Applications of the CSD to Structure Determination from Powder Data

Size: px
Start display at page:

Download "Applications of the CSD to Structure Determination from Powder Data"

Transcription

1 Applications of the CSD to Structure Determination from Powder Data Prof. Alastair J. Florence Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, UK ACS, Salt Lake City, March 2009

2 Overview 1. XRPD in Physical Form Discovery 2. SDPD Overview 3. Selecting Accurate Models Ring conformations: Corina 4. Maximising chances of locating the global minimum Mogul

3 Physical Form Discovery (CPOSS) Polymorphs, solvates, salts and co-crystals I. Crystallise Samples Maximise crystallisation space coverage II. XRPD Fingerprint 5 35 o 2θ, 45 min. per pattern LIMS Interrogate III. Measure Properties CSP IV. Determine Structure Q. Crystal structures are a key outcome, but what if samples are polycrystalline?

4 Structure Determination from Powder Data (SDPD) SX (direct methods) 1000s of I obs to ~1 Å resolution SDPD (global optimisation) 100s of I obs to ~2 Å resolution Loss of information and reduced accuracy of intensity estimates cf. SX Use global optimisation combined with prior chemical information

5 SDPD Global optimisation methods vary: (i) position (x, y, z) = 3 DoF (ii) orientation (θ 1, θ 2, θ 3 ) = 3 DoF and (iii) conformation (τ 1, τ 2...τ n ) = n DoF Of molecule within unit cell to find values that yield best fit between I obs and I calc : N Cl 1. Convert to 3D-model 2D - molecular connectivity N S O O NH 2 S O O 2. Standard bond lengths/ angles used 3. Flexible torsion angles varied freely. Test fit of I calc with I obs (χ 2 ) Vary the structure Random position, orientation and conformation of fragment(s) e.g. 7 degrees of freedom (DoF) = 3 position + 3 orientation + 1 conformation. Global minimum located: structure solved! z-matrix introduces prior chemical information (bond lengths/angles) into the process

6 SDPD Examples Chlorothiazide (DMF) 2 solvate V = 3816 Å 3 P2 1 /c, Z =2, DoF = 38 N frag = 6, N atoms = 94 Sample from solution crystallisation Cyheptamide form II V = 2412 Å 3 P1, Z =4, DoF = 28 N frag = 4, N atoms = 128 Sample from in situ thermal transition Fernandes, P. et al, J. Pharm. Sci. 96(5) (2007) Florence, A. J., et al., CrystEngComm (2008)

7 SDPD Overview Assess Sample: Collect Initial Data Low-angle, fixed-count Data Collection Indexes yes High resolution VCT Data Collection Sp. Gr. / Pawley fit no impurities or partial desolvation? recrystallise Identify suitable model SA Runs (GridMP) Solved yes Rietveld Refinement Analyse / Deposit / Publish no check model: disordered? solvent present? Focus on the role of additional information sources in: (i) Selection of suitable model w.r.t. fixed ring conformations CORINA hydrochlorothiazide; diltiazem hydrochloride (ii) Structure determination MOGUL Chloramphenicol palmitate

8 Ring Conformations Ring conformations are typically fixed in global optimization (GO) methods i.e. if wrong conformation used, GO will fail to solve the structure CORINA: What is it? A rule- & data-based program to automatically generate 3D atomic coordinates. Key strength - generation of multiple ring conformations Systematic conformational analysis for ring systems (n 9 atoms) Generates low-e ring conformations from 2D molecular sketch

9 Examples: HCT & Diltiazem HCl Compounds 1 & 29 in J. Appl. Cryst. (2005). 38, (data can be downloaded from O O NH 2 S Cl H N O O O N + N H O HCT O S O N H Diltiazem HCl [focusing the output on known S, S chiral centres] S Energy window [kj mol -1 ] HCT Diltiazem conformers conformers

10 Ring Conformations: HCT Corina & CSD CORINA CORINA CORINA form HCT form form IIIIII HCT form III HCT form HCT form CASCAB CASCAB CASCAB ODATIX ODATIX YESKIR YESKIR CASMAL CASMAL KASMOH KASMOH ADEFOF ADEFOF ODEFEJ ODATIX

11 Ring Conformations: Diltiazem Corina & CEYHUJ01

12 Mogul: Torsion Angle Constraints Define query

13 Select Ranges to Exclude Visualise selected geometry in related fragments

14 Example: CP, Z = 1, DoF = 29 CSD Refcode: CLAMPL01, Z = 1, orthorhombic, P a, b, c (Å) = 7.805(3), (15), 7.414(2) DoF = 23 internal, 6 external Lab capillary XRPD data Fitted to 2.17 Å; 221 reflections χ χ 2 2 Pr ofile / Pawley Model Lowest χ 2 ratio reached 0 internal DoF (rigid body) internal DoF [0 360 o ] internal DoF [Mogul search space] 2.0

15 CP Comparison of Best solutions SX (CLAMPL01) = red DASH (fixed) = blue DASH (Mogul) = orange DASH (0 360) = green

16 CP Best Free Solution 5 torsions from the best unconstrained SA structure are outwith CSD ranges Torsions SX FREE 1 C(5) C(3) C(4) O(2) C(13) C(12) O(2) C(4) C(13) C(14) C(15) C(16) C(18) C(19) C(20) C(21) C(19) C(20) C(21) C(22) Application of CSD-derived torsion angle constraints: (i) prevents these values occuring during the SA runs (ii) ensures the search utilises only chemically sensible models w.r.t. individual torsions

