Dehydrohalogenation of Alkyl Halides E2 and E1 Reactions in Detail

Size: px
Start display at page:

Download "Dehydrohalogenation of Alkyl Halides E2 and E1 Reactions in Detail"

Transcription

1 Dehydrohalogenation of Alkyl Halides E2 and E1 Reactions in Detail

2 b-elimination Reactions Overview dehydration of alcohols: X = H; Y = OH dehydrohalogenation of alkyl halides: X = H; Y = Br, etc. X C b Ca Y C C + X Y

3 b-elimination Reactions Overview dehydration of alcohols: acid-catalyzed dehydrohalogenation of alkyl halides: consumes base X C b Ca Y C C + X Y

4 Dehydrohalogenation is a useful method for the preparation of alkenes Cl NaOCH 2 CH 3 ethanol, 55 C (100 %) likewise, NaOCH 3 in methanol, or KOH in ethanol

5 Dehydrohalogenation When the alkyl halide is primary, potassium tert-butoxide in dimethyl sulfoxide is the base/solvent system that is normally used. CH 3 (CH 2 ) 15 CH 2 CH 2 Cl KOC(CH 3 ) 3 dimethyl sulfoxide CH 3 (CH 2 ) 15 CH CH 2 (86%)

6 Regioselectivity Br KOCH 2 CH 3 ethanol, 70 C + 29 % 71 % follows Zaitsev's rule More highly substituted double bond predominates = More Stable

7 Zaitsev s Rule The more substituted alkene is obtained when a proton is removed from the b-carbon that is bonded to the fewest hydrogens

8

9 Conjugated alkenes are preferred!

10 Steric hindrance effects the product distribution

11

12 Stereoselectivity KOCH 2 CH 3 Br ethanol + (23%) (77%) more stable configuration of double bond predominates

13 Stereoselectivity Br KOCH 2 CH 3 ethanol + (85%) (15%) more stable configuration of double bond predominates

14 Mechanism of the Dehydrohalogenation of Alkyl Halides: The E2 Mechanism

15 Facts Dehydrohalogenation of alkyl halides exhibits second-order kinetics first order in alkyl halide first order in base rate = k[alkyl halide][base] implies that rate-determining step involves both base and alkyl halide; i.e., it is bimolecular

16 Facts Rate of elimination depends on halogen weaker C X bond; faster rate rate: RI > RBr > RCl > RF implies that carbon-halogen bond breaks in the rate-determining step

17 The E2 Mechanism concerted (one-step) bimolecular process single transition state C H bond breaks p component of double bond forms C X bond breaks

18 The E2 Mechanism QuickTime and a Graphics decompressor are needed to see this picture.

19 The E2 Mechanism R.. O.. : H C C : X.. : Reactants

20 The E2 Mechanism R.. O.. : H C C : X.. : Reactants

21 The E2 Mechanism d.. R O.. Transition state H C C : d X :..

22 The E2 Mechanism R.. O.. H C C : X.. :.. Products

23 Anti Elimination in E2 Reactions Stereoelectronic Effects

24 Stereochemistry of the E2 Reaction Remember: The bonds to the eliminated groups (H and X) must be in the same plane and anti to each other H X More stable conformation than syn-eclipsed

25 The best orbital overlap of the interacting orbitals is achieved through back side attack of the leaving group X as in an S N 2 displacement.

26 Regioselectivity

27

28

29 Configuration of the Reactant

30 Elimination from Cyclic Compounds H H Br Br Configuration must be trans, which is (anti).

31

32

33

34

35 Stereoelectronic effect Br (CH 3 ) 3 C KOC(CH 3 ) 3 (CH 3 ) 3 COH cis-1-bromo-4-tertbutylcyclohexane (CH 3 ) 3 C

36 Stereoelectronic effect trans-1-bromo-4-tertbutylcyclohexane (CH 3 ) 3 C (CH 3 ) 3 C Br KOC(CH 3 ) 3 (CH 3 ) 3 COH

37 cis Br Stereoelectronic effect (CH 3 ) 3 C (CH 3 ) 3 C Rate constant for dehydrohalogenation of cis is 500 times greater than that of trans trans Br KOC(CH 3 ) 3 (CH 3 ) 3 COH (CH 3 ) 3 C KOC(CH 3 ) 3 (CH 3 ) 3 COH

38 Stereoelectronic effect cis Br (CH 3 ) 3 C KOC(CH 3 ) 3 (CH 3 ) 3 COH H H (CH 3 ) 3 C H that is removed by base must be anti periplanar to Br Two anti periplanar H atoms in cis stereoisomer

39 Stereoelectronic effect trans (CH 3 ) 3 C H H Br KOC(CH 3 ) 3 (CH 3 ) 3 COH H H (CH 3 ) 3 C H that is removed by base must be anti periplanar to Br No anti periplanar H atoms in trans stereoisomer; all vicinal H atoms are gauche to Br

40 Stereoelectronic effect cis more reactive trans less reactive

41 Stereoelectronic effect An effect on reactivity that has its origin in the spatial arrangement of orbitals or bonds is called a stereoelectronic effect. The preference for an anti periplanar arrangement of H and Br in the transition state for E2 dehydrohalogenation is an example of a stereoelectronic effect.

42 E2 in a cyclohexane ring

43 E2 in a cyclohexane ring H 3 C CH 3 Cis or trans? Axial or equatorial? H 3 C CH 3 H 3 C CH 3 Cl a,e e,a + CH 3 CH 2 O- + CH 3 neomenthyl H 3 C CH 3 Cl + e,e a,a CH 3 CH 2 O- CH 3 CH 3 80% 20% H 3 C CH 3 CH 3 menthyl CH 3 100% Can you predict explain the products?

