Trajan SGE GC Columns

Size: px
Start display at page:

Download "Trajan SGE GC Columns"

Transcription

1 Trajan Scientific and Medical Trajan SGE GC Columns

2 Trajan Scientific and Medical Our focus is on developing and commercializing technologies that enable analytical systems to be more selective, sensitive and specific for biological, environmental or food related measurements especially those that can lead to portability, miniaturization and affordability. Trajan Analytical Trajan Life Trajan LEAP Automation Trajan Accelerator

3 Trajan Analytical We are a key partner in producing critical components and materials for analytical workflow and measurement. A global provider of engineered components and advanced technologies with a strong heritage in chromatography and mass spectrometry. Our aim is to design and deliver a broad portfolio of comprehensive analytical tools to improve laboratory performance and enhance confidence in results. This organization is built from the foundations of SGE Analytical Science.

4 Trajan Analytical GC and GCMS Business Unit Workflow solutions to optimize GC and GCMS system capabilities We are world leaders in creating solutions for GC and GCMS, through expertise in surface chemistry and glass forming. Custom stationary phase synthesis Chemical surface treatments Workflow optimization expertise Manufacture of precision bore glass cylinders Inert glass surface treatments Connectors for easy installation and low dead volume

5 Trajan Scientific and Medical GC Columns

6 Learning outcomes The features of a GC column The resolution equation Effects of changing GC column parameters Altering GC selectivity through temperature and phase chemistry GC column modes of interaction GC column troubleshooting

7 Features of a GC column Choice of Column dimensions For example: BPX5 30 m x 0.25 mm x 0.25 µm

8 The resolution equation Efficiency Retention Selectivity RR ss = NN 4 kk kk + 1 αα 1 αα

9 Column variables effect on resolution Variable Contribution to resolution 1 Column internal diameter N 2 Stationary phase loading N, k 3 Column length N 4 Carrier gas N 5 Temperature k 6 Stationary phase composition α

10 Column length RR ss = NN 4 kk αα 1 kk + 1 αα Resolution increases according to the square root of the column efficiency. Doubling column length increases resolution by ~ 40% m (0.25 mm / 0.25 μm) 1.4 ml/min helium 15 m (0.25 mm / 0.25 μm) 1.4 ml/min helium A longer column will provide greater resolution than a shorter column Shorter column increases speed time (min)

11 Column length GC columns typically range in length from 10 m up to 120 m The standard length for a GC column is 25 m or 30 m, this provides a high efficiency with relatively short analysis time Columns of m in length are typically used for faster analysis and chromatography of higher molecular weight substances Columns of 60 m and greater in length are used for very complex samples

12 Column length effects

13 Column internal diameter RR ss = NN 4 kk αα 1 kk + 1 αα Halving diameter doubles efficiency (increase resolution by ~ 40%) Golay Plot (helium carrier; 1 atm outlet) 30 m x 0.53 mm I.D. The smaller the column I.D. the: H (mm) m x 0.32 mm I.D. Greater the efficiency Better the resolution m x 0.25 mm I.D. 30 m x 0.15 mm I.D Average linear velocity (cm/s) Lower the sample handling capacity (may result in column overloading and poor resolution / peak shape)

14 Column internal diameter mm I.D.: for high resolution and short retention times with low carrier gas flows (Fast-GC) 0.25 mm I.D.: for analyses of complex mixtures with high resolution 0.32 mm I.D.: for routine analyses with short retention times, but increased capacity 0.53 mm I.D.: for rapid separations with inert surface and highest capacity

15 Column length and internal diameter Column I.D. Column length (m) (mm) HH mmmmmm,ttttttttt = jj GG dd cc kk + 11kk kk 2 Can estimate efficiency using: NN LL dd cc 30,000 / 0.25 = 120,000

16 Column length and internal diameter BPX5 30 m 0.25 mm I.D μm film thickness BPX5 7 m 0.10 mm I.D μm film thickness

17 Column film thickness RR ss = NN 4 kk αα 1 kk + 1 αα Thicker film = increased retention resulting in: Increased resolution of highly volatile compounds Decreased resolution for late eluting compounds Increased elution temperature and analyte capacity Greater inertness Thinner film = reduced retention resulting in: Sharper peaks Improved signal to noise ratios Reduced column bleed Increased maximum operating temperature Increased analyte interaction with the tubing wall Decreased analyte capacity

18 Column film thickness A film thickness of µm is standard which allows for injection of samples with wide volatility Thinner ( µm) films are used for compounds with high molecular weight Thick films (1-5 µm) are used to separate solvents, gases and very volatile substances Increasing film thickness decreases thermal stability, leading to higher bleed levels, limiting the maximum operating temperature of the column

19 Column film thickness ββ = dd cc 4dd ff β phase ratio of the column d c column diameter (μm) d f film thickness (μm) Column I.D Column I.D Film thickness, d f (μm) d c (mm) d c (μm)

20 Column film thickness and phase ratio Extremely volatile compounds should be analyzed on thick film columns to increase the time the compounds spend in the stationary phase, allowing them to separate. High molecular weight compounds must be analyzed on thinner film columns. This reduces the length of time the analytes stay in the column, and minimizes bleed at required higher elution temperatures.