17 CP Top 10 Solutions (Mogul) Rank (Run) χ 2 ratio 1 (285) (550) (447) (422) (566) (58) (145) (263) (50) (567) 5.9 3/800 reach GM 10 Structure solved reproducibly from batch of SA runs Across lowest χ 2 values returned, significant variation in conformations observed

18 CP Solutions 1 & 8 [2 and 5.1] [8] χ 2 = 5.1 [1] χ 2 = 2.0 Different conformations similar packing

19 Summary 3D Model (z-matrix) Construction for Rings: Corina 1. An effective tool for identifying chemically sensible, low-e ring conformations for use in SDPD 2. Trivial calculation times (e.g. <1s for HCT) 3. Not guaranteed that lowest-e conformer = global minimum, but generates most likely candidates for use in SDPD attempts Structure Determination: CSD/MOGUL 1. Torsion angle constraints derived from CSD easy to implement with no computational overhead during SA search 2. Advantageous in the successful solution of complex problems (e.g. internal DOF > ~18, Z > 1) 3. Note: Possible that correct value lies outwith CSD ranges from similar fragments SDPD is a powerful tool for structural analysis of novel crystalline forms Chances of success for structures with significant chemical and/or crystallographic complexity are enhanced with reliable models plus high quality data

20 Acknowledgements University of Strathclyde Ryan Taylor, Alan Kennedy, Xuelian Xu, Philippe Fernandes, Norman Shankland University of Reading Kenneth Shankland CCDC Elna Pidcock Molecular Networks GmbH Christof Schwab Funding CPOSS ( RCUK / EPSRC, Scottish Funding Council, Glasgow Centre for Physical Organic Chemistry

Investigating crystal engineering principles using a data set of 50 pharmaceutical cocrystals

Investigating crystal engineering principles using a data set of 50 pharmaceutical cocrystals Investigating crystal engineering principles using a data set of 50 pharmaceutical cocrystals Peter A. Wood, Cambridge Crystallographic Data Centre 24 th March 2009 ACS Spring Meeting, Salt Lake City,

More information

Generating Small Molecule Conformations from Structural Data

Generating Small Molecule Conformations from Structural Data Generating Small Molecule Conformations from Structural Data Jason Cole cole@ccdc.cam.ac.uk Cambridge Crystallographic Data Centre 1 The Cambridge Crystallographic Data Centre About us A not-for-profit,

More information

Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 63 parameters

Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 63 parameters organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Urea N,N-dimethylacetamide (1/1) Refinement R[F 2 >2(F 2 )] = 0.050 wr(f 2 ) = 0.150 S = 0.89 939 reflections

More information

Structure and stability of two polymorphs of creatine and its monohydrate

Structure and stability of two polymorphs of creatine and its monohydrate Structure and stability of two polymorphs of creatine and its monohydrate Article Accepted Version Arlin, J. B., Bhardwaj, R. M., Johnston, A., Miller, G. J., Bardin, J., MacDougall, F., Fernandes, P.,

More information

CSD. Unlock value from crystal structure information in the CSD

CSD. Unlock value from crystal structure information in the CSD CSD CSD-System Unlock value from crystal structure information in the CSD The Cambridge Structural Database (CSD) is the world s most comprehensive and up-todate knowledge base of crystal structure data,

More information

Crystal structures with a challenge: high-pressure crystallisation of ciprofloxacin sodium salts and their recovery to ambient pressure

Crystal structures with a challenge: high-pressure crystallisation of ciprofloxacin sodium salts and their recovery to ambient pressure Crystal structures with a challenge: high-pressure crystallisation of ciprofloxacin sodium salts and their recovery to ambient pressure Francesca P. A. Fabbiani, Birger Dittrich, Alastair J. Florence,

More information

Analyzing Molecular Conformations Using the Cambridge Structural Database. Jason Cole Cambridge Crystallographic Data Centre

Analyzing Molecular Conformations Using the Cambridge Structural Database. Jason Cole Cambridge Crystallographic Data Centre Analyzing Molecular Conformations Using the Cambridge Structural Database Jason Cole Cambridge Crystallographic Data Centre 1 The Cambridge Structural Database (CSD) 905,284* USOPEZ a natural product intermediate,

More information

Screening for cocrystals of succinic acid and 4-aminobenzoic acid. Supplementary Information

Screening for cocrystals of succinic acid and 4-aminobenzoic acid. Supplementary Information Screening for cocrystals of succinic acid and 4-aminobenzoic acid Nizar Issa, Sarah A. Barnett, Sharmarke Mohamed, Doris E. Braun, Royston C. B. Copley, Derek A. Tocher, Sarah L Price* Supplementary Information

More information

Validation of Experimental Crystal Structures

Validation of Experimental Crystal Structures Validation of Experimental Crystal Structures Aim This use case focuses on the subject of validating crystal structures using tools to analyse both molecular geometry and intermolecular packing. Introduction

More information

CSD. CSD-Enterprise. Access the CSD and ALL CCDC application software

CSD. CSD-Enterprise. Access the CSD and ALL CCDC application software CSD CSD-Enterprise Access the CSD and ALL CCDC application software CSD-Enterprise brings it all: access to the Cambridge Structural Database (CSD), the world s comprehensive and up-to-date database of

