDA regulations Appl. No. 00 Column: PTIMA MS, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/60 C Injection: µl, 0 C, split 0 ml/min Carrier gas: 0. ml/min He C/min Temperature: 7 C ( min) 0 C Detector: MSD. Cyanuric acid (R = R = R = H). Ammelide (R = NH, R = R = H). Ammeline (R = R = NH, R = H). Melamine (R = R = R = NH ) R N R N N R Analysis of D, L-a-tocopherol acetate (vitamin E acetate) Appl. No. 00 Column: PTIMA, m x 0. mm ID, 0. µm film, REF 7600., max. temperature 0/60 C Injection: µl, 0 C, split :00 Carrier gas: 0 psi N 0 C ( min) 8 C/min 90 C Temperature: Detector: FID 0 C. D,L-a-Tocopherol acetate [. ng/ml] H C CH H C. Tetratriacontane [.0 ng/ml] 0 min 0 min 6 79

180 Drugs Pharmaceutical ingredients Gas Chromatography Application Gallery Appendices Drugs Pharmaceutical ingredients 80

181 Drugs of abuse Analysis of amphetamines App. No. 060 Column: PTIMA d-, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/60 C Injection:.0 µl, 0 µg/ml in methanol, 0 C, split 0 ml/min Carrier gas: ml/min He (.0) 0 C/min Temperature: 60 C ( min) 0 C 6 C/min 0 C ( min) Detector: MSD (Ion Trap). Amphetamine. Methamphetamine.,-Methylenedioxyamphetamine (MDA).,-Methylenedioxymethamphetamine (MDMA).,-Methylenedioxyethylamphetamine (MDE) Compound Alprazolam Cl H C Structures of selected drugs N N N N Noscapine = Narcotine Meconin N Structure Midazolam Cl H C N Papaverine Methadone N N F N H C C H C N( ) Morphine alkaloids N R R 6 R Substance R R R Morphine H H Nalorphine H H CH -CH=CH Codeine H Heroin C C 0 0 min Courtesy of Mr. S. Motsch, Mr. P. Stein, Zollkriminalamt, Köln, Germany 8

182 Drugs Pharmaceutical ingredients Gas Chromatography Application Gallery Appendices Compound Structure Compound Structure Clomethiazole Diphenhydramine Tilidine Thioridazine Butaperazine Lidoflazine F Cl H C N H C H C N F S N CC H N( ) N S N N Nicotine N H C N( ) Caffeine H C N N S N S H N H C C C H 7 Methaqualonee Thiothixene Quinine H C N H C N N N N H C N N N S H C H H H N N H S N( ) 8

183 Drug screening Drug screening analysis Appl. No. 000 Column: PTIMA, m x 0. mm ID,.0 µm film, REF 76., max. temperature 0/0 C Injection: µl in methanol, 0. min splitless, 70 C Carrier gas: 0 ml/min H (constant flow) Temperature: C Detector: N-FID 00 C [ng]. Amphetamine [0]. Clomethiazole [0]. Nicotine [0]. Ephedrine [00]. Barbital [00] 6. Phenacetin [00] 7. Caffeine [0] 8. Diphenhydramine [0] 9. Tilidine [00] 0. Cyclobarbital (00) 0 C/min 77 C. -Chloro--aminobenzophenone (int. std.) [0]. Methaqualone [0]. Codeine [00]. Morphine [00]. Quinine [00] 6. Thioridazine (int. std.) [00] 7. Butaperazine [ Thiothixene 9. Thiothixene artefact } [00] 0. Lidoflazine [00] min Courtesy of Institut für Rechtsmedizin der Heinrich-Heine-Universität, Düsseldorf, Germany 8

184 Drugs Pharmaceutical ingredients Gas Chromatography Application Gallery Appendices Analysis of drugs of abuse Appl. No. 900 Column: PTIMA MS, m x 0. mm ID, 0. µm film, REF 760., max. temperature 0/60 C Injection: CI/PTV, split ratio 8 Carrier gas:.0 ml/min, 7.9 cm/s Total flow: 0.0 ml/min Pressure: 8.7 kpa ( min) 7 kpa/min.6 kpa/min 08 kpa kpa 8 kpa/min 0 kpa (.7 min) 0 C/min Temperature: 70 C ( min) 00 C 7 C/min 70 C 0 C/min 00 C (.7 min) Detector: MSD 80 C. Amphetamine. Methamphetamine. Methadone. Methaqualone. Codeine 6. Morphine 7. Nalorphine 8. Alprazolam min Courtesy of Mr. Szigan, Laboratorium Lembke- Lempfrid, Köln, Germany Analysis of cocaine Appl. No. 000 Column: PTIMA, 0 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C Sample: Injection: µl Carrier gas: N Temperature: 70 C mg of drug mixure dissolved in 600 µl CH Cl and derivatised with MSTFA (REF ). 7. C/min 80 C ( min) Detector: FID 0 C. H-Lidocaine, MSTFA derivative. N-Lidocaine, MSTFA derivative. Cocaine. Internal standard H C Lidocain NH N(C H ) N Cocaine 0 min 8

185 Drugs of abuse Analysis of heroin Appl. No. 000 Column: PTIMA, 0 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C Sample preparation: mg of a drug mixture are dissolved in 600 µl CH Cl and derivatised with MSTFA (REF ). Injection: µl Carrier gas: N 7. C/min 80 C Temperature: 70 C (9. min) Detector: FID 0 C. Diparacetamol (MSTFA derivative). Monoparacetamol ((MSTFA derivative). Caffeine. Glucose (MSTFA derivative). Internal standard 6. Acetylcodeine 7. Acetylmorphine (MSTFA derivative) 8. Diacetylmorphine (heroin) 9. Papaverine 0. Narcotine (MSTFA derivative) Analysis of commercial heroin Appl. No. 060 Column: PTIMA, 0 m x 0.0 mm ID, 0. µm film, REF , max. temperature 0/60 C Injection: µl, 0 s splitless Carrier gas: 0 cm/s He 0 C/min Temperature: 60 C ( min) 0 C 0 C/min 80 C Detector: MSD. Paracetamol. Caffeine. Acetylcodeine. Monoacetylmorphine. Diacetylmorphine (heroin) 6. Papaverine 7. Narcotine min 0 0 min Courtesy of A. Jeger, Gerichtschemisches Institut, Basel, Switzerland 0 8

186 Drugs Pharmaceutical ingredients Gas Chromatography Application Gallery Appendices Analysis of heroin (street quality) Appl. No. 070 Column: PTIMA d-, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/60 C Sample: mg heroin (street quality) + mg tetracosane + ml CHCl + 00 µl pyridine + 0 µl MSTFA Injection:.0 µl, 0 C, split 0 ml/min Carrier gas: ml/min He (.0) Temperature: 0 C 9 C/min 80 C ( min) Detector: MSD (ion trap). Paracetamol di-tms. Glucose TMS peak. Citric acid -TMS. Glucose TMS peak. Paracetamol TMS 6. Glucose TMS peak 7. Meconin 8. Caffeine 9. Tetracosane 0. Morphine di-tms. Monoacetylmorphine TMS. Acetylcodeine. Acetylthebaol. Diacetylmorphine (heroin). Papaverine min 0 Courtesy of Mr. S. Motsch, Mr. P. Stein, Zollkriminalamt, Köln, Germany Analysis of hashish Appl. No. 07 Column: PTIMA d-, 60 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C Carrier gas: 80 kpa (6 psi) He 0 C/min Temperature: 00 C 60 C Detector: MSD. Caryophyllene H C CH H C. Cannabichromene H C C H. Tetrahydrocannabinol (THC) H C H C H H. Cannabinol H C H C H H C H C H 0 0 min N. Bertram, LTA Labor f. Toxikol. u. Analytik, Königswinter, Germany 86

187 Pharmaceuticals Analysis of barbiturates Appl. No. 090 Column: PTIMA, m x 0. mm ID, 0. µm film, REF 7606., max. temperature 0/60 C Injection: µl, split :0 Carrier gas:.8 bar N 0 C 8 C/min 00 C Temperature: Detector: FID 80 C. Pentobarbital. Secobarbital. Phenobarbital. Cyclobarbital R R H N NH Analysis of narcotic analgesic drugs in urine Appl. No. 070 Column: PTIMA 7, m x 0.0 mm ID, 0.0 µm film, REF 7606., max. temperature 0/0 C Injection:.0 µl of a liquid extract of a urine sample, :0 in MeH, concentration of peaks approximately 0. µg/ml, s splitless Carrier gas: cm/s He Temperature: 0 C ( min) 8 C/min 0 C Detector: MSD. Levomethorphan. Dextrorphan. unknown metabolite. Di(-ethylhexyl) phthalate. unknown metabolite 0 min 0 Compound R R Barbital C H C H Pentobarbital C H CH( )-C H 7 Secobarbital CH -CH=CH CH( )-C H 7 Phenobarbital C H C 6 H Cyclobarbital C H 0 min Dextromethorphan and metabolites courtesy of Dr. Baumann, Hôpital Prilly, Switzerland 87

188 Drugs Pharmaceutical ingredients Gas Chromatography Application Gallery Appendices Analysis of b-agonists from urine Appl. No Column: PTIMA d-, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/60 C Injection:.0 µl, 0 µg/l from urine, derivatised with HMDS/TMCS 9:, 80 C, splitless Temperature: 00 C ( min) C/min 00 C Detector: MSD 00 C 6. Mabuterol-TMS. Salbutamol-TMS. Clenbuterol-TMS + Clenbuterol-D 6 -TMS. Cimaterol-TMS. Hydroxymethyl-clenbuterol-TMS 6. Isoxsuprine-TMS 7. Ractopamine-TMS 0 0 Courtesy of Mr. Wohlfarth, Mr. Rosensprung, Staatl. Untersuchungsamt, Wiesbaden, Germany Structure Compound R R R R R R R H H H Mabuterol CF H NH Cl C( ) N R Clenbuterol Cl NH Cl C( ) Cimaterol CN NH H CH( ) Salbutamol CH H H H C( ) H N R R Isoxsuprine C 6 H Ractopamine H CH p-c 6 H H min 7 88

189 Pharmaceuticals Analysis of acidic drugs from waste water Appl. No. 000 Sample preparation: 00 µl sample is derivatised with 0 µl of a 0. M methanolic TMSH solution (REF 700.0). Column: PTIMA d-, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/60 C Injection: µl ( µl/s), 7 C, splitless Temperature: C/min 70 C ( min) 80 C C/min 00 C (0 min) Detector: MSD. Clofibric acid 9. Ibuprofen.,-Dichlorophenoxyacetic acid (int. std.). Gemfibrozil 0. Fenoprofen 6 6. Naproxen 7. Ketoprofen Indomethacin 9. Tolfenamic acid 0. Diclofenac. Meclofenamic acid 0 0 min Courtesy of Staatliches Umweltamt Aachen, Germany Structure Compound R R R R R Clofibric acid H Cl C( ) CH Gemfibrozil (CH ) C( ) CH R R R R R NH R Diclofenac Cl H Cl CH CH Meclofenamic acid Cl Cl CH Tolfenamic acid H Cl CH Naproxen CH ther formulas see structure index from page 9. 89

190 Drugs Pharmaceutical ingredients Gas Chromatography Application Gallery Appendices Determination of picogram levels of midazolam and metabolites in human plasma Appl. No. 80 Column: PTIMA, m x 0. mm ID, 0. µm film, REF 7600., max. temperature 0/60 C Injection: µl, 00 C, pulsed splitless Carrier gas:. ml/min He (8.6 psi, cm/s) 0 C/min Temperature: 8 C ( min) 00 C 0 C/min 0 C ( min) Detector: MSD. Midazolam. N-Ethyloxazepam - (int. std.). -Hydroxymidazolam. -Hydroxymidazolam 6 min C. B. Eap et al., J. Chromatography B, 80 (00) 9 Analysis of amitriptyline Appl. No. 070 Column: PTIMA Amine, m x 0.0 mm ID, 0. µm film, REF 76., max. temperature 00/0 C Injection: 0 C Carrier gas: Temperature: Detector:. Diphenhydramine. Amitriptyline cm/s He 70 C ( min) MSD N( ) 0 C/min 90 C. -(p-methylphenyl)--phenylhydantoin (MPPH) 0 min 90

191 Steroids Analysis of Fusarium mycotoxins Appl. No Column: PTIMA 70, m x 0. mm ID, 0. µm film, REF 768., max. temperature 00/0 C Injection: Carrier gas: µl, 0 C, splitless 0 cm/s N, linear velocity at 60 C Temperature: 60 C ( min) 6 C/min 0 C 0 C/min 70 C ( min) Detector: 6 Ni-ECD 0 C. Nivalenol (0.007 ppm) H H H C H H C H H H. Deoxynivalenol (0.006 ppm). -o-acetyl--deoxynivalenol (0.006 ppm). -Acetyldeoxynivalenol (0.00 ppm) Analysis of free steroids Appl. No. 00 Column: PTIMA 7, m x 0. mm ID,.0 µm film, REF 7677., max. temperature 00/0 C Injection: µl (0. % in CH Cl ) split :0 Carrier gas: 0 kpa N Temperature: 60 C Detector: FID 80 C. Androsterone H C. Estrone H C H H C H. Progesterone. Cholesterol H C H C H C H C H H C H C H C 6 7 min F. Walker, B. Meier, Journal of AAC Int. Vol. 8, No. (998) min 9

192 Drugs Pharmaceutical ingredients Gas Chromatography Application Gallery Appendices Quantification of,-dinor-thromboxane B and,-dinor-6-oxo-prostagladin Fa in human urine Appl. No. 90 Column: PTIMA 7, 0 m x 0. mm ID, 0. µm film, REF 760.0, max. temperature 0/0 C Injection: 80 C, splitless Carrier gas: kpa He C/min Temperature: 70 C ( min) 80 C C/min 0 C Detector: MSD (quadrupole) Chromatograms: a) endogenous,-dinorthromboxane B b) tetradeuterated,-dinorthromboxane B c) endogenous,-dinor-6-oxoprostaglandin F a d) tetradeuterated,-dinor-6-oxoprostaglandin F a a) b) c) d) 0 H H H H min H H CH 0 min CH D. Tsikas, F.M. Böhme, I. Fuchs, J. Fröhlich, J. Chromatography A, 88 (000) 9 Analysis of steroids Appl. No. 000 Column: PTIMA, 0 m x 0.0 mm ID, 0. µm film, REF , max. temperature 0/60 C Carrier gas: He Temperature: 00 C ( min) C/min 0 C Detector: MSD. Androstanediol H C H H H C. Androstanolone ( st isomer). Androstanolone ( nd isomer) H C H H C. Testosterone H C H C. Progesterone 0 H 6 min 8 9

193 Miscellaneous Separation of endocrinic compounds Appl. No. 60 Column: PTIMA d-6, 0 m x 0. mm ID, 0. μm film, REF 768.0, max. temperature 0/60 C Injection:.0 μl standards 0 mg/l, nonylphenol (NP) 0 mg/l in methanol, splitless Carrier gas:.0 ml/min H, constant flow Temperature: C/min 60 C/min 80 C 0 C 0 C Detector: FID 00 C. -t-ctylphenol-. Bisphenol B (R = C H ). Diethylstilbestrol. tech. -Nonylphenol (NP). Bisphenol A (R = ) H C R H NP NP NP H NP9 H H C H 6. Mestranol (A, R = ) 7. Testosterone 8. Ethinylestradiol (A, R = H) 9. Progesterone NP NP NP6 NP7 NP8 NP NP0 A R H C H CCH..6 min min Courtesy of Mr. Stollenwerk, Inst. f. Chemische Verfahrenstechnik, RWTH Aachen, Germany 9

194 Drugs Pharmaceutical ingredients Gas Chromatography Application Gallery Appendices Separation of dicarboxylic acids for profiling of urinary acidic metabolites Appl. No. 90 Column: PTIMA d-6, 0 m x 0. mm ID, 0. µm film, REF , max. temperature 0/60 C Injection: µl, 0 C, split :0 Carrier gas: 80 kpa H 0 C/min 0 C Temperature: 80 C Detector: FID 80 C. -Hydroxyisovaleric acid ( ) C(H) CH CH. Lactic acid [H C) CH(H) CH]. Succinic acid [HC (CH ) CH]. Fumaric acid [HC CH=CH CH]. Glutaric acid [HC (CH ) CH] 6. -Methylglutaric acid 7. -Phenylbutyric acid (int. std.) 8. -Hydroxy--methylglutaric acid 9. Adipic acid [HC (CH ) CH] 0. -Hydroxyglutaric acid. -xoglutaric acid. Hippuric acid (benzoylglycine) HC NH Sample: urine of a patient with -hydroxy-- methylglutaric acidurea, derivatised with ethyl chloroformate P. Hušek et al., Chromatographia 8 (00) min 0 Sample: urine of a patient with fumarase enzyme impaired function, derivatised with ethyl chloroformate 6 7 min Sample: urine of a patient with glutaric acidurea of the I. type, derivatised with ethyl chloroformate min 9

195 Application Gallery Petrochemical products christian / 9

196 Petrochemical products Gas Chromatography Application Gallery Appendices Analysis of hydrocarbons C C Appl. No Column: PTIMA, m x 0. mm ID,.0 µm film, REF 769., max. temperature 00/0 C Injection: 00 µl, split 60 ml/min Carrier gas: 0.08 bar N Temperature: 6 C Detector: FID 0 min 6 7. Methane. Ethane. Propane. i-butane-. Butane 6. Methylbutane 7. Pentane Analysis of hydrocarbons C C Appl. No. 000 Column: PERMABND P-00, 00 m x 0. mm ID, 0. µm film, REF , max. temperature 00/0 C Injection: 00 µl, split 00 ml/min Carrier gas: 00 kpa H (. ml/min) Temperature: C Detector: FID 0 C. Methane. Ethane. Propane. i-butane-. Butane 6. Methylbutane 7. Pentane 6 min

197 Hydrocarbons Analysis of tea warmer candle Appl. No Column: PTIMA -TG, m x 0. mm ID, REF 76., max. temperature: 70 C Injection:.0 µl, split 00 ml/min Carrier gas: 0 kpa H (. ml/min) 0 C/min Temperature: 80 C ( min) 00 C C/min 70 C ( min) Detector: FID 80 C, baseline corrected. C. C8. C0. C. C 6. C6 7. C8 8. C0 9. C 0. C. C6. C8. C0. C. C 6. C min 97

198 Petrochemical products Gas Chromatography Application Gallery Appendices Analysis of hydrocarbons acc. to IS DIS 977- (H-) Appl. No Sample: standard ( mg/l) extracted with 0:900 ml n-hexane:h, ph with H S, (extraction solvent n-hexane with n-c0 and n-c0 standard), then evaporated with N to ml Column: PTIMA, m x 0. mm ID, 0. µm film, REF 760., max. temperature 0/60 C Injection:.0 µl on column Carrier gas: ml/min H C/min Temperature: 60 C ( min) 0 C (9 min) Detector: FID (0:00:0 ml/min H : :He). n-c 0. n-c min 6 For a sample chromatogram of a mixture of diesel and heavy oil see application 0600 at Courtesy of Mr. W. Elling, INFU, Dortmund, Germany 98

199 Hydrocarbons Analysis of commercial gas oil Appl. No Column: PTIMA 7, m x 0.0 mm ID, 0. µm film, REF 7606., 6 max. temperature 0/0 C Injection:.0 µl gas oil, diluted :00 in MeH, split :0 Carrier gas: cm/s He C/min Temperature: 80 C ( min) 0 C Detector: MSD. C0 0. C9. C. C0. C. C. C. C. C. C 6. C. C 7. C6 6. C 8. C7 7. C6 9. C min 7 Analysis of unleaded gasoline Appl. No Column: PERMABND P-00, 00 m x 0. mm ID, REF , max. temperature 00/0 C Injection: 0. µl, split 70 ml/min Carrier gas: 00 kpa H (. ml/min) Temperature: C ( min) C/min 00 C ( min) Detector: FID 0 C n-pentane. n-hexane. Benzene. n-heptane. Toluene 6. n-ctane 7. Ethylbenzene 8. m-xylene 9. p-xylene 0. o-xylene. n-nonane. Methyl--ethylbenzene.,,-Trimethylbenzene.,,-Trimethylbenzene.,,-Trimethylbenzene 6. Naphthalene 7. -Methylnaphthalene 8. -Methylnaphthalene 9. Dimethylnaphthalene isomers min 99

200 Petrochemical products Gas Chromatography Application Gallery Appendices Pyrolysis GC of polyethylene and polypropylene Appl. No. 000 Column: PTIMA MS, 60 m x 0. mm ID, µm film, REF 76.60, max. temperature 0/60 C Injection: 70 µg solid, headspace Temperature: 60 C ( min) 8 C/min 0 C Detector: MSD min 90 Courtesy of Mrs. Engel, VW, Wolfsburg, Germany Pyrolysis GC of chloroprene rubber Appl. No. 000 Column: PTIMA MS, 60 m x 0. mm ID, µm film, REF 76.60, max. temperature 0/60 C Injection: g solid is dissolved in 0 ml of hexane or methanol, 00 µl of this solution are pyrolysed in a crucible, headspace Temperature: 60 C ( min) 8 C/min 0 C Detector: MSD min Courtesy of Mrs. Engel, VW, Wolfsburg, Germany 00

201 Application Gallery Chiral GC D/L-Fenchone from fennel Please note: enantiomer separations have been arranged by increasing molecular size. Several chromatograms show separations of homologous series; they are listed according to the smallest molecule of the mixture. Related molecules or families of compounds may be found on earlier or later pages depending on size. Specific compounds can be found in the chromatogram index from page 76. 0

202 Chiral separations Gas Chromatography Application Gallery Appendices Analysis of amino acid enantiomers Appl. No. 76 Column: FS-LIPDEX E, m x 0. mm ID, REF 768., max. temp. 00/0 C Injection: 0 C Carrier gas:. ml/min He, purge flow 6.9 ml/min Temperature: 60 C ( min) C/min 8 C ( min) Detector: MSD 80 C (N-pentafluoropropionyl -propyl esters). Aminoisobutyric acid. L-Isovaline. D-Isovaline. D-Valine. D-Alanine 6. L-Alanine 7. L-Valine 8. D-Isoleucine 9. D-Leucine 0. L-Isoleucine. L-Leucine. Glycine. L-Proline. D-Proline. D-Aspartic acid 6. D-Methionine 7. L-Methionine 8. L-Aspartic acid 9. D-Phenylalanine 0. D-Glutamic acid. L-Glutamic acid. D-rnithine. D-Lysine. L-Lysine min. Vandenabeele-Trambouze et al., Chromatographia (00) Suppl., S- S Summary of important amino acids Formula Common name Systematic name Structure C H N glycine aminoethanoic acid NH -CH -CH C H 7 N alanine -aminopropanoic acid -CH(NH )-CH C H 7 N aspartic acid -aminobutanedioic acid HC-CH -CH(NH )-CH C H 9 N aminoisobutyric acid -amino--methylpropanoic acid ( ) C(NH )-CH C H 9 N proline pyrrolidine-- carboxylic acid C H 9 N glutamic acid -aminopentanedioic acid HC-(CH ) -CH(NH )-CH C H N valine -amino--methylbutanoic acid ( ) CH-CH(NH )-CH C H N isovaline -amino--methylbutanoic acid H C -C( )(NH )-CH C H N S methionine -amino--(methylsulfanyl)-buta- -S-(CH ) -CH(NH )-CH noic acid C H N ornithine,-diaminopentanoic acid H N-(CH ) -CH(NH )-CH C 6 H N leucine -amino--methylpentanoic acid ( ) CH-CH -CH(NH )-CH C 6 H N isoleucine -amino--methylpentanoic acid C H -CH( )-CH(NH )-CH C 6 H N lysine,6-diaminohexanoic acid H N-(CH ) -CH(NH )-CH C 9 H N phenylalanine -amino--phenyl-propanoic acid C 6 H -CH -CH(NH )-CH 0

