CHAPTER 9 HW SOLUTIONS: ALCOHOLS + ETHERS

Size: px
Start display at page:

Download "CHAPTER 9 HW SOLUTIONS: ALCOHOLS + ETHERS"

Transcription

1 CAPTER 9 W SLUTNS: ALCLS + ETERS ALCL + ETER NMENCLATURE. Give the UPAC name for each compound. nclude cis/trans or R/S stereochemistry if necessary. Structure C Name -methyl--heptanol -t-butylcyclopentanol (2R,S)--methyl- 2-pentanol Structure Name 4,5-dimethyl--decanol (S,2S)- 2-chlorocycloheptanol trans-4-(-methylbutyl) cyclohexanol (can t use R,S because it s achiral) 2. Give the UPAC or common name for each compound. nclude cis/trans or R/S stereochemistry if needed. Structure C 2 C 2 C Name hexyl isopropyl ether or -isopropoxyhexane dicyclohexyl ether cyclopentyl propyl ether or propoxycyclopentane (no R,S- not chiral) Structure Name (R)-4-cyclopropoxyoctane (S,4R)- 4-t-butoxycyclooctanol,6-diethoxy-2-methylheptane Page

2 REVEW F ALCL SYNTESES. Provide the starting alkyl halide and reagents needed in order to produce each alcohol through a substitution reaction. Na C X C S N 2 X Na S N 2 2 X d. S N X 2 S N WLLAMSN ETER SYNTESS 4. What is the purpose of the sodium hydride (Na) in the following reaction? C C C Na C (hydride) is a strong base and removes the from the alcohol (acid-base). This converts C (poor nucleophile) into C (good nucleophile), so the reaction is faster. 5. Give the curved arrow mechanism for the following reactions. Na C C C C C C C acid-base S N 2 C C Na C Na C + C acid-base C E2 because 2 o or o RX + C Page 2

3 6. Give the major organic product for the following reactions. Na C C d. Na Na C C 2 C 2 e. Na C Na E2 f. Na 7. Using the Williamson Ether Synthesis, show a synthetic route (complete with reagents) that efficiently produces each ether below. C Na C C C Na C Both methods work. Na C C 2 Below doesn't produce the ether well because E2 is the main pathway with a 2 o RX. C C 2 Na C C + 2 o RX. E2 C 2 C 2 C Na C 2 C 2 C Na This doesn't work well: E2 occurs instead. 8. Provide the reagents needed to complete each reaction. C C 2 C 2 C S N Na C C 2 X Williamson Ether Synth. C 2 C Page

4 NTRAMLECULAR REACTNS 9. Give the curved arrow mechanism for the following reaction. Na acid-base ntramolecular S N 2 0. Give the major organic product of each reaction. 5 Na Na 4 2 DEYDRATN REACTNS. Give the curved arrow mechanism for each reaction. nclude the Lewis structure of the acid in your mechanism. con. 2 S 4 S S E con. 2 S 4 S 2 S 4 con. P 4 P 2 P E2 o dont form carbocations Page 4

5 2. For the following reaction, Draw the curved arrow mechanism. con. 2 S 4 S Step 2 Step 2 S 4 Step Use the mechanism to identify two reasons why acid is a catalyst in the dehydration reaction. Note: acid is any strongly acidic source, such as 2 S 4, +, or R 2 +. Acid accelerates the reaction by turning a bad leaving group ( ) into a good leaving group ( 2 ). This makes the catalytic pathway have a lower activation barrier. The acid is not consumed in the reaction. t is used in step, but is regenerated in step. Draw the energy diagram. E Alkene is higher energy than alcohol reactant. 2 Step Acid-base reaction is favorable (check pkas). Draw all probable dehydration products for these reactions, including stereoisomers. Then decide which should be the major product and briefly explain your answer. con. 2 S 4 most substituted (di) and trans has fewer repulsions, so lowest energy. con. P 4 Trisubsituted is lower energy than disu con. 2 S 4 Δ No other possibility. d. con. P 4 Trisub lower E than disu Major put bulkiest groups opposite. (n truth all 4 trisub are similar E.) Page 5

6 YDRDE AND ALKYL SFTS 4. Draw the intermediate formed after each mechanistic step. C C 5 4 C 6 5. What is a possible driving force (or reason) for the rearrangement in: Problem 4a? A secondary carbocation is converted into a tertiary carbocation through the rearrangement, which is more stabilized by hyperconjugation. The motivation for the shift may be to lower the energy of the carbocation. Problem 4c? C C C 2 C C C C C C 4 5 A four-membered ring is converted into a five-membered ring through the rearrangement, which has less ring strain. The motivation for the shift may be to relieve the ring strain (lower the energy of the system). 6. Give the curved arrow mechanism for each reaction. nclude the Lewis structure of the acid. 6 2 d C C 7 C C Reaction con. 2 S 4 S 2 -shift 2 or S 4 S con. 2 S 4 Δ 2 -shift another -shift S 4 Page 6

7 con. P 4 P 2 C methyl shift C 2 P 4 d. con. 2 S 4 Δ S 4 S 2 alkyl shift (ring expansion) = 7. dentify which of the reactions W-Z would synthesize,-dimethylcyclopentene most efficiently (with the fewest competing products). Then explain why the other routes are less efficient. W X BEST Y b a con. 2 S 4 KC(C ) KC(C ) minor + + major Reaction Y would most efficiently produce,- dimethylcyclopentene as there are no significant alternative products. There is only one type of beta-hydrogen, so the E2 reaction can make only one possible product. (Also S N 2 does not compete much when using such a bulky base.) n Reaction W, two different beta-hydrogens are present, con. 2 S Z 4 + leading to a likely mixture of the products shown. This would split likely the yield, lessening the quantity of,-dimethylcyclopentene obtained. Also this mechanism proceeds through a carbocation, so rearrangements could further divert the yield. n Reaction X, a bulky base would more likely remove a beta-hydrogen from position a, creating the wrong alkene isomer as the major product. Removal of a beta-hydrogen from position a is still possible, but the intended alkene would be a minor product. n Reaction Z, the carbocation generated in this mechanism is neighboring a quaternary center, so rearrangements involving a methyl shift are very likely, producing the wrong product.,-dimethylcyclopentene Page 7