More information

organic papers Pamoic acid determined from powder diffraction data

organic papers Pamoic acid determined from powder diffraction data organic papers Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Pamoic acid determined from powder diffraction data Delia A. Haynes, a Jacco Van de Streek, b Jonathan C. Burley,

More information

Ab initio crystal structure determination of two polymorphic modifications of a local anesthetic agent, Tetracaine Hydrochloride

Ab initio crystal structure determination of two polymorphic modifications of a local anesthetic agent, Tetracaine Hydrochloride 1 / 30 Ab initio crystal structure determination of two polymorphic modifications of a local anesthetic agent, Tetracaine Hydrochloride Robert J. Papoular Leon Brillouin Laboratory papou@llb.saclay.cea.fr

More information

Version 1.2 October 2017 CSD v5.39

Version 1.2 October 2017 CSD v5.39 Mogul Geometry Check Table of Contents Introduction... 2 Example 1. Using Mogul to assess intramolecular geometry... 3 Example 2. Using Mogul to explain activity data... 5 Conclusions... 8 Further Exercises...

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Supporting Information Unmasking Representative Structures of TMP-Active Hauser and Turbo Hauser Bases Pablo García-Álvarez, David V. Graham,

More information

Structural Characterization and Rationalization of Formation, Stability, and Transformations of Benperidol Solvates

Structural Characterization and Rationalization of Formation, Stability, and Transformations of Benperidol Solvates Structural Characterization and Rationalization of Formation, Stability, and Transformations of Benperidol Solvates Agris Bērziņš 1,2, Edgars Skarbulis 1, Andris Actiņš 1 1 - Faculty of Chemistry, University

More information

Exploring symmetry related bias in conformational data from the Cambridge Structural Database: A rare phenomenon?

Exploring symmetry related bias in conformational data from the Cambridge Structural Database: A rare phenomenon? Exploring symmetry related bias in conformational data from the Cambridge Structural Database: A rare phenomenon? Aim To explore some well known cases where symmetry effects bias the distribution of conformational

More information

research papers Solving molecular crystal structures from laboratory X-ray powder diffraction data with DASH: the state of the art and challenges

research papers Solving molecular crystal structures from laboratory X-ray powder diffraction data with DASH: the state of the art and challenges Journal of Applied Crystallography ISSN 0021-8898 Solving molecular crystal structures from laboratory X-ray powder diffraction data with DASH: the state of the art and challenges Received 10 August 2004

More information

QUESTIONNAIRE FOR STRUCTURE DETERMINATION BY POWDER DIFFRACTOMETRY ROUND ROBIN

QUESTIONNAIRE FOR STRUCTURE DETERMINATION BY POWDER DIFFRACTOMETRY ROUND ROBIN QUESTIONNAIRE FOR STRUCTURE DETERMINATION BY POWDER DIFFRACTOMETRY ROUND ROBIN Sample number 2: C22 H24 N2 O8 HCl 0.2 Is the second sample structure solvable with this quality of data? Yes [x] No [ ] 1.

More information

The Cambridge Structural Database (CSD) a Vital Resource for Structural Chemistry and Biology Stephen Maginn, CCDC, Cambridge, UK

The Cambridge Structural Database (CSD) a Vital Resource for Structural Chemistry and Biology Stephen Maginn, CCDC, Cambridge, UK The Cambridge Structural Database (CSD) a Vital Resource for Structural Chemistry and Biology Stephen Maginn, CCDC, Cambridge, UK 1 The Cambridge Crystallographic Data Centre The advancement and promotion

More information

Ab initio crystal structure analysis based on powder diffraction data using PDXL

Ab initio crystal structure analysis based on powder diffraction data using PDXL Ab initio crystal structure analysis based on powder diffraction data using PDXL Akito Sasaki*, Akihiro Himeda*, Hisashi Konaka* and Norihiro Muroyama* 1. Introduction Physical and chemical properties

More information

Crystal Structure Prediction A Decade of Blind Tests. Frank Leusen

Crystal Structure Prediction A Decade of Blind Tests. Frank Leusen Crystal Structure Prediction A Decade of Blind Tests Frank Leusen Outline Crystal structure prediction Blind tests in crystal structure prediction 1999, 2001 and 2004 editions The 2007 edition of the blind

More information

Joana Pereira Lamzin Group EMBL Hamburg, Germany. Small molecules How to identify and build them (with ARP/wARP)

Joana Pereira Lamzin Group EMBL Hamburg, Germany. Small molecules How to identify and build them (with ARP/wARP) Joana Pereira Lamzin Group EMBL Hamburg, Germany Small molecules How to identify and build them (with ARP/wARP) The task at hand To find ligand density and build it! Fitting a ligand We have: electron

More information

Synthesis of a Labile Sulfur-Centred Ligand, [S(H)C(PPh 2 S) 2 ] : Structural Diversity in Lithium(I), Zinc(II) and Nickel(II) Complexes

Synthesis of a Labile Sulfur-Centred Ligand, [S(H)C(PPh 2 S) 2 ] : Structural Diversity in Lithium(I), Zinc(II) and Nickel(II) Complexes Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI): Synthesis of a Labile Sulfur-Centred Ligand,