44 Cyclohexane Stereochemistry Revisited l-menthol How many stereoisomers are possible for menthol?

45 A Different Mechanism for Alkyl Halide Elimination: The E1 Mechanism

46 Example CH 3 CH 3 C CH 2 CH 3 Br Ethanol, heat CH 3 H 3 C H H 2 C C + C C CH 2 CH 3 H 3 C (25%) (75%) CH 3

47 The E1 Mechanism 1. Alkyl halides can undergo elimination in absence of base. 2. Carbocation is intermediate 3. Rate-determining step is unimolecular ionization of alkyl halide.

48 Step 1 CH 3 CH 3 C CH 2 CH 3 : Br:.. slow, unimolecular CH 3 CH 3 C + CH2 CH 3.. : Br:..

49 Step 2 CH 3 CH 3 C + CH2 CH 3 H + CH 2 + C CH 3 CH 3 C CH2 CH 3 CH 3 CHCH 3 Which alkene is more stable and why?

50

51

52

53 Reaction coordinate diagram for the E1 reaction of 2-chloro-2-methylbutane

54

55

56 Must consider possible carbocation rearrangement

57

58 Stereochemistry of the E1 Reaction

59 E1 Elimination from Cyclic Compounds E1 mechanism involves both syn and anti elimination

60

61 Summary & Applications (Synthesis) S N 1 / E1 vs. S N 2 / E2

62 E2 and E1 Reactions

63

64 Substitution vs. Elimination Alkyl halides can undergo S N 2, S N 1, E2 and E1 Reactions 1) Which reaction conditions favor S N 2/E2 or S N 1/E1? S N 2/E2 reactions are favored by a high concentration of nucleophile/strong base S N 1/E1 reactions are favored by a poor nucleophile/weak base 2) What will be the relative distribution of substitution product vs. elimination product?

65 Consider the Substrate

66 NOTE: a bulky base encourages elimination over substitution

67 Returning to Sn2 and E2: Considering the differences Br + CH 3 O- O + CH 3 Br OCH 3 Can you predict explain the products?

68 Substitution and Elimination Reactions in Synthesis

69 A hindered alkyl halide should be used if you want to synthesize an alkene

70 Which reaction produces an ether? CH 3 CH 2 Br + CH 3 CH 3 CO- CH 3 CH 3 CH 2 O- + CH 3 CH 3 CBr CH 3

71 Consecutive E2 Elimination Reactions: Alkynes

72 Intermolecular vs. Intramolecular Reactions A low concentration of reactant favors an intramolecular reaction The intramolecular reaction is also favored when a fiveor six-membered ring is formed

73 Three- and four-membered rings are less easily formed Three-membered ring compounds are formed more easily than four-membered ring compounds The likelihood of the reacting groups finding each other decreases sharply when the groups are in compounds that would form seven-membered and larger rings.

74 Designing a synthesis?

75 CH 3 CH? 3 Br Br

76

77

How alkyl halides react

How alkyl halides react Chapter 10 1 How alkyl halides react δ+ δ- RCH 2 -X X= halogen X = higher EN C = lower EN This polar carbon-halogen bond causes alkyl halide to undergo S N and elimination reaction. 2 The mechanism of

More information

Elimination reactions

Elimination reactions Chapter 9 Elimination reactions E2 and E1 reactions Competition between S N and E Elimination reactions Ch 9 #2 elimination and/or substitution 2 mechanisms ~ E2 and E1 E2: bimolecular elimination rxn

More information

Chapter 8 Alkyl Halides and Elimination Reactions

Chapter 8 Alkyl Halides and Elimination Reactions Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai i Chapter 8 Alkyl Halides and Elimination Reactions Prepared by Rabi Ann Musah State University of New York at Albany Copyright

More information

Essential Organic Chemistry. Chapter 9

Essential Organic Chemistry. Chapter 9 Essential Organic Chemistry Paula Yurkanis Bruice Chapter 9 Substitution and Elimination Reactions of Alkyl Halides 9.1 How Alkyl Halides React Substitution Reactions One group takes the place of another.

More information

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122)

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122) Basic Organic Chemistry Course code : CHEM 12162 (Pre-requisites : CHEM 11122) Chapter 01 Mechanistic Aspects of S N2,S N1, E 2 & E 1 Reactions Dr. Dinesh R. Pandithavidana Office: B1 222/3 Phone: (+94)777-745-720

More information

c. Cl H Page 1 of 7 major P (E > Z and more substituted over less substituted alkene) LG must be axial are the same Cl -

c. Cl H Page 1 of 7 major P (E > Z and more substituted over less substituted alkene) LG must be axial are the same Cl - CEM 109A 1. Predict the products of the following reactions (a-c E2, d-f E1 KEY focuses only on elimination products, in most cases there will also be substitution products.) a. - LG must be axial - are

More information

Elimination Reactions. Chapter 6 1

Elimination Reactions. Chapter 6 1 Elimination Reactions Chapter 6 1 E1 Mechanism Step 1: halide ion leaves, forming a carbocation. Step 2: Base abstracts H + from adjacent carbon forming the double bond. Chapter 6 2 E1 Energy Diagram E1:

More information

Classes of Alkenes. Alkenes and Alkynes. Saturated compounds (alkanes): Have the maximum number of hydrogen atoms attached to each carbon atom.