21 Chromatographer s triangle of compromise SPEED CAPACITY EFFICIENCY

22 Altering selectivity in GC Temperature Stationary Phase Chemistry

23 Temperature ramp rate Speed of analysis increases with increasing GC oven temperature ramp rate Increase in retention factor, but at the expense of resolution If resolution is sufficient, then high temperature ramp rate can be used

24 Temperature ramp rate Time (s)

25 Temperature ramp rate

26 Developing a temperature program Isothermal operation The solubility of the analyte in mobile phase is lower at lower temperature Peaks broaden as retention time increases

27 Linear velocity of carrier gas Speed of analysis and resolution increases with increasing linear velocity Under isothermal conditions: If linear velocity deviates from optimum linear velocity (U opt ), you see relative peak broadening and loss of resolution Increase in flow rate increases peak capacity Highest peak capacity will always be observed for an isothermal separation usually too slow, broadening can impact detectability The effect of the increased carrier gas flow on the temperature gradient is to decrease the temperature gradient relative to the time the compounds stay on the column

28 Linear velocity of carrier gas

29 Temperature ramp rate vs linear velocity

30 Stationary phase selection Phase and temperature directly affect selectivity Use the principle like dissolves like Separate polar analytes using a more polar phase and vice versa The skill is knowing the degree of polarity required to avoid long retention times whilst still obtaining a satisfactory separation Separating compounds of intermediate polarity or mixed polarity and functionality requires knowledge of the retentivity and selectivity of each phase Fine tuning of phase chemistry may be required

31 GC columns modes of separation GC separations are not just based on boiling point Understanding of the interactions of the stationary phase can aid method development There are three different mechanisms of retention when using GC Utilization of different columns will alter the degree of retention of each of these three primary mechanisms: Dispersive interactions Dipole-dipole (and dipole-induced dipole) Hydrogen bonding These can be demonstrated using a series of test probes injected onto a range of columns

32 What column chemistries are available? Polysiloxane stationary phase base units: Typical functional groups:

33 Impact of stationary phase on elution order Peak Number Compound Log P Boiling Point ( C) 1 Toluene Decane Heptanol Phenol Dodecane Naphthalene

34 Impact of stationary phase on elution order

35 100% dimethyl polysiloxane Peak Number Compound Peak Color 1 Toluene Red 4 Phenol Blue 3 1-Heptanol Black 2 Decane Orange 6 Naphthalene Green 5 Dodecane Purple 1 4, Dispersive interactions only

36 5% phenyl polysiloxane Peak Number Compound Peak Color 1 Toluene Red 3 Heptanol Black 4 Phenol Blue 2 Decane Orange 5 Dodecane Purple 6 Naphthalene Green 1 4, Dispersive interactions Weak dipole induced dipole interactions ,

37 50% phenyl methylpolysiloxane Peak Number Compound Peak Color 1 Toluene Red 2 Decane Orange 3 Heptanol Black 4 Phenol Blue 5 Dodecane Purple 6 Naphthalene Green 1 4, Moderate dispersive interactions Strong dipole-induced dipole interactions

38 100% polyethylene glycol Peak Number Compound Peak Color 2 Decane Orange 1 Toluene Red 5 Dodecane Purple 3 Heptanol Black 6 Naphthalene Green 4 Phenol Blue 1 4, Weak dispersive interactions moderate dipole-dipole Strong hydrogen bonding

39 Stationary phase selectivity 11 Methanol Acetone , BP , BPX5 Compound (bp.) 1. Ethyl Acetate (77.1) 2. Benzene ( 80.1) 3. Butanol (117.6) 4. Toluene (110.6) 5. Ethyl Benzene (136.2) 6. m-xylene (139.1) 7. p-xylene (138.3) 8. o-xylene (144) 9. Ethyl Hexanoate (168) 10. Decane (174.1) 11. Dodecane (216.3) Acetone 1 Methanol 3, SolGel-WAX

40 Trajan Scientific and Medical GC Column Troubleshooting

41 Optimizing column performance Column conditioning Essential for good chromatography and prolonged column lifetimes Must be done with carrier gas flow on Temperature limits Upper : Isothermal and temperature program limits Lower : column will not function correctly Column installation Correct positioning in detector and injector Cutting Column storage Seal ends appropriately

42 Baseline drifting - general Possible causes: Accumulation of impurities in the column Carrier gas cylinder pressure too low to allow control Drifting carrier gas or combustion gas flows Remedy: Remove the end section of the column Check for impurities in the carrier gas Replace or Install appropriate gas filters Replace the carrier gas cylinder and increase the pressure Check the gas controllers

43 Baseline rising - drift Possible causes: Damaged column or one that has been exposed to O 2 may experience some phase decomposition Column bleed A poorly conditioned column Detector contamination Carrier gas contamination Total Ion Count 4.00E E E+000 Remedy: Condition or re-condition the column or change the column Trace and repair the leak Check the detector and clean it Time (min) Check for impurities in the gas source, replace or install appropriate gas filters

44 Column bleed Column bleed is the normal background signal caused by stationary phase degradation: All columns exhibit some degree of bleed Column bleed will increase with film thickness and column dimensions Check for bleed by running a blank trace: Baseline rise should start ~40 below the column s isothermal limit Before and after the rise the baseline is level No peaks are eluted The trace will vary if the temperature profile is varied

45 Noise Possible causes: Contaminated injector and / or column Defective detector The column may be inserted too far into the flame of an FID, NPD, or FPD detector Detector temperature higher than column maximum temperature Loose column fittings Remedy: Clean injector, replace septa and liners Cut the first 10 cm of the column, if it does not help, replace the column Be sure to insert the column into the detector exactly the correct distance specified in the manual Reduce the detector temperature to the column temperature upper limit Tighten fittings accordingly

46 Baseline irregular shape: s-shaped Possible causes: Excessive column bleed during column temperature programming Oxygen contamination is decomposing the stationary phase Remedy: Reduce the upper column temperature or install a high temperature column Install oxygen filters in the carrier gas line. Check the pneumatic and inlet systems for leaks, use correct gas purity with low oxygen content

47 Baseline spiking Possible causes: Column too close to flame (when using an FID) Dirty jet or detector FID temperature too low Remedy: Lower the column to the correct position (2-3 mm below the tip of the jet) Isolate the detector from the electronics. If the spiking disappears, clean the jet and the collectors Increase the FID temperature to at least 150 ºC