More information

The PhilOEsophy. There are only two fundamental molecular descriptors

The PhilOEsophy. There are only two fundamental molecular descriptors The PhilOEsophy There are only two fundamental molecular descriptors Where can we use shape? Virtual screening More effective than 2D Lead-hopping Shape analogues are not graph analogues Molecular alignment

More information

Computational Crystal Energy Landscapes as an aid to polymorph screening

Computational Crystal Energy Landscapes as an aid to polymorph screening Control and Prediction of the rganic Solid State A Basic Technology project of the Research Councils UK Computational Crystal Energy Landscapes as an aid to polymorph screening Sarah (Sally) L Price Department

More information

Garib N Murshudov MRC-LMB, Cambridge

Garib N Murshudov MRC-LMB, Cambridge Garib N Murshudov MRC-LMB, Cambridge Contents Introduction AceDRG: two functions Validation of entries in the DB and derived data Generation of new ligand description Jligand for link description Conclusions

More information

Wednesday 19 June 2013 Morning

Wednesday 19 June 2013 Morning Wednesday 19 June 2013 Morning A2 GCE CHEMISTRY B (SALTERS) F334/01 Chemistry of Materials *F315280113* Candidates answer on the Question Paper. OCR supplied materials: Data Sheet for Chemistry B (Salters)

More information

Supplementary Information for Evaluating the. energetic driving force for co-crystal formation

Supplementary Information for Evaluating the. energetic driving force for co-crystal formation Supplementary Information for Evaluating the energetic driving force for co-crystal formation Christopher R. Taylor and Graeme M. Day School of Chemistry, University of Southampton, Highfield, Southampton,

More information

Rietveld Structure Refinement of Protein Powder Diffraction Data using GSAS

Rietveld Structure Refinement of Protein Powder Diffraction Data using GSAS Rietveld Structure Refinement of Protein Powder Diffraction Data using GSAS Jon Wright ESRF, Grenoble, France Plan This is a users perspective Cover the protein specific aspects (assuming knowledge of

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Interconvertible Multiple Photoluminescence Color

More information

Crystallisation and physicochemical property characterisation of conformationally-locked co-crystals of fenamic acid derivatives

Crystallisation and physicochemical property characterisation of conformationally-locked co-crystals of fenamic acid derivatives Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Crystallisation and physicochemical property characterisation of conformationally-locked co-crystals

More information

Department of Chemistry, University of Basel, St. Johanns-Ring 19, Spitalstrasse 51, and Klingelbergstrasse 80, CH-4056 Basel, Switzerland

Department of Chemistry, University of Basel, St. Johanns-Ring 19, Spitalstrasse 51, and Klingelbergstrasse 80, CH-4056 Basel, Switzerland Charge Transfer Pathways in Three Isomers of Naphthalene-Bridged Organic Mixed Valence Compounds Hauke C. Schmidt, Mariana Spulber, Markus Neuburger, Cornelia G. Palivan, Markus Meuwly,* and Oliver S.

More information

organic papers Malonamide: an orthorhombic polymorph Comment

organic papers Malonamide: an orthorhombic polymorph Comment organic papers Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Malonamide: an orthorhombic polymorph Gary S. Nichol and William Clegg* School of Natural Sciences (Chemistry), Bedson

More information

Crystal structure of DL-Tryptophan at 173K

Crystal structure of DL-Tryptophan at 173K Cryst. Res. Technol. 39, No. 3, 274 278 (2004) / DOI 10.1002/crat.200310182 Crystal structure of DL-Tryptophan at 173K Ch. B. Hübschle, M. Messerschmidt, and P. Luger* Institut für Chemie / Kristallographie,

More information

Generation of crystal structures using known crystal structures as analogues

Generation of crystal structures using known crystal structures as analogues Supporting information Volume 72 (2016) Supporting information for article: Generation of crystal structures using known crystal structures as analogues Jason C. Cole, Colin R. Groom, Murray G. Read, Ilenia

More information

Stereochemistry of Molecules in Crystals (part 1, 2)

Stereochemistry of Molecules in Crystals (part 1, 2) Stereochemistry of Molecules in Crystals (part 1, 2) umio Toda kayama University of Science, kayama, Japan key word: solid state, -guest complex part 1: statistic aspect part 2: dynamic aspect : X a: X

More information

Supporting information

Supporting information Supporting information Confinement effects in low-dimensional lead iodide perovskite hybrids Machteld E. Kamminga 1, Hong-Hua Fang 1, Marina R. Filip 2, Feliciano Giustino 2, Jacob Baas 1, Graeme R. Blake

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Cleave and Capture Chemistry: Synergic Fragmentation of THF Robert E. Mulvey 1*, Victoria L. Blair 1, William Clegg 2, Alan R. Kennedy 1, Jan Klett 1, Luca Russo 2 1 WestCHEM,

More information

Nitrile Groups as Hydrogen-Bond Acceptors in a Donor-Rich Hydrogen-Bonding Network. Supplementary Information

Nitrile Groups as Hydrogen-Bond Acceptors in a Donor-Rich Hydrogen-Bonding Network. Supplementary Information Nitrile Groups as Hydrogen-Bond Acceptors in a Donor-Rich Hydrogen-Bonding Network David R. Turner,* a Alison J. Edwards b and Ross O. Piltz b Supplementary Information Section 1 Structural Parameters

More information

CAMBRIDGE STRUCTURAL DATABASE SYSTEM 2010 RELEASE WORKED EXAMPLES

CAMBRIDGE STRUCTURAL DATABASE SYSTEM 2010 RELEASE WORKED EXAMPLES CAMBRIDGE STRUCTURAL DATABASE SYSTEM 2010 RELEASE WORKED EXAMPLES Copyright 2009 The Cambridge Crystallographic Data Centre Registered Charity No 800579 Table of Contents 1 Introduction.................................................................