Classes of Alkenes. Alkenes and Alkynes. Saturated compounds (alkanes): Have the maximum number of hydrogen atoms attached to each carbon atom. Alkenes and Alkynes Saturated compounds (alkanes): ave the maximum number of hydrogen atoms attached to each carbon atom. Unsaturated compounds: ave fewer hydrogen atoms attached to the carbon chain than

More information

C h a p t e r S e v e n : Haloalkanes: Nucleophilc Substitution and Elimination Reactions S N 2

C h a p t e r S e v e n : Haloalkanes: Nucleophilc Substitution and Elimination Reactions S N 2 C h a p t e r S e v e n : Haloalkanes: Nucleophilc Substitution and Elimination Reactions S N 2 CHM 321: Summary of Important Concepts Concepts for Chapter 7: Substitution Reactions I. Nomenclature of

More information

Structure and Preparation of Alkenes: Elimination Reactions

Structure and Preparation of Alkenes: Elimination Reactions Structure and Preparation of Alkenes: Elimination Reactions Alkene Nomenclature First identify the longest continuous chain that includes the double bond. Replace the -ane ending of the corresponding unbranched

More information

Walden discovered a series of reactions that could interconvert (-)-malic acid and (+)-malic acid.

Walden discovered a series of reactions that could interconvert (-)-malic acid and (+)-malic acid. Chapter 11: Reactions of alkyl halides: nucleophilic substitutions and eliminations Alkyl halides are polarized in the C-X bond, making carbon δ+ (electrophilic). A nucleophilecan attack this carbon, displacing

More information

Organic Chemistry The Functional Group Approach. Organic Chemistry The Functional Group Approach

Organic Chemistry The Functional Group Approach. Organic Chemistry The Functional Group Approach Organic Chemistry The Functional Group Approach OH Br alkane (no F.G.) alcohol halide alkene non-polar (grease, fats) O NH alkyne aromatic aldehyde/ketone imine linear flat Organic Chemistry The Functional

More information

Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides"

Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides" t Introduction" The polarity of a carbon-halogen bond leads to the carbon having a partial positive charge"

More information

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination CHAPTER 7 Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination 7-1 Solvolysis of Tertiary and Secondary Haloalkanes The rate of S N 2 reactions decrease dramatically

More information

Organic Reactions Susbstitution S N. Dr. Sapna Gupta

Organic Reactions Susbstitution S N. Dr. Sapna Gupta Organic Reactions Susbstitution S N 2 Dr. Sapna Gupta Kinetics of Nucleophilic Reaction Rate law is order of reaction 0 order is when rate of reaction is unaffected by change in concentration of the reactants

More information

Chapter 9. Nucleophilic Substitution and ß-Elimination

Chapter 9. Nucleophilic Substitution and ß-Elimination Chapter 9 Nucleophilic Substitution and ß-Elimination Nucleophilic Substitution Nucleophile: From the Greek meaning nucleus loving. A molecule or ion that donates a pair of electrons to another atom or

More information

REACTION AND SYNTHESIS REVIEW

REACTION AND SYNTHESIS REVIEW REACTION AND SYNTHESIS REVIEW A STUDENT SHOULD BE ABLE TO PREDICT PRODUCTS, IDENTIFY REACTANTS, GIVE REACTION CONDITIONS, PROPOSE SYNTHESES, AND PROPOSE MECHANISMS (AS LISTED BELOW). REVIEW THE MECHANISM

More information

Elimination Reactions Heating an alkyl halide with a strong base causes elimination of a. molecule of HX

Elimination Reactions Heating an alkyl halide with a strong base causes elimination of a. molecule of HX Elimination eactions eating an alkyl halide with a strong base causes elimination of a molecule of X 1. Potassium hydroxide dissolved in ethanol and the sodium salts of alcohols (such as sodium ethoxide)

More information

REACTIONS OF HALOALKANES - SUBSTITUTION AND ELIMINATION

REACTIONS OF HALOALKANES - SUBSTITUTION AND ELIMINATION REACTIONS OF HALOALKANES - SUBSTITUTION AND ELIMINATION Haloalkanes (also known as halogenoalkanes and alkyl halides) are organic compounds where one of the hydrogens of an alkane or cycloalkane has been

More information

Chapter 7 Alkenes and Alkynes I: Properties and Synthesis Elimination Reactions of Alkyl Halides"

Chapter 7 Alkenes and Alkynes I: Properties and Synthesis Elimination Reactions of Alkyl Halides Chapter 7 Alkenes and Alkynes I: Properties and Synthesis Elimination Reactions of Alkyl Halides The (E)-(Z) System for Designating Alkene Diastereomers The Cahn-Ingold-Prelog convention is used to assign

More information

Nucleophilic Substitution and Elimination

Nucleophilic Substitution and Elimination Nucleophilic Substitution and Elimination Alkyl halides react with a nucleophile in one of two ways. Either they eliminate an X to form an alkene, or they undergo a substitution with the nucleophile, Nu,

More information

Dr. Anand Gupta Mr Mahesh Kapil

Dr. Anand Gupta Mr Mahesh Kapil Dr. Anand Gupta Mr Mahesh Kapil 09356511518 09888711209 anandu71@yahoo.com mkapil_foru@yahoo.com Preparation of Haloalkanes From Alkanes Alkenes Alcohols Carboxylic Acids (Hundsdicker Reaction) Halide

More information

Chapter 8. Substitution reactions of Alkyl Halides

Chapter 8. Substitution reactions of Alkyl Halides Chapter 8. Substitution reactions of Alkyl Halides There are two types of possible reaction in organic compounds in which sp 3 carbon is bonded to an electronegative atom or group (ex, halides) 1. Substitution

More information

Alkyl Halides. Alkyl halides are a class of compounds where a halogen atom or atoms are bound to an sp 3 orbital of an alkyl group.