48 Tailing peaks Possible causes: Poor sample transfer in the inlet Inlet temperature too low Liner contaminated Remedy: Increase the inlet temperature Check and adjust the septum purge and vent flows Alter temperature programme and check for co-elution

49 Tailing peaks Possible causes: Column degradation causing activity Column contamination Incorrect column position in inlet Blocked purge / vent line Remedy: Remove first 30 cm (1 foot) of column Re-install the column in the inlet Replace the column

50 Tailing peaks: solvent peaks Possible causes: Incorrect column position in inlet Initial oven temperature too high Septum purge flow too low and/or split vent flow too low Remedy: Reinstall the column Reduce the initial oven temperature Check and adjust the septum purge and vent flows

51 Fronting peaks Possible causes: Overloading the head of the column can lead to a fronting or wide flat-topped peak. Remedy: Injecting less Split the injection Change the column dimensions

52 Peak splitting Possible causes: Poor injection technique Poorly cut column Mixed sample solvent for splitless or on-column injections Remedy: Check injection technique Re-cut or replace column

53 Ghost peaks Causes: Contaminated carrier gas Contaminated sample/solvent Contaminated syringe/vial/injection port Inappropriate vial septa Cored septa Sample carryover Remedy: Replace the cylinder and/or the filter Check solvent compatibility with vial septa Carry out adequate clean-up of sample prior to injection Reduce injection temperature if peaks disappear use higher temperature septa Try an extended oven temperature profile

54 Trajan Scientific and Medical Trajan SGE GC Columns

55 Reproducibility SGE GC columns are manufactured from raw products Silica tubing, polyimide, stationary phase QC control at every stage Many other companies buy our tubing All columns are individually tested

56 GC column range

57 Competitor landscape Competitor Agilent Restek Phenomenex Shimadzu PerkinElmer Supelco Brands DB, DB UI, VF, HP, CP, Rxi, Rtx, MXT, Stabilwax, Zebron, Zebron Inferno SH-Rxi Elite SP, SPB, SUPELCOWAX,

58 Summary The features of a GC column The resolution equation Effects of changing GC column parameters Altering GC selectivity through temperature and phase chemistry GC column modes of interaction GC column troubleshooting

59 Trajan Scientific and Medical

Understanding Gas Chromatography

Understanding Gas Chromatography Understanding Gas Chromatography What is Really Going on Inside the Box? Simon Jones GC Applications Engineer Page 1 Group/Presentation Title Month ##, 200X ?? K? Page 2 Typical GC System Gas supply Injector

More information

Selection of a Capillary

Selection of a Capillary Selection of a Capillary GC Column - Series 3 Mark Sinnott Application Engineer March 19, 2009 Page 1 Typical Gas Chromatographic System Mol-Sieve Traps Fixed Restrictors Regulators Injection Port Detector

More information

Speakers. Moderator. John V Hinshaw GC Dept. Dean CHROMacademy. Tony Taylor Technical Director CHROMacademy. Dave Walsh Editor In Chief LCGC Magazine

Speakers. Moderator. John V Hinshaw GC Dept. Dean CHROMacademy. Tony Taylor Technical Director CHROMacademy. Dave Walsh Editor In Chief LCGC Magazine Webcast Notes Type your questions in the Submit Question box, located below the slide window You can enlarge the slide window at any time by clicking on the Enlarge Slides button, located below the presentation

More information

Selection of a Capillary GC Column

Selection of a Capillary GC Column Selection of a Capillary GC Column Mark Sinnott Application Engineer March 13, 2008 Page 1 Typical Gas Chromatographic System Mol-Sieve Traps Fixed Restrictors Regulators Injection Port Detector Electrometer

More information

Activity in the FID Detection Port: A Big Problem if Underestimated

Activity in the FID Detection Port: A Big Problem if Underestimated Activity in the FID Detection Port: A Big Problem if Underestimated Jaap de Zeeuw, Restek Corporation, Middelburg, The Netherlands It is commonly known in gas chromatography, that many problems can be

More information

The Suite for Environmental GC Analysis

The Suite for Environmental GC Analysis The Suite for Environmental GC Analysis SGE Environmental GC Columns Performance Selectivity Delivery Promise www.sge.com SGE Environmental GC Columns The Suite for Environmental GC Analysis SGE GC Columns

More information

Introduction to Capillary GC. Page 1. Agilent Restricted February 2, 2011

Introduction to Capillary GC. Page 1. Agilent Restricted February 2, 2011 ?? Kβ? Page 1 Typical GC System Gas supply Injector Detector Data handling GAS Column Oven Page 2 CARRIER GAS Carries the solutes down the column Selection and velocity influences efficiency and retention

More information

Introduction to Capillary GC

Introduction to Capillary GC ?? Kβ? Page 1 Typical GC System Gas supply Injector Detector Data handling GAS Column Oven Page 2 CARRIER GAS Carries the solutes down the column Selection and velocity influences efficiency and retention

More information

Secrets of GC Column Dimensions

Secrets of GC Column Dimensions Secrets of GC Column Dimensions GC Columns and Consumables Simon Jones Application Engineer May 20, 2008 Slide 1 Secrets of GC Column Dimensions Do I have the right column phase? Resolution Equation Changes

More information

Column Dimensions. GC Columns and Consumables. Mark Sinnott Application Engineer. March 12, 2010

Column Dimensions. GC Columns and Consumables. Mark Sinnott Application Engineer. March 12, 2010 Secrets of GC Column Dimensions GC Columns and Consumables Mark Sinnott Application Engineer Folsom California March 12, 2010 Page 1 Secrets of GC Column Dimensions Do I have the right column phase? Resolution

More information

Capillary GC Column Selection and Method Development A Primer on Column Parameters and Instrument Conditions

Capillary GC Column Selection and Method Development A Primer on Column Parameters and Instrument Conditions Capillary GC Column Selection and Method Development A Primer on Column Parameters and Instrument Conditions Michael D. Buchanan September 11, 2014 sigma-aldrich.com/analytical 2012 Sigma-Aldrich Co. All

More information

An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols.

