Structure and interactions in benzamide molecular crystals

Size: px
Start display at page:

Download "Structure and interactions in benzamide molecular crystals"

Transcription

1 Structure and interactions in benzamide molecular crystals Philipp Ectors 1, Dominique Ectors 2, Dirk Zahn 1 1) Lehrstuhl für Theoretische Chemie/Computer-Chemie-Centrum Friedrich-Alexander- Universität Erlangen-Nürnberg, Nägelsbacher Str. 25, D Erlangen, Germany. 2) Lehrstuhl für Mineralogie, Friedrich-Alexander-Universität Erlangen-Nürnberg Schlossgarten 5a, Erlangen, Germany. This is the pre-peer reviewed version of the following article: Structure and interactions in benzamide molecular crystals Philipp Ectors, Dominique Ectors, Dirk Zahn; Molecular Simulation Vol. 39, Iss. 13, 2013, which has been published in final form at DOI: / This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self- Archiving.

2 Structure and interactions in benzamide molecular crystals Philipp Ectors, 1 Dominique Ectors, 2 Dirk Zahn 1,* 1 Lehrstuhl für Theoretische Chemie/Computer-Chemie-Centrum Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbacher Str. 25, D Erlangen, Germany. 2 Lehrstuhl für Mineralogie, Friedrich-Alexander-Universität Erlangen-Nürnberg Schlossgarten 5a, Erlangen, Germany. *Corresponding author dirk.zahn@chemie.uni-erlangen.de

3 ABSTRACT We resolve discrepancies concerning the experimentally determined structure of benzamide molecular crystals from dispersion-corrected density functional calculations. A clear energy ranking is obtained for the two candidates of the stable (P1) modification of benzamide. This is rationalized by subtle differences of the molecular interactions in the molecular crystal. The potential energy of the different structures is dominated by the interplay of intermolecular attraction and molecular torsion/deformation to accommodate favourable hydrogen bonded networks. Using suitable proxies arranged in pseudocrystalline setups we discriminate the contribution of electrostatics, π-π interactions and intra-molecular interactions to the lattice energies. KEYWORDS Crystal Structure Molecular simulation Molecular Interactions

4 Introduction The identification and understanding of the structure of molecular crystals is of considerable importance to both academia and industry, namely for controlling pharmaceutics production and metabolism. This ongoing challenge to both experiment and theory is nicely reflected by benzamide molecular crystals which, since its discovery almost 200 years ago, became an increasingly prominent test case system for the exploration of molecular crystal polymorphism in general and of pharmaceuticals stability in particular [1-3]. Despite this attention, there is a serious discrepancy concerning the experimentally refined crystal structures of the stable form (P1) of benzamide. In figure 1 the two qualitatively different structure candidates of Gao et al. (ref. [4], named P1) and Thun et al. (refs. [1,3], named P1 ) are illustrated. While the packing of benzene rings and the arrangement of the hydrogen bonded network are very similar, the main difference is given by the interaction of the polar moieties with the π-system. In principle, one of these structures could be a yet unnoticed part of the still ongoing search for polymorphs of benzamide. This however would impose that both structures are of similar formation energy. In what follows, we discriminate the two structure candidates for the benzamide crystal from state-ofthe-art quantum calculation. Moreover, by constructing artificial crystals comprising fragments of benzamide we contrast benzene and amide pseudo crystals arranged at lattice sites and orientations corresponding to the benzamide crystal structure, thus isolating different types of molecular interactions that constitute the differences of P1 and P1 type structures of benzamide crystals.

5 Theory Density-functional theory calculations were perfomed for benzamide, formamide and benzene molecular crystals, based on the P1 and P1 structures of benzamide [5] (see also figure 1). Both unit cells comprise 4 explicit molecules, whilst the remaining molecular interactions are mimicked by periodic boundary conditions. We use the Perdew-Burke-Ernzerhof exchange corrleation functional [6], ultrasoft pseudopotentials with a plane wave cutoff of 35 Ry and a secondary cutoff of 180 Ry along with an empirical dispersion correction as proposed by Grimme [7]. A Monkohorst k-point grid of 4x4x1 is applied throughout all crystal calculations [8]. For the investigation of isolated molecules a single molecule was placed in a pseudo-crystal of sufficiently large unit cell (corresponding to a supercell) to avoid intermolecular interactions from periodic boundary conditions. Results Unit cells for the two structure candidates P1 and P1 as obtained from experiment of Gao et al. [4] and Thun et al. [1,3], respectively, were subjected to dispersion corrected density-functional theory calculations. Structure optimisation was performed from potential energy minimization at variable cell size and shape without imposing symmetry operations other than periodic boundary conditions. The fully relaxed crystal structures are shown in figure 1 and the relaxed cell parameters are denoted in table 1. Despite much similarity between the two structures, we found a significant energetic difference for the two arrangements of benzamide. Indeed, the structure P1 is disfavoured by almost 3 kj mol -1 per molecule, over the P1 structure. Moreover, the volume of the P1 unit cell (at 0 Kelvin) is 1.5 % smaller than for the P1 structure, hinting at a denser and stronger packing of the molecules.