Alkyl Halides. Alkyl halides are a class of compounds where a halogen atom or atoms are bound to an sp 3 orbital of an alkyl group. Alkyl Halides Alkyl halides are a class of compounds where a halogen atom or atoms are bound to an sp 3 orbital of an alkyl group. CHCl 3 (Chloroform: organic solvent) CF 2 Cl 2 (Freon-12: refrigerant

More information

10. Organohalides. Based on McMurry s Organic Chemistry, 7 th edition

10. Organohalides. Based on McMurry s Organic Chemistry, 7 th edition 10. Organohalides Based on McMurry s Organic Chemistry, 7 th edition What Is an Alkyl Halide An organic compound containing at least one carbonhalogen bond (C-X) X (F, Cl, Br, I) replaces H Can contain

More information

Elimination Reactions:

Elimination Reactions: Elimination Reactions: These are just reverse of addition reactions. These involve the removal of atoms or group of atoms from a molecule. Elimination reactions are generally endothermic and take place

More information

Organic Reactions Susbstitution S N. Dr. Sapna Gupta

Organic Reactions Susbstitution S N. Dr. Sapna Gupta Organic Reactions Susbstitution S N 2 Dr. Sapna Gupta Kinetics of Nucleophilic Reaction Rate law is order of reaction 0 order is when rate of reaction is unaffected by change in concentration of the reactants

More information

Chapter 7 Alkenes; Elimination Reactions

Chapter 7 Alkenes; Elimination Reactions hapter 7 Alkenes; Elimination Reactions Alkenes Alkenes contain a carbon-carbon double bond. They are named as derivatives of alkanes with the suffix -ane changed to -ene. The parent alkane is the longest

More information

2/26/18. Practice Questions. Practice Questions B F. How many steps are there in this reaction?

2/26/18. Practice Questions. Practice Questions B F. How many steps are there in this reaction? Practice Questions Practice Questions D B F C E A G How many steps are there in this reaction? 1 Practice Questions D B F C E A G What is the highest-energy transitions state? Practice Questions D B F

More information

8. What is the slow, rate-determining step, in the acidcatalyzed dehydration of 2-methyl-2-propanol?

8. What is the slow, rate-determining step, in the acidcatalyzed dehydration of 2-methyl-2-propanol? CHEMISTRY 313-03 MIDTERM # 2 answer key October 25, 2011 Statistics: Average: 68 pts (68%); Highest: 100 pts (100%); Lowest: 30 pts (30%) Number of students performing at or above average: 56 (54%) Number

More information

C h a p t e r E i g h t: Alkenes: Structure and Preparation via Elimination Reactions. 5-Androstene, the parent alkene for most anabolic steroids

C h a p t e r E i g h t: Alkenes: Structure and Preparation via Elimination Reactions. 5-Androstene, the parent alkene for most anabolic steroids C h a p t e r E i g h t: Alkenes: Structure and Preparation via Elimination Reactions 5-Androstene, the parent alkene for most anabolic steroids CHM 321: Summary of Important Concepts YConcepts for Chapter

More information

Chapter 7: Alkenes and Alkynes

Chapter 7: Alkenes and Alkynes Chapter 7: Alkenes and Alkynes ydrocarbons Containing Double and Triple Bonds Unsaturated Compounds (Less than Maximum Atoms) Alkenes also Referred to as Olefins Properties Similar to those of Corresponding

More information

Elimination Reactions The E2 Mechanism

Elimination Reactions The E2 Mechanism Elimination Reactions The E2 Mechanism The E2 Mechanism X X- B: B- δ- B:- δ+ R 1 δ- R 2 δ+ X δ- The E2 Mechanism R 3 R 4 transition state Free energy (G) Eact B:- B R 1 R 2 X R 1 R 2 R 3 R 4 R 4 R 3 X:-

More information

Chapter 11 - Alcohols and Ethers 1

Chapter 11 - Alcohols and Ethers 1 Andrew Rosen Chapter 11 - Alcohols and Ethers 1 11.1 - Structure and Nomenclature - The common naming calls alcohols as alkyl alcohols (eg: methyl alcohol) - The common names of ethers have the groups

More information

Elimination Reactions The E2 Mechanism

Elimination Reactions The E2 Mechanism Elimination Reactions The E2 Mechanism The E2 Mechanism X B: δ- B:- δ+ R 1 C δ- R 2 C δ+ X δ- The E2 Mechanism R 3 R 4 transition state Free energy (G) Eact B:- B R 1 R 2 C C X R 1 R 2 R 3 R 4 R 4 R 3

More information

3-chloro-1-propene 1-chloropropane 2-chloropropene

3-chloro-1-propene 1-chloropropane 2-chloropropene ANSWERS #1. (from 50 minute exam #3, Fall 2000) 5. (6 points) For each group of 3 compounds, identify the compound that expresses the indicated property the MOST and the compound that expresses it the

More information

Chapter 5. Nucleophilic aliphatic substitution mechanism. by G.DEEPA

Chapter 5. Nucleophilic aliphatic substitution mechanism. by G.DEEPA Chapter 5 Nucleophilic aliphatic substitution mechanism by G.DEEPA 1 Introduction The polarity of a carbon halogen bond leads to the carbon having a partial positive charge In alkyl halides this polarity

More information

7: Reactions of Haloalkanes, Alcohols, and Amines. Nucleophilic Substitution

7: Reactions of Haloalkanes, Alcohols, and Amines. Nucleophilic Substitution 7: Reactions of Haloalkanes, Alcohols, and Amines. Nucleophilic Substitution Preview 7-4 7.1 Nucleophilic Substitution Reactions of Haloalkanes 7-5 Nucleophilic Substitution Mechanisms (7.1A) 7-5 The SN1