203 Compounds C and greater Enantiomer separation of epichloro- and epibromohydrin Appl. No. 06 Column: FS-LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Injection: 0. µl (% in CH Cl ) split ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 6 C Detector: FID 0 C. Epichlorohydrin (C H Cl). Epibromohydrin (C H Br) CH Cl Enantiomer separation of epichlorohydrin Appl. No. 880 Column: FS-LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Sample: compounds dissolved in Injection: MeH (:00) 0. µl sample + 0. µl air, split 80 ml/min, 0 C Carrier gas: 8 kpa N Temperature: 0 C Detector: FID 0 C a) racemate (S/R 0:0) b) S/R :98 c) S/R 99:. S-Epichlorohydrin (C H Cl). R-Epichlorohydrin CH Br a) b) c) 0 min min 6 Courtesy of B. Mischke, Schulung und Chromatographie, Berlin (Germany) 0

204 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of propane-,-diol and butane-,-diol (TFA) Appl. No. 088 Column: LIPDEX D, m x 0. mm ID, REF 766.0, max. temperature 00/0 C Carrier gas: 0.7 bar H Temperature: 0 C Detector: FID. Propane-,-diol (C H 8 ). Butane-,-diol (C H 0 ) W.A. König et al., HRC (988) Enantiomer separation of chiral amines and amino alcohols (N,-TFA) Appl. No. 0 Column: LIPDEX D, 0 m x 0. mm ID, REF 766.0, max. temperature 00/0 C Carrier gas: bar H Temperature: 0 C C/min 70 C Detector: FID R enantiomers are eluted first.. -Aminopentane (C H N). -Aminohexane (C 6 H N). -Amino--methylhexane (C 7 H 7 N). -Aminoheptane (C 7 H 7 N). -Amino-6-methylheptane (C 8 H 9 N) 6. -Aminooctane (C 8 H 9 N) 7. Valinol (C H N) 8. Phenylethylamine (C 8 H N) 9. Alaninol (C H 9 N) min W.A. König et al., HRC (988) min Enantiomer separation of amino alcohols (N,-TFA) Appl. No. 0 Column: LIPDEX B, 0 m x 0. mm ID, REF 76.0, max. temperature 00/ 0 C Carrier gas: H Temperature: 0 C Detector: FID. -Aminopropan--ol (C H 9 N). Alaninol = -aminopropan--ol (C H 9 N). -Aminobutanol (C H N). Leucinol (C 6 H N) D L D L 0 0 min Courtesy of Prof. W.A. König, Hamburg, Germany D L 0

205 Compounds C and greater Enantiomer separation of -butin--ol (TFA) Appl. No. 07 Column: LIPDEX C, 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C HC Carrier gas: bar H H (TFA) Temperature: 0 C R S Detector: FID C H 6 S R W.A. König et al., HRC (989) 9 min min Enantiomer analysis of,-diols (cyclic carbonates) Appl. No. 086 Column: LIPDEX B, 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C Carrier gas: bar H Temperature: 6 C C/min 0 C Detector: FID.,-Dimethylbutane-,-diol (C 7 H, R = t-c H 9 ). -Methylbutane-,-diol (C 6 H 0, R = CH( ) ). Propane-,-diol (C H 6, R = ). Butane-,-diol (C H 8, R = C H ). Pentane-,-diol (C 6 H 0, R = C H 7 ) 6. Hexane-,-diol (C 7 H, R = C H 9 ) 6 7. Heptane-,-diol (C 8 H, R = C H ) 8. Phenylglycol (C 9 H 8, R = C 6 H ) 9. ctane-,-diol (C 9 H 6, R = C 6 H ) 0. -ctene-7,8-diol (C 9 H, R = (CH ) -CH=CH ). Nonane-,-diol (C 0 H 8, R = C 7 H ) R min W.A. König et al., HRC (988) 6 6 0

206 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of -bromopropionic acid methyl ester Appl. No. 080 Column: FS-LIPDEX A, m x 0. mm ID, REF 760., max. temperature 00/0 C Injection: µl (% in CH Cl ) split 00 ml/min Carrier gas: psi He Temperature: 60 C Detector: FID 0 C C H 7 Br H C Br 0 min Courtesy of Mr. B. Sievers, Riedel-de Haen AG, Seelze, Germany Enantiomer separation of -chloropropionic acid methyl ester Appl. No. 0 Column: FS-LIPDEX C, 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C Split: 00 ml/min Carrier gas: 0 kpa He Temperature: 70 C Detector: FID 00 C. L--Chloropropionic acid methyl ester ee = 96% }. D--Chloropropionic acid methyl ester C H 7 Cl min H C Cl 0 06

207 Compounds C C 8 Enantiomer separation of,-epoxyalkanes Appl. No. 06 Column: FS-LIPDEX E, m x 0. mm ID, REF 768., max. temperature 00/0 C Injection: 0. µl split ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 0 C ( min) C/min 0 C Detector: FID 0 C.,-Epoxybutane (C H 8 ).,-Epoxyhexane (C 6 H ).,-Epoxyoctane (C 8 H 6 ) 0 min Enantiomer separation of aldols (TFA) Appl. No. 096 Column: LIPDEX B, 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C Carrier gas: bar H Temperature: 8 C Detector: FID -Hydroxybutyraldehyde (C H 8 ) -Methyl--hydroxyvaleraldehyde (C 6 H ) H C (TFA) H H H C (TFA) H H 0 min 0 0 min 0 W.A. König et al., HRC (988)

208 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of methyl lactate Appl. No. 076 Appl. No. 077 Column: FS-LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Injection: 0. µl ( % in CH Cl ) split 0 ml/min Carrier gas: Temperature: 80 C Detector: FID 0 C (C H 8 ). S-( ). R-(+) 0 0 kpa H (. ml/min) H C min H Column: FS-HYDRDEX b-pm, 0 m x 0. mm ID, REF 770.0, max. temperature 0/0 C Injection: 0. µl ( % in CH Cl ) split 0 ml/min Carrier gas: 0 kpa H (.7 ml/min) Temperature: 90 C Detector: FID 0 C (C H 8 ). R-(+). S-( ) 0 min 0 H C H 08

209 Compounds C C 6 Enantiomer separation of lactic and -hydroxybutyric acid methyl esters (TFA) Appl. No. 07 Column: LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Carrier gas: H Temperature: 0 C Detector: FID. Lactic acid methyl ester (C H 8 ). -Hydroxybutyric acid methyl ester (C H 0 ) Enantiomer separation of glyceric and tartaric acid methyl esters (TFA) Appl. No. 07 Column: LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Carrier gas: bar H Temperature: 90 C Detector: FID. D-Glyceric acid methyl ester (C H 8 ). L-Glyceric acid methyl ester. L-Tartaric acid dimethyl ester (C 6 H 0 6 ). D-Tartaric acid dimethyl ester D L D L. H C (TFA) H. H C (TFA) H H C (TFA) H (TFA) H H C (TFA) H H (TFA) H C 0 min 0 min Courtesy of Prof. W.A. König, Hamburg, Germany W.A. König, S. Lutz, G. Wenz, Angew. Chem. Int. Ed. Engl. 7 (988) Enantiomer separation of erythrose (TFA) Appl. No. 06 Column: LIPDEX A, 0 m x 0. mm ID, H REF 760.0, H (TFA) max. temperature 00/0 C (TFA) H Carrier gas: H Temperature: 80 C H (TFA) Detector: FID C H 8 Courtesy of Prof. W.A. König, Hamburg, Germany 0 min 0 09

210 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of -methyl--hexene, -bromobutane and -methylcyclohexene Appl. No Column: LIPDEX C, 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C Injection: headspace Br Carrier gas: bar H CH Temperature: 0 C H C H C Detector: FID. -Methyl--hexene (C 7 H ). -Bromobutane (C H 9 Br). -Methylcyclohexene (C 7 H ) W.A. König et al., HRC (989) 9 min Enantiomer separation of chiral alkyl bromides Appl. No. 00 Column: LIPDEX C, 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C Carrier gas: H Temperature: 0 C Detector: FID H C H C H C. -Bromobutane (C H 9 Br) Br Br Br. -Bromopentane (C H Br). -Bromohexane (C 6 H Br) Courtesy of Prof. W.A. König, Hamburg, Germany 0 0 min 0

211 Compounds C C 7 Enantiomer separation of butane-,-diol Appl. No. 090 Column: FS-HYDRDEX b-pm, 0 m x 0. mm ID REF 770.0, max. temperature 0/0 C Injection: µl (% in CH Cl ) split 0 ml/min Carrier gas: 0 kpa H (.7 ml/min) Temperature: 00 C Detector: FID 0 C (C H 0 ). RR/SS. meso Enantiomer separation of butane-,-diol (TFA) Appl. No. 089 Column: FS-LIPDEX E, 0 m x 0. mm ID, REF 768.0, max. temperature 00/0 C Injection: 0. µl ( % in CH Cl ) split 00 ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 80 C Detector: FID 0 C (C H 0 ). meso. RR/SS 0 0 min 0 min

212 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of butane-,-diol Appl. No. 0 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C a b c Temperature: 9 C 6 C 8 C Resolution: < partial TFA derivative Appl. No. 0 Column a) Temperature: 7 C Resolution: 9.98 Column a) Temperature: 7 C Resolution: 8.79 TFA derivative Appl. No. 0 Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France Enantiomer analysis of,-diols (TFA) Appl. No. 08 Column: LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Carrier gas: H Temperature: 8 C ( min) C/min 0 C Detector: FID. Butane-,-diol (C H 0 ). Pentane-,-diol (C H ). Hexane-,-diol (C 6 H ). Cyclohexane-trans-,-diol (C 6 H ). Heptane-,-diol (C 7 H 6 ) 6. Cycloheptane-trans-,-diol (C 7 H ) ctane-,-diol (C 8 H 8 ) Phenylglycol (C 8 H 0 ) 9. Nonane-,-diol (C 9 H 0 ) Courtesy of Prof. W.A. König, Hamburg, Germany min

213 Compounds C and greater Enantiomers separation of butane-,,-triol (TFA) Appl. No. 09 Column: LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Carrier gas: H Temperature: 70 C Detector: FID C H 0 Enantiomer separation of -butylamine (TFA) Appl. No. 00 Column: FS-LIPDEX D, m x 0. mm ID, REF 766., max. temperature 00/0 C Injection: 0. µl ( % in CH Cl ) split 90 ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 0 C Detector: FID 0 C C H N H C NH (TFA) 0 0 min Courtesy of Prof. W.A. König, Hamburg, Germany 0 min

214 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of -aminobutanol- (N,-TFA) Appl. No. 070 Column: FS-LIPDEX A, m x 0. mm ID, REF 760., max. temperature 00/0 C Injection: µl (% in CH Cl ) split 00 ml/min Carrier gas: psi He Temperature: 90 C Detector: FID 0 C C H N 0 min 0 Courtesy of Mr. B. Sievers, Riedel-de Haen AG, Seelze, Germany Enantiomer separation of a-methylbutyrolactone Appl. No. 08 Column: FS-LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Injection: 0. µl ( % in CH Cl ) split ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 90 C Detector: FID 0 C C H 8 H C 0 min 0

215 Compounds C and greater Enantiomer analysis of g-lactones Appl. No. 098 Column: LIPDEX B, 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C Carrier gas: H Temperature: C C/min 00 C Detector: FID. a-methylbutyrolactone (structure A, C H 8 ). g-valerolactone (structure C, C H 8, R = ). g-hexalactone (structure C, C 6 H 0, R = C H ). g-heptalactone (structure C, C 7 H, R = C H 7 ). g-ctalactone (structure C, C 8 H, R = C H 9 ) 6. Tetrahydroisobenzofuranone (structure B, C 8 H 0 ) 7. g-nonalactone (structure C, C 9 H 6, R = C H ) 8. g-decalactone (structure C, C 0 H 8, R = C 6 H ) 9. g-undecalactone (structure C, C H 0, R = C 7 H ) 0. g-dodecalactone (structure C, C H, R = C 8 H 7 ) A (peak ) B (peak 6) C (peaks, 7 9) H C R min Courtesy of Prof. W.A. König, Hamburg, Germany

216 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer analysis of g-lactones Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C g-valerolactone Appl. No. 0 a b c Temperature: 90 C 0 C 8 C Resolution: g-heptalactone Appl. No. 90 a b c Temperature: C C 0 C Resolution: g-nonalactone Appl. No. 80 a b c Temperature: C 0 C 0 C Resolution: g-undecalactone Appl. No. 70 a b c Temperature: 60 C 0 C 0 C Resolution: < R g-hexalactone Appl. No. 60 a b c Temperature: 00 C C 9 C Resolution: g-ctalactone Appl. No. 0 a b c Temperature: C C 0 C Resolution: g-decalactone Appl. No. 660 a b c Temperature: 0 C 0 C 0 C Resolution: For separation of g-decalactone also see appl. 0 at g-dodecalactone Appl. No. 70 a b c Temperature: 7 C C 0 C Resolution: <0. Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France 6

217 Compounds C and greater Enantiomer separation of --alkylglycerols (cyclic carbonates) Appl. No. 09 Column: LIPDEX B, 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C R Sample: -alkylglycerols derivatised with phosgene (very toxic) Carrier gas: bar H Temperature: 60 C C/min 00 C Detector: FID (R enantiomers are eluted before S enantiomers). --Methylglycerol (C H 8, R = ). --Ethylglycerol (C 6 H 0, R = C H ). --Isobutylglycerol (C 8 H, R = CH CH( ) ). --Butylglycerol (C 8 H, R = (CH ) ). --Isopentylglycerol (C 9 H 6, R = (CH ) CH( ) ) 6. --Pentylglycerol (C 9 H 6, R = (CH ) ) W.A. König et al., HRC (988) min 0 6 Enantiomer separation of cyanohydrins (TFA) Appl. No. 080 Column: LIPDEX C, CN 0 m x 0. mm ID, REF 76.0, max. temperature 00/ 0 C R C H H (TFA) Carrier gas: barh Temperature: 0 C C/min 80 C Detector: FID. R = n-propyl (C H 9 N). R = i-butyl - (C6H N). R = n-butyl (C 6 H N). R = n-pentyl (C 7 H N). R = n-hexyl (C 8 H N) 6 6. R = n-heptyl (C 9 H 7 N) R enantiomers are eluted before S enantiomers. 0 0 min W.A. König et al., HRC (989) 9 7

218 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of -methylbutyric acid and ethyl ester Appl. No. 06 Column: FS-HYDRDEX b-pm, 0 m x 0. mm ID, REF 770.0, max. temperature H 0/0 C C C H H C CH Injection: µl (0. % in CH Cl ) split :00 Carrier gas: 0 kpa H Temperature: 6 C ( min) C/min 0 C Detector: FID 0 C. -Methylbutyric acid ethyl ester (C 7 H ). -Methylbutyric acid (C H 0 ) H min Enantiomer separation of,-epoxy--methylbutanol- Appl. No. 068/069 Column: FS-LIPDEX E, m x 0. Injection: mm ID, REF 768., max. temperature 00/0 C H C 0. µl, split ml/min H C H Carrier gas: Temperature: 00 C Detector: FID 0 C A) racemate (Appl. 068) B) ee = 8 % (Appl. 069) C H 0 0 kpa H (. ml/min),-epoxy--methylbutanol- can also be separated on HYDRDEX b-pm (applications 066/067) or LIPDEX A (applications 070/07). See our application database at A B 0 min 0 8

219 Compounds C C 7 Enantiomer separation of,- and,-anhydroarabinitol (TFA) Appl. No. 00 Column: LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Carrier gas: H Temperature: 90 C Detector: FID.,-Anhydroarabinitol (TFA), C H 0 H (TFA) (TFA) H H (TFA) Enantiomer separation of -bromopentane Appl. No. 00 Column: FS-LIPDEX C, 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C Injection: µl, split :00 Carrier gas: 00 kpa H Temperature: 60 C Detector: FID 0 C C H Br H C Br.,-Anhydroarabinitol (TFA), C H 0 H (TFA) H (TFA) (TFA) H 0 min 0 0 min 0 Courtesy of Prof. W.A. König, Hamburg, Germany 9

220 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of chiral alkyl chlorides Appl. No. 060 Column: LIPDEX C, 0 m x 0. mm ID, REF 76.0, max. temperature Cl Cl 00/ 0 C Carrier gas: bar H Temperature: 60 C Detector: FID. -Chloropentane (C H Cl). -Chlorohexane (C 6 H Cl). -Chloroheptane (C 7 H Cl) W.A. König et al., HRC (989) 9 0 min Enantiomer separation of -alkanols Appl. No. 0 Column: FS-LIPDEX E, 0 m x 0. mm ID, REF 768.0, max. temperature 00/ 0 C Injection: 0. µl ( % in CH Cl ) split 00 ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 80 C ( min) C/min 0 C Detector: FID 0 C. R/S-Pentanol- (C H ). R/S-Heptanol- (C 7 H 6 ). R/S-Nonanol- (C 9 H 0 ) 0 0 min Cl 0

221 Compounds C and greater Enantiomer separation of pentanol- (TFA) Appl. No. 07 Column: FS-LIPDEX E, 0 m x 0. mm ID, REF 768.0, max. temperature 00/0 C Injection: 0. µl (% in CH Cl ) split 00 ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 60 C Detector: FID 0 C C H Enantiomer separation of pentane-,-diol (TFA) Appl. No. 09 Column: FS-LIPDEX E, 0 m x 0. mm ID, REF 768.0, max. temperature 00/0 C Injection: 0. µl ( % in CH Cl ) split 00 ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 00 C Detector: FID 0 C (C H ). RR/SS. meso 0 min 0 min

222 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of,-diols (TFA) Appl. No. 09 Column: FS-LIPDEX E, 0 m x 0. mm ID, REF 768.0, max. temperature 00/0 C Injection: 0. µl ( % in CH Cl ) split 00 ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 80 C C/min 0 C Detector: FID 0 C. Pentane-,-diol (TFA), C H. Hexane-,-diol (TFA), C 6 H. ctane-,-diol (TFA), C 8 H 8 0 min Enantiomer separation of arabinitol (TFA) Appl. No. 00 Column: LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Carrier gas: H Temperature: 0 C Detector: FID C H (TFA) H 0 min H (TFA) H (TFA) H (TFA) H (TFA) Courtesy of Prof. W.A. König, Hamburg, Germany

223 Compounds C C 8 Enantiomer separation of R/S--(- furyl)ethanol and R/S--(-furyl)ethanol acetate Appl. No. 60 Column: equivalent to FS-HYDRDEX b-6tbdm, m x 0. mm ID, REF 78., max. temperature 0/0 C Injector: 0 C Carrier gas: 60 kpa H Temperature: 8 C Detector: FID 00 C. (S)--(-furyl)ethanol acetate (R = C- ). (R)--(-furyl)ethanol (R = H). (S)--(-furyl)ethanol (C 6 H 8 ). (R)--(-furyl)ethanol acetate (C 8 H 0 ) Enantiomer separation of lactide Appl. No. 08 Column: FS-LIPDEX A, m x 0. mm ID, REF 760., max. temperature 00/0 C Injection: 0. µl (% in CH Cl ) split 80 ml/min Carrier gas: 60 kpa H (.8 ml/min) Temperature: 0 C Detector: FID 0 C (C 6 H 8 ). meso. SS. RR. H C. H C. H C R 0 min Lactide can also be separated on HYDRDEX b-pm (see application 08 at 8 min Courtesy of A. Ghanem, V. Schurig, Institute of rganic Chemistry, University of Tübingen, Germany

224 Chiral separations Gas Chromatography Application Gallery Appendices Analysis of stereoisomers of,-dimethylbutyrolactone Appl. No. 089 Column: LIPDEX B, 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C Carrier gas: bar H Temperature: C Detector: FID (C 6 H 0 ). (S, R). (R, S). (S, S). (R, R) 0 min W.A. König et al., HRC (988) 6 6 Enantiomer analysis of pantolactone (TFA) Appl. No. 09 Column: LIPDEX B, Carrier gas: H Temperature: 0 C Detector: FID C 6 H 0 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C Enantiomer analysis of pantolactone Appl. No. 09 Column: FS-HYDRDEX b-pm, 0 m x 0. mm ID, REF 770.0, max. temperature 0/0 C Injection: 0. µl, split :00 Carrier gas: 00 kpa H Temperature: 60 C Detector: FID 0 C C 6 H 0 (TFA) H Courtesy of Prof. W.A. König, Hamburg, Germany 0 min 0 H C H 0 min 0 H C Pantolactone can also be separated on LIPDEX E (applications 090). See our application database at

225 Compounds C 6 Enantiomer separation of dimethyl malate Appl. No. 70 Column: FS-HYDRDEX b-6tbdm, m x 0. mm ID, REF 78. Injection: µl, split, 0 C Carrier gas:. ml/min He Temperature: 00 C H Detector: FID 0 C C C 6 H 0 H Resolution: 8. Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France Enantiomer separation of tartaric acid dimethyl esters (TFA) Appl. No. 07 Column: FS-HYDRDEX b-pm, 0 m x 0. mm ID, REF 770.0, max. temperature 0/0 C Injection: 0. µl (% in CH Cl ) Carrier gas: split 0 ml/min 0 kpa H (.7 ml/ min) Temperature: C Detector: FID 0 C (C 6 H 0 6 ). impurities. D-( ). L-(+) H C (TFA) H H (TFA) Tartaric acid dimethyl ester can also be separated on HYDRDEX b-pm (application 07) or LIPDEX A (application 070). See our application database at min

226 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of trans-,-cyclohexanediol- Appl. No. 08 Column: FS-HYDRDEX b-pm, 0 m x 0. mm ID, REF 770.0, max. temperature 0/0 C Injection: 0. µl, split :00 Carrier gas: 00 kpa H Temperature: 0 C Detector: FID 0 C C 6 H H H 0 min trans-,-cyclohexanediol can also be separated on LIPDEX A (see application 08 at Enantiomer separation of trans-,-cyclohexanediol - (TFA) Appl. No. 08 Column: FS-LIPDEX E, m x 0. mm ID, REF 768., max. temperature 00/ 0 C Injection: 0. µl, split :00 Carrier gas: 60 kpa H Temperature: 0 C Detector: FID 0 C 0 min H (TFA) H (TFA) 6

227 Compounds C 6 and greater Enantiomer analysis of trans-,- - and trans-,-cycloalkanediols - (TFA) Appl. No. 087 Column: LIPDEX D, m x 0. mm ID, 6 REF 766., max. temperature 00/0 C Carrier gas: 0.7 bar H Temperature: 0 C Detector: FID 0. Cyclohexane-trans-,-diol (C 6 H ). Cycloheptane-trans-,-diol (C 7 H ). Cycloheptane-trans-,-diol (C 7 H ) W.A. König, S. Lutz, G. Wenz, E. von der Bey, HRC (988) min. Cyclooctane-trans-,-diol (C 8 H 6 ). Cyclodecane-trans-,-diol (C 0 H 0 ) 6. Cyclodecane-trans-,-diol (C 0 H 0 ) Enantiomer separation of -methylbutyric acid methyl ester Appl. No. 80 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C C 6 H H C a b c Temperature: 0 C 0 C 0 C Resolution: Enantiomer separation of solketal (TFA) Appl. No. 097 Column: FS-HYDRDEX b-pm, 0 m x 0. mm ID, REF 770.0, max. temperature 0/0 C Injection: 0. µl ( % in CH Cl ) split 0 ml/min Carrier gas: 0 kpa H (.7 ml/min) Temperature: 0 C Detector: FID 0 C C 6 H H (TFA) Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France 0 min Solketal can also be separated on LIPDEX A (see application 098 at 7

228 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of,-anhydroglucitol, -galactitol und -mannitol (TFA) Appl. No. 00 Column: LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Carrier gas: H Temperature: 0 C Detector: FID.,-Anhydroglucitol (C 6 H ) H (TFA) (TFA) H (TFA) H H (TFA).,-Anhydrogalactitol (C 6 H ) (TFA) H H (TFA) (TFA) H H (TFA).,-Anhydromannitol (C 6 H ) H (TFA) H (TFA) (TFA) H (TFA) H Courtesy of Prof. W.A. König, Hamburg, Germany 0 min Enantiomer separation of arabinose (a- and b-anomers, methylglycosides, TFA) Appl. No. 07 Column: LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Carrier gas: H Temperature: 00 C Detector: FID. a-arabinose (C 6 H ) H (TFA) H (TFA) (TFA) H. b-arabinose (C 6 H ) H (TFA) H (TFA) (TFA) H 0 0 min Courtesy of Prof. W.A. König, Hamburg, Germany For separation of other sugar anomers on LIPDEX A see applications 0, 09, 08 at 8