6 The difference in potential energy might appear surprising, because at first sight both crystal structures exhibit strong similarities. Indeed, the packing of benzene rings is practically identical and also the hydrogen bonded network is analogous in both structures (fig. 1 and table 2). Nevertheless, the two structures differ in terms of interactions of the benzene rings with the polar amide groups which N-benzene and O-benzene contacts can be interpreted as (preferred) cation-π and (less favoured) anion-π interactions, respectively. Figure 2 highlights the exchanged roles of N and O in P1 and P1 for this interaction. To confirm this interpretation, it is educative to rationalize the different interaction types by means of artificially arranged pseudocrystals of proxy molecules that mimic selected interaction types on an exclusive basis. For example, the role of hydrogen bonding in P1 and P1 may be illustrated by investigating a formamide pseudocrystal of the same hydrogen bonded network as observed in the P1 and P1 structures of benzamide crystals. This was accomplished by freezing the atoms of the amide moiety according to the benzamide crystal whilst replacing the aromatic fragment by a hydrogen atom (and exclusively relaxing the newly formed C-H bond). Similarly, the role of the π -π interactions can be mimicked by a virtual benzene crystal using identical atomic positions as in P1/P1 but replacing the amide group by a hydrogen atom (and again relaxing the newly formed C-H bond). Apart from such discrimination of contributions to intermolecular interactions in benzamide, we also calculated the intramolecular energy resulting from deformation of the molecules in terms of torsion and N-C-O valance angle. For this, isolated benzamide molecules as cut from the P1 and P1 crystal structures (i.e. freezing the atomic positions) were compared to the freely relaxed molecular structure.

7 Within the obvious limitations of accepting formamide and benzene as proxies for hydrogen bonding and π-π interaction, respectively, This allows to attribute the preference of P1 over P1 to the following sum of contributions: ΔE (P1-P1 ) = kj mol -1 (intramolecular deformation) kj mol -1 (hydrogen bonding) kj mol -1 (π-π interaction) kj mol -1 (amide group - π interaction) = kj mol -1 per molecule. Note that the cation/anion -π type interaction could not be calculated directly, but (in lack of a suitable proxy molecule) were taken as the rest in the above energy balance to reach the overall preference of 3 kj mol -1. In view of the observed misconception concerning the alignment of benzamide molecules in the P1 structure, we furthermore checked on the known polymorphs P2, P3 and a recently suggested highpressure form P4 [4,9-11]. While the crystal structures of P3 and P4 [11] were confimed, our DFT calculations including full cell optimization showed inversion of the amide group to be drastically preferred for P2 [9,10]. Indeed, the energy per molecule was found as 14.1 lower upon 180 rotation of the amide group and subsequent relaxation for P2. Moreover, improved molecular packing is concluded for this structure from a reduction of the volume demand per molecule V(P2)-V(P2 ) which amounts to 17,4 Å 3 per molecule. Conclusion

8 It is noteworthy that the packing of benzene moieties and the hydrogen bonded network exhibits only minor differences for both P1 type structures (table 1). Because of this structural similarity it appears rather unlikely to us that by use of specific solvent or template surface a syntheses route could be designed to discriminate between the P1 and P1 structures of benzamide. Without preference from such external parameters both structure types compete on the basis of potential energy. The latter favours P1 by about 3 kj mol -1 per molecule, mainly as a consequence of the different N-benzene and O- benzene contacts in P1 and P1, respectively. Our calculation furthermore suggest that the experimentally derived P2 should be corrected to P2.

9 References [1] J. Thun, L. Seyfarth, J. Senker, R.E. Dinnebier, J. Breu, Angew. Chem. Int. Ed. 46 (2007) [2] J. Thun, M. Schoeffel, J. Breu, Mol. Simulation 34 (10) (2008) [3] J. Thun, L. Seyfarth, C. Butterhof, J. Senker, R.E. Dinnebier, J. Breu, Cryst. Growth Des. 9 (5) (2009) [4] Q. Gao, G. A. Jeffrey, J. R. Ruble and R. K. McMullan, Acta Cryst. B, B47 (1991) [5] P. Giannozzi et al., J. Phys.:Condens. Matter, 21 (2009) [6] J.P. Perdew,K. Burke, M. Ernzerhof, Phys. Rev. B 54 (3) (1996) [7] S. Grimme, Journal of Computational Chemistry, 15 (2006) [8] H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976). [9] W. I. F. David, K. Shankland, C. R. Pulham, N. Blagden, R. J. Davey, M. Song, Angew. Chem. Int. Ed. (2005) [10] N. Blagden, R. Davey, G. Dent, M. Song, W. I. F. David, C. R. Pulham, K. Shankland, Cryst. Growth Des. (2005) [11] D. Benoit, P. Ectors, J. Breu, D. Zahn, Chem. Phys. Lett. (2011) 514,

10 a b c Fig.1a Illustration of phase P1 as obtained from ab-initio relaxation of the crystal structure suggested by Gao et al. [4] from neutron diffraction. The hydrogen bonded network is indicated by dashed grey lines. Nearest intermolecular distances of O C and N C contacts are illustrated in red and blue respectively.

11 a b c Fig 1b Analogous to figure 1a, but shown for the phase P1 as derived from ab-initio relaxation of the structure suggested by Thun et. al [1,3] Note that the tilting of the amide group with respect to the phenyl group implies that P1 and P1 (21,54 and 24,10, respectively) cannot be matched by symmetry operations. This results in subtle but important differences of the distance distribution as shown in fig. 3 and table 1.

12 Potential energy per molecule / kjmol -1 P1(confirmation run) P1 P1 Volume per molecule / Å 3 Fig.2 Energy versus volume diagram of the benzamide crystal structures after relaxation from ab-initio calculations. To confirm the different structural features of P1 and P1, an additional simulation was prepared from exchanging the amino and carbonyl groups in P1. After relaxation, the corresponding structure was found as practically identical to that of P1.

13 P1 N C O C P1 1 Å 2 Å 3 Å 1 Å 2 Å 3 Å Fig. 3 Occurrence profile of the N C and O C contacts in structures P1 (top) and P1 (bottom). Note that the N C and O C distances are practically exchanged in both structures.

14 P1 P1' (P1 ) (confirmation run) alpha (90 ) (90 ) beta (89.22 ) ( ) gamma (90 ) (90 ) a / Å (5.549) (5.6094) b / Å (5.033) (5.0399) c / Å (21.548) V / Å -3 per molecule E / kj mol -1 per molecule ( ) ( ) ( ) E(P1) E(P1) Table 1: Unit cell parameters as obtained for the different crystal structure candidates of P1 after full relaxation of atomic positions and cell size and shape. The values in brackets refer to experimental data measured at ambient conditions. The confirmation run (P1 ) refers to amide rotation in P1 and subsequent relaxation. Note the closeness of resulting structure with P1.