More information

Homework problems Chapters 6 and Give the curved-arrow formalism for the following reaction: CH 3 OH + H 2 C CH +

Homework problems Chapters 6 and Give the curved-arrow formalism for the following reaction: CH 3 OH + H 2 C CH + omework problems hapters 6 and 7 1. Give the curved-arrow formalism for the following reaction: : 3 - : 2 : 3 2-3 3 2. In each of the following sets, arrange the compounds in order of decreasing pka and

More information

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition 1. Radical Substitution on Alkanes Only Cl and Br are useful at the laboratory level. Alkane reactivity: tertiary > secondary > primary > methyl Numbers below products give their relative yield. Relative

More information

Chapter 11, Part 1: Polar substitution reactions involving alkyl halides

Chapter 11, Part 1: Polar substitution reactions involving alkyl halides hapter 11, Part 1: Polar substitution reactions involving alkyl halides Overview: The nature of alkyl halides and other groups with electrophilic sp 3 hybridized leads them to react with nucleophiles and

More information

Chapter 7 - Alkenes and Alkynes I

Chapter 7 - Alkenes and Alkynes I Andrew Rosen Chapter 7 - Alkenes and Alkynes I 7.1 - Introduction - The simplest member of the alkenes has the common name of ethylene while the simplest member of the alkyne family has the common name

More information

PAPER No. 5: REACTION MECHANISM MODULE No. 2: Types of Organic Reaction Mechanisms

PAPER No. 5: REACTION MECHANISM MODULE No. 2: Types of Organic Reaction Mechanisms Subject Chemistry Paper No and Title Module No and Title Module Tag Paper No. 5:Organic Chemistry-II Module No. 2: Overview of different types of Organic Reaction Mechanisms CHE_P5_M2 TABLE OF CONTENTS

More information

Alcohols, Ethers, & Epoxides

Alcohols, Ethers, & Epoxides Alcohols, Ethers, & Epoxides Alcohols Structure and Bonding Enols and Phenols Compounds having a hydroxy group on a sp 2 hybridized carbon enols and phenols undergo different reactions than alcohols. Chapter

More information

Preparation of alkenes

Preparation of alkenes Lecture 11 אלקנים הכנה ותגובות של אלקנים: הידרוגנציה, סיפוח הידרוהלוגנים )כלל מארקובניקוב(, סיפוח הלוגנים והסטראוכימיה של תוצרי הסיפוח, הידרובורציה, אפוקסידציה, אוזונוליזה. 1 Preparation of alkenes 1.

More information

E2 Elimination. Mary McHale. 1 The E2 Elimination Reaction

E2 Elimination. Mary McHale. 1 The E2 Elimination Reaction OpenStax-CNX module: m15749 1 E2 Elimination Mary McHale This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 1 The E2 Elimination Reaction 1.1 Objective

More information

Organic Halogen Compounds

Organic Halogen Compounds 8 Organic alogen ompounds APTER SUMMARY 8.1 Introduction Although organic halogen compounds are rarely found in nature, they do have a variety of commercial applications including use as insecticides,

More information

Chem 3719 Example Exams. Chemistry 3719 Practice Exams

Chem 3719 Example Exams. Chemistry 3719 Practice Exams Chem 3719 Example Exams Chemistry 3719 Practice Exams Fall 2018 Chemistry 3719, Fall 2017 Exam 1 Student Name: Y Number: This exam is worth 100 points out of a total of 700 points for Chemistry 3719/3719L.

More information

CHEM Lecture 7

CHEM Lecture 7 CEM 494 Special Topics in Chemistry Illinois at Chicago CEM 494 - Lecture 7 Prof. Duncan Wardrop ctober 22, 2012 CEM 494 Special Topics in Chemistry Illinois at Chicago Preparation of Alkenes Elimination

More information

Organic Chemistry Lecture 2 - Hydrocarbons, Alcohols, Substitutions

Organic Chemistry Lecture 2 - Hydrocarbons, Alcohols, Substitutions ALKANES Water-insoluble, low density C-C single bonds Higher MW -> higher BP, higher MP Branching -> lower BP, higher MP Forms cycloalkanes which can have ring strain Cyclohexane: chair vs. boat configuration

More information

ORGANIC - EGE 5E CH. 7 - NUCLEOPHILIC SUBSTITUTION AND ELIMINATION REACTIONS

ORGANIC - EGE 5E CH. 7 - NUCLEOPHILIC SUBSTITUTION AND ELIMINATION REACTIONS !! www.clutchprep.com CONCEPT: INTRODUCTION TO SUBSTITUTION Previously, we discussed the various ways that acids could react with bases: Recall that in these mechanisms, electrons always travel from density

More information

11. Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations

11. Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations 11. Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations Based on McMurry s Organic Chemistry, 6 th edition 2003 Ronald Kluger Department of Chemistry University of Toronto Alkyl Halides

More information

Chapter 6: Organic Halogen Compounds; Substitution and Elimination Reactions

Chapter 6: Organic Halogen Compounds; Substitution and Elimination Reactions Chapter 6: Organic Halogen Compounds; Substitution and Elimination Reactions Halogen compounds are important for several reasons. Simple alkyl and aryl halides, especially chlorides and bromides, are versatile

More information

Lecture Notes Chem 51B S. King I. Conjugation

Lecture Notes Chem 51B S. King I. Conjugation Lecture Notes Chem 51B S. King Chapter 16 Conjugation, Resonance, and Dienes I. Conjugation Conjugation occurs whenever p-orbitals can overlap on three or more adjacent atoms. Conjugated systems are more