8 ALCL REACTN WT X 8. Give the curved arrow mechanism for each reaction. Reaction 2 S N 2 C C C 2 C C hydride shift C S N C ethyl shift 2 (same as above) P, S 2, AND TSYLATE REACTNS 9. Fill in the boxes with the organic product from each reaction. Na C C Ts KN py. N Ts N N N S 2 KN N Page 8

9 CMBNED ALCL REACTNS 20. Give the major organic product for each reaction. Consider plausible rearrangements. i. C S py. C Ts S 2 j. KC 2 C C 2 C don t form carbocations, so no rearrangement occurs k. Ts, py. NaN N d. P l. P NaCN CN Double S N 2 e. S 2 Ts, py. m. Na Single S N 2 f. C Ts py. C Ts n. C C g. Na D o. alcohol goes through S N 2, so inversion occurs D h. P Page 9

10 2. The synthesis of the product shown in reaction L (call it product Q) is best achieved by this method. Explain why methods M- will not effectively synthesize product Q. (L) P NaS C (M) NaS C (N) 2 S 4 2 S C () Ts, py. NaS S C Q Best synthesis of Q: Double S N 2 gives the right stereochemistry of the S group (P inverts the center, S inverts the center again). Reaction (M) doesn t work: is not a good leaving group for S N 2 reactions. Reaction (N) is not efficient: the reaction goes through a flat carbocation intermediate, so attack of 2 S gives both isomers (with S out and S back). Carbocations also often rearrange, and a significant product might be with the S on the same carbon as the methyl group. E may also compete. Reaction () doesn t product Q: single S N 2 produces the wrong isomer. EPXDE REACTNS 22. Give the curved arrow mechanism for the following reactions. Na 2 + C C 2 C 2 C + C C 2 C C C 2 C 2 C 2 C KC 2 C DMF C C 2 C C 2 C C 2 C C 2 Page 0

11 2. Concerning the following two reactions: a b C NaS 2 S C C C Explain the regioselectivity of the reactions. The first reaction involves a negatively charged nucleophile (good Nu) so reacts S N 2-style at the least hindered side of the epoxide, at site The second reaction involves protonation of the epoxide before addition of the δ+ nucleophile ( δ+ ). Since the LG is better now, the LG has already partially left (S N -like). There are partial positive charges on the two carbons of the epoxide, C but the more substituted side ( vs. 2 ) stabilizes a partial carbocation better. δ+ Thus there is a greater d + on the more hindered side, which is where the nucleophile attacks. Explain the stereoselectivity of the reactions. Both reactions occur with inversion of the reacting carbon, S N 2-style, with backside attack. Even though the protonated epoxide in the second reaction has a partial carbocation, it is not a full carbocation. The reaction mechanism is really in between S N (strong d + on the C) and S N 2 (backside attack). 24. Give the major organic product for each reaction. ndicate if a racemic mixture is formed. C C 2 K C C 2 e. C + C C C + (C ) 2 C racemic f. C K 2 C g. d. NaCN 2 CN h. C C 2 C C Page

12 CMBNED ALCL + EPXDE REACTNS 25. Give the major organic product for these reactions. Consider plausible rearrangements and indicate if a racemic mixture is formed. C 2 C Na C C 2 C 2 C e. C 2 C Na 2 f. racemic Ts g. Na C C con. 2 S 4 or Ts or C C C C d. P C C h. C KCN 2 C CN Page 2

CHAPTER 8 HW SOLUTIONS: ELIMINATIONS REACTIONS

CHAPTER 8 HW SOLUTIONS: ELIMINATIONS REACTIONS APTER 8 W SLUTNS: ELMNATNS REATNS S-TRANS SMERSM 1. Use a discussion and drawing of orbitals to help explain why it is generally easy to rotate around single bonds at room temperature, while it is difficult

More information

CH Organic Chemistry I (Katz) Practice Exam #3- Fall 2013

CH Organic Chemistry I (Katz) Practice Exam #3- Fall 2013 C2710 - rganic Chemistry I (Katz) Practice Exam #3- all 2013 Name: Score: Part I - Choose the best answer and write the letter of your choice in the space provided. (32 pts) 1. f the following, which reaction

More information

C h a p t e r S e v e n : Haloalkanes: Nucleophilc Substitution and Elimination Reactions S N 2

C h a p t e r S e v e n : Haloalkanes: Nucleophilc Substitution and Elimination Reactions S N 2 C h a p t e r S e v e n : Haloalkanes: Nucleophilc Substitution and Elimination Reactions S N 2 CHM 321: Summary of Important Concepts Concepts for Chapter 7: Substitution Reactions I. Nomenclature of

More information

S N 1 Displacement Reactions

S N 1 Displacement Reactions S N 1 Displacement Reactions Tertiary alkyl halides cannot undergo S N 2 reactions because of the severe steric hindrance blocking a backside approach of the nucleophile. They can, however, react via an

More information

Nucleophilic Substitution and Elimination

Nucleophilic Substitution and Elimination Nucleophilic Substitution and Elimination Alkyl halides react with a nucleophile in one of two ways. Either they eliminate an X to form an alkene, or they undergo a substitution with the nucleophile, Nu,

More information

Learning Guide for Chapter 10 - Alkyl Halides II

Learning Guide for Chapter 10 - Alkyl Halides II Learning Guide for Chapter 10 - Alkyl Halides II I. Elimination Reactions of Alkyl Halides Introduction Mechanisms Beta hydrogens, constitutional isomers, and stereoisomers E2 vs E1 Strong and Weak Bases

More information

Alcohols: Contain a hydroxy group( OH) bonded to an sp 2 or sp 3 hybridized

Alcohols: Contain a hydroxy group( OH) bonded to an sp 2 or sp 3 hybridized Lecture Notes hem 51B S. King hapter 9 Alcohols, Ethers, and Epoxides I. Introduction Alcohols, ether, and epoxides are 3 functional groups that contain σ-bonds. Alcohols: ontain a hydroxy group( ) bonded

More information

UCF - ORGANIC CHEMISTRY 1 - PROF. DAOUDI UCF PROF. DAOUDI EXAM 3 REVIEW.