15 Distance / Å P1 P1 N C 3,217 3,326 / 3,369 (two peaks) O C 3,331 3,130 (double peak) H-bond (dimers) 1,815 / 1,814 1,817 / 1,796 H-bond (layers) 1,873 / 1,874 1,902 / 1,968 Table 2 Nearest neighbor distances of intermolecular contacts in the benzamide crystal structures P1 and P1 as obtained from ab-initio relaxation of the experimentally determined structures from Gao et. al and Thun et al., respectively. Note that d(n C) < d(o C) in P1, whilst the opposite relation is observed in P1. The energetic disfavoring of P1 over P1 may also be attributed to a less ordered distribution of H- O distances in the else wise analogous network of hydrogen bonds. Therein, benzamide is organized as dimers (along the horizontal direction in fig.1) which are interconnected by further hydrogen bonds leading to (001) layers.

Supplemental Material: Experimental and Theoretical Investigations of the Electronic Band Structure of Metal-Organic Framework of HKUST-1 Type

Supplemental Material: Experimental and Theoretical Investigations of the Electronic Band Structure of Metal-Organic Framework of HKUST-1 Type Supplemental Material: Experimental and Theoretical Investigations of the Electronic Band Structure of Metal-Organic Framework of HKUST-1 Type Zhigang Gu, a Lars Heinke, a,* Christof Wöll a, Tobias Neumann,

More information

Hydrogenation of Penta-Graphene Leads to Unexpected Large. Improvement in Thermal Conductivity

Hydrogenation of Penta-Graphene Leads to Unexpected Large. Improvement in Thermal Conductivity Supplementary information for Hydrogenation of Penta-Graphene Leads to Unexpected Large Improvement in Thermal Conductivity Xufei Wu, a Vikas Varshney, b,c Jonghoon Lee, b,c Teng Zhang, a Jennifer L. Wohlwend,

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2015 Supplementary Information Insights into the Synergistic Role of Metal-Lattice

More information

Periodic DFT Study of Molecular Crystals

Periodic DFT Study of Molecular Crystals , March 13-15, 2013, Hong Kong Periodic DFT Study of Molecular Crystals Richard Rivera, Soraya Jácome, Darwin Castillo, Arvids Stashans 1 Abstract Two molecular crystals have been studied using the first-principles

More information

Supplementary Information. Supplementary Figure 1 Synthetic routes to the organic linker H 2 ATBDC.

Supplementary Information. Supplementary Figure 1 Synthetic routes to the organic linker H 2 ATBDC. Supplementary Information Supplementary Figure 1 Synthetic routes to the organic linker H 2 ATBDC. S1 Supplementary Figure 2 1 H NMR (D 2 O, 500MHz) spectrum of H 2 ATBDC. S2 Supplementary Figure 3 13

More information

One hydrogen bond doesn t make a separation or does it? Resolution of amines by diacetoneketogulonic acid

One hydrogen bond doesn t make a separation or does it? Resolution of amines by diacetoneketogulonic acid Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information One hydrogen bond doesn t make a separation or does it? Resolution

More information

Supplementary Information for Electronic signature of the instantaneous asymmetry in the first coordination shell in liquid water

Supplementary Information for Electronic signature of the instantaneous asymmetry in the first coordination shell in liquid water Supplementary Information for Electronic signature of the instantaneous asymmetry in the first coordination shell in liquid water Thomas D. Kühne 1, 2 and Rustam Z. Khaliullin 1, 1 Institute of Physical

More information

Anion-π and π-π cooperative interactions

Anion-π and π-π cooperative interactions Chapter 5 Anion-π and π-π cooperative interactions 5.1 Introduction The design of selective receptors of anionic species is a very active area of research within supramolecular chemistry due to the potential

More information

Supporting Information

Supporting Information Supporting Information Three Polymorphic Forms of Ciprofloxacin Maleate: Formation Pathways, Crystal Structures, Calculations and Thermodynamic Stability Aspects Artem O. Surov a, Andrei V. Churakov b,

More information

Defects in TiO 2 Crystals

Defects in TiO 2 Crystals , March 13-15, 2013, Hong Kong Defects in TiO 2 Crystals Richard Rivera, Arvids Stashans 1 Abstract-TiO 2 crystals, anatase and rutile, have been studied using Density Functional Theory (DFT) and the Generalized

More information

STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY

STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY S. Hara, T. Kumagai, S. Izumi and S. Sakai Department of mechanical engineering, University of

More information

Supporting information. The Unusual and the Expected in the Si/C Phase Diagram. Guoying Gao, N. W. Ashcroft and Roald Hoffmann.

Supporting information. The Unusual and the Expected in the Si/C Phase Diagram. Guoying Gao, N. W. Ashcroft and Roald Hoffmann. Supporting information The Unusual and the Expected in the Si/C Phase Diagram Guoying Gao, N. W. Ashcroft and Roald Hoffmann Table of Contents Computational Methods...S1 Hypothetical Structures for Si

More information

SnO 2 Physical and Chemical Properties due to the Impurity Doping

SnO 2 Physical and Chemical Properties due to the Impurity Doping , March 13-15, 2013, Hong Kong SnO 2 Physical and Chemical Properties due to the Impurity Doping Richard Rivera, Freddy Marcillo, Washington Chamba, Patricio Puchaicela, Arvids Stashans Abstract First-principles

More information

Selectivity in the initial C-H bond cleavage of n-butane on PdO(101)

Selectivity in the initial C-H bond cleavage of n-butane on PdO(101) Supporting Information for Selectivity in the initial C-H bond cleavage of n-butane on PdO(101) Can Hakanoglu (a), Feng Zhang (a), Abbin Antony (a), Aravind Asthagiri (b) and Jason F. Weaver (a) * (a)