More information

1.13 Acid-Base Reactions: Lone-Pair Donors & Acceptors

1.13 Acid-Base Reactions: Lone-Pair Donors & Acceptors 1.13 Acid-Base Reactions: Lone-Pair Donors & Acceptors I, Cl, N 3, 3 P 4 pka 10 to 5 Super strong acids 3 + pka 1.7 RC 2 pka ~ 5 acids Ph pka ~ 10 get 2, R pka ~ 16 weaker RCC (alkynes) pka ~ 26 RN 2 pka

More information

Reactions of Alkyl Halides with Nucleophiles and Bases a substitution reaction

Reactions of Alkyl Halides with Nucleophiles and Bases a substitution reaction Reactions of Alkyl Halides with Nucleophiles and Bases a substitution reaction Nucleophilic substitution and base induced elimination are among most widely occurring and versatile reaction types in organic

More information

Chapter 11: Nucleophilic Substitution and Elimination Walden Inversion

Chapter 11: Nucleophilic Substitution and Elimination Walden Inversion hapter 11: Nucleophilic Substitution and Elimination Walden Inversion (S)-(-) Malic acid [a] D = -2.3 Ag 2, 2 Pl 5 l Ag 2, 2 ()-2-hlorosuccinic acid l (-)-2-hlorosuccinic acid Pl 5 ()-() Malic acid [a]

More information

(CH 3 ) 3 COH. CH 3 ONa

(CH 3 ) 3 COH. CH 3 ONa 1. Rank the following compounds in the trend requested. (15 points each) a. Rank by nucleophilicity. The strongest nucleophile is 1, while the weakest nucleophile is 5. C 3 PNa (C 3 ) 3 C C 3 Na C 3 C

More information

CHE 275 NUCLEOPHILIC SUBSTITUTUION CHAP 8 ASSIGN. 1. Which best depicts the partial charges on methyl bromide and sodium methoxide?

CHE 275 NUCLEOPHILIC SUBSTITUTUION CHAP 8 ASSIGN. 1. Which best depicts the partial charges on methyl bromide and sodium methoxide? CHE 275 NUCLEPHILIC SUBSTITUTUIN CHAP 8 ASSIGN 1. Which best depicts the partial charges on methyl bromide and sodium methoxide? 2. Which of the following would be the best (most reactive) nucleophile

More information

ORGANIC - CLUTCH CH. 8 - ELIMINATION REACTIONS.

ORGANIC - CLUTCH CH. 8 - ELIMINATION REACTIONS. !! www.clutchprep.com CONCEPT: THE E2 MECHANISM A strong nucleophile reacts with an inaccessible leaving group to produce beta-elimination in one-step. E2 Properties (Circle One) Nucleophile = Strong /

More information

Chapter 8: Alkene Structure and Preparation via Elimination Reactions

Chapter 8: Alkene Structure and Preparation via Elimination Reactions 1. Nature of the pi bond Chapter 8: Alkene Structure and Preparation via Elimination eactions [Sections: 8.1-8.13] C C bond length bond strength 3 C C 3 3 C C 3 3 C C 3 3 C 2 C C 2 3 C a C=C double bond

More information

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2.

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2. Preparation of Alkyl alides, R-X Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): UV R + X 2 R X or heat + X This mechanism involves a free radical chain reaction. A chain

More information

Chapter 8: Alkene Structure and Preparation via Elimination Reactions

Chapter 8: Alkene Structure and Preparation via Elimination Reactions Nature of the pi bond Chapter 8: Alkene Structure and Preparation via Elimination eactions [Sections: 8.1-8.13] C C 3 C C 3 bond length bond strength 2 C C 2 a C=C double bond is stronger than a C C single

More information

UCF - ORGANIC CHEMISTRY 1 - PROF. DAOUDI UCF PROF. DAOUDI EXAM 3 REVIEW.

UCF - ORGANIC CHEMISTRY 1 - PROF. DAOUDI UCF PROF. DAOUDI EXAM 3 REVIEW. UCF PROF. DAOUDI EXAM 3 REVIEW www.clutchprep.com 1 PRACTICE: Identify the most stable and the least stable alkene PRACTICE: Create the full arrow pushing mechanism which shows all intermediates and all

More information

CHE1502. Tutorial letter 201/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry CHE1502/201/1/2016

CHE1502. Tutorial letter 201/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry CHE1502/201/1/2016 CE1502/201/1/2016 Tutorial letter 201/1/2016 General Chemistry 1B CE1502 Semester 1 Department of Chemistry This tutorial letter contains the answers to the questions in assignment 1. FIRST SEMESTER: KEY

More information

Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I. Examination #4 - December 9, 2002 ANSWERS

Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I. Examination #4 - December 9, 2002 ANSWERS INSTRUCTINS Department of Chemistry SUNY/neonta Chem 221 - rganic Chemistry I Examination #4 - December 9, 2002 ANSWERS This examination is in multiple choice format; the questions are in this Exam Booklet

More information

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2018

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2018 OChem 1 Mechanism Flashcards Dr. Peter Norris, 2018 Mechanism Basics Chemical change involves bonds forming and breaking; a mechanism describes those changes using curved arrows to describe the electrons

More information

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2015

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2015 OChem 1 Mechanism Flashcards Dr. Peter Norris, 2015 Mechanism Basics Chemical change involves bonds forming and breaking; a mechanism describes those changes using curved arrows to describe the electrons