More information

Supplementary Information. Crystallinity-dependent enhancement of ionic conductivity on multi-interactive molecular materials

Supplementary Information. Crystallinity-dependent enhancement of ionic conductivity on multi-interactive molecular materials Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supplementary Information Crystallinity-dependent enhancement of ionic conductivity on multi-interactive

More information

Halogen bonding of N-bromosuccinimide by grinding

Halogen bonding of N-bromosuccinimide by grinding Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2016 SUPPORTING INFORMATION Halogen bonding of N-bromosuccinimide by grinding Juraj Mavračić, Dominik

More information

Dictionary of ligands

Dictionary of ligands Dictionary of ligands Some of the web and other resources Small molecules DrugBank: http://www.drugbank.ca/ ZINC: http://zinc.docking.org/index.shtml PRODRUG: http://www.compbio.dundee.ac.uk/web_servers/prodrg_down.html

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-cinnamyl-chiral alcohol Lab ID: 12040 User:

More information

Chapter 4. Glutamic Acid in Solution - Correlations

Chapter 4. Glutamic Acid in Solution - Correlations Chapter 4 Glutamic Acid in Solution - Correlations 4. Introduction Glutamic acid crystallises from aqueous solution, therefore the study of these molecules in an aqueous environment is necessary to understand

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2014 SUPPLEMENTARY INFORMATION Quasi-Enantiomeric Single-Nucleoside and Quasi-Racemic Two-Nucleosides

More information

CSD Conformer Generator User Guide

CSD Conformer Generator User Guide CSD Conformer Generator User Guide 2017 CSD Release Copyright 2016 Cambridge Crystallographic Data Centre Registered Charity No 800579 Conditions of Use The CSD Conformer Generator is copyright work belonging

More information

Supporting Information

Supporting Information Supporting Information Intermolecular contacts in compressed α-d-mannose Ewa Patyk-Kaźmierczak, a Mark R. Warren, b David R. Allan, b Andrzej Katrusiak a a Department of Materials Chemistry, Faculty of

More information

Creating a Pharmacophore Query from a Reference Molecule & Scaffold Hopping in CSD-CrossMiner

Creating a Pharmacophore Query from a Reference Molecule & Scaffold Hopping in CSD-CrossMiner Table of Contents Creating a Pharmacophore Query from a Reference Molecule & Scaffold Hopping in CSD-CrossMiner Introduction... 2 CSD-CrossMiner Terminology... 2 Overview of CSD-CrossMiner... 3 Features

More information

Supporting Information

Supporting Information Supporting Information for Gold(I) Alkynyls Supported by Mono- and Bidentate NHC Ligands: Luminescence and Isolation of Unprecedented Ionic Complexes Alexander A. Penney, Galina L. Starova, Elena V. Grachova,

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-furan-enzymatic alcohol Lab ID: 12042 User:

More information

To learn how to use molecular modeling software, a commonly used tool in the chemical and pharmaceutical industry.

To learn how to use molecular modeling software, a commonly used tool in the chemical and pharmaceutical industry. NAME: Lab Day/Time: Molecular Modeling BV 1/2009 Purpose The purposes of this experiment are: To learn how to use molecular modeling software, a commonly used tool in the chemical and pharmaceutical industry.

More information

Supporting Information

Supporting Information Supporting Information A Co-Ca Phosphonate Showing Humidity Sensitive Single Crystal-to-Single Crystal Structural Transformation and Tunable Proton Conduction Properties Song-Song Bao, Nan-Zhu Li, Jared

More information

Designing ternary cocrystals with hydrogen bonds and halogen bonds Srinu Tothadi and Gautam R. Desiraju

Designing ternary cocrystals with hydrogen bonds and halogen bonds Srinu Tothadi and Gautam R. Desiraju Designing ternary cocrystals with hydrogen bonds and halogen bonds Srinu Tothadi and Gautam R. Desiraju Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 56 12, India. *

More information

Why polymorphism? An Evaluation using Experimental Charge Densities Analysis

Why polymorphism? An Evaluation using Experimental Charge Densities Analysis Why polymorphism? An Evaluation using Experimental Charge Densities Analysis T. N. Guru Row Solid State and Structural Chemistry Unit Indian Institute of Science Bangalore 560012 INDIA Email: ssctng@sscu.iisc.ernet.in

More information

Pharmaceutical co-crystals of diflunisal and. diclofenac with theophylline

Pharmaceutical co-crystals of diflunisal and. diclofenac with theophylline SUPPORTING INFORMATION FOR PUBLICATION Pharmaceutical co-crystals of diflunisal and diclofenac with theophylline Artem O. Surov a, Alexander P. Voronin a, Alex N. Manin a, Nikolay. G. Manin a, Lyudmila

More information

Spacer conformation in biologically active molecules*

Spacer conformation in biologically active molecules* Pure Appl. Chem., Vol. 76, No. 5, pp. 959 964, 2004. 2004 IUPAC Spacer conformation in biologically active molecules* J. Karolak-Wojciechowska and A. Fruziński Institute of General and Ecological Chemistry,