229 Compounds C 6 and greater Separation of chiral alkyl nitrates Appl. No. 00 Column: FS-LIPDEX D, m x 0. mm ID, REF 766., max. temperature 00/0 C Injection: on-column Carrier gas: 70 kpa H, cm/s, 00 C Temperature: 0 C ( min) C/min 90 C Detector: ECD 0 C. n-hexyl--nitrate (C 6 H N, R = C H ). n-heptyl--nitrate (C 7 H N, R = C H 7 ). n-ctyl--nitrate (C 8 H 7 N, R = C H 9 ). n-nonyl--nitrate (C 9 H 9 N, R = C H ). n-undecyl--nitrate (C H N, R = C 7 H ) H C N R Enantiomer separation of -methylpentanol- Appl. No. 0 Column: FS-HYDRDEX b-tbdac, 0 m x 0. mm ID, REF 78.0, max. temperature 0/0 C Sample: 0. % in CH Cl Carrier gas:. bar H Temperature: 80 C Detector: FID (C 6 H ). (R)--Methylpentanol-. (S)--Methylpentanol C min dashed lines indicate where peak would be expected to elute M. Schneider, K. Ballschmiter, J. Chromatography A 8 (999) 0 min 0 9

230 Chiral separations Gas Chromatography Application Gallery Appendices Column: LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Carrier gas: H Temperature: 0 C Detector: FID C 6 H 6 Courtesy of Prof. W.A. König, Hamburg, Germany Enantiomer separation of sorbitol (TFA) Appl. No. 000 (TFA) H (TFA) H (TFA) H 0 H (TFA) H (TFA) H (TFA) L D Enantiomer separation of thioacetic acid cyclopent--enyl ester Carrier gas: Temperature: 00 kpa H 0 C/min 0 C/min 70 C ( min) 00 C ( min) 0 C ( min) Detector: FID Appl. No. 70 Appl. No. 80 Column: FS-LIPDEX E, m x 0. mm ID, REF 768., max. temperature 00/0 C min 0 S min Column: FS-LIPDEX G, m x 0. mm ID, REF779., max. temperature 0/0 C C 7 H 0 S min 0 Courtesy of Mrs. Vermeeren, AK Prof. Gais, Inst. für rg. Chemie, RWTH Aachen, Germany 0

231 Compounds C 6 C 7 Enantiomer separation of acetic acid cyclopent--enyl ester Appl. No. 00 Column: FS-LIPDEX G, m x 0. mm ID, REF 779., max. temperature 0/0 C Carrier gas: 00 kpa H 0 C/min Temperature: 0 C ( min) 80 C ( min) Detector: FID C 7 H 0 Enantiomer separation of cyclopent-- enyl methyl carbonate Appl. No. 0 Column: FS-LIPDEX E, m x 0. mm ID, REF 768., max. temperature 00/0 C Carrier gas: 00 kpa H 0 C/min Temperature: Detector: C 7 H 0 0 C ( min) 80 C 0 C/min 0 C ( min) ( min) FID min 0 Courtesy of Mrs. Vermeeren, AK Prof. Gais, Inst. für rg. Chemie, RWTH Aachen, Germany 7 min 0 Courtesy of Mrs. Vermeeren, AK Prof. Gais, Inst. für rg. Chemie, RWTH Aachen, Germany

232 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of cyclopentanonecarboxylic acid methyl ester Appl. No Column: FS-LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Injection: 0. µl ( % in CH Cl ) split 0 ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 0 C Detector: FID 0 C C 7 H 0 H C 0 min 0 Enantiomer separation of -methylcyclohexene Appl. No Column: FS-LIPDEX C, 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C Injection:.0 µl, split :00 Carrier gas: 00 kpa H Temperature: C Detector: FID 0 C C 7 H 0 min 0 -methylcyclohexene can also be separated on LIPDEX A (see application 0870 at

233 Compounds C 7 C 8 Enantiomer separation of -methyl-,(z)-hexadiene and,-dimethyl-,- hexadiene Appl. No Column: LIPDEX C, 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C Injection: headspace Carrier gas: bar H Temperature: 0 C Detector: FID. -Methyl-,-hexadiene (C 7 H ).,-Dimethyl-,-hexadiene (C 8 H ) H C S H C H C Enantiomer separation of -methylcyclohexanone Appl. No. 000 Column: FS-LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Injection: µl ( % in CH Cl ) split ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 70 C Detector: FID 0 C C 7 H R R S 0 min 0 min W.A. König et al., HRC (989) 9

234 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of glycidyl butyrate Appl. No. 07 Column: FS-LIPDEX A, m x 0. mm ID, REF 760., max. temperature 00/0 C Injection: µl (% in CH Cl ) split 80 ml/min Carrier gas: Temperature: 60 C Detector: FID 0 C C 7 H 60 kpa H (.8 ml/min) -C-C H min Enantiomer separation of -chloropropionic acid isobutyl ester Appl. No. 0 Column: FS-LIPDEX E, m x 0. mm ID, REF 768., max. temperature 00/0 C Injection: µl, % in CH Cl, split ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 90 C Detector: FID 0 C C 7 H Cl H C Cl 0 min

235 Compounds C 7 Enantiomer separation of -i-propyl--carboxymethyl - aziridine Appl. No. 06 Column: FS-HYDRDEX b-pm, 0 m x 0. mm ID, REF 770.0, max. temperature 0/0 C Injection: 0. µl (% in CH Cl ) split 00 ml/min Carrier gas: 0 kpa H (.7 ml/min) Temperature: 0 C Detector: FID 0 C C 7 H N Enantiomers separation of -methylbutyric acid ethyl ester Appl. No. 00 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C H C N 7 a b c Temperature: C 0 C 0 C Resolution: C Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France 0 0 min

236 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of isobutyl lactate Appl. No. 080 Column: FS-LIPDEX A, 0 m x 0. mm ID,REF 760.0, max. temperature 00/0 C Injection: µl (% in CH Cl ) split 0 ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 60 C Detector: FID 0 C C 7 H H C 0 0 min Enantiomer separation of a-methylrhamnoside and a-methylquinovoside (TFA) Appl. No. 00 Column: LIPDEX C, 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C Carrier gas: bar H Temperature: 90 C Detector: FID. a-methylrhamnoside (C 7 H ) CH H (TFA) (TFA) H (TFA) H. a-methylquinovoside (C 7 H ) (TFA) H (TFA) H (TFA) H W.A. König et al., HRC (989) 9 H 0 min 0 6

237 Compounds C 7 Enantiomer separation of glucose and mannose (a- and b-anomers, methylglycosides, TFA) Appl. No. 0 Column: LIPDEX B, 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C Carrier gas: H Temperature: C Detector: FID (C 7 H 6 ). a-glucose H (TFA) (TFA) H (TFA) H (TFA) H CH Enantiomer separation of -heptanol (TFA) Appl. No. 0 Column: FS-LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Injection: 0. µl ( % in CH Cl ) split 0 ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 80 C Detector: FID 0 C C 7 H 6. b-glucose. a-mannose H (TFA) (TFA) H (TFA) H H (TFA) (TFA) H (TFA) H H (TFA) H (TFA). b-mannose H (TFA) H (TFA) (TFA) H (TFA) H 0 min -heptanol (TFA) can also be separated on LIPDEX E (see application 00 at min Courtesy of Prof. W.A. König, Hamburg, Germany See application 00 at for separation of glucose anomer methylglycosides on LIPDEX A 7

238 Chiral separations Gas Chromatography Application Gallery Appendices Analysis of stereoisomers of heptane-,,-triol (TFA) Appl. No. 09 Column: LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Carrier gas: H Temperature: 8 C Detector: FID C 7 H 6 0 min Courtesy of Prof. W.A. König, Hamburg, Germany Enantiomer separation of styrene oxide Appl. No. 0 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C C 8 H 8 a b c Temperature: 90 C 80 C 8 C Resolution: Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France Enantiomer separation of -chloro- and -bromo--phenylethanol (TFA) Appl. No. 0 Column: LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Carrier gas: H Temperature: 0 C Detector: FID. -Chloro--phenylethanol (TFA) (C 8 H 9 Cl). -Bromo--phenylethanol (TFA) (C 8 H 9 Br) H H (TFA) CH Cl 0 min H H (TFA) CH Br Courtesy of Prof. W.A. König, Hamburg, Germany 8

239 Compounds C 7 C 8 Enantiomer separation of a-methylbenzyl alcohol = a-phenylethanol Appl. No. 00 Column: FS-HYDRDEX b-tbdac, m x 0. mm ID, REF 78., max. temperature 0/0 C Carrier gas: 0.6 bar H Temperature: 0 C Detector: FID C 8 H 0 H H Enantiomer separation of a-phenylethanol (TFA) Appl. No. 0 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C a b c Temperature: 90 C 80 C 00 C Resolution: min 6 a-phenylethanol can also be separated on HYDRDEX b-pm (application 0), HYDRDEX b-p (application 07), LIPDEX A (application 06). See our application database at com. Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France a-phenylethanol (TFA) can also be separated on HYDRDEX b-p (application 060) or LIPDEX A (application 09). See our application database at com. Appl. No. 0 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C a b c Temperature: C 80 C 00 C Resolution: <0...7 Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France 9

240 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of -phenylethanol and o-, - m-, p-methyl - derivatives (TFA) Appl. No. 0 Column: LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Carrier gas: H Temperature: 7 C Detector: FID. -Phenylethanol (C 8 H 0 ). -(-Methylphenyl)ethanol (C 9 H ). -(-Methylphenyl)ethanol. -(-Methylphenyl)ethanol 0 min Courtesy of Prof. W.A. König, Hamburg, Germany Enantiomer separation of a-phenylethylamine (TFA) Appl. No. 090 Column: FS-LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Injection: µl ( % in CH Cl ) split ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 0 C Detector: FID 0 C C 8 H N H NH (TFA) 0 min 0

241 Compounds C 8 C 9 Enantiomer separation of p-chloro- - phenylethylamine (TFA) Appl. No. 000 Column: FS-LIPDEX D, m x 0. mm ID, REF 766., max. temperature 00/0 C Injection: 0. µl (% in CH Cl ) split 0 ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 70 C Detector: FID 0 C R is eluted before S. C 8 H ClN Enantiomer separation of -methyl--vinylcyclopentanone Appl. No Column: FS-LIPDEX E, m x 0. mm ID, REF 768., max. temperature 00/0 C Injection: 0. µl, split 80 ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 70 C ( min) C/min 0 C Detector: FID 0 C C 8 H H NH (TFA) p- H C Cl 0 min o- m- (?) 0 min

242 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer composition of a bicyclic lactone (hexahydroisobenzofuranone) Appl. No. 096 Column: LIPDEX D, 0 m x 0. mm ID, REF 766.0, max. temperature 00/0 C Carrier gas: H Temperature: 70 C Detector: FID C 8 H 0 min 0 Courtesy of Prof. W.A. König, Hamburg, Germany Enantiomer separation of acetic acid cyclohex--enyl ester Appl. No. 90 Column: FS-LIPDEX G, m x 0. mm ID, REF779., max. temperature 0/0 C Carrier gas: 00 kpa H 0 C/min Temperature: 0 C ( min) 80 C ( min) 0 C/min Detector: FID C 8 H 0 min. Courtesy of Mrs. Vermeeren, AK Prof. Gais, Inst. für rg. Chemie, RWTH Aachen, Germany

243 Compounds C 8 Enantiomer separation of (E)-,-epoxy--octin--ol (TFA) Appl. No. 06 Column: LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Carrier gas: bar H Temperature: 80 C Detector: FID C 8 H,. (S,S),. (R,R) Trace A: ee = 89. %, trace B = racemate Separation of stereoisomers of -aminomethylnorbornene (N-TFA) Appl. No. 00 Column: LIPDEX D, 0 m x 0. mm ID, REF 766.0, max. temperature 00/0 C Temperature: 0 C Carrier gas: bar H Detector: FID C 8 H N CH NH (TFA) CH NH (TFA) H (TFA) A 0 min W.A. König, S. Lutz, G. Wenz, E. von der Bey, HRC (988) B 0 min W.A. König et al., Angew. Chem. Int. Ed. Engl. 8 (989) 78

244 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of frontalin Appl. No. 090 Column: FS-LIPDEX E, 0 m x 0. mm ID, REF 768.0, max. temperature 00/0 C Injection: 0. µl, split 80 ml/min Carrier gas: 00 kpa H (. ml/min) Temperature: 00 C Detector: FID 0 C C 8 H H C 0 min 0 Enantiomer analysis of d-lactones Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He R Detector: FID 0 C d-ctalactone (C 8 H ) Appl. No. 0 a b c Temperature: 0 C C 0 C Resolution:.9.. d-nonalactone (C 9 H 6 ) Appl. No. 90 a b c Temperature: 0 C 0 C 0 C Resolution: d-decalactone (C 0 H 8 ) Appl. No. 670 a b c Temperature: C C C Resolution:.0.0 <0. d-undecalactone (C H 0 ) Appl. No. 70 a b c Temperature: 70 C 0 C C Resolution: <0. d-dodecalactone Appl. No. 760 a b c Temperature: C 0 C C Resolution:.. <0. Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France

245 Compounds C 8 and greater Enantiomer separation of -hex--enyl methyl carbonate Appl. No. 0 Column: FS-LIPDEX G, m x 0. mm ID, REF779., max. temperature 0/0 C Carrier gas: 00 kpa H 0 C/min Temperature: Detector: C 8 H 0 C (0 min) 80 C 0 C/min 0 C ( min) ( min) FID Enantiomer separation of -t-butyl--carboxymethyl - aziridine Appl. No. 07 Column: FS-HYDRDEX b-pm, 0 m x 0. mm ID, REF 770.0, max. temperature 0/0 C Injection: 0. µl ( % in CH Cl ) split 00 ml/min Carrier gas: 0 kpa H (.7 ml/min) Temperature: 0 C Detector: FID 0 C C 8 H N H C H C N C min 0 Courtesy of Mrs. Vermeeren, AK Prof. Gais, Inst. für rg. Chemie, RWTH Aachen, Germany 0 min 0

246 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of -methyl-- heptanone (ant pheromone) Appl. No Column: LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Carrier gas: H Temperature: 8 C Detector: FID C 8 H 6 0 H C Courtesy of Prof. W.A. König, Hamburg, Germany R S 0 min Enantiomer separation of -octen--ol Appl. No. 60 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C C 8 H 6 H C H H a b c Temperature: 90 C 60 C 80 C Resolution: <0.. <0. Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France -octen--ol can also be separated on LIPDEX A (see application 076 at Enantiomer separation of -octen--ol (TFA) Appl. No. 70 Columns: FS-HYDRDEX b-6tbdm, m x 0. mm ID, REF 78. Injection: µl, split, 0 C Carrier gas:. ml/min He Temperature: 80 C Detector: FID 0 C Resolution:.9 Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France 6

247 Compounds C 8 C 9 Enantiomer separation of -octen--ol and,,-trifluorophenylethanol Appl. No. 60 Column: FS-HYDRDEX b-tbdac, 0 m x 0. mm ID, REF 78.0, max. temperature 0/0 C Sample: 0.% in CH Cl Carrier gas:. bar H Temperature: 80 C ( min) C/min 0 C ( min) Detector: FID. (S)--cten--ol (C8H 6 ). (R)--cten--ol./. (R)/( S)-),,-Trifluorophenylethanol (C 8 H 7 F ) H C H H H F F F Enantiomer separation of -indanol (TFA) Appl. No. 078 Column: FS-HYDRDEX b-pm, 0 m x 0. mm ID, REF 770.0, max. temperature 0/0 C Injection: µl ( % in CH Cl ) split 0 ml/min Carrier gas: 0 kpa H (.7 ml/min) Temperature: 0 C Detector: FID 0 C C 9 H 0 H (TFA) 0 0 min 0 min -indanol can also be separated on LIPDEX A (see application 077 at 7

248 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of phenylcyclopropylmethanol, phenylcyclopropylmethyl acetate and cinnamyl alcohol (TFA) Appl. No. 680 Column: FS-HYDRDEX b-tbdac, m x 0. mm ID, REF 78., max. temperature 0/0 C Injection: µl (0. % in methyl t-butyl - ether), 0 C, split ml/min Carrier gas: 0.6 bar H Temperature: 0 C Detector: FID 0 C. (±)-trans--phenylcyclopropylmethyl acetate (C H ). (±)-trans--phenylcyclopropylmethanol (C 0 H ). Cinnamyl alcohol (C 9 H 0 ) CH H H 0 min CH -C- Enantiomer separation of mandelic acid methyl ester Appl. No. 00 Column: FS-HYDRDEX g-tbdac, m x 0. mm ID, REF 787., max. temperature 0/0 C Injection: µl, split 0 ml/min Carrier gas: 0.6 bar H Temperature: 70 C Detector: FID C 9 H 0 H C 0 6 min Mandelic acid methyl ester can also be separated on LIPDEX A (application 067) or LIPDEX C (application 068). See our application database at 8

249 Compounds C 9 C Enantiomer separation of -phenylpropan--ol Appl. No. 0 Column: FS-LIPDEX G, m x 0. mm ID, REF779., max. temperature 0/0 C Carrier gas: 00 kpa H 0 C/min Temperature: 0 C ( min) 80 C ( min) Detector: FID C 9 H Enantiomer separation of phenylpropanols (TFA) Appl. No. 970 Column: FS-HYDRDEX g-tbdac, 0 m x 0. mm ID, REF778.0, max. temperature 0/0 C Injection: µl, split 0 ml/min Carrier gas:. bar H Temperature: 00 C Detector: FID (C 9 H ). -Phenylpropan--ol (TFA). -Phenylpropan--ol (TFA) H H (TFA) H (TFA) 0 min Courtesy of Mrs. Vermeeren, AK Prof. Gais, Inst. für rg. Chemie, RWTH Aachen, Germany 0 0 min 9

250 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of amphetamine, ephedrine and norephedrine (N,-TFA) Appl. No. 00 Column: LIPDEX D, 0 m x 0. mm ID, REF 766.0, max. temperature 00/0 C Carrier gas: H Temperature: 0 C Detector: FID. Amphetamine. Ephedrine. Norephedrine Courtesy of Prof. W.A. König, Hamburg, Germany 0 Amphetamine (C 9 H N) Ephedrine (C 0 H N) (TFA) HN NH (TFA) H (TFA) Norephedrine (C 9 H N) (TFA) H NH (TFA) min Enantiomer separation of sympathomimetic amines (N,-TFA) Appl. No. 00 Column: LIPDEX D, 0 m x 0. mm ID, REF 766.0, max. temperature 00/0 C Carrier gas: bar H Temperature: 7 C Detector: FID. Amphetamine. Mexiletine. Pholedrine. Tranylcypromine min W.A. König, S. Lutz, G. Wenz, E. von der Bey, HRC (988) Mexiletine (C H 7 N) Pholedrine (C 0 H N) (TFA) H (TFA) HN Tranylcypromine (C 9 H N) (TFA) H N NH (TFA) 0

251 Compounds C 9 C Enantiomer separation of -isopropenyl--methylcyclopentanone Appl. No Column: FS-LIPDEX E, m x 0. mm ID, REF 768., max. temperature 00/0 C Injection: 0. µl, split 80 ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 70 C ( min) C/min 0 C Detector: FID 0 C C 9 H Enantiomer separation of vinyl-endobrevicomin Appl. No. 00 Column: FS-LIPDEX E, 0 m x 0. mm ID, REF 768.0, max. temperature 00/0 C Injection: 0. µl, split 80 ml/min Carrier gas: 00 kpa H (. ml/min) Temperature: 0 C Detector: FID 0 C C 9 H CH CH H C 0 min 0 0 min Vinyl-endo-brevicomin can also be separated on HYDRDEX b-pm (see application 00 at

252 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of vinyl-exobrevicomin Appl. No. 00 Column: FS-LIPDEX E, 0 m x 0. mm ID, REF 768.0, max. temperature 00/0 C Injection: 0. µl, split 80 ml/min Carrier gas: 00 kpa H (. ml/min) Temperature: 0 C Detector: FID 0 C C 9 H CH 0 min 0 Vinyl-exo-brevicomin can also be separated on HYDRDEX b-pm (see application 00 at Enantiomer separation of -t-butyl--- bromomethylene,-dioxane Appl. No. 00 Column: FS-LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/0 C Injection: 0. µl ( % in CH Cl ) split 9 ml/min Carrier gas: 0 kpa H (.0 ml/min) Temperature: 0 C Detector: FID 0 C C 9 H Br H C 0 0 min 0 Br

253 Compounds C 9 Enantiomer separation of cis-,,-trimethylcyclohexanol Appl. No Column: FS-LIPDEX E, m x 0. mm ID, REF 768., max. temperature 00/0 C Injection: 0. µl (% in CH Cl ) split ml/min Carrier gas: 60 kpa H (.6 ml/min) Temperature: 80 C Detector: FID 0 C C 9 H 6 Enantiomer separation of ( )-exo-brevicomin Appl. No. 060 Column: FS-HYDRDEX b-pm, 0 m x 0. mm ID, REF 770.0, max. temperature 0/0 C Injection: 0. µl ( % in CH Cl ) split 0 ml/min Carrier gas: 0 kpa H (.7 ml/min) Temperature: 0 C Detector: FID 0 C C 9 H 6 H C H C H 0 0 min 0 min 0 ( )-exo-brevicomin can also be separated on LIPDEX E (see application 070 at

254 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of endo-brevicomin Appl. No. 080 Column: FS-LIPDEX E, 0 m x 0. mm ID, REF 768.0, max. temperature 00/0 C Injection: 0. µl, split 80 ml/min Carrier gas: 00 kpa H (. ml/min) Temperature: 0 C Detector: FID 0 C C 9 H 6 0 min Enantiomer analysis of -butyl-- methylbutyrolactone (Whisky lactone) Appl. No. 086 Column: FS-LIPDEX E, m x 0. mm ID, REF 768., max. temperature 00/0 C Injection: 0. µl ( % in CH Cl ) split 9 ml/min Carrier gas: 60 kpa H (.7 ml/min) Temperature: C Detector: FID 0 C C 9 H 6 0 min 0 Whisky lactone can also be separated on HYDRDEX b-pm (application 088) or LIPDEX A (application 08). See our application database at

255 Compounds C 9 C Enantiomer separation of spiroacetals Appl. No. 000 Column: LIPDEX A, 0 m x 0. mm ID, REF 760.0, max. temperature 00/ 0 C Temperature: 80 C Carrier gas: H Detector: FID. 7-Methyl-,6-dioxaspiro[,]decane C 9 H 6.,8-Dimethyl-,7-dioxaspiro[,]undecane H C C H 0.,7-Dioxaspiro[,]undecane C 9 H 6. -Ethyl-7-methyl-,6-dioxaspiro[,]decane H C C H 0 0 min Courtesy of Prof. W.A. König, Hamburg, Germany Enantiomer separation of,7-dioxaspiro[,]undecane Column: FS-LIPDEX A, 0 m x 0. mm ID, REF 760.0, Appl. No. 00 max. temperature 00/0 C Injection: 0. µl (% in CH Cl ) split 0 ml/min Carrier gas: 0 kpa H (. ml/min) Temperature: 9 C Detector: FID 0 C C 9 H 6 0 min

256 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomers separation of fenoprop methyl ester Appl. No. 0 Column: FS-HYDRDEX b-p, m x 0. mm ID, REF 78., max. temperature 0/0 C Injection: µl (% in CH Cl ) split 0 ml/min Carrier gas: 60 kpa H (.9 ml/min) Temperature: 0 C Detector: FID 0 C C 0 H 9 Cl H C 0 60 min 70 Cl Cl C Cl Enantiomer separation of dichlorprop methyl ester Appl. No. 0 Column: FS-HYDRDEX b-p, m x 0. mm ID, REF 78., max. temperature 0/0 C Injection: 0. µl ( % in CH Cl ) split 0 ml/min Carrier gas: 60 kpa H (.9 ml/min) Temperature: 60 C Detector: FID 0 C C 0 H 0 Cl 0 H C Cl C Cl 0 min 6