More information

8.8 Unimolecular Nucleophilic Substitution S N 1

8.8 Unimolecular Nucleophilic Substitution S N 1 8.8 Unimolecular Nucleophilic Substitution S N 1 A question. Tertiary alkyl halides are very unreactive in substitutions that proceed by the S N 2 mechanism. Do they undergo nucleophilic substitution at

More information

Chapter 8 Outline: Alkenes: Structure and Preparation via β-elimination

Chapter 8 Outline: Alkenes: Structure and Preparation via β-elimination Chapter 8 Outline: Alkenes: Structure and Preparation via β-elimination 1. What is β elimination? 2. Alkenes: structure, steroisomerism and stability 3. Elimination Reactions o E2 Mechanism o E1 Mechanism

More information

Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008

Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008 Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008 Lesson Date Assignment Lesson Objective Description Lesson Problems 4 14-Jan Chapter 1 Quiz Describe how bond polarity

More information

Organic Chemistry CHM 314 Dr. Laurie S. Starkey, Cal Poly Pomona Alkyl Halides: Substitution Reactions - Chapter 6 (Wade)

Organic Chemistry CHM 314 Dr. Laurie S. Starkey, Cal Poly Pomona Alkyl Halides: Substitution Reactions - Chapter 6 (Wade) rganic Chemistry CM 314 Dr. Laurie S. Starkey, Cal Poly Pomona Alkyl alides: Substitution Reactions - Chapter 6 (Wade) Chapter utline I. Intro to RX (6-1 - 6-7) II. Substitution Reactions A) S N 2 (6-8,

More information

Chapter 7 Substitution Reactions 7.1 Introduction to Substitution Reactions Substitution Reactions: two reactants exchange parts to give new products

Chapter 7 Substitution Reactions 7.1 Introduction to Substitution Reactions Substitution Reactions: two reactants exchange parts to give new products hapter 7 Substitution eactions 7.1 Introduction to Substitution eactions Substitution eactions: two reactants exchange parts to give new products A-B + -D A-D + B- 3 2 + Br 3 2 Br + Elimination eaction:

More information

CONCERTED sp 2 H. HO Et

CONCERTED sp 2 H. HO Et Alkyl alides Substitution and Elimination 1 Substitutions (Quick Review) 1.1 SN2 Reactions LB nucleophile "backside attack!" NERTED reaction This is fundamentally just a Lewis acid/base reaction, the Lewis

More information

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES.

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES. COURSE OBJECTIVES / OUTCOMES / COMPETENCIES. By the end of the course, students should be able to do the following: See Test1-4 Objectives/Competencies as listed in the syllabus and on the main course

More information

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 I. Isolated, cumulated, and conjugated dienes A diene is any compound with two or C=C's is a diene. Compounds containing more than two

More information

Detailed Course Content

Detailed Course Content Detailed Course Content Chapter 1: Carbon Compounds and Chemical Bonds The Structural Theory of Organic Chemistry 4 Chemical Bonds: The Octet Rule 6 Lewis Structures 8 Formal Charge 11 Resonance 14 Quantum

More information

Chapter 10. Reactions of Alcohols, Amines, Ethers, and Epoxides

Chapter 10. Reactions of Alcohols, Amines, Ethers, and Epoxides Chapter 10. Reactions of Alcohols, Amines, Ethers, and Epoxides Learning objectives: 1. Provide both IUPAC and common (when applicable) names for alcohols and ethers. 2. Describe the physical properties

More information

CHEM 263 Oct 25, stronger base stronger acid weaker acid weaker base

CHEM 263 Oct 25, stronger base stronger acid weaker acid weaker base CEM 263 ct 25, 2016 Reactions and Synthesis (Preparation) of R- Breaking the - Bond of R- with Metals R + Li 0 or Na 0 or K 0 metal R Li + 1/2 2 alkoxide Breaking the - Bond of R- by Acid-Base Reaction

More information

CHEMISTRY 231 GENERAL ORGANIC CHEMISTRY I FALL 2014 List of Topics / Examination Schedule

CHEMISTRY 231 GENERAL ORGANIC CHEMISTRY I FALL 2014 List of Topics / Examination Schedule Page 1 of 5 CHEMISTRY 231 FALL 2014 List of Topics / Examination Schedule Unit Starts Topic of Study 20 Aug 2014 STRUCTURE AND BONDING Suggested Reading: Chapter 1 29 Aug 2014 ALKANES & CYCLOALKANES Suggested

More information

CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA

CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA Conjugation in Alkadienes and Allylic Systems conjugation a series of overlapping p orbitals The Allyl Group allylic position is the next to a double bond 1 allyl

More information

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens). Reactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. Normally: Oxidation

More information

Chapter 7. Alkenes: Reactions and Synthesis

Chapter 7. Alkenes: Reactions and Synthesis Chapter 7. Alkenes: Reactions and Synthesis 1 Synthesis of Alkenes: Elimination Reactions 1. Dehydrohalogenation of alkyl halides. loss of requires CH 2 CH 2 Cl Zaitsev s Rule: CH 2 C 2. Dehydration of

More information

S N 1 Displacement Reactions

S N 1 Displacement Reactions S N 1 Displacement Reactions Tertiary alkyl halides cannot undergo S N 2 reactions because of the severe steric hindrance blocking a backside approach of the nucleophile. They can, however, react via an

More information

Learning Guide for Chapter 17 - Dienes

Learning Guide for Chapter 17 - Dienes Learning Guide for Chapter 17 - Dienes I. Isolated, conjugated, and cumulated dienes II. Reactions involving allylic cations or radicals III. Diels-Alder Reactions IV. Aromaticity I. Isolated, Conjugated,