UCF - ORGANIC CHEMISTRY 1 - PROF. DAOUDI UCF PROF. DAOUDI EXAM 3 REVIEW. UCF PROF. DAOUDI EXAM 3 REVIEW www.clutchprep.com 1 PRACTICE: Identify the most stable and the least stable alkene PRACTICE: Create the full arrow pushing mechanism which shows all intermediates and all

More information

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122)

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122) Basic Organic Chemistry Course code : CHEM 12162 (Pre-requisites : CHEM 11122) Chapter 01 Mechanistic Aspects of S N2,S N1, E 2 & E 1 Reactions Dr. Dinesh R. Pandithavidana Office: B1 222/3 Phone: (+94)777-745-720

More information

Organic Chemistry CHM 314 Dr. Laurie S. Starkey, Cal Poly Pomona Alkyl Halides: Substitution Reactions - Chapter 6 (Wade)

Organic Chemistry CHM 314 Dr. Laurie S. Starkey, Cal Poly Pomona Alkyl Halides: Substitution Reactions - Chapter 6 (Wade) rganic Chemistry CM 314 Dr. Laurie S. Starkey, Cal Poly Pomona Alkyl alides: Substitution Reactions - Chapter 6 (Wade) Chapter utline I. Intro to RX (6-1 - 6-7) II. Substitution Reactions A) S N 2 (6-8,

More information

PLEASE DO NOT OPEN THIS EXAM UNTIL YOU ARE INSTRUCTED TO DO SO.

PLEASE DO NOT OPEN THIS EXAM UNTIL YOU ARE INSTRUCTED TO DO SO. CEMISTRY 0 :5 AM Section EXAM 2 Nov 2009 Name: Note: Your exam should consist of 5 pages including the cover page and grade tabulation sheet. Skim the entire exam, and solve the easiest problems first.

More information

Elimination Reactions. Chapter 6 1

Elimination Reactions. Chapter 6 1 Elimination Reactions Chapter 6 1 E1 Mechanism Step 1: halide ion leaves, forming a carbocation. Step 2: Base abstracts H + from adjacent carbon forming the double bond. Chapter 6 2 E1 Energy Diagram E1:

More information

c. Cl H Page 1 of 7 major P (E > Z and more substituted over less substituted alkene) LG must be axial are the same Cl -

c. Cl H Page 1 of 7 major P (E > Z and more substituted over less substituted alkene) LG must be axial are the same Cl - CEM 109A 1. Predict the products of the following reactions (a-c E2, d-f E1 KEY focuses only on elimination products, in most cases there will also be substitution products.) a. - LG must be axial - are

More information

Homework problems Chapters 6 and Give the curved-arrow formalism for the following reaction: CH 3 OH + H 2 C CH +

Homework problems Chapters 6 and Give the curved-arrow formalism for the following reaction: CH 3 OH + H 2 C CH + omework problems hapters 6 and 7 1. Give the curved-arrow formalism for the following reaction: : 3 - : 2 : 3 2-3 3 2. In each of the following sets, arrange the compounds in order of decreasing pka and

More information

Chemistry 35 Exam 2 Answers - April 9, 2007

Chemistry 35 Exam 2 Answers - April 9, 2007 Chemistry 35 Exam 2 Answers - April 9, 2007 Problem 1. (14 points) Provide the products for the reactions shown below. If stereochemistry is important, be sure to indicate stereochemistry clearly. If no

More information

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2.

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2. Preparation of Alkyl alides, R-X Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): UV R + X 2 R X or heat + X This mechanism involves a free radical chain reaction. A chain

More information

Chapter 7 - Alkenes and Alkynes I

Chapter 7 - Alkenes and Alkynes I Andrew Rosen Chapter 7 - Alkenes and Alkynes I 7.1 - Introduction - The simplest member of the alkenes has the common name of ethylene while the simplest member of the alkyne family has the common name

More information

Chapter 8: Nucleophilic Substitution 8.1: Functional Group Transformation By Nucleophilic Substitution

Chapter 8: Nucleophilic Substitution 8.1: Functional Group Transformation By Nucleophilic Substitution hapter 8: Nucleophilic Substitution 8.1: Functional Group Transformation By Nucleophilic Substitution Nu: = l,, I Nu - Nucleophiles are Lewis bases (electron-pair donor) Nucleophiles are often negatively

More information

Classes of Alkenes. Alkenes and Alkynes. Saturated compounds (alkanes): Have the maximum number of hydrogen atoms attached to each carbon atom.

Classes of Alkenes. Alkenes and Alkynes. Saturated compounds (alkanes): Have the maximum number of hydrogen atoms attached to each carbon atom. Alkenes and Alkynes Saturated compounds (alkanes): ave the maximum number of hydrogen atoms attached to each carbon atom. Unsaturated compounds: ave fewer hydrogen atoms attached to the carbon chain than

More information

Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides"

Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides" t Introduction" The polarity of a carbon-halogen bond leads to the carbon having a partial positive charge"

More information

Homework - Review of Chem 2310

Homework - Review of Chem 2310 omework - Review of Chem 2310 Chapter 1 - Atoms and Molecules Name 1. What is organic chemistry? 2. Why is there an entire one year course devoted to the study of organic compounds? 3. Give 4 examples

More information

2/26/18. Practice Questions. Practice Questions B F. How many steps are there in this reaction?