An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols. An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols. Jaap de Zeeuw, Ron Stricek and Gary Stidsen Restek Corp Bellefonte, USA To analyze basic compounds at

More information

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software GC Columns and Consumables Mark Sinnott Application Engineer January 8 th, 2008 Page 1 Questions to Ask

More information

Introduction and Principles of Gas Chromatography

Introduction and Principles of Gas Chromatography Introduction and Principles of Gas Chromatography Jaap de Zeeuw Restek, Middelburg, The Netherlands Jaap.dezeeuw@restek.com Definition and Uses of Gas Chromatography GC Components and Types of Columns

More information

Evaluation of Capillary Columns for General Performance Parameters

Evaluation of Capillary Columns for General Performance Parameters Evaluation of Capillary s for General Performance Parameters Application Authors Mitch Hastings, Eberhardt R. Kuhn and Allen K. Vickers Agilent Technologies, Inc 91 Blue Ravine Road Folsom, CA 95630 USA

More information

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application Analysis of Trace (mg/kg) Thiophene in Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application Petrochemical Authors James D. McCurry and Bruce D. Quimby Agilent Technologies

More information

BP1 PONA BPX1. GC Capillary Columns BP1 PONA and BPX1

BP1 PONA BPX1. GC Capillary Columns BP1 PONA and BPX1 GC Capillary Columns 100% Dimethyl Polysiloxane GC Columns and Applications ID (mm) Film Thickness (µm) Length (m) Temperature Limits ( C) Part No. 0.32 0.5 60-60 to 320/340 054069 0.32 1 60-60 to 320/340

More information

Chemistry Instrumental Analysis Lecture 27. Chem 4631

Chemistry Instrumental Analysis Lecture 27. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 27 Gas Chromatography Introduction GC covers all chromatographic methods in which the mobile phase is gas. It may involve either a solid stationary phase (GSC)

More information

Gas Chromatography (GC)

Gas Chromatography (GC) Gas Chromatography (GC) Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11541 Saudi Arabia Office: AA53

More information

Quantification of Pesticides in Food without Calibration using GC/FID with the Polyarc Reactor

Quantification of Pesticides in Food without Calibration using GC/FID with the Polyarc Reactor Quantification of Pesticides in Food without Calibration using GC/FID with the Polyarc Reactor Application Note Pesticides Authors Charlie Spanjers and Paul Dauenhauer University of Minnesota, Twin Cities

More information

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC Gas Chromatography Gas Chromatography Presented By Mr. Venkateswarlu Mpharm KTPC What is Gas Chromatography? It is also known as Gas-Liquid Chromatography (GLC) GAS CHROMATOGRAPHY Separation of gaseous

More information

Introduction to Capillary GC

Introduction to Capillary GC Introduction to Capillary GC LC Columns and Consumables Simon Jones Chromatography Applications Engineer February 20, 2008 Page 1 Introduction to Capillary GC t r K c?? Kβ k = - tr t m? t m R s Page 2

More information

Gas Chromatography. Introduction

Gas Chromatography. Introduction Gas Chromatography Introduction 1.) Gas Chromatography Mobile phase (carrier gas) is a gas - Usually N 2, He, Ar and maybe H 2 - Mobile phase in liquid chromatography is a liquid Requires analyte to be

More information

New ZB-5HT Inferno The World s Highest Temperature Non-Metal GC Column

New ZB-5HT Inferno The World s Highest Temperature Non-Metal GC Column New ZB-5HT Inferno The World s Highest Temperature Non-Metal GC Column The World's First Non-metal 5% Phenyl Phase GC Column Rated to 430 C * Specially processed for thermal stability up to 430 C A true

More information

Introduction to Gas Chromatography

Introduction to Gas Chromatography Introduction to Gas Chromatography 31-1 Objectives To know what is chromatography To understand the mechanism of compound separation To know the basic of gas chromatography system 31-2 Chromatography Definition

More information

GAS CHROMATOGRAPHY (GC)

GAS CHROMATOGRAPHY (GC) GAS CHROMATOGRAPHY (GC) Pre-Lab Questions Questions are to be answered before the beginning of the laboratory. The answers are due at the beginning of each experiment (the questions are for credit and

More information

Chemistry Gas Chromatography: Separation of Volatile Organics

Chemistry Gas Chromatography: Separation of Volatile Organics Chemistry 3200 Gas chromatography (GC) is an instrumental method for separating volatile compounds in a mixture. A small sample of the mixture is injected onto one end of a column housed in an oven. The

More information

2401 Gas (liquid) Chromatography

2401 Gas (liquid) Chromatography 2401 Gas (liquid) Chromatography Chromatography Scheme Gas chromatography - specifically gas-liquid chromatography - involves a sample being vaporized and injected onto the head of the chromatographic

More information

Optimizing GC Parameters for Faster Separations with Conventional Instrumentation

Optimizing GC Parameters for Faster Separations with Conventional Instrumentation Optimizing GC Parameters for Faster Separations with Conventional Instrumentation Anila I. Khan, Thermo Fisher Scientific, Runcorn, Cheshire, UK Technical Note 243 Key Words TraceGOLD fast GC analysis

More information

CHAPTER 6 GAS CHROMATOGRAPHY

CHAPTER 6 GAS CHROMATOGRAPHY CHAPTER 6 GAS CHROMATOGRAPHY Expected Outcomes Explain the principles of gas chromatography Able to state the function of each components of GC instrumentation Able to state the applications of GC 6.1

More information

How To Select the Correct GC Column. Simon Jones Application Engineer

How To Select the Correct GC Column. Simon Jones Application Engineer How To Select the Correct GC Column Simon Jones Application Engineer Things to Consider Is it Volatile enough to chromatograph by GC? Is it a Gas or a Liquid? How are we getting the Sample Injected? What

More information

The Importance of Area and Retention Time Precision in Gas Chromatography Technical Note

The Importance of Area and Retention Time Precision in Gas Chromatography Technical Note The Importance of Area and Retention Time Precision in Gas Chromatography Technical Note Abstract Area and retention time are the two primary measurements in gas chromatography. The precision with which

More information

Water Injections in GC - Does Water Cause Bleed?