More information

Phase problem: Determining an initial phase angle α hkl for each recorded reflection. 1 ρ(x,y,z) = F hkl cos 2π (hx+ky+ lz - α hkl ) V h k l

Phase problem: Determining an initial phase angle α hkl for each recorded reflection. 1 ρ(x,y,z) = F hkl cos 2π (hx+ky+ lz - α hkl ) V h k l Phase problem: Determining an initial phase angle α hkl for each recorded reflection 1 ρ(x,y,z) = F hkl cos 2π (hx+ky+ lz - α hkl ) V h k l Methods: Heavy atom methods (isomorphous replacement Hg, Pt)

More information

CSD Conformer Generator User Guide

CSD Conformer Generator User Guide CSD Conformer Generator User Guide 2018 CSD Release Copyright 2017 Cambridge Crystallographic Data Centre Registered Charity No 800579 Conditions of Use The CSD Conformer Generator is copyright work belonging

More information

Molecular Modelling. Computational Chemistry Demystified. RSC Publishing. Interprobe Chemical Services, Lenzie, Kirkintilloch, Glasgow, UK

Molecular Modelling. Computational Chemistry Demystified. RSC Publishing. Interprobe Chemical Services, Lenzie, Kirkintilloch, Glasgow, UK Molecular Modelling Computational Chemistry Demystified Peter Bladon Interprobe Chemical Services, Lenzie, Kirkintilloch, Glasgow, UK John E. Gorton Gorton Systems, Glasgow, UK Robert B. Hammond Institute

More information

Structure of Bis(isobutylammonium) Selenite and its Sesquihydrate

Structure of Bis(isobutylammonium) Selenite and its Sesquihydrate Structure of Bis(isobutylammonium) Selenite and its Sesquihydrate Maren Wiechoczek and Peter G. Jones Institut für Anorganische und Analytische Chemie, Technical University of Braunschweig, Postfach 3329,

More information

Reversible dioxygen binding on asymmetric dinuclear rhodium centres

Reversible dioxygen binding on asymmetric dinuclear rhodium centres Electronic Supporting Information for Reversible dioxygen binding on asymmetric dinuclear rhodium centres Takayuki Nakajima,* Miyuki Sakamoto, Sachi Kurai, Bunsho Kure, Tomoaki Tanase* Department of Chemistry,

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2018 Supplementary Information Macroscopic crystalline deformation in an organic dye during reversible

More information

Supporting information. for. isatins and α-amino acids

Supporting information. for. isatins and α-amino acids Supporting information for The regioselective synthesis of spirooxindolo pyrrolidines and pyrrolizidines via three-component reactions of acrylamides and aroylacrylic acids with isatins and α-amino acids

More information

Direct Method. Very few protein diffraction data meet the 2nd condition

Direct Method. Very few protein diffraction data meet the 2nd condition Direct Method Two conditions: -atoms in the structure are equal-weighted -resolution of data are higher than the distance between the atoms in the structure Very few protein diffraction data meet the 2nd

More information

Room Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits

Room Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits Room Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits Matteo Atzori, Lorenzo Tesi, Elena Morra, Mario Chiesa, Lorenzo Sorace,

More information

Headache because of Aspirin! Roland Boese

Headache because of Aspirin! Roland Boese Headache because of Aspirin! Roland Boese Headache because of Aspirin! About 80% of all APIs exhibit polymorphism! What is so special about Aspirin so that it seems to be monomorphic in spite of millions

More information

Dealing with overlapped data. Powder diffraction: issues and algorithms. WIFD - standard disclosure. Proteins and powders. Outline

Dealing with overlapped data. Powder diffraction: issues and algorithms. WIFD - standard disclosure. Proteins and powders. Outline Dealing with overlapped data Powder diffraction: issues and algorithms Bill David, ISIS Facility, Rutherford Appleton Laboratory, UK Bill David, ISIS Facility, Rutherford Appleton Laboratory, UK WIFD -

More information

High-Throughput in Chemical Crystallography from an industrial point of view

High-Throughput in Chemical Crystallography from an industrial point of view High-Throughput in Chemical Crystallography from an industrial point of view Ina Dix Novartis Institutes for Biomedical Research, Basel Analytics at Novartis (Basel) staff # spectra NMR 8 10.000 1.500

More information

Homework Problem Set 4 Solutions

Homework Problem Set 4 Solutions Chemistry 380.37 Dr. Jean M. Standard omework Problem Set 4 Solutions 1. A conformation search is carried out on a system and four low energy stable conformers are obtained. Using the MMFF force field,

More information

Organometallics & InChI. August 2017

Organometallics & InChI. August 2017 Organometallics & InChI August 2017 The Cambridge Structural Database 900,000+ small-molecule crystal structures Over 60,000 datasets deposited annually Enriched and annotated by experts Structures available

More information

Schrodinger ebootcamp #3, Summer EXPLORING METHODS FOR CONFORMER SEARCHING Jas Bhachoo, Senior Applications Scientist

Schrodinger ebootcamp #3, Summer EXPLORING METHODS FOR CONFORMER SEARCHING Jas Bhachoo, Senior Applications Scientist Schrodinger ebootcamp #3, Summer 2016 EXPLORING METHODS FOR CONFORMER SEARCHING Jas Bhachoo, Senior Applications Scientist Numerous applications Generating conformations MM Agenda http://www.schrodinger.com/macromodel