2/26/18. Practice Questions. Practice Questions B F. How many steps are there in this reaction? Practice Questions Practice Questions D B F C E A G How many steps are there in this reaction? 1 Practice Questions D B F C E A G What is the highest-energy transitions state? Practice Questions D B F

More information

Chemistry 2321 Last name, First name (please print) April 22, 2008 McMurry, Chapters 10 and 11 Row # Seat #

Chemistry 2321 Last name, First name (please print) April 22, 2008 McMurry, Chapters 10 and 11 Row # Seat # Test 4 Name Chemistry 2321 Last name, First name (please print) April 22, 2008 McMurry, Chapters 10 and 11 Row # Seat # Part 1. Multiple Choice. Choose the one best answer, and clearly mark that answer

More information

Chapter 9. Nucleophilic Substitution and ß-Elimination

Chapter 9. Nucleophilic Substitution and ß-Elimination Chapter 9 Nucleophilic Substitution and ß-Elimination Nucleophilic Substitution Nucleophile: From the Greek meaning nucleus loving. A molecule or ion that donates a pair of electrons to another atom or

More information

Alcohols, Ethers, & Epoxides

Alcohols, Ethers, & Epoxides Alcohols, Ethers, & Epoxides Alcohols Structure and Bonding Enols and Phenols Compounds having a hydroxy group on a sp 2 hybridized carbon enols and phenols undergo different reactions than alcohols. Chapter

More information

3. (4 pts) Provide structures for the following compounds: CH 3 C H H C C - Na + acetylene 1-penten-4-yne (R)-3-butyn-2-ol sodium acetylide

3. (4 pts) Provide structures for the following compounds: CH 3 C H H C C - Na + acetylene 1-penten-4-yne (R)-3-butyn-2-ol sodium acetylide CEMTRY 313-01 MDTERM # 3 answer key November 18, 2008 tatistics: Average: 74 pts (74%); ighest: 97 pts (97%); Lowest: 38 pts (38%) Number of students perfming at above average: 35 (56%) Number of students

More information

Midterm #2 Chem 3A - Fall 2013 Nov. 12, :00 8:45 pm. Name SID

Midterm #2 Chem 3A - Fall 2013 Nov. 12, :00 8:45 pm. Name SID Midterm #2 Chem 3A - Fall 2013 Nov. 12, 2013 7:00 8:45 pm Name SID Including the title page, there should be 6 total questions spread over 8 pages (printed on both sides). Please provide all answers in

More information

Organic Reactions Susbstitution S N. Dr. Sapna Gupta

Organic Reactions Susbstitution S N. Dr. Sapna Gupta Organic Reactions Susbstitution S N 2 Dr. Sapna Gupta Kinetics of Nucleophilic Reaction Rate law is order of reaction 0 order is when rate of reaction is unaffected by change in concentration of the reactants

More information

Chapter 8: Alkene Structure and Preparation via Elimination Reactions

Chapter 8: Alkene Structure and Preparation via Elimination Reactions 1. Nature of the pi bond Chapter 8: Alkene Structure and Preparation via Elimination eactions [Sections: 8.1-8.13] C C bond length bond strength 3 C C 3 3 C C 3 3 C C 3 3 C 2 C C 2 3 C a C=C double bond

More information

OChem1 Old Exams. Chemistry 3719 Practice Exams

OChem1 Old Exams. Chemistry 3719 Practice Exams OChem1 Old Exams Chemistry 3719 Practice Exams Fall 2017 Chemistry 3719 Practice Exam A1 This exam is worth 100 points out of a total of 600 points for Chemistry 3719/3719L. You have 50 minutes to complete

More information

CHEM 263 Oct 25, stronger base stronger acid weaker acid weaker base

CHEM 263 Oct 25, stronger base stronger acid weaker acid weaker base CEM 263 ct 25, 2016 Reactions and Synthesis (Preparation) of R- Breaking the - Bond of R- with Metals R + Li 0 or Na 0 or K 0 metal R Li + 1/2 2 alkoxide Breaking the - Bond of R- by Acid-Base Reaction

More information

CHE 275 NUCLEOPHILIC SUBSTITUTUION CHAP 8 ASSIGN. 1. Which best depicts the partial charges on methyl bromide and sodium methoxide?

CHE 275 NUCLEOPHILIC SUBSTITUTUION CHAP 8 ASSIGN. 1. Which best depicts the partial charges on methyl bromide and sodium methoxide? CHE 275 NUCLEPHILIC SUBSTITUTUIN CHAP 8 ASSIGN 1. Which best depicts the partial charges on methyl bromide and sodium methoxide? 2. Which of the following would be the best (most reactive) nucleophile

More information

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination CHAPTER 7 Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination 7-1 Solvolysis of Tertiary and Secondary Haloalkanes The rate of S N 2 reactions decrease dramatically

More information

BSc. II 3 rd Semester. Submitted By Dr. Sangita Nohria Associate Professor PGGCG-11 Chandigarh 1

BSc. II 3 rd Semester. Submitted By Dr. Sangita Nohria Associate Professor PGGCG-11 Chandigarh 1 BSc. II 3 rd Semester Submitted By Dr. Sangita Nohria Associate Professor PGGCG-11 Chandigarh 1 Introduction to Alkyl Halides Alkyl halides are organic molecules containing a halogen atom bonded to an

More information

Chapter 8: Alkene Structure and Preparation via Elimination Reactions

Chapter 8: Alkene Structure and Preparation via Elimination Reactions Nature of the pi bond Chapter 8: Alkene Structure and Preparation via Elimination eactions [Sections: 8.1-8.13] C C 3 C C 3 bond length bond strength 2 C C 2 a C=C double bond is stronger than a C C single

More information

REACTION AND SYNTHESIS REVIEW

REACTION AND SYNTHESIS REVIEW REACTION AND SYNTHESIS REVIEW A STUDENT SHOULD BE ABLE TO PREDICT PRODUCTS, IDENTIFY REACTANTS, GIVE REACTION CONDITIONS, PROPOSE SYNTHESES, AND PROPOSE MECHANISMS (AS LISTED BELOW). REVIEW THE MECHANISM

More information

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound?

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? EM 331: hapter 1/2: Structures (Atoms, Molecules, Bonding) 1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? N 2 N 2 N 1 2 3 4 2. What hybrid orbitals are used to

More information

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 I. Isolated, cumulated, and conjugated dienes A diene is any compound with two or C=C's is a diene. Compounds containing more than two

More information

CHEMISTRY MIDTERM # 3 March 31, The total number of points in this midterm is 100. The total exam time is 120 min (2 h). Good luck!