Water Injections in GC - Does Water Cause Bleed? Water Injections in GC - Does Water Cause Bleed? Eberhardt Kuhn Applications Chemist April 4, 2001 Practical Advice and Useful Tips for the Analysis of Semivolatile Organics by GC and GC/MS 11:00 a.m.

More information

A New Web-Based Application for Modeling Gas Chromatographic Separations. Dr. Hansjoerg Majer Restek Corporation Market Development Manager Europe

A New Web-Based Application for Modeling Gas Chromatographic Separations. Dr. Hansjoerg Majer Restek Corporation Market Development Manager Europe A New Web-Based Application for Modeling Gas Chromatographic Separations Dr. Hansjoerg Majer Restek Corporation Market Development Manager Europe The Method Development Process in GC $ SUCCESS! Developing

More information

Understanding the Capillary GC Column: How to Choose the Correct Type and Dimension

Understanding the Capillary GC Column: How to Choose the Correct Type and Dimension Understanding the Capillary GC Column: How to Choose the Correct Type and Dimension Simon Jones Application Engineer Things to Consider Is it Volatile enough to chromatograph by GC? Is it a Gas or a Liquid?

More information

Chapter 27: Gas Chromatography

Chapter 27: Gas Chromatography Chapter 27: Gas Chromatography Gas Chromatography Mobile phase (carrier gas): gas (He, N 2, H 2 ) - do not interact with analytes - only transport the analyte through the column Analyte: volatile liquid

More information

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software High Efficiency GC Columns Page 1 Variables for Shortening Run Times Stationary Phase Shorten Column Length

More information

A New PEG GC Column with Improved Inertness Reliability and Column Lifetime Agilent J&W DB-WAX Ultra Inert Polyethylene Glycol Column

A New PEG GC Column with Improved Inertness Reliability and Column Lifetime Agilent J&W DB-WAX Ultra Inert Polyethylene Glycol Column A New PEG GC Column with Improved Inertness Reliability and Column Lifetime Agilent J&W DB-WAX Ultra Inert Polyethylene Glycol Column Competitive Comparison Authors Ngoc-A Dang and Allen K. Vickers Agilent

More information

Fast Analysis of Aromatic Solvent with 0.18 mm ID GC column. Application. Authors. Introduction. Abstract. Gas Chromatography

Fast Analysis of Aromatic Solvent with 0.18 mm ID GC column. Application. Authors. Introduction. Abstract. Gas Chromatography Fast Analysis of Aromatic Solvent with.8 mm ID GC column Application Gas Chromatography Authors Yun Zou Agilent Technologies (Shanghai) Co. Ltd. Ying Lun Road Waigaoqiao Free Trade Zone Shanghai 3 P.R.

More information

Chromatography. Gas Chromatography

Chromatography. Gas Chromatography Chromatography Chromatography is essentially the separation of a mixture into its component parts for qualitative and quantitative analysis. The basis of separation is the partitioning of the analyte mixture

More information

GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY

GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY Page 1 of 13 CIPAC/4105/R GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY Prepared for CIPAC by Dr M J Tandy*, P M Clarke and B White (UK) The rapid

More information

Accurate Analysis of Fuel Ethers and Oxygenates in a Single Injection without Calibration Standards using GC- Polyarc/FID. Application Note.

Accurate Analysis of Fuel Ethers and Oxygenates in a Single Injection without Calibration Standards using GC- Polyarc/FID. Application Note. Accurate Analysis of Fuel Ethers and Oxygenates in a Single Injection without Calibration Standards using GC- Polyarc/FID Application Note Volatile Organic Compounds (VOCs) Author Andrew Jones Activated

More information

Choosing the Correct GC Column Dimensions and Stationary Phase

Choosing the Correct GC Column Dimensions and Stationary Phase Choosing the Correct GC Column Dimensions and Stationary Phase Daron Decker Chromatography Technical Specialist Page 1 Nothing is useless it can always serve as a bad example Custom Column: 150 m x 250

More information

A New Web-Based Application for Modeling Gas Chromatographic Separations

A New Web-Based Application for Modeling Gas Chromatographic Separations A New Web-Based Application for Modeling Gas Chromatographic Separations Jaap de Zeeuw**, Rebecca Stevens*, Amanda Rigdon, Linx Waclaski*and Dan Li* *Restek Corporation, Bellefonte, PA, USA **Restek Corporation,

More information

AppNote 6/2004. Thermal Desorption GC Analysis of High Boiling, High Molecular Weight Hydrocarbons SUMMARY

AppNote 6/2004. Thermal Desorption GC Analysis of High Boiling, High Molecular Weight Hydrocarbons SUMMARY AppNote 6/2004 Thermal Desorption GC Analysis of High Boiling, High Molecular Weight Hydrocarbons Edward A. Pfannkoch, Jacqueline A. Whitecavage, and Jeffrey Christenson Gerstel, Inc., 701 Digital Drive,

More information

Ultra-Inert chemistry for Trace Level Analysis

Ultra-Inert chemistry for Trace Level Analysis Ultra-Inert chemistry for Trace Level Analysis Cikui Liang, Ph.D. Challenges and Needs of Today s Laboratories Challenges Qualification/quantification of trace samples Keep instrument up and running Needs