257 Compounds C 0 C Enantiomer composition of -phenyl- and -benzylbutyrolactone Appl. No. 09 Column: LIPDEX B, 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C Carrier gas: H Temperature: 7 C Detector: FID. (S)--Phenylbutyrolactone (C 0 H 0 ). (R)--Phenylbutyrolactone. (S)--Benzylbutyrolactone (C H ). (R)--Benzylbutyrolactone Courtesy of Prof. W.A. König, Hamburg, Germany min 0 Enantiomer analysis of g-phenylbutyrolactone Appl. No. 09 Column: FS-LIPDEX E, m x 0. mm ID, REF 768., max. temperature 00/0 C Injection: 0. µl, split :00 Carrier gas: 60 kpa H Temperature: 70 C Detector: FID 0 C C 0 H 0 g-phenylbutyrolactone can also be separated on HYDRDEX b-pm (see application 09 at 0 min 0 7

258 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of -phenylpropionic acid (hydratropic acid) methyl ester Appl. No. 07 Column: FS-LIPDEX E, m x 0. mm ID, REF 768., max. temperature 00/0 C Injection: 0. µl (0.% in CH Cl ) split 00 ml/min Carrier gas: 60 kpa H Temperature: 80 C Detector: FID 0 C C 0 H H C C 0 0 min Enantiomer separation of carvone Appl. No. 00 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C C 0 H a b c Temperature: 0 C 90 C 0 C Resolution:..0 <0. H C CH Enantiomer separation of desoxyephedrine (TFA) Appl. No. 00 Column: FS-LIPDEX E, m x 0. mm ID, REF 768., max. temperature 00/0 C Injection: 0. µl ( % in CH Cl ) split 70 ml/min Carrier gas: 60 kpa H (. ml/min) Temperature: 0 C Detector: FID 0 C. D-Desoxyephedrine (TFA) C 0 H N. L-Desoxyephedrine (TFA) 0 (TFA) HN 0 min Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France Carvone can also be separated on LIPDEX A (see applications 00 and 90 at 8

259 Compounds C 0 C Chiral constituents of peppermint oil Appl. No. 00 Column: FS-LIPDEX G, m x 0. mm ID, max. temp. 0/0 C, REF 779. Carrier gas: 0 kpa H Temperature: 7 C, isothermal Detector: FID. (+)-trans-sabinene hydrate (C 0 H 6 ) H C 6. (+)-Menthone. (+)-Isomenthone. ( )-Menthone. ( )-Isomenthone (C 0 H 8 ) H C H C 6. (+)-Menthofuran H C (C 0 H ) Mentha piperita (Idaho) ( )-Isopulegol (C 0 H 8 ) H C H C H 8. ( )-Menthyl acetate H C -C- (C H ) H C Mentha arvensis (China) 9. (+)-Pulegone (C 0 H 6 ) 0. (+)-Neomenthol. ( )-Neomenthol. (+)-Neoisomenthol. (+)-Menthol. ( )-Neoisomenthol H C H C H C H C. (+)-Piperitone H C (C 0 H 6 ) H C 6. ( )-Menthol 7. (+)-Isomenthol 8. ( )-Isomenthol H (C 0 H 0 ) structure see above 7 9 Standard min W. A. König et al., High Resol. Chromatogr. 0 (997) 6 9

260 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of D-carene Appl. No. 0 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C H C C 0 H 6 a b c Temperature: 7 C 0 C 70 C Resolution: Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France Enantiomer separation of sabinene Appl. No. 0 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C H C C 0 H 6 a b c Temperature: 7 C 0 C gradient Resolution:.9..9 Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France Enantiomer separation of cyclic olefins including limonene Appl. No. 080 Column: LIPDEX C, 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C Carrier gas: bar H Temperature: 70 C Detector: FID C 0 H 6 + CH H C CH R S min W.A. König et al., HRC (989) 9 CH 60

261 Terpenes C 0 Enantiomer separation of limonene Appl. No. 0 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C H C 0 6 a b c Temperature: 80 C C 70 C Resolution: 6.8 <0. 0. Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France Limonene can also be separated on HYDRDEX b-p (see application 080 at Enantiomer separation of a-pinene Appl. No. 0 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm Injection: (REF 770.) µl, split, 0 C H C Carrier gas:. ml/min He Detector: FID 0 C CH Enantiomer separation of b-pinene Appl. No. 0 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C C 0 H 6 a b c Temperature: 7 C 0 C 70 C Resolution:..6. Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France Enantiomer separation of fenchone Appl. No Column: FS-LIPDEX E, m x 0. mm ID, REF 768., max. temperature 00/0 C Injection: 0. µl, split :00 Carrier gas: 60 kpa H Temperature: 90 C Detector: FID 0 C C 0 H 6 H C ( ) (+) 0 6 a b c Temperature: 68 C 0 C 60 C Resolution: Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France 0 min 0 6

262 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of camphor Appl. No. 60 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He H C Detector: FID 0 C C 0 H 6 H C a b c Temperature: 00 C 90 C 00 C Resolution: <0. Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France Separation of essential oils Appl. No. 980 / 990 / 000 Column: FS-HYDRDEX g-tbdac, 0 m x 0. mm ID, max. temp. 0/0 C, REF Injector: 0 C Carrier gas:. bar H Temperature: C Detector: FID 0 C. Fenchone [. mg/ml] (C 0 H 6 ). Menthone [0. mg/ml] (C 0 H 8 ) H C H C. Menthol [ mg/ml] (C 0 H 0 ) H H C H C min 6

263 Terpenes C 0 Enantiomer separation of cis-pinane- Appl. No. 080 Column: LIPDEX C, 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C Carrier gas: H Temperature: 70 C Detector: FID C 0 H 8 H C S R Enantiomer separation of a-terpineol Appl. No. 60 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C C 0 H 8 H H C a b c Temperature: C 80 C 0 C Resolution: Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France 0 0 min Courtesy of Prof. W.A. König, Hamburg, Germany Enantiomer separation of terpinen--ol Appl. No. 60 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C C 0 H 8 a b c Temperature: 0 C 7 C 70 C Resolution:. < Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France Enantiomer separation of menthone Appl. No. 600 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C H C C 0 H 8 H C a b c Temperature: 00 C 80 C 90 C Resolution:.88. <0. Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France 6

264 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of isomenthone Appl. No. 60 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C C 0 H 8 a b c Temperature: 00 C 90 C 90 C Resolution: Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France Enantiomer separation of borneol Appl. No. 70 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He H C Detector: FID 0 C C 0 H 8 H H C a b c Temperature: C 80 C 0 C Resolution: H Enantiomer separation of grandisol (TFA) Appl. No. 08 Column: LIPDEX C, 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C Carrier gas: bar H Temperature: 90 C Detector: FID C 0 H 8 Enantiomer separation of isoborneol Appl. No. 80 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C CH Carrier gas:. ml/min He H C Detector: FID 0 C C 0 H 8 H H C H a b c Temperature: C 90 C 0 C Resolution: Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France H (TFA) CH 0 min W.A. König et al., HRC (989) 9 6

265 Terpenes C 0 C Enantiomer separation of rose oxide Appl. No. 0 Column: FS-HYDRDEX b-tbdac, 0 m x 0. mm ID, REF 78.0, max. temperature 0/0 C Sample: 0.% in hexane Carrier gas:. bar H Temperature: 90 C Detector: FID (C 0 H 8 ). (+)-cis-rose oxide. ( )-cis-rose oxide. ( )-trans-rose oxide. (+)-trans-rose oxide Enantiomer separation of lavandulol Appl. No. 90 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C a b c Temperature: 0 C 80 C 00 C Resolution: Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France H C H C H H C Lavandulol C 0 H 8 0 Appl. No min Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.) Carrier gas:. ml/min He Detector: FID 0 C a b Temperature: 90 C 60 C Resolution:. <0. Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France Enantiomer separation of lavandulyl acetate Appl. No. 70 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C a b c Temperature: 0 C 8 C 00 C Resolution:.9 <0. 0. Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France 6

266 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of citronellal and citronellol Appl. No. 0 Column: FS-HYDRDEX b-tbdac, 0 m x 0. mm ID, REF 78.0, max. temperature 0/0 C Sample: 0.% in CH Cl Carrier gas: H,. bar Temperature: 00 C Detector: FID. (R)/( S)-Citronellal ) (C0H 8 ). (S)/( R)-Citronellal). (S)-Citronellol (C0H 0 ). (R)-Citronellol H C Also see application 680 at H H C min Enantiomer separation of citronellol (TFA) Appl. No. 690 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.) Carrier gas:. ml/min He Detector: FID 0 C a b Temperature: 9 C 8 C Resolution: Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France Enantiomer separation of linalool Appl. No. 090 Column: FS-HYDRDEX b-p, m x 0. mm ID, REF 78., max. temperature 0/0 C Injection: 0. µl ( % in CH Cl ) split 0 ml/min Carrier gas: 60 kpa H (.9 ml/min) Temperature: 0 C Detector: FID 0 C. Linalool oxide. Linalool (C 0 H 8 ) H C H Linalool can also be separated on LIPDEX C (application 090), HXDRDEX b-6tbdm and LIPDEX E (application 0). See our application database at H C } min 0 Enantiomer separation of linalool oxide Appl. No. 0 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C C 0 H 8 a b c Temperature: 90 C 6 C 8 C Resolution: Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France 66

267 Compounds C 0 C Enantiomer separation of linalool and linalyl acetate Appl. No. 0 Column: FS-HYDRDEX b-tbdac, m x 0. mm ID, REF 78., max. temperature 0/0 C Sample: 0.% in CH Cl Carrier gas: 0.8 bar H Temperature: 7 C (0 min) C/min 0 C ( min) Detector: FID. (R)-Linalyl acetate (CH 0 ). (S)-Linalyl acetate. (R)-Linalool (C0H 8 ). (S)-Linalool Enantiomer separation of d-decalactone and d-dodecalactone Appl. No. 0 Column: Sample: Carrier gas: Temperature: FS-HYDRDEX b-tbdac, m x 0. mm ID, REF 78., max. temperature 0/0 C 0. % in hexane H, 0.8 bar 60 C ( min) C/min 00 C (0 min) FID Detector:. (S)- d-decalactone (C 0 H 8 ). (R)- d-decalactone. (S)- d-dodecalactone (C H 8 ). (R)- d-dodecalactone min 0 0 min 0 67

268 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of menthol Appl. No. 700 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C C 0 H 0 a b c Temperature: C 8 C 0 C Resolution:...6 Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France Menthol can also be separated on LIPDEX A (see application 0090 at Enantiomer separation of menthol (TFA) Appl. No. 70 Columns: FS-HYDRDEX b-6tbdm, m x 0. mm ID, REF 78. Injection: µl, split, 0 C Carrier gas:. ml/min He Temperature: 8 C Detector: FID 0 C Resolution:. Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France Enantiomer separation of antiepileptic drugs mesuximide and phensuximide Appl. No. 08 Column: LIPDEX B, 0 m x 0. mm ID, REF 76.0, max. temperature 00/0 C Carrier gas: bar H Temperature: C C/min 00 C Detector: FID. Mesuximide (C H N ). Phensuximide (C H N ) N 0 min W.A. König et al., HRC (988) 6 6 N H 68

269 Compounds C 0 C Enantiomer separation of mecoprop methyl ester Appl. No. 06 Column: FS-HYDRDEX b-p, m x 0. mm ID, REF 78., max. temperature 0/0 C Injection: 0. µl (% in CH Cl ) split 0 ml/min Carrier gas: 60 kpa H (.9 ml/min) Temperature: 60 C Detector: FID 0 C C H Cl Enantiomer separation of N-phenyl-cyclohex--enamine- Appl. No. 0 Column: FS-LIPDEX E, m x 0. mm ID, REF 768., max. temperature 00/0 C Sample: 0 µl in ml CH Cl Carrier gas: 0.6 bar H Temperature: 0 C Detector: FID C H N H C C N H Cl min 0 min Courtesy of Mrs. Eschmann, Institut für Brennstoffchemie, RWTH Aachen, Germany Enantiomer separation of -(-methyl-propan--sulphonyl)-hept--ene Appl. No. 60 Column: FS-LIPDEX G, m x 0. mm ID, REF 779., max. temperature 0/0 C Carrier gas: 00 kpa H 0 C/min Temperature: 60 C ( min) 00 C H C C ( min) Detector: FID S H CH C H S C Courtesy of Mrs. Vermeeren, AK Prof. Gais, Inst. für rg. Chemie, RWTH Aachen, Germany min 0 69

270 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of hexobarbital (TFA) Appl. No. 00 Column: FS-HYDRDEX b-p, m x 0. mm ID, REF 78., max. temperature 0/0 C Injection: 0. µl, split 0 ml/min Carrier gas: 60 kpa H (.9 ml/min) Temperature: 0 C Detector: FID 0 C C H 6 N H C N NH 0 0 min 0 Enantiomer separation of,-dimethyl- -phenyl-butan--ol Appl. No. 0 Column: FS-LIPDEX G, m x 0. mm ID, REF 779., max. temperature 00/0 C Carrier gas: 00 kpa H 0 C/min Temperature: Detector: C H 8 00 C ( min) 0 C 0 C/min 0 C ( min) ( min) 0 C/min 70 C ( min) FID H min Courtesy of Mrs. Vermeeren, AK Prof. Gais, Inst. für rg. Chemie, RWTH Aachen, Germany 70

271 Compounds C and greater Enantiomer separation of menthyl acetate Appl. No. 000 Column: FS-HYDRDEX b-p, m x 0. mm ID, REF 78., max. temperature 0/0 C Injection: 0. µl (% in CH Cl ) split 0 ml/min Carrier gas: 60 kpa H (.9 ml/min) Temperature: 0 C Detector: FID 0 C C H Separation of isomeric antiinflammatory drugs Appl. No. 00 Column: FS-HYDRDEX b-6tbdm, m x 0. mm ID, max. temperature 0 C, REF 78. Carrier gas: Temperature: H C C/min 00 C Detector: FID. Ibuprofen C H 8 H C CH. Flurbiprofen C H F CH F. Fenoprofen C H H. Naproxen C H CH. Ketoprofen C 6 H 0 min H C CH Menthyl acetate can also be separated on HYDRDEX b-pm (see application 0000 at S R min 0 Courtesy of Prof. W.A. König, Hamburg, Germany 7

272 Chiral separations Gas Chromatography Application Gallery Appendices Enantiomer separation of a-damascone Appl. No. 000 Column: FS-HYDRDEX b-pm, 0 m x 0. mm ID, REF 770.0, max. temperature 0/0 C Injection: 0. µl ( % in CH Cl ) split 0 ml/min Carrier gas: 0 kpa H (.7 ml/min) Temperature: 0 C Detector: FID 0 C C H 0 H C H C min H H Enantiomer separation of a-ionone Appl. No. 00 Column: FS-HYDRDEX g-tbdac, 0 m x 0. mm ID, REF 770.0, max. temperature 0/0 C Injection: 0. µl, split 0 ml/min Carrier gas:. bar H Temperature: C Detector: FID C H 0 H C H C 0 0 min H H Appl. No. 770 Columns: all m x 0. mm ID: a) FS-HYDRDEX b-6tbdm (REF 78.), b) FS-LIPDEX E (REF 768.), c) FS-HYDRDEX b-pm (REF 770.) Injection: µl, split, 0 C Carrier gas:. ml/min He Detector: FID 0 C a b c Temperature: C 0 C 0 C Resolution: Courtesy of H. Casabianca, CNRS Service Central d Analyse, Vernaison, France 7

273 Compounds C C Enantiomer separation of theaspiran Appl. No. 00 Column: FS-HYDRDEX b-pm, 0 m x 0. mm ID, REF 770.0, max. temperature 0/0 C Injection: 0. µl (% in CH Cl ) split :00 Carrier gas: 00 kpa H Temperature: 0 C Detector: FID 0 C C H Enantiomer separation of ibuprofen methyl ester Appl. No. 08 Column: FS-HYDRDEX b-p, m x 0. mm ID, REF 78., max. temperature 0/0 C Injection: 0. µl ( % in CH Cl ) split 0 ml/min Carrier gas: 60 kpa H (.9 ml/min) Temperature: 0 C Detector: FID 0 C C H 0 H C H C C H C min 0 min 0 7

274 Chiral separations Gas Chromatography Application Gallery Appendices Separation of isomeric sesquiterpenes Appl. No. 070 Column: FS-HYDRDEX b-6tbdm, m x 0. mm ID, max. temperature 0/0 C Carrier gas: H Temperature: 00 C C/min 00 C Detector: FID (C H ). ( )-g-cadinene. ( )-d-cadinene. ( )-a-cadinene. (+)-g-cadinene. (+)-a-cadinene 6. (+)-d-cadinene 7. (+)-Cadina-,-diene 8. ( )-Cadina-,-diene H C H H C H C H C H a-cadinene H C H H g-cadinene 0 6 H C H C H d-cadinene H C H Cadina-,-diene min Courtesy of Prof. W.A. König, Hamburg, Germany 7 8 Enantiomer separation of fluoxetine and norfluoxetine Appl. No. 0 Column: FS-HYDRDEX b-6tbdm, m x 0. mm ID, REF 78., max. temperature 0/0 C Temperature: 70 C C/min 00 C Carrier gas:. ml/min H Detector: PND 00 C. (S)- Norfluoxetine (R= H). (R)-Norfluoxetine). (S)-Fluoxetine (R = CH). (R)-Fluoxetine F C * H N. 6 min 6. S. Ulrich, J. Chromatography B, 78 (00) 8 90 R 7

275 Compounds C and greater Separation of isomeric paracyclophanes Appl. No. 090 Column: FS-HYDRDEX b-6tbdm, m x 0. mm ID, REF 78. max. temperature 0/0 C Carrier gas: Temperature: H C C/min 00 C Detector: FID. -Methyl-[.]-paracyclophane (C 7 H 8, R = - ). -Ethinyl-[.]-paracyclophane (C 8 H 6, R = -C CH). -Allyloxy-[.]-paracyclophane (C 9 H 0, R = --CH -CH=CH ). -Acetyl-[.]-paracyclophane (C 8 H 8, R = -C- ). -Formyl-[.]-paracyclophane (C 7 H 6, R = -CH) 6. -Cyano-[.]-paracyclophane (C 7 H N, R = -CN) 7. -Hydroxymethyl-[.]-paracyclophane (C 7 H 8, R = -CH H) 8. -Hydroxy-[.]-paracyclophane (C 6 H 6, R = -H) R min Courtesy of Prof. W.A. König, Hamburg, Germany 7

276 Chromatogram index Gas Chromatography Application Gallery Appendices A Acenaphthene 8 9, 0, 6, 66 Acenaphthene-d 0 8 9, 0, Acenaphthylene 0, 6, 66 Acephate 0 Acetaldehyde, 9, 60 Acetaminophen see Paracetamol Acetic acid anhydride 7 Acetic acid (C) 7,, 6 Acetic acid cyclohex--enyl ester (e) Acetic acid cyclopent--enyl ester (e) Acetochlor Acetone 6, 8, 9,,, 9, 60 Acetonitrile Acetophenone 0, 6 Acetylcodeine 8, 86 -Acetyldeoxynivalenol 9 -o-acetyl--deoxynivalenol 9 Acetylethyltetramethyltetralin Acetylmorphine 8 -Acetyl-[.]-paracyclophane (e) 7 Acetylthebaol 86 Adipic acid 9 AETT see Acetylethyltetramethyltetralin Alachlor 8 9, 0, 0 Alanine propyl esters (e) 0 Alaninol (e) 0 Aldols (e) 07 Aldrin 8 9, 7 80, 8, 8, 87, 0, Alkyl bromides (e) 0 Alkyl chlorides (e) 0 --Alkylglycerols (e) 7 Alkyl nitrates 0 Alkyl nitrates (e) 9 -Allyloxy-[.]-paracyclophane (e) 7 Allylphosphonic acid diethyl ester see Diethyl allylphosphonate Alodan 7 7, 8, 08 Alphamethrin see a-cypermethrin Alprazolam 8 Ametryn 8 9, 0 06, 0 Amidithion 9 9 -Aminoazobenzene 6 o-aminoazotoluene 6 Aminobenzene see Aniline -Aminobenzoic acid methyl ester -Aminobiphenyl 6 -Aminobutanol- (e) 0, Amino-i-butyric - acid isopropyl ester (e) 0 -Aminoheptane (e) 0 -Aminohexane (e) 0 -Amino-6-methylheptane (e) 0 -Amino--methylhexane (e) 0 -Aminomethylnorbornene (e) (e) = chiral (enantiomer) separation -Amino--nitrotoluene see -Nitro-o-toluidine -Aminooctane (e) 0 -Aminopentane (e) 0 -Aminopropan--ol (e) 0 Aminotoluene see Toluidine Amitriptyline 90 Ammelide, Ammeline 79 Amphetamine 8, 8, 8 Amphetamine (e) 0 Androstanediol 9 Androstanolone 9 Androsterone 9 Anethole, 6 Anhydroarabinitol (e) 9,-Anhydrogalactitol (e) 8,-Anhydroglucitol (e) 8,-Anhydromannitol (e) 8 Anilazine 7, 0 Aniline 0,, Anisaldehyde o-anisidine 7, 6 Anteisomargaric acid methyl ester (C7:0 iso) 7 Anthelmintics 78 Anthracene 8 9, 0, 6, 66 Arabinitol (e) Arabinose anomers (e) 8 Arachidic acid methyl ester (C0:0) 6, 6 7 Arachidonic acid methyl ester (C0:n6) 6 7 Aramite 0 Aspartic acid propyl esters (e) 0 Aspon see Chlordane Atraton 8 9, 0 0 Atrazine 8 9, 0, 0 06, 0 Azinphos-ethyl 9, 9 9, 98, 0, Azinphos-methyl 9 96, 98, Azobenzene 8, 0, 0 0, B Barbital 8 Behenic acid methyl ester (C:0) 6 7 Benzaldehyde Benz[a]anthracene 8 9, 0, 6, 66 Benzanthrone Benzene, 9, 9,,, 7, 99 Benzidine 0,,, 6 Benzo[b]fluoranthene 8 9, 0, 6, 66 Benzo[k]fluoranthene 8 9, 0, 6, 66 Benzoic acid 0 Benzoic acid methyl ester Benzo[ghi]perylene 8 9, 0, 6, 66 Benzophenone Benzo[a]pyrene 8 9, 0, 6, 66 Benzo[h]quinoline 0 Benzothiazole 0 76