More information

General Glossary. General Glossary

General Glossary. General Glossary General Glossary Absolute configuration The actual three-dimensional structure of a chiral molecule. Absolute configurations are specified verbally by the Cahn-Ingold-Prelog R,S convention and are represented

More information

Classes of Halides. Chapter 6 Alkyl Halides: Nucleophilic Substitution and Elimination. Polarity and Reactivity. Classes of Alkyl Halides

Classes of Halides. Chapter 6 Alkyl Halides: Nucleophilic Substitution and Elimination. Polarity and Reactivity. Classes of Alkyl Halides rganic hemistry, 5 th Edition L. G. Wade, Jr. hapter 6 Alkyl alides: Nucleophilic Substitution and Elimination lasses of alides Alkyl: alogen, X, is directly bonded to sp 3 carbon. Vinyl: X is bonded to

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

Substitution and Elimination reactions

Substitution and Elimination reactions PART 3 Substitution and Elimination reactions Chapter 8. Substitution reactions of RX 9. Elimination reactions of RX 10. Substit n/elimin n of other comp ds 11. Organometallic comp ds 12. Radical reactions

More information

7. Haloalkanes (text )

7. Haloalkanes (text ) 2009, Department of hemistry, The University of Western Ontario 7.1 7. aloalkanes (text 7.1 7.10) A. Structure and Nomenclature Like hydrogen, the halogens have a valence of one. Thus, a halogen atom can

More information

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound?

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? EM 331: hapter 1/2: Structures (Atoms, Molecules, Bonding) 1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? N 2 N 2 N 1 2 3 4 2. What hybrid orbitals are used to

More information

Chemistry 2321 Last name, First name (please print) April 22, 2008 McMurry, Chapters 10 and 11 Row # Seat #

Chemistry 2321 Last name, First name (please print) April 22, 2008 McMurry, Chapters 10 and 11 Row # Seat # Test 4 Name Chemistry 2321 Last name, First name (please print) April 22, 2008 McMurry, Chapters 10 and 11 Row # Seat # Part 1. Multiple Choice. Choose the one best answer, and clearly mark that answer

More information

REVIEW PROBLEMS Key. 1. Draw a complete orbital picture for the molecule shown below. Is this molecule chiral? Explain. H H.

REVIEW PROBLEMS Key. 1. Draw a complete orbital picture for the molecule shown below. Is this molecule chiral? Explain. H H. rganic hemistry II (E325) REVIEW PRBLEMS Key 1. Draw a complete orbital picture for the molecule shown below. Is this molecule chiral? Explain. 3 3 sp3 orbital p orbital sp2 orbital s orbital molecule

More information

Reactions. Reactions. Elimination. 2. Elimination Often competes with nucleophilic substitution. 2. Elimination Alkyl halide is treated with a base

Reactions. Reactions. Elimination. 2. Elimination Often competes with nucleophilic substitution. 2. Elimination Alkyl halide is treated with a base eactions 1 eactions 2 2. limination Alkyl halide is treated with a base B: 2. limination ften competes with nucleophilic substitution LIMINATIN Nu: SUBSTITUTIN Nu Bimolecular B: limination B * * 3 Kinetics

More information

CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Text Sections (N0 1.9, 9-11) Homework: Chapter 1:

CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Text Sections (N0 1.9, 9-11) Homework: Chapter 1: CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Atomic Structure - Valence Electrons Chemical Bonds: The Octet Rule - Ionic bond - Covalent bond How to write Lewis

More information

There are several possible arrangements for a molecule which contains two double bonds (diene): 1. Isolated: (two or more single bonds between them)

There are several possible arrangements for a molecule which contains two double bonds (diene): 1. Isolated: (two or more single bonds between them) 1 Chapter 15: Conjugation and Reactions of Dienes I. Introduction to Conjugation There are several possible arrangements for a molecule which contains two double bonds (diene): 1. Isolated: (two or more

More information

Chapter 4. Reactions of alkenes. Addition reactions Carbocations Selectivity of reactions

Chapter 4. Reactions of alkenes. Addition reactions Carbocations Selectivity of reactions Chapter 4 Reactions of alkenes Addition reactions Carbocations Selectivity of reactions Prob 47 p192. Give the reagents that would be required (including catalyst). Ch 4 #2 Electrophilic addition Ch 4

More information

Chemistry 210 Organic Chemistry I Summer Semester 1999 Dr. Somnath Sarkar

Chemistry 210 Organic Chemistry I Summer Semester 1999 Dr. Somnath Sarkar Chemistry 210 Organic Chemistry I Summer Semester 1999 Dr. Somnath Sarkar Examination #3 Elimination Reactions Structure, Synthesis and Reactions of Alkenes and alkynes. Friday, July 23, 1999, 8:40 9:40

More information

Chapter 8 Alkenes and Alkynes II: Addition Reactions

Chapter 8 Alkenes and Alkynes II: Addition Reactions Chapter 8 Alkenes and Alkynes II: Addition Reactions Introduction: Additions to Alkenes Generally the reaction is exothermic because one π and one σ bond are converted to two σ bonds The π electrons of

More information

1. In the reaction shown above the nucleophile is. (a) Na (b) NaC CH (c) HC C (d) HC CH. 2. In the reaction shown above the nucleophile is

1. In the reaction shown above the nucleophile is. (a) Na (b) NaC CH (c) HC C (d) HC CH. 2. In the reaction shown above the nucleophile is Chemistry 247B Hanson Sample Exam 4B In each case, read each possible answer, use a process of elimination, and circle the BEST answer. If you are having trouble deciding between two answers, briefly explain

More information