More information

Chapter 31 Gas Chromatography. Carrier Gas System

Chapter 31 Gas Chromatography. Carrier Gas System Chapter 31 Gas Chromatography GAS-LIQUID CHROMATOGRAPHY In gas chromatography, the components of a vaporized sample are fractionated as a consequence of being partitioned between a mobile gaseous phase

More information

Gas Chromatography (Chapter 2 and 3 in The essence of chromatography)

Gas Chromatography (Chapter 2 and 3 in The essence of chromatography) Gas Chromatography 1. Introduction. Stationary phases 3. Retention in Gas-Liquid Chromatography 4. Capillary gas-chromatography 5. Sample preparation and injection 6. Detectors (Chapter and 3 in The essence

More information

CHEM340 Tutorial 4: Chromatography

CHEM340 Tutorial 4: Chromatography CHEM340 Tutorial 4: Chromatography 1. The data in the table below was obtained from a chromatogram obtained with a 10 cm liquid chromatography column. Under the conditions used, the compound uracil is

More information

for Acclaim Mixed-Mode HILIC-1 Column

for Acclaim Mixed-Mode HILIC-1 Column for Acclaim Mixed-Mode HILIC-1 Column Product Manual for ACCLAIM Mixed-Mode HILIC-1 Page 1 of 17 Product Manual for ACCLAIM Mixed-Mode HILIC-1 Column 5µm, 4.6 x 250mm, P/N 066844 5µm, 4.6 x 150mm, P/N

More information

Chemistry Instrumental Analysis Lecture 31. Chem 4631

Chemistry Instrumental Analysis Lecture 31. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 31 High Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) Solvent Delivery

More information

CHEM 429 / 529 Chemical Separation Techniques

CHEM 429 / 529 Chemical Separation Techniques CHEM 429 / 529 Chemical Separation Techniques Robert E. Synovec, Professor Department of Chemistry University of Washington Lecture 1 Course Introduction Goal Chromatography and Related Techniques Obtain

More information

Volatile organic compounds (VOCs):

Volatile organic compounds (VOCs): Volatile organic compounds (VOCs): Organic chemicals with a high vapour pressure at room temperature. High vapour pressure results from a low boiling point. The World Health Organization (WHO) defined

More information

Uncontrolled Copy. SOP-060 Chromatography, Tune Evaluation and Troubleshooting. Table of Contents. 1. Principle... 3

Uncontrolled Copy. SOP-060 Chromatography, Tune Evaluation and Troubleshooting. Table of Contents. 1. Principle... 3 Table of Contents 1. Principle... 3 2. Mass Spectrometer Evaluation... 3 3. GC NPD Evaluation... 5 4. Acid Neutral test injection evaluation (GC/MS/FID)... 6 5. Discrepancies... 6 6. Troubleshooting...

More information

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed Gas Chromatography (GC) In gas chromatography, the sample is vaporized and injected onto the head of a chromatographic

More information

Agilent J&W GC Column Selection Guide

Agilent J&W GC Column Selection Guide Agilent J&W GC Column Selection Guide Rely on unsurpassed reproducibility, efficiency, and inertness. Speed your selection with this one-stop resource. Agilent J&W GC Column Selection Guide Table of Contents

More information

Principles of Gas- Chromatography (GC)

Principles of Gas- Chromatography (GC) Principles of Gas- Chromatography (GC) Mohammed N. Sabir January 2017 10-Jan-17 1 GC is a chromatographic technique utilizes gas as the mobile phase which is usually an inert gas (Hydrogen, Helium, Nitrogen

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 1 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

GAS CHROMATOGRAPHY. Mobile phase is a gas! Stationary phase could be anything but a gas

GAS CHROMATOGRAPHY. Mobile phase is a gas! Stationary phase could be anything but a gas GAS CHROMATOGRAPHY Mobile phase is a gas! Stationary phase could be anything but a gas Gas Chromatography (GC) GC is currently one of the most popular methods for separating and analyzing compounds. This

More information

Theory and Instrumentation of GC. Chromatographic Parameters

Theory and Instrumentation of GC. Chromatographic Parameters Theory and Instrumentation of GC Chromatographic Parameters i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this

More information

Automated Sample Preparation of Headspace Standards Using the Agilent 7696 WorkBench

Automated Sample Preparation of Headspace Standards Using the Agilent 7696 WorkBench Automated Sample Preparation of Headspace Standards Using the Agilent 7696 WorkBench Application Note Forensic Toxicology and Drug Testing Author Jared Bushey Agilent Technologies, Inc. 285 Centerville

More information

Simultaneous Estimation of Residual Solvents (Isopropyl Alcohol and Dichloromethane) in Dosage Form by GC-HS-FID

Simultaneous Estimation of Residual Solvents (Isopropyl Alcohol and Dichloromethane) in Dosage Form by GC-HS-FID Asian Journal of Chemistry Vol. 21, No. 3 (2009), 1739-1746 Simultaneous Estimation of Residual Solvents (Isopropyl Alcohol and Dichloromethane) in Dosage Form by GC-HS-FID PRAVEEN KUMAR BALIYAN*, R.P.

More information

Guide to GC Column Selection and Optimizing Separations

Guide to GC Column Selection and Optimizing Separations Guide to GC Column Selection and Optimizing Separations WHICH COLUMN DO I NEED? Learn how to choose the right column the first time. Optimize separations for the best balance of resolution and speed. Troubleshoot

More information

Gas chromatography. Advantages of GC. Disadvantages of GC

Gas chromatography. Advantages of GC. Disadvantages of GC Advantages of GC Gas chromatography Fast analysis, typically minutes Effi cient, providing high resolution Sensitive, easily detecting ppm and often ppb Nondestructive, making possible on - line coupling;

More information

Fast and Accurate Analysis of PBDEs in a Single Run, Including

Fast and Accurate Analysis of PBDEs in a Single Run, Including Fast and Accurate Analysis of PBDEs in a Single Run, Including Kory Kelly, Adam Endeman, and Matthew Trass Phenomenex, Inc., 411 Madrid Ave., Torrance, CA 90501 USA PO14700713_2 PO14400613_W_2 Abstract