More information

Intermolecular Forces in Density Functional Theory

Intermolecular Forces in Density Functional Theory Intermolecular Forces in Density Functional Theory Problems of DFT Peter Pulay at WATOC2005: There are 3 problems with DFT 1. Accuracy does not converge 2. Spin states of open shell systems often incorrect

More information

Conformational Analysis of the Crystal Structure for MDI/ BDO Hard Segments of Polyurethane Elastomers

Conformational Analysis of the Crystal Structure for MDI/ BDO Hard Segments of Polyurethane Elastomers Conformational Analysis of the Crystal Structure for MDI/ BDO Hard Segments of Polyurethane Elastomers CHRIS W. PATTERSON, DAVID HANSON, ANTONIO REDONDO, STEPHEN L. SCOTT, NEIL HENSON Theoretical Division,

More information

Experiment Section Fig. S1 Fig. S2

Experiment Section Fig. S1 Fig. S2 Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supplementary Materials Experiment Section The STM experiments were carried out in an ultrahigh

More information

Interplay of hydrogen bonding and aryl-perfluoroaryl interactions in construction of supramolecular aggregates

Interplay of hydrogen bonding and aryl-perfluoroaryl interactions in construction of supramolecular aggregates Interplay of hydrogen bonding and aryl-perfluoroaryl interactions in construction of supramolecular aggregates Katarzyna EICHSTAEDT Keywords: supramolecular chemistry, crystalengineering, Hydrogen bonding,

More information

arxiv: v1 [cond-mat.mes-hall] 15 Aug 2014

arxiv: v1 [cond-mat.mes-hall] 15 Aug 2014 The potential applications of phosphorene as anode arxiv:1408.3488v1 [cond-mat.mes-hall] 15 Aug 2014 materials in Li-ion batteries Shijun Zhao,, and Wei Kang, HEDPS, Center for Applied Physics and Technology,

More information

PBS: FROM SOLIDS TO CLUSTERS

PBS: FROM SOLIDS TO CLUSTERS PBS: FROM SOLIDS TO CLUSTERS E. HOFFMANN AND P. ENTEL Theoretische Tieftemperaturphysik Gerhard-Mercator-Universität Duisburg, Lotharstraße 1 47048 Duisburg, Germany Semiconducting nanocrystallites like

More information

Supporting Information

Supporting Information Supporting Information A Templated 2D Carbon Nitride Network: Structure Elucidation by Electron Diffraction Markus Döblinger, a Bettina V. Lotsch, a Julia Wack, b Jürgen Thun, b Jürgen Senker, b Wolfgang

More information

Chirality influence on the aggregation of methyl mandelate Supplementary Information

Chirality influence on the aggregation of methyl mandelate Supplementary Information Chirality influence on the aggregation of methyl mandelate Supplementary Information M. Albrecht, A. Borba, K. Le Barbu-Debus, B. Dittrich, R. Fausto, S. Grimme, A. Mahjoub, M. Nedić, U. Schmitt, L. Schrader,

More information

Chapter 11. Intermolecular Forces and Liquids & Solids

Chapter 11. Intermolecular Forces and Liquids & Solids Chapter 11 Intermolecular Forces and Liquids & Solids The Kinetic Molecular Theory of Liquids & Solids Gases vs. Liquids & Solids difference is distance between molecules Liquids Molecules close together;

More information

Growth Mechanism of Hexagonal Shape Graphene Flakes with Zigzag Edges. Johnson, *

Growth Mechanism of Hexagonal Shape Graphene Flakes with Zigzag Edges. Johnson, * Growth Mechanism of Hexagonal Shape Graphene Flakes with Zigzag Edges Zhengtang Luo, Seungchul Kim, Nicole Kawamoto, Andrew M. Rappe, and A.T. Charlie Johnson, * Department of Physics and Astronomy, University

More information

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015,

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Course,Informa5on, BIOC%530% GraduateAlevel,discussion,of,the,structure,,func5on,,and,chemistry,of,proteins,and, nucleic,acids,,control,of,enzyma5c,reac5ons.,please,see,the,course,syllabus,and,

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 A phase is a homogeneous part of the system in contact

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Anatase TiO 2 single crystals with a large percentage of reactive facets Hua Gui Yang, Cheng Hua Sun, Shi Zhang Qiao, Jin Zou, Gang Liu, Sean Campbell Smith, Hui Ming Cheng & Gao Qing Lu Part I: Calculation

More information

Research Article Polymorphs of Tolfenamic Acids: Stability Analysis Using Cluster Method

Research Article Polymorphs of Tolfenamic Acids: Stability Analysis Using Cluster Method Physics Research International Volume 2016, Article ID 3537842, 5 pages http://dx.doi.org/10.1155/2016/3537842 Research Article Polymorphs of Tolfenamic Acids: Stability Analysis Using Cluster Method Lee

More information

arxiv:cond-mat/ v1 5 Nov 2003

arxiv:cond-mat/ v1 5 Nov 2003 On-surface and Subsurface Adsorption of Oxygen on Stepped Ag(210) and Ag(410) Surfaces A. Kokalj a,b, N. Bonini a, A. Dal Corso a, S. de Gironcoli a and S. Baroni a arxiv:cond-mat/0311093v1 5 Nov 2003

More information

Concepts of Chemical Bonding and Molecular Geometry Part 1: Ionic and Covalent Bonds. David A. Katz Pima Community College Tucson, AZ

Concepts of Chemical Bonding and Molecular Geometry Part 1: Ionic and Covalent Bonds. David A. Katz Pima Community College Tucson, AZ Concepts of Chemical Bonding and Molecular Geometry Part 1: Ionic and Covalent Bonds David A. Katz Pima Community College Tucson, AZ Chemical Bonds Three basic types of bonds: Ionic Electrostatic attraction