CHEMISTRY MIDTERM # 3 March 31, The total number of points in this midterm is 100. The total exam time is 120 min (2 h). Good luck! Name: CEMISTRY 1-01 MIDTERM # March 1, 2009 The total number of points in this midterm is 100. The total exam time is 120 min (2 h). Good luck! 1. (11 pts) Mark as true (T) false (F) the following statements.

More information

CHEM J-10 June The structure of ( )-linalool, a commonly occurring natural product, is shown below.

CHEM J-10 June The structure of ( )-linalool, a commonly occurring natural product, is shown below. CEM1102 2014-J-10 June 2014 The structure of ( )-linalool, a commonly occurring natural product, is shown below. 4 What is the molecular formula of ( )-linalool? C 10 18 O Which of the following best describes

More information

CHAPTER 7 HW: SUBSTITUTIONS

CHAPTER 7 HW: SUBSTITUTIONS CHAPTER 7 HW: SUBSTTUTNS REACTN TYPES 1. assify each reaction as either a substitution, elimination, or addition reaction. Reaction Type NaH H + Na H + (cat.) H CH CH 2 H 2 CH H H + (cat.) H 2 + H 2 TERMNLGY

More information

LECTURE #13 Tues., Oct.18, Midterm exam: Tues.Oct.25 during class Ch.1, , 7.10, 2, Sections

LECTURE #13 Tues., Oct.18, Midterm exam: Tues.Oct.25 during class Ch.1, , 7.10, 2, Sections CEM 221 section 01 LECTURE #13 Tues., Oct.18, 2005 Midterm exam: Tues.Oct.25 during class Ch.1, 7.2-7.5, 7.10, 2, 3.1-3.5 ASSGNED READNGS: TODAY S CLASS: Sections 4.1 4.6 NEXT CLASS: rest of Ch.4 http://artsandscience.concordia.ca/facstaff/p-r/rogers

More information

Chapter 7 Substitution Reactions 7.1 Introduction to Substitution Reactions Substitution Reactions: two reactants exchange parts to give new products

Chapter 7 Substitution Reactions 7.1 Introduction to Substitution Reactions Substitution Reactions: two reactants exchange parts to give new products hapter 7 Substitution eactions 7.1 Introduction to Substitution eactions Substitution eactions: two reactants exchange parts to give new products A-B + -D A-D + B- 3 2 + Br 3 2 Br + Elimination eaction:

More information

The Chemistry of Ethers, Epoxides, Glycols, and Sulfides

The Chemistry of Ethers, Epoxides, Glycols, and Sulfides The Chemistry of Ethers, Epoxides, Glycols, and Sulfides The chemistry of ethers is closely intertwined with the chemistry of alkyl halides, alcohols, and alkenes. Ethers, however, are considerably less

More information

7. Haloalkanes (text )

7. Haloalkanes (text ) 2009, Department of hemistry, The University of Western Ontario 7.1 7. aloalkanes (text 7.1 7.10) A. Structure and Nomenclature Like hydrogen, the halogens have a valence of one. Thus, a halogen atom can

More information

(c) The intermediate carbocation resulting from 3-bromobut-1-ene is resonance stabilized.

(c) The intermediate carbocation resulting from 3-bromobut-1-ene is resonance stabilized. KT121 Sem II 09/10 SETIN B: 1.(a) Name of mechanism: E1 elimination. 7 marks (b) (i) + 3 3 3 (ii) + 3 (iii) l 8 marks (c) The intermediate carbocation resulting from 3-bromobut-1-ene is resonance stabilized.

More information

Some Arrow-Pushing Guidelines (Section 1.14) 1. Arrows follow electron movement.

Some Arrow-Pushing Guidelines (Section 1.14) 1. Arrows follow electron movement. Chem 350 Jasperse Ch. 1 Notes 1 Note: The headers and associated chapters don t actually jive with the textbook we are using this summer. But otherwise this highlights a lot of the chemistry from Organic

More information

CHEM Lecture 7

CHEM Lecture 7 CEM 494 Special Topics in Chemistry Illinois at Chicago CEM 494 - Lecture 7 Prof. Duncan Wardrop ctober 22, 2012 CEM 494 Special Topics in Chemistry Illinois at Chicago Preparation of Alkenes Elimination

More information

Elimination reactions

Elimination reactions Chapter 9 Elimination reactions E2 and E1 reactions Competition between S N and E Elimination reactions Ch 9 #2 elimination and/or substitution 2 mechanisms ~ E2 and E1 E2: bimolecular elimination rxn

More information

Chem 3719 Example Exams. Chemistry 3719 Practice Exams

Chem 3719 Example Exams. Chemistry 3719 Practice Exams Chem 3719 Example Exams Chemistry 3719 Practice Exams Fall 2018 Chemistry 3719, Fall 2017 Exam 1 Student Name: Y Number: This exam is worth 100 points out of a total of 700 points for Chemistry 3719/3719L.

More information

CHEM 302 Organic Chemistry I Problem Set VII Chapter 7 Answers

CHEM 302 Organic Chemistry I Problem Set VII Chapter 7 Answers CEM 302 rganic Chemistry Problem Set V Chapter 7 Answers 1) The pk a values of acetic acid and trifluroacetic acid are 4.5 and 0.9 respectively. Based on this information, which anion, C 3 C - or CF 3

More information

diene. If stereoisomeric mixtures form, indicate by drawing one and writing "+ enantiomer" and/or "+ diastereomer" in the box.

diene. If stereoisomeric mixtures form, indicate by drawing one and writing + enantiomer and/or + diastereomer in the box. I. (9 points) Page A. Consider how varying the conditions of a reaction can vastly influence the rate of a reaction as well as the product(s) formed. First draw the product(s) that form in the reference

More information

CHEMISTRY 231 GENERAL ORGANIC CHEMISTRY I FALL 2014 List of Topics / Examination Schedule