More information

The end of. mass-speculation. MS Certified Vials Pre-cleaned and certified vials for mass spectrometry

The end of. mass-speculation. MS Certified Vials Pre-cleaned and certified vials for mass spectrometry The end of mass-speculation Pre-cleaned and certified vials for mass spectrometry Bonded, ultra-pure closures LC/MS and GC/MS Manufacturing the Ultimate Vial for Mass Spectrometry More than a quarter century

More information

Static Headspace Blood Alcohol Analysis with the G1888 Network Headspace Sampler Application

Static Headspace Blood Alcohol Analysis with the G1888 Network Headspace Sampler Application Static Headspace Blood Alcohol Analysis with the G Network Headspace Sampler Application Forensics Author Roger L. Firor and Chin-Kai Meng Agilent Technologies, Inc. 0 Centerville Road Wilmington, DE 90-0

More information

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5 Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH 5730-6730 Analysis Topic 5 Chromatography! Group of separation techniques based on partitioning (mobile phase/stationary phase). Two immiscible

More information

CH 2252 Instrumental Methods of Analysis Unit V Gas Chromatography. M. Subramanian

CH 2252 Instrumental Methods of Analysis Unit V  Gas Chromatography.  M. Subramanian CH 2252 Instrumental Methods of Analysis Unit V Gas Chromatography M. Subramanian Assistant Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam 603

More information

Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products.

Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products. Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products. CHRISTOPHER M. ENGLISH, CHRISTOPHER S. COX, FRANK

More information

Slightly Polar Columns

Slightly Polar Columns 9000 Варна, ул.поп Харитон 47 e-mail : gea99@abv.bg www.geya99.com Slightly Polar Columns With the partnership of Teknokroma SLIGHTLY POLAR COLUMNS TRB-5 It is the most universal and versatile stationary

More information

Instrumental Chemical Analysis

Instrumental Chemical Analysis L2 Page1 Instrumental Chemical Analysis Chromatography (General aspects of chromatography) Dr. Ahmad Najjar Philadelphia University Faculty of Pharmacy Department of Pharmaceutical Sciences 2 nd semester,

More information

Trace analysis of mesityl oxide and diacetone alcohol in pharmaceuticals by capillary gas chromatography with flame ionization detection

Trace analysis of mesityl oxide and diacetone alcohol in pharmaceuticals by capillary gas chromatography with flame ionization detection Trade Science Inc. September 2009 Volume 8 Issue 3 ACAIJ, 8(3) 2009 [346-349] Trace analysis of mesityl oxide and diacetone alcohol in pharmaceuticals by capillary gas chromatography with flame ionization

More information

Appendices References...49 Glossary Equations

Appendices References...49 Glossary Equations Table of Contents List of Tables...2 List of Figures...2 Column Selection General Considerations for Column Selection... 3-11 Your Zebron Capillary GC Column... 12-29 Column Installation Pre-Installation

More information

Product Brief. - Hydrocarbons alkanes, alkenes, alkynes, dienes including natural gas, refinery gas, liquified petroleum gas

Product Brief. - Hydrocarbons alkanes, alkenes, alkynes, dienes including natural gas, refinery gas, liquified petroleum gas Agilent Porous Polymer PLOT Columns: New Products, Expanded Uses, Prices Cut in Half! Product Brief Need improved resolution of small volatile compounds? Didn't try a PLOT column due to high price, short

More information

Ch24. Gas Chromatography (GC)

Ch24. Gas Chromatography (GC) Ch24. Gas Chromatography (GC) 24.1 What did they eat in the year 1000? From 13 C content of cholesterol in ancient bone 13 C : 1.1%, 12 C: 98.9% 13 C/ 12 C ratio types of plants Bones of 50 people in Barton-on-Humber

More information

Mass Spectrometry. Fundamental GC-MS. GC Considerations

Mass Spectrometry. Fundamental GC-MS. GC Considerations Mass Spectrometry Fundamental GC-MS GC Considerations i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this reference

More information

Disadvantage: Destructive Technique once analyzed by GC, the sample is lost

Disadvantage: Destructive Technique once analyzed by GC, the sample is lost Gas Chromatography Like other methods of chromatography, a partitioning of molecules must occur between the stationary phase and the mobile phases in order to achieve separation. This is the same equilibrium

More information

Analytical Instrumentation

Analytical Instrumentation Gas Chromatography and Mass Spectrophotometry Environmental, food safety, toxicology, and forensic gas chromatography applications are more demanding than ever. Our portfolio of GC, GC- MS, GC-MS/MS and

More information

Fast and Accurate Analysis of PBDEs in a Single Run, Including BDE-209

Fast and Accurate Analysis of PBDEs in a Single Run, Including BDE-209 Fast and Accurate Analysis of PBDEs in a Single Run, Including Kory Kelly, Xianrong (Jenny) Wei, and Matthew Trass Phenomenex, Inc., 411 Madrid Ave., Torrance, CA 90501 USA PO16570913_W_2 PO14400613_W_2

More information

Chromatography and Functional Group Analysis

Chromatography and Functional Group Analysis Chromatography Chromatography separates individual substances from a mixture. - to find out how many components there are - to match the components with known reference materials - to use additional analytical

More information

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS 1. List two advantages of temperature programming in GC. a) Allows separation of solutes with widely varying retention factors in a reasonable

More information

UltiMetal Plus Advanced Chemistry for Stainless Steel Surface Deactivation

UltiMetal Plus Advanced Chemistry for Stainless Steel Surface Deactivation UltiMetal Plus Advanced Chemistry for Stainless Steel Surface Deactivation Technical Overview Introduction Inert flow path technology Modern GC and GC/MS instrumentation is an important analytical tool