More information

Functional Group Adsorption on Calcite: I. Oxygen Containing and Nonpolar Organic Molecules

Functional Group Adsorption on Calcite: I. Oxygen Containing and Nonpolar Organic Molecules SUPPORTING INFORMATION Functional Group Adsorption on Calcite: I. Oxygen Containing and Nonpolar Organic Molecules E. Ataman*, M. P. Andersson, M. Ceccato, N. Bovet, S. L. S. Stipp Nano-Science Center,

More information

Crystal and molecular structure of N-(p-nitrobenzylidene)- 3-chloro-4-fluoroaniline

Crystal and molecular structure of N-(p-nitrobenzylidene)- 3-chloro-4-fluoroaniline PRAMANA cfl Indian Academy of Sciences Vol. 55, No. 3 journal of September 2000 physics pp. 441 446 Crystal and molecular structure of N-(p-nitrobenzylidene)- 3-chloro-4-fluoroaniline K V ARJUNA GOWDA,

More information

Big Idea #5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter.

Big Idea #5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. KUDs for Unit 6: Chemical Bonding Textbook Reading: Chapters 8 & 9 Big Idea #2: Chemical and physical properties of materials can be explained by the structure and the arrangement of atoms, ion, or molecules

More information

Hydrogen bonding in oxalic acid and its complexes: A database study of neutron structures

Hydrogen bonding in oxalic acid and its complexes: A database study of neutron structures PRAMANA c Indian Academy of Sciences Vol. 63, No. 2 journal of August 2004 physics pp. 263 269 Hydrogen bonding in oxalic acid and its complexes: A database study of neutron structures R CHITRA, AMIT DAS,

More information

Supplementary material. From cellulose to kerogen: molecular simulation. of a geological process

Supplementary material. From cellulose to kerogen: molecular simulation. of a geological process Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Supplementary material From cellulose to kerogen: molecular simulation of a geological

More information

AB INITIO MOLECULAR-DYNAMICS SIMULATIONS OF ADSORPTION OF DYE MOLECULES AT SURFACES

AB INITIO MOLECULAR-DYNAMICS SIMULATIONS OF ADSORPTION OF DYE MOLECULES AT SURFACES AB INITIO MOLECULAR-DYNAMICS SIMULATIONS OF ADSORPTION OF DYE MOLECULES AT SURFACES M. SUGIHARA, H. MEYER, AND P. ENTEL Theoretische Tieftemperaturphysik, Universität Duisburg, 47048 Duisburg, Germany

More information

ATOMIC BONDING Atomic Bonding

ATOMIC BONDING Atomic Bonding ATOMIC BONDING Atomic Bonding Primary Bonds Secondary Bonds Ionic Covalent Metallic van der Waals 1. IONIC BONDING q 11 Na & 17 Cl These two ions are attracted to eachother by the electrostatic force developed

More information

Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes

Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes W. Orellana and P. Fuentealba Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653,

More information

High CO tolerance of Pt/Ru nano-catalyst: insight from first principles calculation.

High CO tolerance of Pt/Ru nano-catalyst: insight from first principles calculation. High CO tolerance of Pt/Ru nano-catalyst: insight from first principles calculation. Sergey Stolbov 1, Marisol Alcántara Ortigoza 1, Radoslav Adzic 2 Talat S. Rahman 1 1 Department of Physics, University

More information

Type of file: PDF Title of file for HTML: Peer Review File Description:

Type of file: PDF Title of file for HTML: Peer Review File Description: Type of file: PDF Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Table, Supplementary Notes and Supplementary References. Type of file: PDF Title of

More information

metal-organic compounds

metal-organic compounds metal-organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Diaquabis[bis(pyrazin-2-yl) sulfide-jn 4 ]- bis(thiocyanato-jn)iron(ii) monohydrate Susanne Wöhlert,* Inke

More information

Atomic Models for Anionic Ligand Passivation of Cation- Rich Surfaces of IV-VI, II-VI, and III-V Colloidal Quantum Dots

Atomic Models for Anionic Ligand Passivation of Cation- Rich Surfaces of IV-VI, II-VI, and III-V Colloidal Quantum Dots Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Atomic Models for Anionic Ligand Passivation of Cation- Rich

More information

Supporting Information

Supporting Information Supporting Information The Origin of Active Oxygen in a Ternary CuO x /Co 3 O 4 -CeO Catalyst for CO Oxidation Zhigang Liu, *, Zili Wu, *, Xihong Peng, ++ Andrew Binder, Songhai Chai, Sheng Dai *,, School

More information

Aqueous solutions. Solubility of different compounds in water

Aqueous solutions. Solubility of different compounds in water Aqueous solutions Solubility of different compounds in water The dissolution of molecules into water (in any solvent actually) causes a volume change of the solution; the size of this volume change is

More information

AB INITIO MODELING OF THE STRUCTURAL DEFECTS IN AMIDES

AB INITIO MODELING OF THE STRUCTURAL DEFECTS IN AMIDES Int. J. Chem. Sci.: 9(4), 2011, 1564-1568 ISSN 0972-768X www.sadgurupublications.com AB INITIO MODELING OF THE STRUCTURAL DEFECTS IN AMIDES M. FATHIMA BEGUM, HEMA TRESA VARGHESE a, Y. SHEENA MARY a, C.

More information

Supporting Information. Intrinsic Lead Ion Emissions in Zero-dimensional Cs 4 PbBr 6 Nanocrystals

Supporting Information. Intrinsic Lead Ion Emissions in Zero-dimensional Cs 4 PbBr 6 Nanocrystals Supporting Information Intrinsic Lead Ion Emissions in Zero-dimensional Cs 4 PbBr 6 Nanocrystals Jun Yin, 1 Yuhai Zhang, 1 Annalisa Bruno, 2 Cesare Soci, 2 Osman M. Bakr, 1 Jean-Luc Brédas, 3,* Omar F.