277 Ace But Benzoylglycine 9 Benzyl acetate Benzyl alcohol 0,,,, 6, 8 Benzylamine 9, Benzyl benzoate Benzyl butyl phthalate see Butyl benzyl phthalate -Benzylbutyrolactone (e) 7 Benzyl chloride Benzyl salicylate a-bhc 8 9, 7 8, 87, 0,, b-bhc 8 9, 7 8, 87, 0, d-bhc 8 9, 7 79, 8 8, 87, 0 e-bhc 7, 87 g-bhc (lindane) 8 9, 7 8, 87, 0,, BHT see Butylated hydroxytoluene Bicyclic lactone (e) Bifenox Bioallethrin 99 a-bisabolol 6 Bis(-chloroethoxy)methane 0,, Bis(-chloroethyl) ether 0, Bis(-chloroisopropyl) ether Bis(-chloroisopropyl) ether 0,, Bis(diethyl-phosphonates) 6 Bis(-ethylhexyl) adipate 8 9 Bis(-ethylhexyl) phthalate see Di(-ethylhexyl) phthalate Bisphenol A and B 9 Bis(phosphonic acid diethyl esters) 6 Bitertanol 98, 0 Bladex see Cyanazine Bolstar see Sulprofos Borneol 6 Borneol (e) 6 Bornyl acetate, 7 endo-brevicomin (e) ( )-exo-brevicomin (e) Bromacil 8 9, 0 0, 07, 0 Bromoacetic acid methyl ester 6 Bromobenzene 6, 9 -Bromobutane (e) 0 Bromochloroacetic acid methyl ester 6 Bromochloromethane, -Bromo--chlorophenol 6 Bromocyclen 7 7, 7 77, 80 Bromodichloroacetic acid methyl ester 6 Bromodichloromethane 0, Bromoform see Tribromomethane -Bromohexane (e) 0 Bromomethane -Bromopentane (e) 0, 9 -Bromophenol 6 -Bromophenoxybenzene -Bromo--phenylethanol (e) 8 -Bromophenyl phenyl ether 0 Bromophos-ethyl 9 9,, Bromophos-methyl 98, -Bromopropionic acid methyl ester (e) 06 Bromopropylate 7, Butachlor 8 9 i-butane- 96 n-butane, 96 Butane-,-diol (e) 0, Butane-,-diol (e) 0, Butane-,-diol 60 Butane-,-diol (e) Butanediol dinitrate isomers 0 Butane-,,-triol (e) Butanoic acid see Butyric and Isobutyric acid Butanol-, 6 8, 0,, 9 Butanol- t-butanol- 7 Butanone see Methyl ethyl ketone Butaperazine 8 -Butin--ol (e) 0 Butter: triglycerides 7, 76 i-butyl - acetate, 7 n-butyl acetate, 7, 8 i-butyl - alcohol see -Methyl--propanol -Butylamine (e) Butylamine 9 Butylate 8 9, 0 0 Butylated hydroxytoluene n-butylbenzene, 9 sec-butylbenzene- t-butylbenzene- Butyl benzyl phthalate 8 9, 0,,, 6 -t-butyl--bromomethylene -,-dioxane (e) g-butylbutyrolactone see g-ctalactone -t-butyl--carboxymethyl - aziridine (e) n-butylcyanohydrin (e) 7 -t-butylcyclohexyl - acetate Butyldiglycol Butyldiglycol acetate -t-butyl-,6-dimethyl-,-dinitroacetophenone- see Musk ketone -t-butyl-,-dimethyl-,,6-trinitrobenzene- see Musk xylene -sec-butyl-,6-dinitrophenol- see Dinoseb t-butyl - ethyl ether --Butylglycerol (e) 7 Butyl glycol, 7 Butyl glycol acetate i-butyl - lactate (e) 6 -Butyl--methylbutyrolactone (e) i-butyl- methyl ketone 7, 8 Butyl-triethyl-tin 7 d-butylvalerolactone see d-nonalactone Butyric acid (C), 8, 6 Butyric acid methyl ester Butyrophenone 6 77

278 Chromatogram index Gas Chromatography Application Gallery Appendices C Cadina-,-diene (e) 7 Cadinene (e) 7 Caffeine 8, 8, 86 Camphene 6 Camphor 6, 7 Camphor (e) 6 Cannabichromene 86 Cannabinol 86 Capric acid methyl ester (C0:0) 8,,, 6 7 Caproic acid (C6:0) 6 Caproic acid methyl ester 8, 6 69 Caprylic acid (C8:0) 8 Caprylic acid methyl ester 6 7 Captafol 7, Captan 7, Carbaryl 87 Carbazole 8 Carbofuran 07, 0 Carbon tetrachloride see Tetrachloromethane Carbophenothion 9, 9 9, 98, Carboxin 8 9 -Carene Carene 6 D-Carene 7 D-Carene (e) 60 Carvone, 6, 7 Carvone (e) 8 Caryophyllene 86 Ceramides 77 Cervonic acid methyl ester (C:6n, DHA) 68, 69, 7 Chinomethionat see Quinomethionate Chlorbenside sulphone 7 7 a-chlordane (cis) 8 9, 7 77, 80, 8, g-chlordane (trans) 8 9, 7, 80, 8, 86, Chlordane 9 Chlordecone see Kepone Chlorfenprop-methyl 08 Chlorfenson 7 7, 00 Chlorfenvinphos 9, 98, 0, Chloridazon 0 Chlormephos 9 9 Chloroacetic acid methyl ester 6 -Chloro--aminobenzophenone 8 -Chloroaniline -Chloroaniline -Chloroaniline 7, 0, 7, 76, 77, 6 Chlorobenzene 6, 9, Chlorobenzilate 8 9, 0 -Chlorobiphenyl see PCB- Chlorobornane derivatives see Parlar Chlorodibromomethane 6 Chloroethane Chloroform see Trichloromethane (e) = chiral (enantiomer) separation -Chloroheptane (e) 0 -Chlorohexane (e) 0 Chloromethane Chloromethylaniline isomers -Chloro--methylbenzylamine 7 -Chloromethyloxirane see Epichlorohydrin -Chloro--methylphenol 0, Chloro--methylphenoxyacetic acid see MCPA -(-Chloro--methylphenoxy)butanoic acid see MCPB -Chloro--methylpropane -Chloronaphthalene 8 -Chloronaphthalene 7, 0 Chloroneb 8 9, 7, 76, 77 Chloronitroaniline isomers -Chloropentane (e) 0 -Chlorophenol 0, Chlorophenol 6 -Chlorophenoxybenzene -Chloro--phenylethanol (e) 8 -Chlorophenylethylamine (e) -Chlorophenyl phenyl ether 0 Chloroprene rubber, pyrolysis 00 -Chloropropane -Chloropropene -Chloro--propene -Chloropropene -Chloropropionic acid isobutyl ester (e) -Chloropropionic acid methyl ester (e) 06 Chlorothalonil 8 9, 7, 0,, -Chlorotoluene, 9, 9 -Chlorotoluene, 9, 9 -Chlorotoluene,, 9, 9 -Chloro-o-toluidine 7, 6 Chlorotrimethylsilane 8 Chlorpropham 8 9, 98, 0 Chlorpyrifos-ethyl 8 9, 7, 9 9,,, Chlorpyrifos-methyl 9, 9 9, Chlorthal-methyl 8 9 Chlorthalonil see Chlorothalonil Chlorthion 98, 99, Cholesterol 9 Chrysene 8 9, 0, 6, 66 Chrysene-d 8 9, 0, Cimaterol 88 Cineole,, 7 Cinnamyl alcohol (e) 8 Citric acid 86 Citronellal (e) 66 Citronellol (e) 66 Clenbuterol 88 Clofibric acid 89 Clomethiazole 8 Cocaine 8 Codeine 8, 8 Conjugated linoleic acid methyl esters 6 78

279 Cad Dic Coumaphos 9 96, p-cresidine 7, 6 m-cresol see -Methylphenol o-cresol see -Methylphenol p-cresol see -Methylphenol Crotoxyphos 9 Crufomate 9 9 Cumene see i-propylbenzene- Cyanazine 8 9, 0, 0, Cyanohydrins (e) 7 -Cyano--methyloxazole -Cyano-[.]-paracyclophane (e) 7 (Cyanopropyl)methyldimethoxysilane 9 Cyanuric acid 79 Cyclic olefins (e) 60 Cycloate 8 9, 0 0 Cyclobarbital 8, 87 Cyclodecane-trans-,-diol (e) 7 Cyclodecane-trans-,-diol (e) 7 trans-,-cycloheptanediol dinitrate 0 Cycloheptane-trans-,-diol (e), 7 Cycloheptane-trans-,-diol (e) 7 Cyclohexane,,, 6 Cyclohexanediol dinitrate isomers 0 Cyclohexane-trans-,-diol (e), 6, 7 Cyclohexanol 0 Cyclohexanone, 7, 8 Cyclohexylbenzene -Cyclohexylphenol 6 Cyclooctane-trans-,-diol (e) 7 Cyclopent--enyl methyl carbonate (e) Cyclopropylstearic acid see Methylene stearic acid Cyfluthrin 99 Cyhalothrin 99 a-cypermethrin 99 Cypermethrin Cyproconazole 0 D,-D esters 08, 09 a-damascone (e) 7,-DB 09, -DDD 7 8, 87,, -DDD 8 9, 7 7, 7 8, 87,, -DDE 7 8, 8, 87,, -DDE 8 9, 7 7, 7 8, 8, 87, 0,, -DDT 7 7, 77 80, 87, 0,,, -DDT 8 9, 7 80, 8, 8, 87, 0, Decachlorobiphenyl see PCB-09 d-decalactone (e), 67 g-decalactone 6 g-decalactone (e) Decane 6 Decanolide see Decalactone Decylamine 8, 9, n-decylamine 9 DEET see Diethyltoluamide DEG see Diethylene glycol Demephion 9 9 Demeton- 9, 9, 96 Demeton-S 9, 9, 96 Demeton-S-methyl Demeton-S-methylsulfon Deoxynivalenol 9 Desethylatrazine 0 0, 06, 0 Desethyldesisopropylatrazine 0 0 Desethylsebuthylazine 0 0 Desethylterbumeton 0 0 Desethylterbuthylazine 0 0, 06, 0 Desisopropylatrazine 0 06, 0 Desmetryn 0 0, 0 Desoxyephedrine (e) 8 Dextrorphan 87 DHA see Cervonic acid Diacetylmorphine see Heroin Dialifos 9 9 Diallyl phthalate,-diaminoanisole 6, -Diaminodiphenylmethane 6,-Diaminotoluene 6 o-dianisidine see, -Dimethoxybenzidine Diazinon 8 9, 9, 9 9, 98,,, Dibenz[ah]anthracene 8 9, 0, 6, 66 Dibenzofuran 0 Dibenzothiophene 7 Dibenzylamine 6, 0 Dibrom see Naled Dibromoacetic acid methyl ester 6, -Dibromobiphenyl Dibromochloroacetic acid methyl ester 6 Dibromochloromethane 0,,-Dibromo--chloropropane,-Dibromoethane Dibromomethane, -Dibromooctafluorobiphenyl,-Dibromophenol 6 Dibutylamine 9 Di-i-butylamine- 0 Di-n-butylamine 0 Dibutyl-diethyl-tin 7 Dibutyl-dipentyl-tin 7,-Di-t-butylphenol- Dibutyl phthalate 6 Di-i-butyl - phthalate Di-n-butyl phthalate 8 9, 0 Dibutyl sebacate Dichlobenil 7, 0 Dichlofenthion 9, 9 9 Dichlofluanid 7, 0, Dichloran see Dicloran Dichloroacetic acid methyl ester 6 Dichloroaniline isomers,-dichlorobenzene, 7, 8, 0, 7 79

280 Chromatogram index Gas Chromatography Application Gallery Appendices,-Dichlorobenzene, 7, 8, 0,-Dichlorobenzene, 7, 8, 0,-Dichlorobenzene-d 0, -Dichlorobenzidine 0, 6,-Dichlorobiphenyl see PCB- Dichlorobromomethane 6 Dichlorodimethylsilane 8,-Dichloroethane,-Dichloroethane 0, 6,-Dichloroethene cis-,-dichloroethene 0 6 trans-,-dichloroethene 0, 6 s-dichloroethyl ether Dichlorofluoromethane Dichloromethane 0, 6,, 7, 0, 8 Dichloronitrobenzene isomers,,-dichlorophenol 0, 60 6,,6-Dichlorophenol 0, (,-Dichlorophenoxy)butyric acid see,-db,-dichlorophenoxyacetic acid 89,-Dichlorophenoxyacetic acid see,-d,-dichloropropane,-dichloropropane,-dichloropropane,,-dichloropropane,-dichloropropene,-dichloropropene cis-,-dichloropropene (Z) trans-,-dichloropropene (E) Dichlorotoluene isomers 9 Dichlorprop -ethyl -hexyl ester 08 Dichlorprop methyl ester 08, 09 Dichlorprop methyl ester (e) 6 Dichlorvos 8 9, 9 9, 98,, Diclobutrazol 0 Diclofenac 89 Dicloran 7, 0 Dicrotophos 9,-Dicyanopropyltetramethyldisiloxane 9 Dicyclohexylamine 9, 0 Dicyclohexyl phthalate Dieldrin 8 9, 7 8, 87, 0,, Diethanolamine 0, Diethyl acetal 9 Diethyl allylphosphonate 6 Diethylamine 8, 0 Diethylene glycol 9, 60 Diethyl ethylphosphonate 6 Di(-ethylhexyl) adipate Di(-ethylhexyl) phthalate 8 9, 0,,, 6, 87 Diethyl methylphosphonate 6 Diethyl phthalate 8 9, 0,,, 6, Diethylstilbestrol 9 Diethyltoluamide 07 (e) = chiral (enantiomer) separation Di-i-hexylamine- 0 Dihydrotestosterone see Androstanolone Dimefox 9 9 Dimethametryn 0 0 Dimethoate 9, 98,,, -Dimethoxybenzidine 6 Dimethylamine 7, 8,-Dimethylaniline,6-Dimethylaniline 0,, Dimethylaniline 8, Dimethylbenzene see Xylene, -Dimethylbenzidine 6,6-Dimethylbenzylamine 7,-Dimethylbutane-,-diol (e) 0,-Dimethylbutyrolactone (e), -Dimethyl-, -diaminodiphenylmethane 6 Dimethyldimethoxysilane 9,8-Dimethyl-,7-dioxaspiro[,]undecane (e) Dimethylformamide 6 N,N-Dimethylformamide,-Dimethyl-,-hexadiene (e),-dimethyl--hydroxymethyl-,-dioxolane see Solketal Dimethyl malate (e) Dimethyl methylphosphonate 7 Dimethylnaphthalene isomers 99,-Dimethyl--nitrobenzene 6,-Dimethyl--nitrobenzene,7-Dimethyl-,6-octadien--ol,7-Dimethyl-6-octenal,6-Dimethyl-7-octen--ol,7-Dimethyl-6-octen--ol,7-Dimethyl-octen--ol,-Dimethylphenol 0, 60 6,6-Dimethylphenol 7,-Dimethyl--phenyl-butan--ol (e) 70 Dimethyl phthalate 8 9, 0,,, 6 Dimethylsilane 8 Dimethylsulfoxide 6,-Dinitrobenzene 0,,6-Dinitro--methylphenol,-Dinitrophenol 0, 60, 6 6,-Dinitrotoluene,,-Dinitrotoluene 8 9, 0, 8,-Dinitrotoluene,,6-Dinitrotoluene 8 9, 0, 8,-Dinitrotoluene,,-Dinitrotoluene,,-Dinor-6-oxo-prostagladin F a 9,-Dinor-thromboxane B 9 Dinoseb 0, 6 Di-n-octyl phthalate 0 Dioctyl phthalate,, 6,-Dioxane Dioxane,7-Dioxaspiro[,]undecane (e) 80

281 Dic Eth Dioxathion 9, 98 Diparacetamol 8 Diphenamid 8 9 Diphenhydramine 8, 90 Diphenylamine 0, 98, 0 0 Diphenyldimethoxysilane 9 Diphenyl ether Diphenyl-(-ethylhexyl) phosphate Diphenyl phthalate,-diphenyltetramethyldisilazane 9 Di-i-propylamine- 9, 0 Di-n-propylamine 0 Dipropyl phthalate Disulfoton 8 9, 9 96,,,-Divinyltetramethyldisilazane 9,-Divinyltetramethyldisiloxane 9 Docosadienoic acid methyl ester (C:) 6 69, 7, 7 cis-,7,0,,6,9-docosahexaenoic acid see Cervonic acid Docosahexaenoic acid methyl ester (C:6) 67, 7 Docosane 8, 0, Docosatrienoic acid methyl ester 70 d-dodecalactone (e), 67 g-dodecalactone 6 g-dodecalactone (e) Dodecane 8, n-dodecane 7 Dodecanol, 7, 6 Dodecanolide see Dodecalactone,-DP see Dichlorprop Dursban see Chlorpyrifos-methyl E Edifenphos 9 9 cis-,-eicosadienoic acid methyl ester (C0:n6) 68, 69 Eicosadienoic acid methyl ester 6, 67, 70 7 Eicosane 0 Eicosapentaenoic acid methyl ester (C0:) 6, 67, 7 also see Timnodonic acid methyl ester cis-8,,-eicosatrienoic acid methyl ester (C0:n6) 66, 68, 69, 7 cis-,,7-eicosatrienoic acid methyl ester (C0:n) 66, 68, 69, 7 Eicosatrienoic acid methyl ester (C0:) 6, 67, 70, 7 Eicosenoic acid methyl ester (C0:) 6, 67 7 Elaidic acid methyl ester (C8:n9 trans) 6, 66, 68 7 Enanthic acid see Heptanoic acid Endosulfan (alpha), Endosulfan (beta) 8 9, 7 7, 78 8, 86, 87, 0, Endosulfan sulphate 8 9, 7 7, 80 8, 86 Endrin 8 9, 7 80, 8, 8, 87, 0, Endrin aldehyde 8 9, 8, 8 Endrin ketone 8 9, 8 EPA 0, EPA, EPA 8 EPA 8 6 EPA. 6 EPA 60 6 EPA EPA EPA EPA 60 6, 66 EPA 6 7 EPA 6 EPA 6 EPA EPA 6 07 EPA 6 07 EPA EPA 800 A 60, 6 EPA EPA 80 9, 9 EPA 8 9, 9 EPA EPA also see Timnodonic acid Ephedrine 8 Ephedrine (e) 0 Epibromohydrin (e) 0 Epichlorohydrin Epichlorohydrin (e) 0 EPN 9,-Epoxybutane (e) 07,-Epoxyhexane (e) 07,-Epoxy--methylbutanol- (e) 8,-Epoxyoctane (e) 07 (E)-,-Epoxy--octin--ol (e),-epoxypropanol- see Glycidol EPTC 8 9, 0 0 Erucic acid methyl ester (C:n9) 6, 6 7 Erythrose (e) 09 Estrone 9 Ethalfluralin 0 0, 06 Ethane 96,-Ethanediol dinitrate 0 Ethanol, 6,, 7, 9, 60 Ethanolamine -Ethanolaniline Ethinylestradiol 9 -Ethinyl-[.]-paracyclophane (e) 7 Ethion 9, 9 9, 98, Ethoprophos (ethoprop) 8 9, 9 9 -Ethoxy--propanol Ethoxypropanol 7, 8 Ethoxypropyl acetate 7 Ethoxyquin 0 Ethyl acetate 9, 9, 60 Ethylamine 8 8

282 Chromatogram index Gas Chromatography Application Gallery Appendices Ethylbenzene 6, 9, 9, 7, 8, 99 Ethyl butanoate 8 g-ethylbutyrolactone see g-hexalactone Ethyldiglycol S-Ethyl N,N-dipropylthiocarbamate see EPTC Ethylene glycol 8 --Ethylglycerol (e) 7 Ethyl glycol, 7, 8 Ethyl glycol acetate, 7, 8 Ethyl hexanoate 8 -Ethyl--hydroxy--cyclopenten--one 8 Ethyl methanesulfonate 0 -Ethyl-7-methyl-,6-dioxaspiro[,]decane (e) Ethyl methyl ketone see Methyl ethyl ketone Ethyl nonanoate Ethyl octanoate 8 N-Ethyloxazepam 90 Ethylphosphonic acid diethyl ester see Diethyl ethylphosphonate -Ethyltoluene 0 -Ethyltoluene -Ethyltoluene 0, Ethylvanillin Etridiazole 8 9, 7, 0 Etrimfos 98 Eucalyptol see Cineole Eugenol, 6, 8 F FAMEs 6 7 Famphur 9 Fatty acid methyl esters see FAMEs Fatty alcohols, ethoxylated 7 Fenamiphos 8 9, 9 9 Fenarimol 8 9, 0 Fenchlorphos 9 9, 98, Fenchone 6 Fenchone (e) 6 Fenfuram 0 Fenitrothion 9, Fenoprofen 89 Fenoprofen (e) 7 Fenoprop methyl ester 08, 09 Fenoprop methyl ester (e) 6 Fenpropathrin 99 Fenpropimorph 0 Fensulfothion 9, 9, 96 Fenthion 9, 9, 96, 98, Fenvalerate 99 Flamprop-isopropyl 0 0 Fluazifop-butyl 0 0 Fluchloralin 0 0 Flucythrinate 7 Fluometuron 07 Fluoranthene 0, 6, 66 (e) = chiral (enantiomer) separation Fluorene 8 9, 0, 6, 66 Fluorenone -Fluorobiphenyl 0 Fluorochloridone 7 Fluorodifen 0 0 -Fluorophenol 0 -Fluorophenol 7 Fluotrimazole 0 0 Fluoxetine (e) 7 Flurbiprofen (e) 7 Fluridone 8 9 Flusilazole 98, 0 Flutriafol 0 Fluvalinate 7 Folpet 7, Fonofos 9, -Formyl-[.]-paracyclophane (e) 7 Frontalin (e) Fumaric acid 9 Furaneol 8 -(-Furyl)ethanol (e) -(-Furyl)ethanol acetate (e) G Gemfibrozil 89 Geraniol 6 Glucose 8, 86 Glucose anomers (e) 7 Glutamic acid propyl esters (e) 0 Glutaric acid 9 Glyceric acid methyl ester (e) 09 Glycerol 60 Glycidyl butyrate (e) Glycine propyl esters 0 Glycolic acid 7 Glycolic acid n-butyl ester 7 Glycophene see Iprodione Gondoic acid methyl ester (C0:n9) 66 Grandisol (e) 6 H HCB 8 9, 7, 8, 0, 7 7, 7 8, 8, 87, HCH see BHC Henicosane 8, Henicosanoic acid methyl ester (C:0) 6, 66, 68, 69, 7 7 Heptachlor 8 9, 7 80, 8, 8, 87, 0, cis-heptachlor epoxide (B) 8 9, 7 7, 7, 78 8, 86, 87, 0, trans-heptachlor epoxide (A) 8 9, 7, 78 8, 86, 87, 0, Heptachlor epoxide 7 7, 8, 8 Heptachlorobiphenyls see PCB nomenclature 68 Heptachlorodibenzodioxins 7 Heptachlorodibenzofurans 7 8

283 Eth Iso cis-0-heptadecenoic acid methyl ester (C7:n7) 66, 68, 69 Heptadecenoic acid methyl ester (C7:) 6, 67, 70, 7 g-heptalactone (e), 6 Heptane n-heptane 99 Heptane-,-diol (e) 0, Heptane-,,-triol (e) 8 Heptanoic acid 6 Heptanol Heptanol- Heptanol- (e) 0, 7 -Heptanolide see g-heptalactone Heptanophenone 6 Heptenophos 9 9, 98 g-heptylbutyrolactone see g-undecalactone n-heptylcyanohydrin (e) 7 n-heptyl--nitrate (e) 9 d-heptylvalerolactone see d-dodecalactone Heroin 8, 86 Hexachlorobenzene see HCB Hexachlorobiphenyls see PCB nomenclature 68 Hexachlorobutadiene, 7, 8, 0, 78, 79 Hexachlorocyclopentadiene 8 9, 7, 8, 0, 7 7 Hexachlorodibenzodioxins 7 Hexachlorodibenzofurans 7 Hexachloroethane 7, 8, 0, Hexachloropropene 0 Hexaconazole 0 Hexadecenoic acid methyl ester (C6:) 6, 69, 70, 7, 7, 7 also see Palmitoleic acid methyl ester,-hexadiene Hexafluorobisphenol A 6 Hexahydroisobenzofuranone (e) g-hexalactone 6 g-hexalactone (e) Hexamethyldisilazane 9 Hexamethyldisiloxane 8, 9 Hexamethylphosphoramide 9 Hexane n-hexane 6,,,, 99 Hexane-,-diol (e) 0,,,-Hexanediol dinitrate 0 Hexanoic acid 8 also see Caproic and Isocaproic acid Hexanoic acid -propenyl ester Hexanol- 0, 6 Hexanolactone see Hexalactone -Hexanolide see g-hexalactone Hexazinone 8 9, 0 0, 07 (E)--Hexenoic acid 8 Hex--en--yl methyl carbonate (e) Hexobarbital (e) 70 g-hexylbutyrolactone see g-decalactone Hexylcinnamic aldehyde n-hexylcyanohydrin (e) 7 n-hexyl--nitrate (e) 9 d-hexylvalerolactone see d-undecalactone Hippuric acid 9 Hydratropic acid methyl ester (e) 8 -Hydroxybiphenyl 6 -Hydroxybutyraldehyde (e) 07 -Hydroxybutyric acid methyl ester (e) 09 Hydroxycitronellal -Hydroxycyclopentadecanone 7-Hydroxy-,7-dimethyl-octanal -Hydroxyglutaric acid 9 Hydroxymethylclenbuterol 88 -Hydroxy--methylglutaric acid 9 -Hydroxymethyl-[.]-paracyclophane (e) 7 -Hydroxy--methyl--pentanone Hydroxymidazolam metabolites 90 -Hydroxy--nitrooxycyclohexane 0 -Hydroxy--nitrooxycyclopentane 0 -Hydroxy-[.]-paracyclophane (e) 7 -Hydroxy-i-valeric - acid 9 Hydroxyvaleronitrile (e) 7 I Ibuprofen 89 Ibuprofen (e) 7 Ibuprofen methyl ester (e) 7 Imazalil 98, 00 Indane -Indanol (e) 7 Indeno[,,-cd]pyrene 8 9, 0, 6, 66 Indomethacin 89 Iodofenphos 9 9 a-ionone (e) 7 Iprodione i-propylbenzene- 0 Isazofos 9 9 Isoallyl chloride Isoamyl alcohol 9 Isobenzan 78, 79 Isoborneol (e) 6 Isobumeton see Secbumeton Isobutanol see -Methyl--propanol Isobutyl also see i-butyl- Isobutylcyanohydrin (e) 7 --Isobutylglycerol (e) 7 Isobutyl methyl ketone 9 Isobutyric acid see -Methylpropionic acid Isocaproic acid 6 Isocarbamid 0 0 Isodrin 0, 7 79, 0 Isoheptane Isoleucine propyl esters (e) 0 Isomargaric acid methyl ester (C7:0 iso) 7 Isomenthol (e) 9 8