CHEMISTRY 231 GENERAL ORGANIC CHEMISTRY I FALL 2014 List of Topics / Examination Schedule Page 1 of 5 CHEMISTRY 231 FALL 2014 List of Topics / Examination Schedule Unit Starts Topic of Study 20 Aug 2014 STRUCTURE AND BONDING Suggested Reading: Chapter 1 29 Aug 2014 ALKANES & CYCLOALKANES Suggested

More information

Problem Set 8: Substitution Reactions-ANSWER KEY. (b) nucleophile NH 3 H C. (d) H 3 N

Problem Set 8: Substitution Reactions-ANSWER KEY. (b) nucleophile NH 3 H C. (d) H 3 N Problem Set 8: Substitution Reactions-ANSWER KEY hemistry 260 rganic hemistry 1. The answers are (1), (3) and (5). Nucleophiles generally have lone pair and/or negative charge. 2. (a) neither 4 (c) nucleophile

More information

Chapter 8. Substitution reactions of Alkyl Halides

Chapter 8. Substitution reactions of Alkyl Halides Chapter 8. Substitution reactions of Alkyl Halides There are two types of possible reaction in organic compounds in which sp 3 carbon is bonded to an electronegative atom or group (ex, halides) 1. Substitution

More information

C h a p t e r S e v e n : Substitution Reactions S N 2 O H H H O H H. Br -

C h a p t e r S e v e n : Substitution Reactions S N 2 O H H H O H H. Br - C h a p t e r S e v e n : Substitution Reactions Br Br S N 2 CM 321: Summary of Important Concepts YConcepts for Chapter 7: Substitution Reactions I. Nomenclature of alkyl halides, R X A. Common name:

More information

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound?

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? CEM 331: Chapter 1/2: Structures (Atoms, Molecules, Bonding) 1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? N C 2 C N C 2 C N 1 2 3 4 1: three sigma bonds and

More information

Real life example 1 Let s look at this series of chloroalcohols, and how fast the chloride gets displaced by an external nucleophile.

Real life example 1 Let s look at this series of chloroalcohols, and how fast the chloride gets displaced by an external nucleophile. Class 2 Carbocations Last time we talked about neighboring group participation in substitution reactions. I want to start today by talking about a few more real life examples. Real life example 1 Let s

More information

Reactions of Alkyl Halides with Nucleophiles and Bases a substitution reaction

Reactions of Alkyl Halides with Nucleophiles and Bases a substitution reaction Reactions of Alkyl Halides with Nucleophiles and Bases a substitution reaction Nucleophilic substitution and base induced elimination are among most widely occurring and versatile reaction types in organic

More information

UNIVERSITY OF SWAZILAND FINAL EXAMINATION 2013, DECEMBER

UNIVERSITY OF SWAZILAND FINAL EXAMINATION 2013, DECEMBER UNIVERSITY OF SWAZILAND FINAL EXAMINATION 2013, DECEMBER TITLE OF PAPER COURSE NUMBER Introductory Organic Chemistry C203 TIME Three Hours INSTRUCTIONS Section A is compulsory. Answer any three questions

More information

CHAPTER 8 HW: ELIMINATIONS REACTIONS

CHAPTER 8 HW: ELIMINATIONS REACTIONS APTER 8 W: ELMNATNS REATNS S-TRANS SMERSM 1. Use a discussion and drawing of orbitals to help explain why it is generally easy to rotate around single bonds at room temperature, while it is difficult to

More information

CHEM1902/ N-9 November 2014

CHEM1902/ N-9 November 2014 CEM1902/4 2014-N-9 November 2014 The elimination of 2 O from alcohol A can form the isomeric alkenes B and C. Elimination of Br from the alkyl halide D can generate the same two alkenes. 7 Assign the absolute

More information

Learning Guide for Chapter 15 - Alcohols (II)

Learning Guide for Chapter 15 - Alcohols (II) Learning Guide for Chapter 15 - Alcohols (II) I. Introduction to alcohol reactivity II. Reactions of alcohols with acids III. Reactions of alcohols with electrophiles alogenated phosphorus and sulfur compounds

More information

CH 3 C 2 H 5. Tetrahedral Stereochemistry

CH 3 C 2 H 5. Tetrahedral Stereochemistry Ch 5 Tetrahedral Stereochemistry Enantiomers - Two non-superimposable mirror image molecules - They are stereoisomers with the same atoms and bonds, but different spatial geometries. - The two molecules

More information

Elimination Reactions The E2 Mechanism

Elimination Reactions The E2 Mechanism Elimination Reactions The E2 Mechanism The E2 Mechanism X X- B: B- δ- B:- δ+ R 1 δ- R 2 δ+ X δ- The E2 Mechanism R 3 R 4 transition state Free energy (G) Eact B:- B R 1 R 2 X R 1 R 2 R 3 R 4 R 4 R 3 X:-

More information

Chapter 11 - Alcohols and Ethers 1

Chapter 11 - Alcohols and Ethers 1 Andrew Rosen Chapter 11 - Alcohols and Ethers 1 11.1 - Structure and Nomenclature - The common naming calls alcohols as alkyl alcohols (eg: methyl alcohol) - The common names of ethers have the groups

More information

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens). Reactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. Normally: Oxidation

More information

Dehydrohalogenation of Alkyl Halides E2 and E1 Reactions in Detail

Dehydrohalogenation of Alkyl Halides E2 and E1 Reactions in Detail Dehydrohalogenation of Alkyl Halides E2 and E1 Reactions in Detail b-elimination Reactions Overview dehydration of alcohols: X = H; Y = OH dehydrohalogenation of alkyl halides: X = H; Y = Br, etc. X C

More information

Chapter 5. Nucleophilic aliphatic substitution mechanism. by G.DEEPA

Chapter 5. Nucleophilic aliphatic substitution mechanism. by G.DEEPA Chapter 5 Nucleophilic aliphatic substitution mechanism by G.DEEPA 1 Introduction The polarity of a carbon halogen bond leads to the carbon having a partial positive charge In alkyl halides this polarity

More information

CHAPTER 21 HW: ALDEHYDES + KETONES

CHAPTER 21 HW: ALDEHYDES + KETONES CAPTER 21 W: ALDEYDES + KETES MECLATURE 1. Give the name for each compound (IUPAC or common name). Structure 6 5 4 1 C 2 ame 3,3-dimethyl-2-pentanone (or 1,1-dimethylpropyl methyl ketone) 5-hydroxy-4-methylhexanal