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces Molecular Compounds The simplest molecule is H 2 : Increased electron density draws nuclei together The pair of shared electrons constitutes a covalent bond. Intermolecular Forces

More information

Intermolecular Forces, Liquids, Solids. IM Forces and Physical Properties

Intermolecular Forces, Liquids, Solids. IM Forces and Physical Properties Intermolecular Forces, Liquids, Solids Interactions Between Molecules: What does it take to separate two (or more) molecules from one another? or What holds molecules close to one another? Structure/Property

More information

CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS. Chemistry 1411 Joanna Sabey

CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS. Chemistry 1411 Joanna Sabey CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS Chemistry 1411 Joanna Sabey Forces Phase: homogeneous part of the system in contact with other parts of the system but separated from them by a

More information

Dielectric polarization of 2-pyrrolidinone molecules in benzene solution - a quantum-chemical study

Dielectric polarization of 2-pyrrolidinone molecules in benzene solution - a quantum-chemical study Dielectric polarization of 2-pyrrolidinone molecules in benzene solution - a quantum-chemical study L. Gorb* ), J. Jadżyn $) and K. W. Wojciechowski #) Institute of Molecular Physics, Polish Academy of

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Synthesis and Properties of the THF Solvates of Extremely Soluble Bis(2,4,6-trimethylphenyl)calcium and Tris(2,6-dimethoxyphenyl)dicalcium

More information

Supplementary Information: Construction of Hypothetical MOFs using a Graph Theoretical Approach. Peter G. Boyd and Tom K. Woo*

Supplementary Information: Construction of Hypothetical MOFs using a Graph Theoretical Approach. Peter G. Boyd and Tom K. Woo* Electronic Supplementary Material ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2016 Supplementary Information: Construction of Hypothetical MOFs using a Graph Theoretical Approach

More information

Chapter 14. Liquids and Solids

Chapter 14. Liquids and Solids Chapter 14 Liquids and Solids Section 14.1 Water and Its Phase Changes Reviewing What We Know Gases Low density Highly compressible Fill container Solids High density Slightly compressible Rigid (keeps

More information

First Principles Calculation of Defect and Magnetic Structures in FeCo

First Principles Calculation of Defect and Magnetic Structures in FeCo Materials Transactions, Vol. 47, No. 11 (26) pp. 2646 to 26 Special Issue on Advances in Computational Materials Science and Engineering IV #26 The Japan Institute of Metals First Principles Calculation

More information

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw Hill Companies, Inc. Permission required for 1 A phase is a homogeneous part of the system in contact with other parts of the

More information

Organic molecular crystals in electric fields

Organic molecular crystals in electric fields Surface Science 566 568 (2004) 644 649 www.elsevier.com/locate/susc Organic molecular crystals in electric fields Jaroslav Tobik a,b, *, Andrea Dal Corso a,b, Sandro Scandolo b,c, Erio Tosatti a,b,c a

More information

2-Methoxy-1-methyl-4-nitro-1H-imidazole

2-Methoxy-1-methyl-4-nitro-1H-imidazole University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 2007 2-Methoxy-1-methyl-4-nitro-1H-imidazole Maciej Kubicki

More information

Supporting Information for

Supporting Information for Supporting Information for Pb-activated Amine-assisted Photocatalytic Hydrogen Evolution Reaction on Organic-Inorganic Perovskites Lu Wang *,,, Hai Xiao, Tao Cheng, Youyong Li *,, William A. Goddard III

More information

Screening for cocrystals of succinic acid and 4-aminobenzoic acid. Supplementary Information

Screening for cocrystals of succinic acid and 4-aminobenzoic acid. Supplementary Information Screening for cocrystals of succinic acid and 4-aminobenzoic acid Nizar Issa, Sarah A. Barnett, Sharmarke Mohamed, Doris E. Braun, Royston C. B. Copley, Derek A. Tocher, Sarah L Price* Supplementary Information

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. A phase is a homogeneous part of the system in contact

More information

Atomic and molecular interaction forces in biology

Atomic and molecular interaction forces in biology Atomic and molecular interaction forces in biology 1 Outline Types of interactions relevant to biology Van der Waals interactions H-bond interactions Some properties of water Hydrophobic effect 2 Types

More information

Supplementary Information

Supplementary Information Supplementary Information a b Supplementary Figure 1. Morphological characterization of synthesized graphene. (a) Optical microscopy image of graphene after transfer on Si/SiO 2 substrate showing the array

More information

Chromium Cluster on Defected Graphene

Chromium Cluster on Defected Graphene Chromium Cluster on Defected Graphene Yuhang Liu June 29, 2017 Abstract In this work, diffusion process of Cr atoms on two types of defected graphene and structure and magnetic properties of Cr cluster

More information

Validation of Experimental Crystal Structures

Validation of Experimental Crystal Structures Validation of Experimental Crystal Structures Aim This use case focuses on the subject of validating crystal structures using tools to analyse both molecular geometry and intermolecular packing. Introduction

More information

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC Jin-Xun Liu, Hai-Yan Su, Da-Peng Sun, Bing-Yan Zhang, and Wei-Xue Li* State Key Laboratory of Catalysis, Dalian Institute

More information

Characteristics of the interaction in azulene (H 2 X) n=1,2 (X=O,S) clusters.

Characteristics of the interaction in azulene (H 2 X) n=1,2 (X=O,S) clusters. Characteristics of the interaction in azulene (H 2 X) n=1,2 (X=O,S) clusters. Enrique M. Cabaleiro-Lago (a), Ángeles Peña-Gallego (b), Jesús Rodríguez-Otero (b), M. Merced Montero-Campillo (b) (a) Departamento

More information

Unit 4: Presentation A Covalent Bonding. Covalent Bonding. Slide 2 / 36. Slide 1 / 36. Slide 4 / 36. Slide 3 / 36. Slide 6 / 36.