More information

J. Am. Chem. Soc., 1998, 120(7), , DOI: /ja972816e

J. Am. Chem. Soc., 1998, 120(7), , DOI: /ja972816e J. Am. Chem. Soc., 1998, 120(7), 1430-1433, DOI:10.1021/ja972816e Terms & Conditions Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical

More information

Structure and interactions in benzamide molecular crystals

Structure and interactions in benzamide molecular crystals Structure and interactions in benzamide molecular crystals Philipp Ectors 1, Dominique Ectors 2, Dirk Zahn 1 1) Lehrstuhl für Theoretische Chemie/Computer-Chemie-Centrum Friedrich-Alexander- Universität

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Table 1. Atomic details for the crystal structures of silver closo-boranes. See Table 1 for further details. α Ag 2 B 10 H 10 Wyckoff x y z U / Å 2 Occ. Ag 4d 0.250

More information

Efficient, scalable and solvent-free mechanochemical synthesis of the OLED material Alq 3 (q = 8-hydroxyquinolinate) Supporting Information

Efficient, scalable and solvent-free mechanochemical synthesis of the OLED material Alq 3 (q = 8-hydroxyquinolinate) Supporting Information Efficient, scalable and solvent-free mechanochemical synthesis of the OLED material Alq 3 (q = 8-hydroxyquinolinate) Xiaohe Ma, Gin Keat Lim, Kenneth D.M. Harris, David C. Apperley, Peter N. Horton, Michael

More information

Combining piracetam and lithium salts: Ionic co-cocrystals and codrugs? Electronic Supplementary Information (10 pages)

Combining piracetam and lithium salts: Ionic co-cocrystals and codrugs? Electronic Supplementary Information (10 pages) Combining piracetam and lithium salts: Ionic co-cocrystals and codrugs? Dario Braga, Fabrizia Grepioni,* a Lucia Maini,* a Davide Capucci, Saverio Nanna, Johan Wouters, Luc Aerts and Luc Quéré Electronic

More information

Supporting Information

Supporting Information Supporting Information Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics Helge Reinsch, Steve Waitschat and Norbert Stock S1: 1 H-NMR-spectra of dissolved CAU-10-X samples

More information

Supplementary Figure 1. Different views of the experimental setup at the ESRF beamline ID15B involving the modified MM200 Retsch mill: (left) side-on

Supplementary Figure 1. Different views of the experimental setup at the ESRF beamline ID15B involving the modified MM200 Retsch mill: (left) side-on Supplementary Figure 1. Different views of the experimental setup at the ESRF beamline ID15B involving the modified MM200 Retsch mill: (left) side-on and (right) almost parallel to the incident beam. Supplementary

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Exceptionally Large Positive and Negative Anisotropic Thermal Expansion of an Organic Crystalline Material Dinabandhu Das, Tia Jacobs and Leonard J. Barbour * Department of Chemistry

More information

b = (9) Å c = (7) Å = (1) V = (16) Å 3 Z =4 Data collection Refinement

b = (9) Å c = (7) Å = (1) V = (16) Å 3 Z =4 Data collection Refinement organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 8-Iodoquinolinium triiodide tetrahydrofuran solvate Jung-Ho Son and James D. Hoefelmeyer* Department of Chemistry,

More information

CHAPTER 4: RESULTS AND DISCUSSION. 8 (2), 10 (3), 12 (4) and 14 (5), are shown in Scheme 4.1.

CHAPTER 4: RESULTS AND DISCUSSION. 8 (2), 10 (3), 12 (4) and 14 (5), are shown in Scheme 4.1. CHAPTER 4: RESULTS AND DISCUSSION 4.1 [Cu 2 (RCOO) 4 (bpy) 2 ] The general steps for the syntheses of [Cu 2 (CH 3 (CH 2 ) n COO) 4 (bpy) 2 ], where n = 6 (1), 8 (2), 10 (3), 12 (4) and 14 (5), are shown

More information

Crystal Structure Prediction using CRYSTALG program

Crystal Structure Prediction using CRYSTALG program Crystal Structure Prediction using CRYSTALG program Yelena Arnautova Baker Laboratory of Chemistry and Chemical Biology, Cornell University Problem of crystal structure prediction: - theoretical importance

More information

Dock Ligands from a 2D Molecule Sketch

Dock Ligands from a 2D Molecule Sketch Dock Ligands from a 2D Molecule Sketch March 31, 2016 Sample to Insight CLC bio, a QIAGEN Company Silkeborgvej 2 Prismet 8000 Aarhus C Denmark Telephone: +45 70 22 32 44 www.clcbio.com support-clcbio@qiagen.com

More information

Conformational Searching using MacroModel and ConfGen. John Shelley Schrödinger Fellow

Conformational Searching using MacroModel and ConfGen. John Shelley Schrödinger Fellow Conformational Searching using MacroModel and ConfGen John Shelley Schrödinger Fellow Overview Types of conformational searching applications MacroModel s conformation generation procedure General features