284 Chromatogram index Gas Chromatography Application Gallery Appendices Isomenthone, 6 Isomenthone (e) 9, 6 Isomethiozin 0 0 a-isomethyl ionone Isomyristic acid methyl ester (C:0 iso) 7 Isononyl acetate Isooctane Isooctyl-dibutyl-ethyl-tin 7 Isopalmitic acid methyl ester (C6:0 iso) 7 Isopentyl acetate --Isopentylglycerol (e) 7 Isophorone 8 9, 8, 0, 8 -Isopropenyl--methylcyclopentanone (e) Isopropalin 0 0, 06 Isopropyl see i-propyl-,-isopropylidene glycerol see Solketal Isopulegol (e) 9 Isosafrole 0 Isovaleric acid 6 Isovaline isopropyl ester (e) 0 Isoxsuprine 88 K Kepone 0 Ketoendrin 80, 86 Ketoprofen 89 Ketoprofen (e) 7 L Lactic acid 9 Lactide (e) Lauric acid methyl ester (C:0) 6, 6 7 Lavandulol (e) 6 Lavandulyl acetate (e) 6 Lenacil 0 0 Leptophos 9 Leucine propyl esters (e) 0 Leucinol (e) 0 Levomethorphan 87 Lidocaine 8 Lidoflazine 8 Lignoceric acid methyl ester (C:0) 6 69, 7 7 Lilial, Limonene,, 7 Limonene (e) 60, 6 Linalool, 7 Linalool (e) 66, 67 Linalool oxide (e) 66 Linalyl acetate (e) 6, 67 Linalyl anthranilate Linalyl butyrate Linalyl propanoate Lindane see g-bhc Linoleic acid methyl ester (C8:n6 cis) 6 7 (e) = chiral (enantiomer) separation Linolelaidic acid methyl ester (C8:n6 trans) 66, 68, 69, 7 a-linolenic acid methyl ester (C8:n) 6, 66, 68, 69, 7, 7 g-linolenic acid methyl ester (C8:n6) 66, 68, 69, 7, 7 Linolenic acid methyl ester (C8:) 6, 67, 70, 7, 7 Lysine propyl esters (e) 0 M Mabuterol 88 Malathion 87, 9, 9 9, 98,, 7 Maltol 8 Mandelic acid methyl ester (e) 8 Mannose anomers (e) 7 Margaric acid methyl ester (C7:0) 6 7 MCPA 09 MCPB 09 MCPP see Mecoprop Mecarbam 00 Meclofenamic acid 89 Meconin 86 Mecoprop methyl ester 09 Mecoprop methyl ester (e) 69 MEK see Methyl ethyl ketone Melamine 79 p-menth-(7)-en-9-ol Menthofuran, 6 Menthofuran (e) 9 Menthol, 7 Menthol (e) 9, 68 L-Menthone 6 Menthone Menthone (e) 9, 6 Menthyl acetate, 6 Menthyl acetate (e) 9, 7 Menthyl valerianate 6 Merphos 8 9, 9, 9 Merphos oxidation product 9, 9 Mestranol 9 Mesuximide (e) 68 Metalaxyl 0, 0 0, 0 Metamitron 0 0, 0 Metazachlor 0 0, 0, 06, 0, Methacrifos 9 9, 98 Methadone 8 Methamphetamine 8, 8 Methane 96 Methanol, 7, 9, 60 Methaqualone 8, 8 Methfuroxam 0 Methidathion 9 9, 98,, Methionine propyl esters (e) 0 Methomyl 07 8

285 Iso Met Methoprotryn 0 0, 0 Methoxyaniline see Anisidine -Methoxybenzaldehyde Methoxychlor 8 9, 7, 7, 77, 8, 87, 0, 0, p-methoxycinnamic acid -ethylhexyl ester cis- and trans- isomer 77 Methoxy--indole 6 -Methoxy-m-phenylene diamine see,-diaminoanisole -Methoxypropanol-, 7, 8 -Methoxypropyl acetate-, 7, 8 -Methoxypropyl acetate- 7, 8 Methyl acetate,, 7, 8, 60 Methylamine 8 Methylaniline see Toluidine Methyl atratate Methylbenzene see Toluene a-methylbenzyl acetate, -( -Methylbenzylidene)camphor 77 Methylbutane 96 -Methylbutane-,-diol (e) 0 -Methyl--butanol 9, 60 -Methyl--butanol 6 -Methyl--butanol 9, 60 -Methylbutyl acetate 8 Methyl butyrate see Butyric acid methyl ester -Methylbutyric acid (e) 8 -Methylbutyric acid ethyl ester (e) 8, -Methylbutyric acid methyl ester (e) 7 -Methylbutyric acid 8 a-methylbutyrolactone (e), -Methylcholanthrene 0 -Methylcyclohexene (e) 0, Methylcyclohexane -Methylcyclohexanone (e) Methyl decanoate see Capric acid methyl ester (C0:0) Methyl dihydrojasmonate Methyl,-dihydroxy-,6-dimethylbenzoate -Methyl-,6-dinitroanisole 6 Methyldinitrobenzene isomers 8 -Methyl-,6-dinitrophenol 0, Methyl-,6-dioxaspiro[,]decane (e) Methyl cis--docosenoate see EPTC: n9) Methyl dodecanoate see Lauric acid methyl ester (C:0) Methyl eicosanoate see Arachidic acid methyl ester (C0:0), -Methylene-bis-(-chloroaniline) 6 Methylene chloride see Dichloromethane Methylenedianiline see Diaminodiphenylmethane,-Methylenedioxyamphetamine 8,-Methylenedioxyethylamphetamine 8,-Methylenedioxymethamphetamine 8, -Methylenedi-o-toluidine see, -Dimethyl-, -diaminodiphenylmethane Methylene stearic acid methyl ester (C9:0 cyclo) 7 -Methylethylbenzene see i-propylbenzene- Methyl--ethylbenzene 99 Methyl ethyl ketone,, 7 9 Methyl formate -Methylglutaric acid 9 --Methylglycerol (e) 7 Methyl glycol 7 Methyl glycol acetate 7 Methyl glycol phthalate Methyl heptanoate 8 -Methyl--heptanone (e) 6 -Methyl-,(Z)-hexadiene (e) Methyl hexanoate see Caproic acid methyl ester -Methyl--hexene (e) 0 Methylhydrodimethoxysilane 9 -Methyl--hydroxyvaleraldehyde (e) 07 b-methylionone Methyl isobutyl ketone Methyl lactate (e) 08, 09 Methyl methanesulfonate 0 Methylmyristic acid methyl ester (C:0 iso/anteiso) 7 -Methylnaphthalene 0, 99 -Methylnaphthalene 0, 99 Methyl octadecanoate see Stearic acid methyl ester (C8:0) -Methyl--oxazole-carboxylic acid amide -Methyl-[.]-paracyclophane (e) 7 Methyl pentachlorophenyl sulphide 7 7, 8 Methyl pentanoate see Valeric acid methyl ester -Methylpentanol- (e) 9 -Methylphenol 0, 9 6 -Methylphenol 0, 9, 6, 6 -Methylphenol 0, 9 6 -Methyl-m-phenylenediamine see,-diaminotoluene -(-Methylphenyl)ethanol (e) 0 -(-Methylphenyl)ethanol (e) 0 -(-Methylphenyl)ethanol (e) 0 -(p-methylphenyl)--phenylhydantoin 90 Methylphophonic acid diethyl ester see Diethyl methylphosphonate Methylphosphonic acid dimethyl ester see Dimethyl methylphosphonate -Methyl--propanol, 7, 8, 9, 60 -(-methyl-propan--sulphonyl)-hept--ene (e) 69 -Methylpropionic acid 8, 6 -Methylpropyl acetate 8 -Methylpropylbenzene see sec-butylbenzene Methylpropyl-,6-dinitrophenol see Dinoseb N-Methylpyrrolidone a-methylquinovoside (e) 6 a-methylrhamnoside (e) 6 Methylsilane 8 Methyl stearate see Stearic acid methyl ester (C8:0) -Methylthioethanol 8 8

286 Chromatogram index Gas Chromatography Application Gallery Appendices -Methylthiopropanol 8 Methyltrichlorosilane 8 Methyl undecanoate see Undecanoic acid methyl ester (C:0) -Methyl--vinylcyclopentanone (e) Metolachlor 8 9, 0 0, 0, 06, 0 Metribuzin 8 9, 0, 07, 0 Mevinphos 8 9, 9 9, 98 Mexiletine (e) 0 MGK Midazolam 90 Mirex 7 7, 7 77, 8, 8, 87 Molinate 8 9, 0 0 Monoacetylmorphine 8, 86 Monocrotophos 9 Morphine 8, 8, 86 Musk ambrette 6 7 Musk ketone 6 7, 80, 86 Musk moskene 6 7 Musk tibetene 6 7 Musk xylene 6 7, 7, 80, 86 Methylphosphonic acid dimethyl ester see Dimethyl methylphosponate Myclobutanil 98, 0, Mycotoxines 9 Myrcene 6 Myristic acid isopropyl ester Myristic acid methyl ester (C:0) 6 7 Myristoleic acid methyl ester (C:) 6 70, 7 N Naled 9, 9, Nalorphine 8 Naphthalene, 0, 6, 66,, 7, 99 Naphthalene-d 8 0,-Naphthoquinone 0 -Naphthylamine -Naphthylamine 6 -Naphthyl methyl ketone Napropamide 8 9 Naproxen 89 Naproxen (e) 7 Narcotine 8 Neoisomenthol (e) 9 Neomenthol (e) 9 Nervonic acid methyl ester (C:n9) 6 7 Nicotine 8 Nitroaniline isomers 0 Nitrobenzene 8, 0, 8, Nitrobenzene-d 0, 6 Nitrochlorobenzene isomers, Nitrooxybutanol isomers 0 -Nitrooxyethanol 0 Nitrooxypropanol isomers 0 -Nitrophenol 0, 60 6 (e) = chiral (enantiomer) separation -Nitrophenol 0, 6, 6 -Nitro-quinoline -oxide 0 N-Nitrosodimethylamine 0, N-Nitrosodiphenylamine N-Nitroso-di-n-propylamine 0, Nitrotoluene isomers -Nitro-o-toluidine 6 -Nitro-m-xylene 8 9 Nivalenol 9 Nitromusk see Musk trans-nonachlor 8 9, 76 Nonachlorobornane see Parlar Nonadecanoic acid methyl ester (C9:0) 67, 68, 7 d-nonalactone (e) g-nonalactone 6 g-nonalactone (e) n-nonane, 99 Nonane-,-diol (e) 0, Nonanoic acid ethyl ester Nonanol- (e) 0 Nonylamine 9 n-nonyl--nitrate (e) 9 -Nonylphenol, technical 9 Norephedrine (e) 0 Norfluoxetine (e) 7 Norflurazon 8 9 Nuarimol 7, 0, ctachlorobiphenyls see PCB nomenclature 68 ctachlorobornane see Parlar ctachlorodibenzodioxin 7 ctachlorodibenzofuran 7 ctachlorostyrene 7 7, 7, 8 trans-9,-ctadecadienoic acid 6 ctadecatetraenoic acid methyl ester 7 d-ctalactone (e) g-ctalactone (e), 6 ctamethylcyclotetrasiloxane 9 n-ctane 99 ctane-,-diol (e) 0,, ctanoic acid see Caprylic acid ctanol 7, 8, ctanol- 6, 0, 7 -ctanolide see g-ctalactone -ctanolide see d-ctalactone -ctene-7,8-diol (e) 0 -cten--ol (e) 6, 7 N-ctyl bicycloheptene dicarboximide see MGK-6 g-ctylbutyrolactone see g-dodecalactone n-ctyl--nitrate (e) 9 -t-ctylphenol- 9 furace 0 leic acid methyl ester (C8:n9 cis) 6 7 rnithine propyl esters (e) 0 86

287 Met Phe xacyclohexadecan--one xadiazon 0 0 xamyl 07 -xoglutaric acid 9 xychlordane 7 77, 80, -xydianiline 6 P PAH 8, 0, 6 67 Palmitic acid methyl ester (C6:0) 6 7 Palmitoleic acid methyl ester (C6:n7 cis) 66 68, 7 Pantolactone (e) Papaverine 8, 86 Paracetamol 8, 86 Parathion-ethyl 87, 9, 9 9, 0, Parathion-methyl 8 9, 87, 9, 9, 0, Parlar,,,, 88, 89 Parlar 6 80, 8, 86, 88, 89 Parlar,, 8, 9, 0 88, 89 Parlar, a, b, 88, 89 Parlar 0 80, 8, 86, 88, 89 Parlar, 6, 8, 9 88, 89 Parlar 6 80, 86, 88, 89 Parlar 6, 69 88, 89 Parsols 77 PCB-, PCB- 8 9 PCB-8, PCB-0 69 PCB , 7 8, 8 PCB PCB , 80 PCB- 68, 69 PCB PCB-9 68, 80 PCB , 7 8, 8 PCB-6 68 PCB-66 68, 8 PCB PCB PCB-99 8 PCB-0 69, 70, 7 77, 79 8, 8 PCB-0 8 PCB-0 69 PCB- 69 PCB-8 69, 70, 78, 79, 8 PCB-8 PCB-8 69, 70, 7 8, 8 PCB-9 69 PCB- 69, 70, 7 8, 8, PCB- 8 9 PCB-6 69, 80 PCB-70 69, 7 PCB PCB-80 69, 70, 7 8, 8 PCB-8, PCB PCB-9 69 PCB PCB-09 70, 80 PCDD see Polychlorinated dibenzodioxins PCDF see Polychlorinated dibenzofurans Pebulate 8 9, 0 0 Penconazole 98, 0, Pendimethalin 0 Pentabromodiphenyl ether isomers 8 Pentachloroanisole 7 7 Pentachlorobenzene 0, 7 79, 8 Pentachlorobiphenyls see PCB nomenclature 68 Pentachlorodibenzodioxins 7 Pentachlorodibenzofurans 7 Pentachloronitrobenzene 0 Pentachlorophenol 8 9, 0, 60, 6, 6 Pentadecanoic acid methyl ester (C:0) 6 7 cis-0-pentadecenoic acid methyl ester (C:n) 66, 68, 69, 7 Pentadecenoic acid methyl ester (C:)6, 67, 70 Pentaethylene glycol 9 Pentafluorophenol n-pentane 6,, 96, 99 Pentane-,-diol (e) 0,, Pentane-,-diol (e),-pentanediol dinitrate 0 Pentanochlor 0 0 Pentanoic acid see Valeric acid and Isovaleric acid Pentanol- 9 Pentanol- (e) 0, -Pentanolide see g-valerolactone Pentenol Pentobarbital 87 g-pentylbutyrolactone see g-nonalactone n-pentylcyanohydrin (e) 7 --Pentylglycerol (e) 7 d-pentylvalerolactone see d-decalactone Permethrin 99 Permethrin cis/trans 8 9 Perylene-d 8 9, 0 Phenacetin 0, 8 Phenanthrene 8 9, 0, 6, 66 Phenanthrene-d 0 8 9, 0, Phenethyl alcohol see -Phenylethanol m-phenetidine Phenkapton 9 9, 98 Phenobarbital 87 Phenol 0, 60 6, Phenol-d 6 0 Phensuximide (e) 68 Phenylacetic acid 8 Phenylacetic acid methyl ester, Phenylalanine propyl esters (e) 0 -Phenylbutyric acid 9 -Phenylbutyrolactone (e) 7 -Phenylbutyrolactone (e) 7 N-Phenyl-cyclohex--enamine (e) 69 (±)-trans--phenylcyclopropylmethanol (e) 8 87

288 Chromatogram index Gas Chromatography Application Gallery Appendices (±)-trans--phenylcyclopropylmethyl acetate (e) 8 -Phenyl-,-ethanediol (e) 0, -Phenylethanol, 8 a-phenylethanol, a-phenylethanol (e) 9, 0 -Phenylethyl acetate -Phenylethyl acetate 8 a-phenylethylamine (e) 0 Phenylethylamine (e) 0 Phenylglycol see -Phenyl-,-ethanediol -Phenylpropane see i-propylbenzene- -Phenylpropan--ol (e) 9 -Phenylpropan--ol (e) 9 -Phenyl--propen--ol -Phenylpropionic acid methyl ester (e) 8 (Phenylpropyl)methyldimethoxysilane 9 Pholedrine (e) 0 Phorate 9, 9, 96 Phosalone 9 9, 0 Phosmet 9 Phosphamidon 9, Phosphonic acid diethyl esters 6 a-pinene 6, 7 a-pinene (e) 6 b-pinene, 6, 7 b-pinene (e) 6 Piperidinone- Piperitone (e) 9 Piperonal, Pirimicarb 0 Pirimiphos 98 Pirimiphos-ethyl 9 9 Pirimiphos-methyl 9 9, Polychlorinated biphenyls see PCB Polychlorinated bornanes see Parlar Polychlorinated dibenzodioxins 7 Polychlorinated dibenzofurans 7 Polycyclic aromatic hydrocarbons see PAH Polyethylene pyrolysis 00 Polypropylene pyrolysis 00 Prochloraz 0, 0 Procymidone 7,, Profenofos 0, Profluralin 06 Progesterone 9 9 Proline propyl esters (e) 0 Prometon 8 9, 0 0, Prometryn 8 9, 0, 0, 06, 0 Pronamide see Propyzamide Propachlor 8 9 Propan-,-diol also see Propylene glycol Propane 96 Propane-,-diol (e) 0, 0 Propanediol dinitrate isomers 0 Propanil 0 0 (e) = chiral (enantiomer) separation Propanol-, 7, 9, 60 Propanol-, 7 m-propanolpyridine o-propanolpyridine 0, p-propanolpyridine Propazine 8 9, 0 06, 0 Propham 98, 0 0, 0 Propiconazole 0 0, 0, Propionic acid 6 i-propyl - acetate 7, 8 n-propyl acetate 7 -i-propylaniline- N-i-Propylaniline- 6 i-propylbenzene-, 9, n-propylbenzene,, 9, 0, g-propylbutyrolactone see g-heptalactone -i-propyl--carboxymethyl - aziridine (e) n-propylcyanohydrin (e) 7 -i-propyl-,6-dinitrophenol- 60, 6 Propylene glycol i-propyl - myristate, -i-propyltoluene- -i-propyltoluene-,, 9 d-propylvalerolactone see d-ctalactone Propyzamide 8 9, Prothiocarb 0 Prothiophos 9 96, Pulegone Pulegone (e) 9 Pyrene 8 9, 0, 6, 66 Pyrene-d Pyridaphenthion 9 9, 98 Pyridine 0, 6,, Pyridine-d Pyrolysis GC 00 Q Quercus lactone see -Butyl--methylbutyrolactone Quinalphos 9 9, 98, Quinine 8 Quinomethionate 0 Quintozene 7 7, 76, 77, 87, 0, R Ractopamine 88 Rapeseed oil: FAMEs 7 Ronnel see Fenchlorphos Rose oxide (e) 6 S S 7 Sabinene 6 Sabinene (e) 60 (+)-trans-sabinene hydrate (e) 9 88

289 Phe Tra Safrole 0, 6 Salbutamol 88 Sebuthylazine 0 0, 06, 0 Secbumeton 0 Secobarbital 87 Silanes 8, 9 Simazin 8 9, 0 06, 0 Simetryn 8 9, 0 0, 0 Solketal (e) 7 Sorbitol (e) 0 Spiroacetals (e) Stearic acid methyl ester (C8:0) 7, 6 7 Stirofos see Tetrachlorvinphos Styralyl acetate Styrene, 9, Styrene oxide (e) 8 Succinic acid 9 Sulfotep 9 9, 98, Sulprofos 9 96 Sympathomimetic amines (e) 0 T,,-T isooctyl ester 08,,-T methyl ester 08, 09,,-T octyl ester 08 Tartaric acid dimethyl ester (e) 09, TCNB see Tecnazene Tebuconazole 98, 0 Tebuthiuron 8 9 Tecnazene 7 7, 80,, Telodrin 7 7, 8 TEPP 9, 9 9 Terbacil 8 9, 07 Terbufos 8 9, 9, Terbumeton 0 Terbuthylazine 0 06, 0 Terbutryn 8 9, 0 06, 0 p-terphenyl-d 8 9, 0 a-terpinene 6 g-terpinene 6 Terpinen--ol 6 a-terpineol 6 a-terpineol (e) 6 Terrazole see Etridiazole Testosterone 9, 9,,, -Tetrabromodiphenyl ether 8 Tetrabutyl-tin 7 Tetrachloroaniline isomers 7 7,,,-Tetrachlorobenzene 7,,,-Tetrachlorobenzene 0, 7 Tetrachlorobiphenyls see PCB nomenclature 68 Tetrachlorodibenzodioxins 7,,7,8-Tetrachlorodibenzofuran 7,,,-Tetrachloroethane,,,-Tetrachloroethane Tetrachloroethene 0, 6, 7 Tetrachloromethane 0, 6,,,-Tetrachloronaphthalene 8, 8,,,-Tetrachloro--nitrobenzene see Tecnazene,,,-Tetrachlorophenol 6 6,,,6-Tetrachlorophenol 0, 60 6,,,6-Tetrachlorophenol 60 6 Tetrachlorosilane 8,,,6-Tetrachloroxylene 7 7 Tetrachlorvinphos 8 9, 9, 9 Tetracosane 0, 86 Tetracosenic acid methyl ester (C:) 7 Tetradecane 0 Tetradifon 7 7, 00, Tetraethylene glycol 9 Tetrahydrocannabinol 86 Tetrahydrofuran,, 6 Tetrahydroisobenzofuranone (e) Tetralin Tetramethrin 99,,,-Tetramethyldisiloxane 9 Tetramethylsilane 8 Tetrasul 7 Tetratriacontane 79 TFA see Trifluoroacetic acid THC see Tetrahydrocannabinol Theaspiran (e) 7 THF see Tetrahydrofuran Thiabendazole 0 Thioacetic acid cyclopent--enyl ester (e) 0 Thiobencarb 0, -Thiodianiline 6 Thiometon 9 9 Thionazin 9 Thioquinox 0 0 Thioridazine 8 Thiothixene 8 Thymol 6 Tilidine 8 Timnodonic acid methyl ester (EPA, C0:n) 66, 68, 69, 7 Tin compounds 7 TNT see Trinitrotoluene D,L-a-Tocopherol acetate 79 Tokuthion see Prothiophos Tolclofos-methyl 9 9, 98 Tolfenamic acid 89 Toluene 6, 9, 9, 0 8, 99 Toluene-d 8 6, 0,-Toluenediamine see,-diaminotoluene m-toluidine, o-toluidine,,, 6 p-toluidine Tolylfluanid 7 Toxaphenes 88, 89 also see Parlar,,-TP see Fenoprop Tranylcypromine (e) 0 89