Unit 4: Presentation A Covalent Bonding. Covalent Bonding. Slide 2 / 36. Slide 1 / 36. Slide 4 / 36. Slide 3 / 36. Slide 6 / 36. Slide 1 / 36 New Jersey Center for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Why polymorphism? An Evaluation using Experimental Charge Densities Analysis

Why polymorphism? An Evaluation using Experimental Charge Densities Analysis Why polymorphism? An Evaluation using Experimental Charge Densities Analysis T. N. Guru Row Solid State and Structural Chemistry Unit Indian Institute of Science Bangalore 560012 INDIA Email: ssctng@sscu.iisc.ernet.in

More information

Supporting Information. Directing the Breathing Behavior of Pillared-Layered. Metal Organic Frameworks via a Systematic Library of

Supporting Information. Directing the Breathing Behavior of Pillared-Layered. Metal Organic Frameworks via a Systematic Library of Supporting Information Directing the Breathing Behavior of Pillared-Layered Metal Organic Frameworks via a Systematic Library of Functionalized Linkers Bearing Flexible Substituents Sebastian Henke, Andreas

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10 Liquids and Solids Chapter 10 Table of Contents 10.1 Intermolecular Forces 10.2 The Liquid State 10.3 An Introduction to Structures and Types of Solids 10.4 Structure and Bonding in Metals 10.5

More information

Critical Temperature - the temperature above which the liquid state of a substance no longer exists regardless of the pressure.

Critical Temperature - the temperature above which the liquid state of a substance no longer exists regardless of the pressure. Critical Temperature - the temperature above which the liquid state of a substance no longer exists regardless of the pressure. Critical Pressure - the vapor pressure at the critical temperature. Properties

More information

Crystal structure of DL-Tryptophan at 173K

Crystal structure of DL-Tryptophan at 173K Cryst. Res. Technol. 39, No. 3, 274 278 (2004) / DOI 10.1002/crat.200310182 Crystal structure of DL-Tryptophan at 173K Ch. B. Hübschle, M. Messerschmidt, and P. Luger* Institut für Chemie / Kristallographie,

More information

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Brian Kuhlman, Gautam Dantas, Gregory C. Ireton, Gabriele Varani, Barry L. Stoddard, David Baker Presented by Kate Stafford 4 May 05 Protein

More information

ELEMENTARY DIFFUSION PROCESSES IN AL-CU-ZN ALLOYS: AN AB INITIO STUDY

ELEMENTARY DIFFUSION PROCESSES IN AL-CU-ZN ALLOYS: AN AB INITIO STUDY ELEMENTARY DIFFUSION PROCESSES IN AL-CU-ZN ALLOYS: AN AB INITIO STUDY S. GRABOWSKI AND P. ENTEL Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universität Duisburg, 47048 Duisburg, Germany E-mail:

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids PowerPoint Lecture Presentation by J. David Robertson University of Missouri Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

On Dynamic and Elastic Stability of Lanthanum Carbide

On Dynamic and Elastic Stability of Lanthanum Carbide Journal of Physics: Conference Series On Dynamic and Elastic Stability of Lanthanum Carbide To cite this article: B D Sahoo et al 212 J. Phys.: Conf. Ser. 377 1287 Recent citations - Theoretical prediction

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Electronic Supplementary Information Rational modifications on champion porphyrin

More information

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 1-(3-Amino-1H-inden-2-yl)ethanone Dong-Yue Hu and Zhi-Rong Qu* Ordered Matter Science Research Center, College

More information

Zwitterions in Neutral Arginine Clusters

Zwitterions in Neutral Arginine Clusters Chapter 3 43 Cooperative Salt Bridge Stabilization of Gas Phase Zwitterions in Neutral Arginine Clusters Portions published previously in: Julian R. R.; Beauchamp J. L.; Goddard W. A. J. Phys. Chem. A

More information

Atomic Resolution Interfacial Structure of Lead-free Ferroelectric

Atomic Resolution Interfacial Structure of Lead-free Ferroelectric Atomic Resolution Interfacial Structure of Lead-free Ferroelectric K 0.5 Na 0.5 NbO 3 Thin films Deposited on SrTiO 3 Chao Li 1, Lingyan Wang 1*, Zhao Wang 2, Yaodong Yang 2, Wei Ren 1 and Guang Yang 1

More information

Mustafa Uludogan 1, Tahir Cagin, William A. Goddard, III Materials and Process Simulation Center, Caltech, Pasadena, CA 91125, U.S.A.

Mustafa Uludogan 1, Tahir Cagin, William A. Goddard, III Materials and Process Simulation Center, Caltech, Pasadena, CA 91125, U.S.A. Ab Initio Studies On Phase Behavior of Barium Titanate Mustafa Uludogan 1, Tahir Cagin, William A. Goddard, III Materials and Process Simulation Center, Caltech, Pasadena, CA 91125, U.S.A. 1 Physics Department,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Methods Materials Synthesis The In 4 Se 3-δ crystal ingots were grown by the Bridgeman method. The In and Se elements were placed in an evacuated quartz ampoule with an excess of In (5-10

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Method: Epitaxial graphene was prepared by heating an Ir(111) crystal to 550 K for 100 s under 2 x 10-5 Pa partial pressure of ethylene, followed by a flash anneal to 1420 K 1.