More information

A Journey from Data to Knowledge

A Journey from Data to Knowledge A Journey from Data to Knowledge Ian Bruno Cambridge Crystallographic Data Centre @ijbruno @ccdc_cambridge Experimental Data C 10 H 16 N +,Cl - Radspunk, CC-BY-SA CC-BY-SA Jeff Dahl, CC-BY-SA Experimentally

More information

Computational crystal structure prediction and experimental characterisation of organic salts

Computational crystal structure prediction and experimental characterisation of organic salts Computational crystal structure prediction and experimental characterisation of organic salts Sharmarke Mohamed A thesis submitted to UCL in partial fulfilment of the requirements for the degree of Doctor

More information

Selective total encapsulation of the sulfate anion by neutral nano-jars

Selective total encapsulation of the sulfate anion by neutral nano-jars Supporting Information for Selective total encapsulation of the sulfate anion by neutral nano-jars Isurika R. Fernando, Stuart A. Surmann, Alexander A. Urech, Alexander M. Poulsen and Gellert Mezei* Department

More information

Increase in Solubility of Poorly-Ionizable Pharmaceuticals by Salt Formation. A Case of Agomelatine Sulfonates.

Increase in Solubility of Poorly-Ionizable Pharmaceuticals by Salt Formation. A Case of Agomelatine Sulfonates. Supporting Information Increase in Solubility of Poorly-Ionizable Pharmaceuticals by Salt Formation. A Case of Agomelatine Sulfonates. Eliška Skořepová a,b, Daniel Bím e, Michal Hušák b, Jiří Klimeš d,

More information

Development of Continuous Crystallisations in an Oscillatory Baffled Crystalliser

Development of Continuous Crystallisations in an Oscillatory Baffled Crystalliser Development of Continuous Crystallisations in an Oscillatory Baffled Crystalliser Prof Alastair J. Florence, University of Strathclyde, 6 th June 2013 EPSRC Centres for Innovative Manufacturing Centres

More information

A mesoporous aluminium metal-organic framework with 3 nm open pores

A mesoporous aluminium metal-organic framework with 3 nm open pores Electronic Supplementary Information A mesoporous aluminium metal-organic framework with 3 nm open pores Sheng-Han Lo, a Ching-Hsuan Chien, a Yu-Lun Lai, b Chun-Chuen Yang, c Jey Jau Lee, d Duraisamy Senthil

More information

Why do We Trust X-ray Crystallography?

Why do We Trust X-ray Crystallography? Why do We Trust X-ray Crystallography? Andrew D Bond All chemists know that X-ray crystallography is the gold standard characterisation technique: an X-ray crystal structure provides definitive proof of

More information

feature articles Structure determination from powder diffraction data 52 doi: /s Acta Cryst. (2008). A64,

feature articles Structure determination from powder diffraction data 52 doi: /s Acta Cryst. (2008). A64, Acta Crystallographica Section A Foundations of Crystallography ISSN 0108-7673 Received 3 October 2007 Accepted 29 November 2007 Structure determination from powder diffraction data W. I. F. David* and

More information

Preparation and Crystal Structure Determination of Sulphur Dioxide Solvate Crystals with Cetyl- and Dodecyltrimethylammonium Bromide

Preparation and Crystal Structure Determination of Sulphur Dioxide Solvate Crystals with Cetyl- and Dodecyltrimethylammonium Bromide Preparation and Crystal Structure Determination of Sulphur Dioxide Solvate Crystals with Cetyl- and Dodecyltrimethylammonium Bromide Denitsa Shopova, Robert Dinnebier, and Martin Jansen Max Planck Institute

More information

Spontaneous racemic resolution towards control of molecular recognition nature

Spontaneous racemic resolution towards control of molecular recognition nature This journal is The Royal Society of Chemistry 13 Supplementary Information Spontaneous racemic resolution towards control of molecular recognition nature Agata Białońska * and Zbigniew Ciunik Faculty

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Facile Heterolytic H 2 Activation by Amines and B(C 6 F 5 ) 3 Victor Sumerin, Felix Schulz, Martin Nieger, Markku Leskelä, Timo Repo,* and

More information

Disclosing the complex structure of UiO-66 Metal Organic Framework: a synergic combination of experiment and theory

Disclosing the complex structure of UiO-66 Metal Organic Framework: a synergic combination of experiment and theory Supporting Information for Disclosing the complex structure of UiO-66 Metal Organic Framework: a synergic combination of experiment and theory Loredana Valenzano, 1 Bartolomeo Civalleri, 1 Sachin Chavan,

More information

4. Constraints and Hydrogen Atoms

4. Constraints and Hydrogen Atoms 4. Constraints and ydrogen Atoms 4.1 Constraints versus restraints In crystal structure refinement, there is an important distinction between a constraint and a restraint. A constraint is an exact mathematical

More information

Homework Problem Set 1 Solutions

Homework Problem Set 1 Solutions Chemistry 380.37 Dr. Jean M. Standard omework Problem Set 1 Solutions 1. A student investigates a bond between atoms A and B in a molecule using a software package for molecular mechanics. The student

More information

The solvent effect on the structural and magnetic features of bidentate ligand-capped {Co II 9[W V (CN) 8 ] 6 } Single-Molecule Magnets

The solvent effect on the structural and magnetic features of bidentate ligand-capped {Co II 9[W V (CN) 8 ] 6 } Single-Molecule Magnets Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2016 SUPPORTING INFORMATION The solvent effect on the structural and magnetic features of bidentate

More information