More information

Ethers. Synthesis of Ethers. Chemical Properties of Ethers

Ethers. Synthesis of Ethers. Chemical Properties of Ethers Page 1 of 6 like alcohols are organic derivatives of water, but lack the labile -OH group. As a result, ethers, except for epoxides, are usually not very reactive and are often used as solvents for organic

More information

FALL 2018 CEM 251: Organic Chemistry I Sections September 25, 2018

FALL 2018 CEM 251: Organic Chemistry I Sections September 25, 2018 FALL 2018 CEM 251: Organic Chemistry Sections 25-36 TUE-TU 8:00 9:20 AM September 25, 2018 Name: Section: PD: TA: This is a closed book and note examination. f boxes are provided for your answers, only

More information

As time allows, additional practice questions for Exam 2 follow. This is an incomplete collection. Content & emphasis will vary.

As time allows, additional practice questions for Exam 2 follow. This is an incomplete collection. Content & emphasis will vary. Chem 226 Exam 2 Fall 2005: will cover Bruice, Chaps 3 through 6; Note: review e-mail & inclass quizzes and Worksheets, suggest on-line practice questions and quizzes plus ACS rganic Chemistry Guide As

More information

Preparation of alkenes

Preparation of alkenes Lecture 11 אלקנים הכנה ותגובות של אלקנים: הידרוגנציה, סיפוח הידרוהלוגנים )כלל מארקובניקוב(, סיפוח הלוגנים והסטראוכימיה של תוצרי הסיפוח, הידרובורציה, אפוקסידציה, אוזונוליזה. 1 Preparation of alkenes 1.

More information

CHEM 203. Final Exam December 18, This a closed-notes, closed-book exam. You may use your set of molecular models

CHEM 203. Final Exam December 18, This a closed-notes, closed-book exam. You may use your set of molecular models CEM 203 Final Exam December 18, 2013 Your name: This a closed-notes, closed-book exam You may use your set of molecular models This test consists of 10 pages Time: 2h 30 min 1. / 20 2. / 20 3. / 30 4.

More information

C C. sp 2. π M.O. atomic. orbitals. carbon 1. σ M.O. molecular. orbitals. H C C rotate D. D H zero overlap of p orbitals: π bond broken!

C C. sp 2. π M.O. atomic. orbitals. carbon 1. σ M.O. molecular. orbitals. H C C rotate D. D H zero overlap of p orbitals: π bond broken! Alkenes Electrophilic Addition 1 Alkene Structures chemistry of double bond σ BDE ~ 80 kcal/mol π = BDE ~ 65 kcal/mol The p-bond is weaker than the sigma-bond The, electrons in the p-bond are higher in

More information

(Neither an oxidation or reduction: Addition or loss of H +, H 2 O, HX).

(Neither an oxidation or reduction: Addition or loss of H +, H 2 O, HX). eactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. xidation is a

More information

2311A and B Practice Problems to help Prepare for Final from Previous Marder Exams.

2311A and B Practice Problems to help Prepare for Final from Previous Marder Exams. 2311A and B Practice Problems to help Prepare for Final from Previous Marder Exams. Disclaimer.: Use only to help learn what you need to know and don t expect the final to be in the same form. 1 1. Short

More information

Learning Guide for Chapter 17 - Dienes

Learning Guide for Chapter 17 - Dienes Learning Guide for Chapter 17 - Dienes I. Isolated, conjugated, and cumulated dienes II. Reactions involving allylic cations or radicals III. Diels-Alder Reactions IV. Aromaticity I. Isolated, Conjugated,

More information

Structure and Preparation of Alkenes: Elimination Reactions

Structure and Preparation of Alkenes: Elimination Reactions Structure and Preparation of Alkenes: Elimination Reactions Alkene Nomenclature First identify the longest continuous chain that includes the double bond. Replace the -ane ending of the corresponding unbranched

More information

Columbia University C99ORG12.DOC S3443D Summer 99 Professor Grace B. Borowitz Exam No. 2 June 14, 1999

Columbia University C99ORG12.DOC S3443D Summer 99 Professor Grace B. Borowitz Exam No. 2 June 14, 1999 olumbia University 99RG12.D SD Summer 99 Professor Grace B. Borowitz Exam No. 2 June 1, 1999 Name: Sterie hemistry Grade: Please use a non-red pen. Answer questions in the provided space. If you write

More information

Only five of the molecules below may be prepared as the sole product of allylic halogenation of the respective alkene. Circle those five.

Only five of the molecules below may be prepared as the sole product of allylic halogenation of the respective alkene. Circle those five. Chem 232 D. J. Wardrop wardropd@uic.edu Problem Set 6 Answers Question 1. nly five of the molecules below may be prepared as the sole product of allylic halogenation of the respective alkene. Circle those

More information

PRACTICE PROBLEMS UNIT 8

PRACTICE PROBLEMS UNIT 8 PRACTICE PROBLEMS UNIT 8 8A. Identify halides and carbocations as being 1 o, 2 o, or 3 o 8A.1 assify the following halides and carbocations as 1 o, 2 o, or 3 o. 8A.2 Circle the most stable cation in each

More information

The Final Learning Experience

The Final Learning Experience Chemistry 210 Organic Chemistry I Fall Semester 2000 Dr. Rainer Glaser Examination #5 Reactions of Alcohols and Related Reactions The Final Learning Experience Wednesday, December 20, 2000, 1:00-3:00 Name:

More information

Chapter 11 Outline: Ethers, Epoxides & Sulfides

Chapter 11 Outline: Ethers, Epoxides & Sulfides Chapter 11 Outline: Ethers, Epoxides & Sulfides Review Nomenclature & Physical Properties on your own 1. Structure of Ethers & Epoxides 2. Preparation of Ethers & Thioethers 3. Reactions of Ethers 4. Preparation