More information

Supplementary Information

Supplementary Information Supplementary Information Metal - Insulator Transition Driven by Vacancy Ordering in GeSbTe Phase Change Materials Valeria Bragaglia 1, Fabrizio Arciprete 1,2, Wei Zhang 3,4, Antonio Massimiliano Mio 5,

More information

6 Hydrophobic interactions

6 Hydrophobic interactions The Physics and Chemistry of Water 6 Hydrophobic interactions A non-polar molecule in water disrupts the H- bond structure by forcing some water molecules to give up their hydrogen bonds. As a result,

More information

Lecture 2: Atom and Bonding Semester /2013

Lecture 2: Atom and Bonding Semester /2013 EMT 110 Engineering Materials Lecture 2: Atom and Bonding Semester 1 2012/2013 Atomic Structure Fundamental Concept Atoms are the structural unit of all engineering materials! Each atoms consist of nucleus

More information

Ch 9 Liquids & Solids (IMF) Masterson & Hurley

Ch 9 Liquids & Solids (IMF) Masterson & Hurley Ch 9 Liquids & Solids (IMF) Masterson & Hurley Intra- and Intermolecular AP Questions: 2005 Q. 7, 2005 (Form B) Q. 8, 2006 Q. 6, 2007 Q. 2 (d) and (c), Periodic Trends AP Questions: 2001 Q. 8, 2002 Q.

More information

Chem 1075 Chapter 13 Liquids and Solids Lecture Outline

Chem 1075 Chapter 13 Liquids and Solids Lecture Outline Chem 1075 Chapter 13 Liquids and Solids Lecture Outline Slide 2-3 Properties of Liquids Unlike gases, liquids respond dramatically to temperature and pressure changes. We can study the liquid state and

More information

CHAPTER 2. Atomic Structure And Bonding 2-1

CHAPTER 2. Atomic Structure And Bonding 2-1 CHAPTER 2 Atomic Structure And Bonding 2-1 Structure of Atoms ATOM Basic Unit of an Element Diameter : 10 10 m. Neutrally Charged Nucleus Diameter : 10 14 m Accounts for almost all mass Positive Charge

More information

Structural and Electronic Effects on the Properties of Fe 2 (dobdc) upon Oxidation with N 2 O

Structural and Electronic Effects on the Properties of Fe 2 (dobdc) upon Oxidation with N 2 O Supporting information for paper in Inorganic Chemistry, April 11, 016, page S-1 Structural and Electronic Effects on the Properties of Fe (dobdc) upon Oxidation with N O oshua Borycz, 1, oachim Paier,

More information

Opening space for H 2 storage: Cointercalation of graphite with lithium and small organic molecules

Opening space for H 2 storage: Cointercalation of graphite with lithium and small organic molecules Opening space for H 2 storage: Cointercalation of graphite with lithium and small organic molecules Yufeng Zhao,* Yong-Hyun Kim, Lin J. Simpson, Anne C. Dillon, Su-Huai Wei, and Michael J. Heben National

More information

Intermolecular Forces I

Intermolecular Forces I I How does the arrangement of atoms differ in the 3 phases of matter (solid, liquid, gas)? Why doesn t ice just evaporate into a gas? Why does liquid water exist at all? There must be some force between

More information

Prerequisites for reliable modeling with first-principles methods. P. Kratzer Fritz-Haber-Institut der MPG D Berlin-Dahlem, Germany

Prerequisites for reliable modeling with first-principles methods. P. Kratzer Fritz-Haber-Institut der MPG D Berlin-Dahlem, Germany Prerequisites for reliable modeling with first-principles methods P. Kratzer Fritz-Haber-Institut der MPG D-14195 Berlin-Dahlem, Germany Prerequisites for modeling (I) Issues to consider when applying

More information

Our first-principles calculations were performed using the Vienna Ab Initio Simulation

Our first-principles calculations were performed using the Vienna Ab Initio Simulation Supplementary Note 1: Computational details First-principles calculations Our first-principles calculations were performed using the Vienna Ab Initio Simulation Package (VASP) 1, which is based on density

More information

Rapid communication: Permeability of hydrogen in two-dimensional graphene and hexagonal boron nitride sheets

Rapid communication: Permeability of hydrogen in two-dimensional graphene and hexagonal boron nitride sheets Pramana J. Phys. (8) 9:6 https://doi.org/.7/s-8-68-6 Indian Academy of Sciences Rapid communication: Permeability of hydrogen in two-dimensional graphene and hexagonal boron nitride sheets VARUN GUPTA,

More information

Solids. properties & structure

Solids. properties & structure Solids properties & structure Determining Crystal Structure crystalline solids have a very regular geometric arrangement of their particles the arrangement of the particles and distances between them is

More information

Supporting Information: Selective Electrochemical Generation of. Hydrogen Peroxide from Water Oxidation

Supporting Information: Selective Electrochemical Generation of. Hydrogen Peroxide from Water Oxidation Supporting Information: Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation Venkatasubramanian Viswanathan,,, Heine A. Hansen,, and Jens K. Nørskov,, Department of Mechanical

More information

Supporting information. Realizing Two-Dimensional Magnetic Semiconductors with. Enhanced Curie Temperature by Antiaromatic Ring Based

Supporting information. Realizing Two-Dimensional Magnetic Semiconductors with. Enhanced Curie Temperature by Antiaromatic Ring Based Supporting information Realizing Two-Dimensional Magnetic Semiconductors with Enhanced Curie Temperature by Antiaromatic Ring Based Organometallic Frameworks Xingxing Li and Jinlong Yang* Department of

More information

Chap 10 Part 4Ta.notebook December 08, 2017

Chap 10 Part 4Ta.notebook December 08, 2017 Chapter 10 Section 1 Intermolecular Forces the forces between molecules or between ions and molecules in the liquid or solid state Stronger Intermolecular forces cause higher melting points and boiling

More information

Supporting Information for. Structural and Chemical Dynamics of Pyridinic Nitrogen. Defects in Graphene

Supporting Information for. Structural and Chemical Dynamics of Pyridinic Nitrogen. Defects in Graphene Supporting Information for Structural and Chemical Dynamics of Pyridinic Nitrogen Defects in Graphene Yung-Chang Lin, 1* Po-Yuan Teng, 2 Chao-Hui Yeh, 2 Masanori Koshino, 1 Po-Wen Chiu, 2 Kazu Suenaga

More information