290 Chromatogram index Tri Xyl Gas Chromatography Application Gallery Appendices Triadimefon 8 9, 7, 0, 07 Triadimenol 0, 0 0, 0 Triazophos 9 9 Tribromoacetic acid methyl ester 6,,6-Tribromoanisole 8 Tribromomethane 0,,,, 6,,6-Tribromophenol 0, 6 Tri-n-butylamine 0 Tributyl-ethyl-tin 7 Tributyl-pentyl-tin 7 Tributyl phosphate 9, 9 9, 7 Trichlorfon 9, Trichloroacetic acid methyl ester 6 a-,-trichloroacetophenone 7 7 Trichloroaniline isomers,,-trichlorobenzene, 7,,-Trichlorobenzene, 7, 8, 0, 7,,-Trichlorobenzene 7 Trichlorobiphenyls see PCB nomenclature 68,,-Trichloroethane 0,, 6,,-Trichloroethane Trichloroethane 7 Trichloroethene 0, 6, Trichlorofluoromethane 0,, 6 Trichloromethane 0 6,,, 7 Trichloronate 9, 9, 96,,-Trichlorophenol 60 6,,-Trichlorophenol 60 6,,6-Trichlorophenol 60 6,,-Trichlorophenol 0, 60 6,,6-Trichlorophenol 0, 60 6,,,-Trichlorophenol 60 6,,-Trichlorophenoxyacetic acid see,,-t,,-trichloropropane,,-trichlorotrifluoroethane 0, 6 Tricosane 8, Tri-o-cresyl phosphate 9 Tri-p-cresyl phosphate 9 9, Tricyclazole 8 9 Tridecanoic acid methyl ester (C:0) 6 7 Tridecenoic acid methyl ester (C:) 67 Trietazine 0 0 Triethanolamine Triethylamine 8, 0 Triethylene glycol 9 Tri(-ethylhexyl) phosphate Triethyl phosphate 9 9, 7 Triflumizole 0 Trifluoroacetic acid 7,,-Trifluorophenylethanol (e) 7 Trifluralin 8 9, 7 7, 87, 06, 0 Triglycerides 7, 76 Tri-n-hexylamine 0 Trimethylamine 8,,-Trimethylaniline 7, 6,,-Trimethylbenzene 0, 99 (e) = chiral (enantiomer) separation,,-trimethylbenzene, 0,, 99,,-Trimethylbenzene, 9, 0, 99 cis-,,-trimethylcyclohexanol (e),,-trimethylcyclohex--en--one see Isophorone Trimethylmethoxysilane 9 Trimethyl phosphate 7 Trimethylsilane 8,,6-Trinitrotoluene, 6 Trioctyl-ethyl-tin 7 Triphenyl phosphate 8 9, 9, 9 9,, Tri-n-propylamine 0 Tris--chloroethyl phosphate 9 9 Trocosanoic acid methyl ester (C:0) 6, 66, 68, 69, 7 U d-undecalactone (e) g-undecalactone (e), 6 Undecane 7, 8, Undecanoic acid methyl ester (C:0) 8,, 6 7 Undecylamine 9 n-undecyl--nitrate (e) 9 V Valeric acid (C:0) 6 Valeric acid methyl ester 8, 67, 68, 70 g-valerolactone (e), 6 Valine propyl esters (e) 0 Valinol (e) 0 Vamidothion 9 9 Vanillin, 8 Vernolate 8 9, 0 0 Vinclozolin 7, 0, 0, Vinyl acetate Vinyl chloride, 6 Vinyldimethylmethoxysilane 9 Vinyl-endo-brevicomin (e) Vinyl-exo-brevicomin (e) -Vinylguaiacol 8 -Vinylpyrrolidone Vinyltrimethoxysilane 9 Vitamin E acetate 79 W Whisky lactone see -Butyl--methylbutyrolactone X o, m,p-xylene 6, 9, 9, 7, 8, 99 Xylene Xylenol see Dimethylphenol Xylidine see Dimethylaniline 90

291 Structure index Acenaphthene 6 Acenaphthylene 6 Acephate 9 Acetic acid cyclohex--enyl ester Acetic acid cyclopent--enyl ester Acetochlor 00 Adipic acid 9 Alachlor 00 Alanine 0 Aldrin 7 Alkyl bromides 0 Alkyl chlorides 0 Alodan 7 Alprazolam 8 Ametryn 0 Amidithion 90 o-aminoazotoluene 6 Aminoisobutyric acid 0 -Aminomethylnorbornene Amitriptyline 90 Ammelide, Ammeline 79 Amphetamine 0 Androstanediol 9 Androstanolone 9 Androsterone 9 Anethole Anhydroarabinitol 9 Anhydrogalactitol 8 Anhydroglucitol 8 Anhydromannitol 8 Anilanzine 0 Anisaldehyde o-anisidine Anthracene 6 Arabinitol Arabinose 8 Aramite 9 Aspartic acid 0 Atratone 0 Atrazine 0 Azinphos-methyl/-ethyl 90 Barbital 87 Benz[a]anthracene 6 Benzanthrone Benzidine Benzo[b]fluoranthene 6 Benzo[k]fluoranthene 6 Benzo[ghi]perylene 6 Benzophenone Benzo[a]pyrene 6 -Benzylbutyrolactone 7 Bifenox 7 Bioallethrin 99 Bisabolol 8 Bitertanol 97 Bornane 88 Borneol 6 endo-brevicomin exo-brevicomin Bromacil 07 -Bromobutane 0 Bromocyclen 7 -Bromopentane 9 -Bromo--phenylethanol 8 Bromophos-ethyl 9 -Bromopropionic acid methyl ester 06 Bromopropylate 7 Butachlor 00 Butaperazine 8 -Butin--ol 0 -Butylamine Butylate 86 -t-butyl--bromomethylene -,-dioxane -t-butyl--carboxymethyl - aziridine -Butyl--methylbutyrolactone Cadina-,-diene 7 Cadinene 7 Caffeine 8 Camphor 6 Cannabichromene 86 Cannabinol 86 Captafol Captan Carbamates 86, 07 Carbaryl 86 Carbazole 9 Carbofuran 86 Carbophenothion 90 Carboxin 6 -Carene D-carene 60 Carvone 8 Caryophyllene 86 Ceramides 77 Chlorbenside sulphone 7 Chlordane 7 Chlorfenprop 09 Chlorfenson 7 Chlorfenvinphos 90 Chloridazon 6 Chlormephos 90 Chlorobenzilate 7 -Chloroheptane 0 -Chlorohexane 0 Chloroneb -Chloropentane 0 -Chloro--phenylethanol 8 p-chlorophenylethylamine -Chloropropionic acid isobutyl ester -Chloropropionic acid methyl ester 06 Chlorothalonil Chlorpropham 00 Chlorpyrifos 9 Chlorthal Chlorthion 9 Cholesterol 9 Chrysene 6 Cimaterol 88,8-Cineole 7 Cinnamyl alcohol 8 Citronellal, Citronellol 66 Clenbuterol 88 Clomethiazole 8 Cocaine 8 Codeine 8 Coumaphos 9 p-cresidine Crotoxyphos 90 Crufomate 9 Cyanazine 0 Cyanohydrins 7 Cyanuric acid 79 Cyclic carbonates of,-diols 0 Cyclic carbonates of --alkylglycerols 7 Cycloate 86 Cyclobarbital 87 trans-,-cyclohexanediol 6 Cyclopentanonecarboxylic acid methyl ester Cyclopent--enyl methyl carbonate Cyfluthrin 99 Cyhalothrin 99 Cypermethrin 99 Cyproconazole 97,-D 09 Damascone 7,-DB 09 o,p -DDD; - p,p -DDD- 7 o,p -DDE; - p,p -DDE- 7 o,p -DDT; - p,p -DDT- 7 d-decalactone g-decalactone Demephion-/-S 9 Demeton-/-S 9 Demeton-/-S-methyl 9 Desmetryn 0 Desoxyephedrine 8 Dialifos 90,-Diaminoanisole Diazinon 9 Dibenz[ah]anthracene 6 9

292 Structure index Gas Chromatography Application Gallery Appendices Dibenzofuran 7 Dichlobenil Dichlofenthion 9 Dichlofluanid 7 Dichlorphos 90 Dichlorprop 09 Dichlorprop methyl ester 6 Diclobutrazole 97 Dicloran Dicrotophos 90 Dieldrin 76 Diethyltoluamide 00 Dimefox 9 Dimethametryn 0 Dimethoate 90,-Dimethylbutyrolactone,8-Dimethyl-,7-dioxaspiro[,] undecane,-dimethyl-,-hexadiene Dimethyl malate,-dimethyl--phenylbutan--ol 70 Dimethyl tartrate,-dinor-6-oxoprostaglandin 9,-Dinorthromboxane 9 Dinoseb Dioxane,7-Dioxaspiro[,]undecane Dioxathion 9 Diphenamid 00 Diphenhydramine 8 Disulfoton 90 d-dodecalactone g-dodecalactone,-dp 09 Edifenphos 9 Endosulfan 76 Endrin 76 Ephedrine 0 Epibromohydrin 0 Epichlorohydrin 0 EPN 9,-Epoxy--methylbutanol- 8,-Epoxy--octin--ol EPTC 86 Erythrose 09 Estrone 9 Ethalfluralin 96 Ethion 9 Ethoprophos 9 Ethoxyquin 6 -Ethyl-7-methyl-,6-dioxaspiro[,]decane Etridiazole 6 Etrimfos 9 Eugenol Famphur 9 Fatty acids 6, 6 Fenamiphos 9 Fenarimol 7 Fenbendazole 78 Fenchlorphos 9 Fenchone 6 Fenfuram 00 Fenitrothion 9 Fenoprofen 7 Fenoprop 09 Fenoprop methyl ester 6 Fenpropathrin 99 Fenpropimorph 0 Fensulfothion 9 Fenthion 9 Fenvalerate 99 Flamprop 00 Fluazifop-butyl 09 Fluchloralin 96 Flucythrinate 99 Fluometuron 97 Fluoranthene 6 Fluorene 6 Fluorenone Fluorochloridone Fluorodifen 7 Fluotrimazole 97 Fluoxetine 7 Flurbiprofen 7 Fluridone 6 Flusilazole 97 Flutriafol 97 Fluvalinate 99 Folpet Fonofos 90 Frontalin Fumaric acid 9 Furaneol 8 -(-Furyl)ethanol Geraniol 6 Glucose 7 Glutamic acid 0 Glutaric acid 9 Glyceric acid methyl ester 09 Glycidyl butyrate Glycine 0 Grandisol 6 HCB Heptachlor 76 g-heptalactone Heptenophos 9 Heptyl--nitrate 9 Heroin 8 Hexachlorobenzene Hexaconazole 97 Hexahydroisobenzofuranone g-hexalactone Hexazinone 96 -Hex--enyl methyl carbonate Hexobarbital 70 Hexyl--nitrate 9 Hippuric acid 9 Hydratropic acid 8 -Hydroxybutyraldehyde 07 -Hydroxybutyric acid methyl esters 09 Ibuprofen 7 Imazalil 97 Indane -Indanol 7 Indeno[,,-cd]pyrene 6 Iodofenphos 9 a-ionone 7 Iprodione Isazofos 9 Isobenzan 77 Isoborneol 6 Isobutyl lactate 6 Isocarbamid 00 Isodrin 77 Isoleucine 0 Isomethiozin 96 Isophorone 9 Isopropalin 96 -Isopropenyl--methylcyclopentanone Isopulegol 9 Isovaline 0 Isoxsuprine 88 Kepone 77 Ketoprofen 7 Lactic acid 9 Lactide Lavandulol 6 Lenacil 07 Leptophos 9 Leucine 0 Lidocain 8 Lidoflazine 8 Lilial 6 Limonene 6 Linalool 66 Lysine 0 Mabuterol 88 Malathion 90 Malic acid dimethyl ester Maltol 8 Mandelic acid methyl ester 8 Mannose 7 MCCP 09 MCPA 09 MCPB 09 Mecarbam 90 Meconin 8 9

293 Structure index Mecoprop 09 Mecoprop methyl ester 69 Melamine 79 Menthofuran 9 Menthol 9 Menthone 9 Menthyl acetate 9 Mesuximide 68 Metalaxyl 00 Metamitron 96 Metazachlor 00 Methadone 8 Methaqualone 8 Methfuroxam 00 Methidathion 90 Methionine 0 Methomyl 07 Methoprotryn 0 p,p -Methoxychlor- 7 -Methylbutyric acid methyl ester 7 -Methylbutyric acid 8 a-methylbutyrolactone -Methylcyclohexanone -Methylcyclohexene 0, Methyl dihydrojasmonate -Methyl-,6-dinitroanisole 6 7-Methyl-,6-dioxaspiro[,]- decane -Methyl--heptanone 6 -Methyl-,-hexadiene -Methyl--hexene 0 -Methyl--hydroxyvaleraldehyde 07 b-methylionone Methyl lactate 08 -(-Methyl-propan--sulphonyl)- hept--ene 69 N-Methylpyrrolidone a-methylquinovoside 6 a-methylrhamnoside 6 -Methyl--vinylcyclopentanone Metolachlor 00 Metribuzin 96 Mevinphos 90 Mexiletine 0 Midazolam 8 Mirex 77 Molinate 86 Monocrotophos 90 Morphine 8 Musk ambrette 6 Musk ketone 6 Musk moskene 6 Musk tibetene 6 Musk xylene 6 Myclobutanil 97 Myrcene 6 Naled 9 Nalorphine 8 Naphthalene 6 Napropamide 00 Naproxen 7 Neomenthol 9 Nicotine 8 Nonachlor 7 d-nonalactone g-nonalactone Nonyl--nitrate 9 Norephedrine 0 Norfluoxetine 7 Norflurazon 6 Noscapine 8 Nuarimol 7 ctachlorodibenzodioxin 7 d-ctalactone g-ctalactone -cten--ol 6 ctyl--nitrate 9 furace 00 rnithine 0 xadiazon xamyl 07 xazole xfendazole 78, -xydianiline 6 PAH 6 Pantolactone Papaverine 8 Paracyclophanes 7 Parathion 9 PCB 68 Pebulate 86 Penconazole 97 Pendimethalin 96 Pentanochlor 00 Pentobarbital 87 Permethrin 99 Phenacetin 9 Phenanthrene 6 Phenkapton 90 Phenobarbital 87 Phenoxycarboxylic acids 09 Phensuximide 68 Phenylalanine 0 -Phenylbutyrolactone 7 N-Phenyl-cyclohex--enamine 69 Phenylcyclopropylmethanol 8 a-phenylethanol 9 a-phenylethylamine 0 Phenylpropanol isomers 9 -Phenylpropionic acid 8 Pholedrine 0 Phorate 90 Phosalone 90 Phosmet 90 Phosphamidon 90 cis-pinane 6 a-pinene 6 Piperitone 9 Piperonal Pirimicarb 86 Pirimiphos-ethyl/-methyl 9 Prochloraz 97 Procymidone Profenofos 9 Profluralin 96 Progesterone 9 Proline 0 Prometon 0 Prometryn 0 Propachlor 00 Propanil 00 Propazine 0 Propham 00 Propiconazole 97 -i-propyl--carboxymethyl - aziridine Propyzamide 00 Prothiocarb 86 Prothiofos 9 Pulegone 9 Pyrene 6 Pyridaphenthion 9 Quinalphos 9 Quinine 8 Quinomethionat 6 Quintozene Ractopamine 88 Rose oxide 6 Sabinene 60 Safrole Salbutamol 88 Saturated fatty acids 6 Sebuthylazine 0 Secbumeton 0 Secobarbital 87 Simazin 0 Simetryn 0 Solketal 7 Sorbitol 0 Spiroacetals Succinic acid 9 Sulfotep 9 Sulprofos 9,,-T 09 Tartaric acid dimethyl ester 09, Tebuconazole 97 Tebuthiuron 97 Tecnazene 9

294 Structure index Gas Chromatography Application Gallery Appendices TEPP 9 Terbacil 07 Terbufos 90 Terbumeton 0 Terbuthylazine 0 Terbutryn 0 a-terpinene 6 a-terpineol 6 Testosterone 9 Tetrachlorvinphos 90 Tetradifon 7 Tetrahydrocannabinol 86 Tetrahydrofuran Tetrahydroisobenzofuranone Tetralin Tetramethrin 99 Tetrasul 7 Theaspiran 7 THF Thiabendazole 6 Thioacetic acid cyclopent--enyl ester 0 Product use restriction Thiobencarb 86, -Thiodianiline 6 Thiometon 90 Thionazin 9 Thioquinox 6 Thioridazine 8 Thiothixene 8 Thymol 6 Tilidine 8 TNT 6 Tolclofos-methyl 9 o-toluidine Tolylfluanid 7 Toxaphenes 88,,-TP 09 Tranylcypromine 0 Triadimefon 97 Triadimenol 97 Triazines 96, 0 Triazophos 9 Trichlorfon 9 Trichloronat 9 Tricyclazole 6 Trietazine 0 Triflumizole 97,,-Trifluorophenylethanol 7 Trifluralin 96,,-Trimethylcyclohexanol,,6-Trinitrotoluene 6 d-undecalactone g-undecalactone Undecyl--nitrate 9 Unsaturated fatty acids 6 g-valerolactone Valine 0 Vamidothion 9 Vanillin Vernolate 86 Vinclozolin Vinyl-endo-brevicomin Vinyl-exo-brevicomin Vinylguaiacol Whisky lactone MACHEREY-NAGEL chromatography products are intended, developed, designed and sold FR RESEARCH AND DEVELPMENT PURPSES AND ANALYTICAL QUALITY CNTRL / RUTINE MEASUREMENTS NLY, except, however, any other function of the product being EXPRESSLY set forth in original MACHEREY- NAGEL product leaflets. MACHEREY-NAGEL products are intended for GENERAL LABRATRY USE NLY! MACHEREY-NAGEL products are suited for QUALIFIED PERSNNEL NLY! MACHEREY-NAGEL products shall in any event be used wearing adequate PRTECTIVE CLTHING. For detailed information please refer to the respective Material Safety Data Sheet of the product! MACHEREY-NAGEL products shall exclusively be used in an ADEQUATE TEST ENVIRNMENT. MACHEREY-NAGEL does not assume any responsibility for damages due to improper application of our products in other fields of application. APPLICATIN N THE HUMAN BDY IS STRICTLY FRBIDDEN. The respective user is liable for any and all damages resulting from such application. The user has to ensure that the products used are suitable for the intended application. MACHEREY-NAGEL does not warrant the reproducibility of published applications. 9

295 Index of application numbers

296 Index of application numbers Gas Chromatography Application Gallery Appendices

297 MACHEREY-NAGEL Chromatography and More HPLC SPE TLC Filtration Rapid Tests Bioanalysis Water Analysis

Trajan SGE GC Columns

Trajan SGE GC Columns Trajan Scientific and Medical Trajan SGE GC Columns Trajan Scientific and Medical Our focus is on developing and commercializing technologies that enable analytical systems to be more selective, sensitive

More information

Selection of a Capillary

Selection of a Capillary Selection of a Capillary GC Column - Series 3 Mark Sinnott Application Engineer March 19, 2009 Page 1 Typical Gas Chromatographic System Mol-Sieve Traps Fixed Restrictors Regulators Injection Port Detector

More information

Selection of a Capillary GC Column

Selection of a Capillary GC Column Selection of a Capillary GC Column Mark Sinnott Application Engineer March 13, 2008 Page 1 Typical Gas Chromatographic System Mol-Sieve Traps Fixed Restrictors Regulators Injection Port Detector Electrometer

More information

Speakers. Moderator. John V Hinshaw GC Dept. Dean CHROMacademy. Tony Taylor Technical Director CHROMacademy. Dave Walsh Editor In Chief LCGC Magazine

Speakers. Moderator. John V Hinshaw GC Dept. Dean CHROMacademy. Tony Taylor Technical Director CHROMacademy. Dave Walsh Editor In Chief LCGC Magazine Webcast Notes Type your questions in the Submit Question box, located below the slide window You can enlarge the slide window at any time by clicking on the Enlarge Slides button, located below the presentation

More information

Introduction and Principles of Gas Chromatography

Introduction and Principles of Gas Chromatography Introduction and Principles of Gas Chromatography Jaap de Zeeuw Restek, Middelburg, The Netherlands Jaap.dezeeuw@restek.com Definition and Uses of Gas Chromatography GC Components and Types of Columns

More information

Chromatography. Gas Chromatography

Chromatography. Gas Chromatography Chromatography Chromatography is essentially the separation of a mixture into its component parts for qualitative and quantitative analysis. The basis of separation is the partitioning of the analyte mixture

More information

Understanding Gas Chromatography

Understanding Gas Chromatography Understanding Gas Chromatography What is Really Going on Inside the Box? Simon Jones GC Applications Engineer Page 1 Group/Presentation Title Month ##, 200X ?? K? Page 2 Typical GC System Gas supply Injector

More information

Chapter 27: Gas Chromatography

Chapter 27: Gas Chromatography Chapter 27: Gas Chromatography Gas Chromatography Mobile phase (carrier gas): gas (He, N 2, H 2 ) - do not interact with analytes - only transport the analyte through the column Analyte: volatile liquid

More information

Water Injections in GC - Does Water Cause Bleed?

Water Injections in GC - Does Water Cause Bleed? Water Injections in GC - Does Water Cause Bleed? Eberhardt Kuhn Applications Chemist April 4, 2001 Practical Advice and Useful Tips for the Analysis of Semivolatile Organics by GC and GC/MS 11:00 a.m.

More information

How To Select the Correct GC Column. Simon Jones Application Engineer

How To Select the Correct GC Column. Simon Jones Application Engineer How To Select the Correct GC Column Simon Jones Application Engineer Things to Consider Is it Volatile enough to chromatograph by GC? Is it a Gas or a Liquid? How are we getting the Sample Injected? What

More information

Understanding the Capillary GC Column: How to Choose the Correct Type and Dimension

Understanding the Capillary GC Column: How to Choose the Correct Type and Dimension Understanding the Capillary GC Column: How to Choose the Correct Type and Dimension Simon Jones Application Engineer Things to Consider Is it Volatile enough to chromatograph by GC? Is it a Gas or a Liquid?

More information

Activity in the FID Detection Port: A Big Problem if Underestimated

Activity in the FID Detection Port: A Big Problem if Underestimated Activity in the FID Detection Port: A Big Problem if Underestimated Jaap de Zeeuw, Restek Corporation, Middelburg, The Netherlands It is commonly known in gas chromatography, that many problems can be

More information

An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols.

An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols. An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols. Jaap de Zeeuw, Ron Stricek and Gary Stidsen Restek Corp Bellefonte, USA To analyze basic compounds at

More information

Gas Chromatography. Introduction

Gas Chromatography. Introduction Gas Chromatography Introduction 1.) Gas Chromatography Mobile phase (carrier gas) is a gas - Usually N 2, He, Ar and maybe H 2 - Mobile phase in liquid chromatography is a liquid Requires analyte to be

More information

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software GC Columns and Consumables Mark Sinnott Application Engineer January 8 th, 2008 Page 1 Questions to Ask

More information

Introduction to Capillary GC. Page 1. Agilent Restricted February 2, 2011

Introduction to Capillary GC. Page 1. Agilent Restricted February 2, 2011 ?? Kβ? Page 1 Typical GC System Gas supply Injector Detector Data handling GAS Column Oven Page 2 CARRIER GAS Carries the solutes down the column Selection and velocity influences efficiency and retention

More information

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications Chapter 27: Gas Chromatography Principles Instrumentation Detectors Columns and Stationary Phases Applications GC-MS Schematic Interface less critical for capillary columns Several types of Mass Specs

More information

GAS CHROMATOGRAPHY. Mobile phase is a gas! Stationary phase could be anything but a gas

GAS CHROMATOGRAPHY. Mobile phase is a gas! Stationary phase could be anything but a gas GAS CHROMATOGRAPHY Mobile phase is a gas! Stationary phase could be anything but a gas Gas Chromatography (GC) GC is currently one of the most popular methods for separating and analyzing compounds. This

More information

Packings for HPLC. Packings for HPLC

Packings for HPLC. Packings for HPLC Summary of packings for HPLC In analytical HPLC, packings with particle sizes of 3 to 10 µm are preferred. For preparative separation tasks, also particles with diameters larger than 10 µm are applied.