More information

Simultaneous dual capillary column headspace GC with flame ionization confirmation and quantification according to USP <467> Application Note

Simultaneous dual capillary column headspace GC with flame ionization confirmation and quantification according to USP <467> Application Note Simultaneous dual capillary column headspace GC with flame ionization confirmation and quantification according to USP Application Note Joseph M. Levy Michael Kraft Abstract Agilent Equipment 7890A

More information

Paints and varnishes Determination of volatile organic compound (VOC) content. Part 2: Gas-chromatographic method

Paints and varnishes Determination of volatile organic compound (VOC) content. Part 2: Gas-chromatographic method Provläsningsexemplar / Preview INTERNATIONAL STANDARD ISO 11890-2 Third edition 2013-03-15 Paints and varnishes Determination of volatile organic compound (VOC) content Part 2: Gas-chromatographic method

More information

Supelco Ionic Liquid GC Columns Introduction to the Technology

Supelco Ionic Liquid GC Columns Introduction to the Technology Supelco Ionic Liquid GC Columns Introduction to the Technology Updated: -Jan-203 Agenda Overview GC Column Polarity Scale Temperature Effects on Selectivity Column Selectivity: QC Test Mix (0.2 mm I.D.

More information

Training Courses. Chromatography training from the Crawford Scientific experts

Training Courses. Chromatography training from the Crawford Scientific experts Training Courses Chromatography training from the Crawford Scientific experts HPLC Fundamentals This one-day course introduces the fundamentally important concepts associated with HPLC analysis including

More information

Agilent UltiMetal Plus Stainless Steel Deactivation for Tubing, Connectors, and Fittings

Agilent UltiMetal Plus Stainless Steel Deactivation for Tubing, Connectors, and Fittings Agilent UltiMetal Plus Stainless Steel Deactivation for Tubing, Connectors, and Fittings Technical Overview Introduction Modern GC and GC/MS instruments are important analytical tools for accurate and

More information

Determination of Volatile Substances Proof of Food Adulteration

Determination of Volatile Substances Proof of Food Adulteration ANALYSIS OF FOOD AND NATURAL PRODUCTS LABORATORY EXERCISE Determination of Volatile Substances Proof of Food Adulteration (method: gas chromatography with mass spectrometric detection) Exercise guarantor:

More information

Contents. Basic principles of capillary GC... 2

Contents. Basic principles of capillary GC... 2 Contents Gas Chromatography Introduction Basic principles of capillary GC... phases for GC Summary.... Phase selection by column parameters Primary selection features Phase polarity... 8 Film thickness....

More information

The Effects of Carrier Gas Viscosity and Diffusion on Column Efficiency in Capillary Gas Chromatography

The Effects of Carrier Gas Viscosity and Diffusion on Column Efficiency in Capillary Gas Chromatography Page 1 of 5 Return The Effects of Carrier Gas Viscosity and Diffusion on Column Efficiency in Capillary Gas Chromatography Stephanye D. Armstrong and Harold M. McNair Department of Chemistry, Virginia

More information

USP<467> residual solvents

USP<467> residual solvents Application Note Pharmaceuticals USP residual solvents Applying the Agilent 977A MSD with the Agilent 797A headspace sampler and Agilent 7890B GC Authors Roger L. Firor and Mike Szelewski Agilent Technologies,

More information

Partitioning. Separation is based on the analyte s relative solubility between two liquid phases or a liquid and solid.

Partitioning. Separation is based on the analyte s relative solubility between two liquid phases or a liquid and solid. Chromatography Various techniques for the separation of complex mixtures that rely on the differential affinities of substances for a gas or liquid mobile medium and for a stationary adsorbing medium through

More information

So Many Columns! How Do I Choose? Daron Decker Chromatography Technical Specialist

So Many Columns! How Do I Choose? Daron Decker Chromatography Technical Specialist So Many Columns! How Do I Choose? Daron Decker Chromatography Technical Specialist GC Columns Wall Coated Open Tubulars Liquid phase coated capillaries Internal Diameter 0.05 0.53mm Length 5m 100m Porous

More information

The Low-Temperature Evaporative Light-Scattering Detector (LT-ELSD)

The Low-Temperature Evaporative Light-Scattering Detector (LT-ELSD) The Low-Temperature Evaporative Light-Scattering Detector (LT-ELSD) Basically all compounds which are less volatile than the mobile phase can be detected. Detection is based on a Universal property of

More information

2. a) R N and L N so R L or L R 2.

2. a) R N and L N so R L or L R 2. 1. Use the formulae on the Some Key Equations and Definitions for Chromatography sheet. a) 0.74 (remember that w b = 1.70 x w ½ ) b) 5 c) 0.893 (α always refers to two adjacent peaks) d) 1.0x10 3 e) 0.1

More information

1,2-Dibromoethane (EDB) and 1,2-dibromo-3-chloropropane (DBCP), gas chromatography, microextraction

1,2-Dibromoethane (EDB) and 1,2-dibromo-3-chloropropane (DBCP), gas chromatography, microextraction 1. Application 1,2-Dibromoethane (EDB) and 1,2-dibromo-3-chloropropane (DBCP), gas chromatography, microextraction Parameters and Codes: EDB and DBCP, whole water recoverable, O-3120-90 Parameter (µg/l)

More information

Headspace Technology for GC and GC/MS: Features, benefits & applications

Headspace Technology for GC and GC/MS: Features, benefits & applications Headspace Technology for GC and GC/MS: Features, benefits & applications Karima Baudin Oct 2015 Why use Headspace? Very Simple no to minimum sample prep Robust enhance uptime Non-detectable carry-over

More information

Get Selective. By Jaap de Zeeuw

Get Selective. By Jaap de Zeeuw 34 Get Selective Modern narrow bore columns have made chromatographers lazy when it comes to stationary phase selection. Here s how getting back to basics in gas chromatography by using selectivity can

More information