More information

Glendale Community College Chemistry 105 Exam. 3 Lecture Notes Chapters 6 & 7

Glendale Community College Chemistry 105 Exam. 3 Lecture Notes Chapters 6 & 7 Sevada Chamras, Ph.D. Glendale Community College Chemistry 105 Exam. 3 Lecture Notes Chapters 6 & 7 Description: Examples: 3 Major Types of Organic Halides: 1. Alkyl Halides: Chapter 6 (Part 1/2) : Alkyl

More information

H C C C C H C H C C H H. Cl H CH 3 O. Br CH 3 OH H 3 C. H Br H

H C C C C H C H C C H H. Cl H CH 3 O. Br CH 3 OH H 3 C. H Br H CEMISTRY 313-61 MITERM # 3 answer key June 17, 2005 Statistics: Average: 69 pts (69%); ighest: 96 pts (96%); Lowest: 46 pts (46%) Number of students perfming at above average: 16 (53%) 1. (10 pts) Mark

More information

c. Oxidizing agent shown here oxidizes 2º alcohols to ketones and 1º alcohols to carboxylic acids. 3º alcohols DO NOT REACT.

c. Oxidizing agent shown here oxidizes 2º alcohols to ketones and 1º alcohols to carboxylic acids. 3º alcohols DO NOT REACT. Exam 1 (Ch 17 and Review of CEM 331) Answer Key: 1. ne-step Questions: You need to know reagents for reagent arrows and to be able to draw products. I know a lot of them seem to look alike its your job

More information

Chapter 9:Nucleophiles & Substitution Reactions

Chapter 9:Nucleophiles & Substitution Reactions 1. a. Place the following nucleophiles in order of strength (1= strongest; 3 = weakest). i. ii. b. Place the following in order of leaving group ability (1= best; 7 = worst). (A pka table may help you!)

More information

Synthesis and Retrosynthesis

Synthesis and Retrosynthesis Synthesis and Retrosynthesis opyright, Arizona State University Putting Reactions Together A large part of organic chemistry involves building more complex molecules from smaller ones using a designed

More information

ζ ε δ γ β α α β γ δ ε ζ

ζ ε δ γ β α α β γ δ ε ζ hem 263 Nov 17, 2016 eactions at the α-arbon The alpha carbon is the carbon adjacent to the carbonyl carbon. Beta is the next one, followed by gamma, delta, epsilon, and so on. 2 ε 2 δ 2 γ 2 2 β α The

More information

Homework - Chapter 9 Chem 2310

Homework - Chapter 9 Chem 2310 Homework - Chapter 9 Chem 2310 me:. ntroduction to organic halides 1. Draw a line structure for a compound with the following description: an alkyl halide with the formula C 5 H 11 a vinyl halide with

More information

Chem 350 Jasperse Ch. 6 Summary of Reaction Types, Ch. 4-6, Test 2 1. Radical Halogenation (Ch. 4)

Chem 350 Jasperse Ch. 6 Summary of Reaction Types, Ch. 4-6, Test 2 1. Radical Halogenation (Ch. 4) Chem 350 Jasperse Ch. 6 Summary of Reaction Types, Ch. 4-6, Test 2 1. Radical alogenation (Ch. 4) 2, hv resonance stabilized>3º>2º>1º>alkenyl 1 Recognition: X 2, hv Predicting product: Identify which carbon

More information

Chapter 7 Substitution Reactions

Chapter 7 Substitution Reactions Chapter 7 Substitution Reactions Review of Concepts Fill in the blanks below. To verify that your answers are correct, look in your textbook at the end of Chapter 7. Each of the sentences below appears

More information

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE 5 Dr Ali El-Agamey 1 Energy Diagram of One-Step Exothermic Reaction The vertical axis in this graph represents the potential energy. The transition

More information

Physical Properties. Alcohols can be: CH CH 2 OH CH 2 CH 3 C OH CH 3. Secondary alcohol. Primary alcohol. Tertiary alcohol

Physical Properties. Alcohols can be: CH CH 2 OH CH 2 CH 3 C OH CH 3. Secondary alcohol. Primary alcohol. Tertiary alcohol Chapter 10: Structure and Synthesis of Alcohols 100 Physical Properties Alcohols can be: CH 3 CH 3 CH CH 2 OH * Primary alcohol CH 3 OH CH * CH 2 CH 3 Secondary alcohol CH 3 CH 3 * C OH CH 3 Tertiary alcohol

More information

Chapter 7 Alkenes; Elimination Reactions

Chapter 7 Alkenes; Elimination Reactions hapter 7 Alkenes; Elimination Reactions Alkenes Alkenes contain a carbon-carbon double bond. They are named as derivatives of alkanes with the suffix -ane changed to -ene. The parent alkane is the longest

More information

(b) (CH 3 ) 2 CCH 2 CH 3 D 2 O. (e) A. CH 3 CCl OSO 2 CH 3 C 6 H 5 H 3 C

(b) (CH 3 ) 2 CCH 2 CH 3 D 2 O. (e) A. CH 3 CCl OSO 2 CH 3 C 6 H 5 H 3 C 278 h a p t e r 7 Further Reactions of aloalkanes 3. arbocations are stabilized by hyperconjugation: Tertiary are the most stable, followed by secondary. Primary and methyl cations are too unstable to

More information

Chapter 7 Alkenes and Alkynes I: Properties and Synthesis Elimination Reactions of Alkyl Halides"

Chapter 7 Alkenes and Alkynes I: Properties and Synthesis Elimination Reactions of Alkyl Halides Chapter 7 Alkenes and Alkynes I: Properties and Synthesis Elimination Reactions of Alkyl Halides The (E)-(Z) System for Designating Alkene Diastereomers The Cahn-Ingold-Prelog convention is used to assign

More information

Electrophile = electron loving = any general electron pair acceptor = Lewis acid, (often an acidic proton)

Electrophile = electron loving = any general electron pair acceptor = Lewis acid, (often an acidic proton) 314 Arrow Pushing practice/eauchamp 1 Electrophile = electron loving = any general electron pair acceptor = Lewis acid, (often an acidic proton) ucleophile = nucleus/positive loving = any general electron

More information