More information

Introduction to Capillary GC

Introduction to Capillary GC ?? Kβ? Page 1 Typical GC System Gas supply Injector Detector Data handling GAS Column Oven Page 2 CARRIER GAS Carries the solutes down the column Selection and velocity influences efficiency and retention

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 1 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC Gas Chromatography Gas Chromatography Presented By Mr. Venkateswarlu Mpharm KTPC What is Gas Chromatography? It is also known as Gas-Liquid Chromatography (GLC) GAS CHROMATOGRAPHY Separation of gaseous

More information

2401 Gas (liquid) Chromatography

2401 Gas (liquid) Chromatography 2401 Gas (liquid) Chromatography Chromatography Scheme Gas chromatography - specifically gas-liquid chromatography - involves a sample being vaporized and injected onto the head of the chromatographic

More information

New ZB-5HT Inferno The World s Highest Temperature Non-Metal GC Column

New ZB-5HT Inferno The World s Highest Temperature Non-Metal GC Column New ZB-5HT Inferno The World s Highest Temperature Non-Metal GC Column The World's First Non-metal 5% Phenyl Phase GC Column Rated to 430 C * Specially processed for thermal stability up to 430 C A true

More information

Agilent J&W GC Column Selection Guide

Agilent J&W GC Column Selection Guide Agilent J&W GC Column Selection Guide Rely on unsurpassed reproducibility, efficiency, and inertness. Speed your selection with this one-stop resource. Agilent J&W GC Column Selection Guide Table of Contents

More information

Chemistry Instrumental Analysis Lecture 28. Chem 4631

Chemistry Instrumental Analysis Lecture 28. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 28 Two types in general use: -packed (stationary phase) -open tubular or capillary determine selectivity and efficiency of the sample. Column Materials Column

More information

Gas Chromatography (GC)

Gas Chromatography (GC) Gas Chromatography (GC) Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11541 Saudi Arabia Office: AA53

More information

Introduction to Gas Chromatography

Introduction to Gas Chromatography Introduction to Gas Chromatography 31-1 Objectives To know what is chromatography To understand the mechanism of compound separation To know the basic of gas chromatography system 31-2 Chromatography Definition

More information

CEE 772: Instrumental Methods in Environmental Analysis

CEE 772: Instrumental Methods in Environmental Analysis Updated: 3 November 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #14 Chromatography: Theory (Skoog, Chapt. 26, pp.674-693) (Harris, Chapt. 23) (641-664) David Reckhow

More information

GAS CHROMATOGRAPHY (GC)

GAS CHROMATOGRAPHY (GC) GAS CHROMATOGRAPHY (GC) Pre-Lab Questions Questions are to be answered before the beginning of the laboratory. The answers are due at the beginning of each experiment (the questions are for credit and

More information

GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY

GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY Page 1 of 13 CIPAC/4105/R GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY Prepared for CIPAC by Dr M J Tandy*, P M Clarke and B White (UK) The rapid

More information

Chemistry Instrumental Analysis Lecture 27. Chem 4631

Chemistry Instrumental Analysis Lecture 27. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 27 Gas Chromatography Introduction GC covers all chromatographic methods in which the mobile phase is gas. It may involve either a solid stationary phase (GSC)

More information

Choosing the Correct GC Column Dimensions and Stationary Phase

Choosing the Correct GC Column Dimensions and Stationary Phase Choosing the Correct GC Column Dimensions and Stationary Phase Daron Decker Chromatography Technical Specialist Page 1 Nothing is useless it can always serve as a bad example Custom Column: 150 m x 250

More information

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application Analysis of Trace (mg/kg) Thiophene in Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application Petrochemical Authors James D. McCurry and Bruce D. Quimby Agilent Technologies

More information

Ch24. Gas Chromatography (GC)

Ch24. Gas Chromatography (GC) Ch24. Gas Chromatography (GC) 24.1 What did they eat in the year 1000? From 13 C content of cholesterol in ancient bone 13 C : 1.1%, 12 C: 98.9% 13 C/ 12 C ratio types of plants Bones of 50 people in Barton-on-Humber

More information

Secrets of GC Column Dimensions

Secrets of GC Column Dimensions Secrets of GC Column Dimensions GC Columns and Consumables Simon Jones Application Engineer May 20, 2008 Slide 1 Secrets of GC Column Dimensions Do I have the right column phase? Resolution Equation Changes

More information

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS 1. List two advantages of temperature programming in GC. a) Allows separation of solutes with widely varying retention factors in a reasonable

More information

The Suite for Environmental GC Analysis

The Suite for Environmental GC Analysis The Suite for Environmental GC Analysis SGE Environmental GC Columns Performance Selectivity Delivery Promise www.sge.com SGE Environmental GC Columns The Suite for Environmental GC Analysis SGE GC Columns

More information

CHAPTER 6 GAS CHROMATOGRAPHY

CHAPTER 6 GAS CHROMATOGRAPHY CHAPTER 6 GAS CHROMATOGRAPHY Expected Outcomes Explain the principles of gas chromatography Able to state the function of each components of GC instrumentation Able to state the applications of GC 6.1

More information

Volatile organic compounds (VOCs):

Volatile organic compounds (VOCs): Volatile organic compounds (VOCs): Organic chemicals with a high vapour pressure at room temperature. High vapour pressure results from a low boiling point. The World Health Organization (WHO) defined

More information

Theory and Instrumentation of GC. GC Columns

Theory and Instrumentation of GC. GC Columns Theory and Instrumentation of GC GC Columns i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this reference manual.

More information

CH 2252 Instrumental Methods of Analysis Unit V Gas Chromatography. M. Subramanian

CH 2252 Instrumental Methods of Analysis Unit V  Gas Chromatography.  M. Subramanian CH 2252 Instrumental Methods of Analysis Unit V Gas Chromatography M. Subramanian Assistant Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam 603

More information

CHEM 429 / 529 Chemical Separation Techniques

CHEM 429 / 529 Chemical Separation Techniques CHEM 429 / 529 Chemical Separation Techniques Robert E. Synovec, Professor Department of Chemistry University of Washington Lecture 1 Course Introduction Goal Chromatography and Related Techniques Obtain

More information

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software High Efficiency GC Columns Page 1 Variables for Shortening Run Times Stationary Phase Shorten Column Length

More information

Gas chromatography. Advantages of GC. Disadvantages of GC

Gas chromatography. Advantages of GC. Disadvantages of GC Advantages of GC Gas chromatography Fast analysis, typically minutes Effi cient, providing high resolution Sensitive, easily detecting ppm and often ppb Nondestructive, making possible on - line coupling;

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Chapter 23. Gas Chromatography What did they eat in the year 1,000? GC of Cholesterol and other lipids extracted from

More information

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed Gas Chromatography (GC) In gas chromatography, the sample is vaporized and injected onto the head of a chromatographic

More information

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography Emqal module: M0925 - Quality parameters and optimization in is a separation technique used for quantification of mixtures of analytes Svein.mjos@kj.uib.no Exercises and lectures can be found at www.chrombox.org/emq

More information

Gas Chromatography (Chapter 2 and 3 in The essence of chromatography)

Gas Chromatography (Chapter 2 and 3 in The essence of chromatography) Gas Chromatography 1. Introduction. Stationary phases 3. Retention in Gas-Liquid Chromatography 4. Capillary gas-chromatography 5. Sample preparation and injection 6. Detectors (Chapter and 3 in The essence

More information

GC Derivatization Pierce Applications Handbook & Catalog

GC Derivatization Pierce Applications Handbook & Catalog GC Derivatization Pierce 2003-2004 Applications Handbook & Catalog Derivatization The chemical literature contains an abundance of data on derivatization, most of which is relevant to particular compounds,

More information

Evaluation of Capillary Columns for General Performance Parameters

Evaluation of Capillary Columns for General Performance Parameters Evaluation of Capillary s for General Performance Parameters Application Authors Mitch Hastings, Eberhardt R. Kuhn and Allen K. Vickers Agilent Technologies, Inc 91 Blue Ravine Road Folsom, CA 95630 USA

More information

Instrumental Chemical Analysis

Instrumental Chemical Analysis L2 Page1 Instrumental Chemical Analysis Chromatography (General aspects of chromatography) Dr. Ahmad Najjar Philadelphia University Faculty of Pharmacy Department of Pharmaceutical Sciences 2 nd semester,

More information

Basic principles of HPLC

Basic principles of HPLC Introduction to the theory of HPLC HPLC (High Performance Liquid Chromatography) depends on interaction of sample analytes with the stationary phase (packing) and the mobile phase to effect a separation.

More information

Column Dimensions. GC Columns and Consumables. Mark Sinnott Application Engineer. March 12, 2010

Column Dimensions. GC Columns and Consumables. Mark Sinnott Application Engineer. March 12, 2010 Secrets of GC Column Dimensions GC Columns and Consumables Mark Sinnott Application Engineer Folsom California March 12, 2010 Page 1 Secrets of GC Column Dimensions Do I have the right column phase? Resolution

More information

Ultra-Inert chemistry for Trace Level Analysis

Ultra-Inert chemistry for Trace Level Analysis Ultra-Inert chemistry for Trace Level Analysis Cikui Liang, Ph.D. Challenges and Needs of Today s Laboratories Challenges Qualification/quantification of trace samples Keep instrument up and running Needs

More information

GC Instruments. GC Instruments - Sample Introduction

GC Instruments. GC Instruments - Sample Introduction GC Instruments 1 Fairly simple instrumentation Maintaining constant average pressure is important! Pressure controls flow rate T influences retention (k ) Flow rate monitoring Changing flow rate changes

More information

CHEM340 Tutorial 4: Chromatography

CHEM340 Tutorial 4: Chromatography CHEM340 Tutorial 4: Chromatography 1. The data in the table below was obtained from a chromatogram obtained with a 10 cm liquid chromatography column. Under the conditions used, the compound uracil is

More information

Gas Chromatography. Rosa Yu, David Reckhow CEE772 Instrumental Methods in Environmental Analysis CEE 772 #16 2

Gas Chromatography. Rosa Yu, David Reckhow CEE772 Instrumental Methods in Environmental Analysis CEE 772 #16 2 Print version Gas Chromatography Rosa Yu, David Reckhow CEE772 Instrumental Methods in Environmental Analysis CEE 772 #16 1 Contents The primary components to a GC system 1. Carrier Gas System (including

More information

Fast Analysis of Aromatic Solvent with 0.18 mm ID GC column. Application. Authors. Introduction. Abstract. Gas Chromatography

Fast Analysis of Aromatic Solvent with 0.18 mm ID GC column. Application. Authors. Introduction. Abstract. Gas Chromatography Fast Analysis of Aromatic Solvent with.8 mm ID GC column Application Gas Chromatography Authors Yun Zou Agilent Technologies (Shanghai) Co. Ltd. Ying Lun Road Waigaoqiao Free Trade Zone Shanghai 3 P.R.

More information

Capillary GC Column Selection and Method Development A Primer on Column Parameters and Instrument Conditions

Capillary GC Column Selection and Method Development A Primer on Column Parameters and Instrument Conditions Capillary GC Column Selection and Method Development A Primer on Column Parameters and Instrument Conditions Michael D. Buchanan September 11, 2014 sigma-aldrich.com/analytical 2012 Sigma-Aldrich Co. All

More information

Chapter 11 Conventional Gas Chromatography

Chapter 11 Conventional Gas Chromatography Chapter 11 Conventional Gas Chromatography Gas Chromatography GC is the first instrumental chromatographic method developed commercially It is relatively easy to introduce a stable flow and pressure for

More information

Analytical Instrumentation

Analytical Instrumentation Gas Chromatography and Mass Spectrophotometry Environmental, food safety, toxicology, and forensic gas chromatography applications are more demanding than ever. Our portfolio of GC, GC- MS, GC-MS/MS and

More information

Lab.2. Thin layer chromatography

Lab.2. Thin layer chromatography Key words: Separation techniques, compounds and their physicochemical properties (molecular volume/size, polarity, molecular interactions), mobile phase, stationary phase, liquid chromatography, thin layer

More information

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5 Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH 5730-6730 Analysis Topic 5 Chromatography! Group of separation techniques based on partitioning (mobile phase/stationary phase). Two immiscible

More information

Determination of Volatile Substances Proof of Food Adulteration

Determination of Volatile Substances Proof of Food Adulteration ANALYSIS OF FOOD AND NATURAL PRODUCTS LABORATORY EXERCISE Determination of Volatile Substances Proof of Food Adulteration (method: gas chromatography with mass spectrometric detection) Exercise guarantor:

More information

Fall 2012 Due In Class Friday, Oct. 19. Complete the following on separate paper. Show your work and clearly identify your answers.

Fall 2012 Due In Class Friday, Oct. 19. Complete the following on separate paper. Show your work and clearly identify your answers. CHEM 322 Name Fall 2012 Due In Class Friday, Oct. 19 Complete the following on separate paper. Show your work and clearly identify your answers. General Separations 1. Describe the relative contributions

More information

Introduction to Capillary GC

Introduction to Capillary GC Introduction to Capillary GC LC Columns and Consumables Simon Jones Chromatography Applications Engineer February 20, 2008 Page 1 Introduction to Capillary GC t r K c?? Kβ k = - tr t m? t m R s Page 2

More information

Mass Spectrometry. Fundamental GC-MS. GC Considerations

Mass Spectrometry. Fundamental GC-MS. GC Considerations Mass Spectrometry Fundamental GC-MS GC Considerations i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this reference

More information

Product Brief. - Hydrocarbons alkanes, alkenes, alkynes, dienes including natural gas, refinery gas, liquified petroleum gas

Product Brief. - Hydrocarbons alkanes, alkenes, alkynes, dienes including natural gas, refinery gas, liquified petroleum gas Agilent Porous Polymer PLOT Columns: New Products, Expanded Uses, Prices Cut in Half! Product Brief Need improved resolution of small volatile compounds? Didn't try a PLOT column due to high price, short

More information

Slightly Polar Columns

Slightly Polar Columns 9000 Варна, ул.поп Харитон 47 e-mail : gea99@abv.bg www.geya99.com Slightly Polar Columns With the partnership of Teknokroma SLIGHTLY POLAR COLUMNS TRB-5 It is the most universal and versatile stationary

More information

A New PEG GC Column with Improved Inertness Reliability and Column Lifetime Agilent J&W DB-WAX Ultra Inert Polyethylene Glycol Column

A New PEG GC Column with Improved Inertness Reliability and Column Lifetime Agilent J&W DB-WAX Ultra Inert Polyethylene Glycol Column A New PEG GC Column with Improved Inertness Reliability and Column Lifetime Agilent J&W DB-WAX Ultra Inert Polyethylene Glycol Column Competitive Comparison Authors Ngoc-A Dang and Allen K. Vickers Agilent

More information

So Many Columns! How Do I Choose? Daron Decker Chromatography Technical Specialist

So Many Columns! How Do I Choose? Daron Decker Chromatography Technical Specialist So Many Columns! How Do I Choose? Daron Decker Chromatography Technical Specialist GC Columns Wall Coated Open Tubulars Liquid phase coated capillaries Internal Diameter 0.05 0.53mm Length 5m 100m Porous

More information

CHROMATOGRAPHY. The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments.

CHROMATOGRAPHY. The term chromatography is derived from the original use of this method for separating yellow and green plant pigments. CHROMATOGRAPHY The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments. THEORY OF CHROMATOGRAPHY: Separation of two sample components in

More information

Agilent UltiMetal Plus Stainless Steel Deactivation for Tubing, Connectors, and Fittings

Agilent UltiMetal Plus Stainless Steel Deactivation for Tubing, Connectors, and Fittings Agilent UltiMetal Plus Stainless Steel Deactivation for Tubing, Connectors, and Fittings Technical Overview Introduction Modern GC and GC/MS instruments are important analytical tools for accurate and

More information

Application Note. Gas Chromatography/Mass Spectrometry/Food Safety. Abstract. Authors

Application Note. Gas Chromatography/Mass Spectrometry/Food Safety. Abstract. Authors Trace-Level Analysis of Melamine in Milk Products on Agilent 789A/5975C GC/MSD Using a ew Agilent J&W DB-5ms Ultra Inert Column and SampliQ SCX Cartridges Application ote Gas Chromatography/Mass Spectrometry/Food

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography High Performance Liquid Chromatography What is HPLC? It is a separation technique that involves: Injection of small volume of liquid sample Into a tube packed with a tiny particles (stationary phase).

More information

The Low-Temperature Evaporative Light-Scattering Detector (LT-ELSD)

The Low-Temperature Evaporative Light-Scattering Detector (LT-ELSD) The Low-Temperature Evaporative Light-Scattering Detector (LT-ELSD) Basically all compounds which are less volatile than the mobile phase can be detected. Detection is based on a Universal property of

More information

for Acclaim Mixed-Mode HILIC-1 Column

for Acclaim Mixed-Mode HILIC-1 Column for Acclaim Mixed-Mode HILIC-1 Column Product Manual for ACCLAIM Mixed-Mode HILIC-1 Page 1 of 17 Product Manual for ACCLAIM Mixed-Mode HILIC-1 Column 5µm, 4.6 x 250mm, P/N 066844 5µm, 4.6 x 150mm, P/N

More information

Simultaneous Estimation of Residual Solvents (Isopropyl Alcohol and Dichloromethane) in Dosage Form by GC-HS-FID

Simultaneous Estimation of Residual Solvents (Isopropyl Alcohol and Dichloromethane) in Dosage Form by GC-HS-FID Asian Journal of Chemistry Vol. 21, No. 3 (2009), 1739-1746 Simultaneous Estimation of Residual Solvents (Isopropyl Alcohol and Dichloromethane) in Dosage Form by GC-HS-FID PRAVEEN KUMAR BALIYAN*, R.P.

More information

FAQ's. 1 - Which column would be the most appropriate for my application?

FAQ's. 1 - Which column would be the most appropriate for my application? 1 - Which column would be the most appropriate for my application? Due to the complexity of the chiral recognition mechanism, it is not possible yet to establish rules for the selection of the best chiral

More information

Chemistry Gas Chromatography: Separation of Volatile Organics

Chemistry Gas Chromatography: Separation of Volatile Organics Chemistry 3200 Gas chromatography (GC) is an instrumental method for separating volatile compounds in a mixture. A small sample of the mixture is injected onto one end of a column housed in an oven. The

More information

BP1 PONA BPX1. GC Capillary Columns BP1 PONA and BPX1

BP1 PONA BPX1. GC Capillary Columns BP1 PONA and BPX1 GC Capillary Columns 100% Dimethyl Polysiloxane GC Columns and Applications ID (mm) Film Thickness (µm) Length (m) Temperature Limits ( C) Part No. 0.32 0.5 60-60 to 320/340 054069 0.32 1 60-60 to 320/340

More information

Column Selection. there is more to life than a boiling point column. Jaap de Zeeuw Restek Corporation, The Netherlands. Copyrights: Restek Corporation

Column Selection. there is more to life than a boiling point column. Jaap de Zeeuw Restek Corporation, The Netherlands. Copyrights: Restek Corporation Column Selection there is more to life than a boiling point column Jaap de Zeeuw Restek Corporation, The Netherlands Stationary Phase Selectivity Boiling Point versus Solubility Retention of a compound

More information

ChromTech options for PAL systems

ChromTech options for PAL systems ChromTech options for PAL systems SPDE features full automation for dynamic sample extraction, desorption and analysis using the CTC Combi PAL. Most of our customers use SPDE for food and flavor research,

More information

The Importance of Area and Retention Time Precision in Gas Chromatography Technical Note

The Importance of Area and Retention Time Precision in Gas Chromatography Technical Note The Importance of Area and Retention Time Precision in Gas Chromatography Technical Note Abstract Area and retention time are the two primary measurements in gas chromatography. The precision with which

More information

Biochemistry. Biochemical Techniques. 12 Gas Liquid Chromatography

Biochemistry. Biochemical Techniques. 12 Gas Liquid Chromatography Description of Module Subject Name Paper Name 12 Module Name/Title 12 Gas - liquid Chromatography 1. Objectives 1.1 To understand principle of Gas Liquid Chromatography 1.2 To explain the different components

More information

Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products.

Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products. Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products. CHRISTOPHER M. ENGLISH, CHRISTOPHER S. COX, FRANK

More information

Trace analysis of mesityl oxide and diacetone alcohol in pharmaceuticals by capillary gas chromatography with flame ionization detection

Trace analysis of mesityl oxide and diacetone alcohol in pharmaceuticals by capillary gas chromatography with flame ionization detection Trade Science Inc. September 2009 Volume 8 Issue 3 ACAIJ, 8(3) 2009 [346-349] Trace analysis of mesityl oxide and diacetone alcohol in pharmaceuticals by capillary gas chromatography with flame ionization

More information

LC III: HPLC. Originally referred to as High-Pressure Liquid Chromatography. Now more commonly called High Performance Liquid Chromatography

LC III: HPLC. Originally referred to as High-Pressure Liquid Chromatography. Now more commonly called High Performance Liquid Chromatography LC III: HPLC What is HPLC? Originally referred to as High-Pressure Liquid Chromatography Now more commonly called High Performance Liquid Chromatography In general: The instrument controlled version of

More information

Appendices References...49 Glossary Equations

Appendices References...49 Glossary Equations Table of Contents List of Tables...2 List of Figures...2 Column Selection General Considerations for Column Selection... 3-11 Your Zebron Capillary GC Column... 12-29 Column Installation Pre-Installation

More information

Theory and Instrumentation of GC. Chromatographic Parameters

Theory and Instrumentation of GC. Chromatographic Parameters Theory and Instrumentation of GC Chromatographic Parameters i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this

More information

Shodex TM ODP2 HP series columns

Shodex TM ODP2 HP series columns HPLC Columns Shodex TM ODP2 HP series columns Better retention of highly polar substances Technical notebook No. 6 Contents 1. Introduction 1-1. Specifications 1-2. Eluent Compatibility of ODP2 HP Series

More information

Optimizing GC Parameters for Faster Separations with Conventional Instrumentation

Optimizing GC Parameters for Faster Separations with Conventional Instrumentation Optimizing GC Parameters for Faster Separations with Conventional Instrumentation Anila I. Khan, Thermo Fisher Scientific, Runcorn, Cheshire, UK Technical Note 243 Key Words TraceGOLD fast GC analysis

More information

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC CHROMATOGRAPHY Laboratory technique for the Separation of mixtures Chroma -"color" and graphein

More information

Determination of releasable 2,4,6-trichloroanisole in wine by cork stoppers (Resolution OIV-Oeno 296/2009)

Determination of releasable 2,4,6-trichloroanisole in wine by cork stoppers (Resolution OIV-Oeno 296/2009) Method OIV-MA-AS315-16 Type IV method Determination of releasable in wine by cork stoppers (Resolution OIV-Oeno 296/2009) 1 SCOPE: The method of determination of releasable (TCA) by cork stoppers measures

More information

Guide to GC Column Selection and Optimizing Separations

Guide to GC Column Selection and Optimizing Separations Guide to GC Column Selection and Optimizing Separations WHICH COLUMN DO I NEED? Learn how to choose the right column the first time. Optimize separations for the best balance of resolution and speed. Troubleshoot

More information

Chapter 31 Gas Chromatography. Carrier Gas System

Chapter 31 Gas Chromatography. Carrier Gas System Chapter 31 Gas Chromatography GAS-LIQUID CHROMATOGRAPHY In gas chromatography, the components of a vaporized sample are fractionated as a consequence of being partitioned between a mobile gaseous phase

More information

Jaap de Zeeuw Varian, Inc.. Middelburg, The Netherlands

Jaap de Zeeuw Varian, Inc.. Middelburg, The Netherlands "Innovations in capillary gas chromatography for improving reproducibility, reliability and ease-of-use in the gas chromatographic separation of complex samples" Jaap de Zeeuw Varian, Inc.. Middelburg,

More information

High Pressure/Performance Liquid Chromatography (HPLC)

High Pressure/Performance Liquid Chromatography (HPLC) High Pressure/Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) is a form of column chromatography that pumps a sample mixture or analyte in a solvent (known as the

More information